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Abstract: In several applications, ultimately at the largest data, trunca-
tion effects can be observed when analysing tail characteristics of statistical
distributions. In some cases truncation effects are forecasted through phys-
ical models such as the Gutenberg-Richter relation in geophysics, while at
other instances the nature of the measurement process itself may cause un-
der recovery of large values, for instance due to flooding in river discharge
readings. Recently, Beirlant, Fraga Alves and Gomes (2016) discussed tail
fitting for truncated Pareto-type distributions. Using examples from earth-
quake analysis, hydrology and diamond valuation we demonstrate the need
for a unified treatment of extreme value analysis for truncated heavy and
light tails. We generalise the classical Peaks over Threshold approach for
the different max-domains of attraction with shape parameter ξ > −1/2 to
allow for truncation effects. We use a pseudo maximum likelihood approach
to estimate the model parameters and consider extreme quantile estimation
and reconstruction of quantile levels before truncation whenever appropri-
ate. We report on some simulation experiments and provide some basic
asymptotic results.
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1. Introduction

Modelling extreme events has recently received a lot of interest. Assessing the
risk of rare events through estimation of extreme quantiles or corresponding
return periods has been developed extensively and was applied to a wide vari-
ety of fields such as meteorology, finance, insurance and geology, among others.
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The methodology on modelling the univariate upper tail of the distribution of
such quantities Y relies on the fact that the maximum of independent measure-
ments Yi, i = 1, . . . , n, can be approximated by the generalised extreme value
distribution: as n → ∞

P

(
max

i=1,...,n
Yi − bn

an
≤ y

)
→ Gξ(y) = exp

(
−(1 + ξy)−1/ξ

)
, 1 + ξy > 0, (1)

where bn ∈ R, an > 0 and ξ ∈ R are the location, scale and shape parameters,
respectively. For ξ = 0, G0(y) has to be read as exp{− exp(−y)}. In fact, (1)
represents the only possible non-degenerate limits for maxima of independent
and identically distributed sequences Yi. Condition (1) is equivalent to the con-
vergence of the distribution of excesses (or peaks) over high thresholds t to the
generalised Pareto distribution (GPD): as t tends to the endpoint of the distri-
bution of Y , then, with F̄ the right tail function (RTF) of a given distribution,

P

(
Y − t

σY (t)
> y

∣∣∣∣ Y > t

)
=

F̄Y (t+ yσY (t))

F̄Y (t)
→ Hξ(y) = − logGξ(y) = (1 + ξy)−1/ξ ,

(2)
where σY (t) > 0. Below we set σY (t) = σt. Setting t at the (k + 1)th largest
observation yn−k,n for some k ∈ {1 . . . , n − 1} so that k data points are larger
than the threshold t, (2) leads to the estimator

p̂c =
k

n
Hξ̂

(
c− yn−k,n

σ̂

)
(3)

of the tail probability P(Y > c) for c > 0 large, where (ξ̂, σ̂) denote estimators
for (ξ, σt). The modelling of extreme values and the estimation of tail parameters
through the peaks over threshold (POT) methodology has been discussed for
instance in Coles (2001), Embrechts, Klüppelberg and Mikosch (1997), Beirlant
et al. (2004), and de Haan and Ferreira (2006).

Recently, Aban, Meerschaert and Panorska (2006); Chakrabarty and Samo-
rodnitsky (2012); Beirlant, Fraga Alves and Gomes (2016) have addressed the
problem of using unbounded probability mass leading to levels that are unrea-
sonably large or physically impossible. All of these papers consider cases with
shape parameter ξ > 0. In Beirlant, Fraga Alves and Gomes (2016) it was ob-
served that the above mentioned extreme value methods, even when using a
negative extreme value index, are not able to capture truncation at high levels.
However, in several other fields, such as hydrology and earthquake magnitude
modelling, the underlying distributions appear to be lighter tailed than Pareto.
In this paper we will propose an adaptation of the classical approach to trun-
cated tails over the whole range of max-convergence (1) with ξ > −0.5 as in the
original POT approach.

First, we consider recent magnitude data (expressed on the Richter scale)
of the 200 largest earthquakes in the Groningen area (the Netherlands), in the
period 2003–2015, which are caused by gas extraction. In Figure 1, we present
the time plot and the exponential QQ-plot (xn−j+1,n, log(j/n)) (j = 1, 2, . . . , n)
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Fig 1. Time plot and exponential QQ-plot of earthquake magnitude data from the Groningen
area.

where x1,n ≤ . . . ≤ xn−j+1,n ≤ . . . ≤ xn,n denote the ordered data. Along the
Gutenberg-Richter (1956) law the magnitudes of independent earthquakes are
drawn from a doubly truncated exponential distribution

P(M > m) =
e−λm − e−λTM

e−λm0 − e−λTM
, m0 < m < TM .

Kijko and Singh (2011) provide a review of the vast literature on estimating
the maximum possible magnitude TM . The energy E released by earthquakes,
expressed in megajoule (MJ), relates to the magnitude M , expressed on the
Richter scale, by

M = log10 (E/2) /1.5 + 1.

In Figure 1, a linear pattern is visible for a large section of the magnitudes data,
while some curvature appears at the largest values. The data set was tested for
serial correlation and no significance could be detected.

Secondly, we revisit the diamond size data considered in Verster et al.
(2012). The nature of metallurgical recovery processes in diamond mining may
cause under recovery of large diamonds between 30 and 60 cts per stone. If stones
are not recovered during this process they are discarded onto tailing dumps
from which they can be recovered during future re-mining programs. Because
even a small number of large diamonds can have a large value, the question
arises whether re-mining a mine dump can be made profitable by recovering
these large diamonds. Therefore, the expected number of large diamonds above
certain carat values c is of interest and the original non-truncated values are
to be reconstructed from the data, which exhibit truncation. In Figure 2, the
Pareto QQ-plot or log-log plot (log xn−j+1,n, log(j/n)) (j = 1, 2, . . . , n) of the
available carat data is presented. Again, a curvature near the top data is visible.

Thirdly, we study the river flows of the Molenbeek river at Erpe-Mere in
Belgium (inm3/s, n = 426) obtained between 1986 and 1996. The data are peaks
over threshold values taken from a complete series of hourly flow measurements
which was filtered in order to satisfy hydrological independence as discussed in
Willems (2009). This river is prone to flooding at high flow levels and hence the
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Fig 2. Log-log plot of diamond size data from Verster et al. (2012).

Fig 3. Exponential QQ-plot of the Molenbeek flow data.

measurements can be truncated. In Figure 3 the exponential QQ-plot is given,
which exhibits a linear (i.e. exponential) pattern with a downward curvature
near the largest floods.

In this paper, we aim to provide a statistical model being able to approxi-
mate tail characteristics of distributions truncated at high levels. Moreover, the
statistical estimation methods should also include the case of no-truncation in
order for these methods to be useful and competitive both in cases with and
without truncation. In the case of Pareto-type tails with ξ > 0 the proposed
methods should also be compared with the methods which have been developed
specifically for that sub-case. To this purpose we extend the classical POT tech-
nique with maximum likelihood estimation of the GPD parameters ξ and σ.
Of course estimators for tail probabilities and extreme quantiles of a truncated
distribution are to be discussed. Estimation of the endpoint T of a truncated
distribution is of particular importance as discussed above in earthquake appli-
cations. Motivated by the river flow and diamond valuation examples, we finally
consider the problem of reconstructing quantiles of the underlying unobserved
variable Y before truncation.
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2. Model

Let Y denote a parent random variable with distribution function FY (y) =
P(Y ≤ y), RTF F̄Y (y) = 1−FY (y), quantile functionQY (p) = inf{y : FY (y) ≥ p}
(0 < p < 1), and tail quantile function UY (v) = QY (1 − 1

v ) (v > 1). We con-
sider the right truncated distribution from which independent and identically
distributed data X1, X2, . . . , Xn are observed with, for some T > 0,

X =d Y |Y < T. (4)

The corresponding RTF is denoted by F̄T (x) = P(X > x) and the tail quantile
function is given by UT (u) = QT (1− 1

u ) (u > 1). Then,

F̄T (x) =
F̄Y (x)− F̄Y (T )

1− F̄Y (T )
= (1 +DT )F̄Y (x)−DT , (5)

UT (u) = UY

(
u

FY (T )
[1 + uDT ]

−1

)
(6)

= UY

(
1

F̄Y (T )

[
1 +

1

uDT

]−1
)
, (7)

where DT = F̄Y (T )/FY (T ) equals the odds of the truncated probability mass
under the untruncated distribution Y .

The goal of this paper is to provide a test for truncation and to estimate

• the model parameters ξ and σ = σt,
• the odds DT ,
• quantiles QT (1− p) (p small) of the truncated distribution and the trun-

cation point T = QT (1),
• tail probabilities P(X > c) (c large) of the truncated distribution,
• and reconstruct quantile levels QY (1− p) of the parent variable Y before

truncation,

all on the basis of a pure random sample from X (possibly) truncated at some
large T .

We assume that the distribution of Y satisfies (1) or, equivalently, (2). Condi-
tion (2) is also known to be equivalent to the following condition relating extreme
quantile levels at 1 − 1

vy and 1 − 1
y close to the endpoint of the distribution:

there exists a positive measurable function a such that

UY (vy)− UY (y)

a(y)
→ vξ − 1

ξ
when y → ∞, (8)

with a(1/F̄Y (tk,n)) = σt where t = tk,n = UT (n/k). The right hand side of (8)
is to be read as log v for ξ = 0.

The specific case ξ > 0 of Pareto-type distributions satisfies

UY (vy)

UY (y)
→y→∞ vξ and P(Y/t > y |Y > t) =

F̄Y (ty)

F̄Y (t)
→t→∞ y−1/ξ. (9)
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Also when ξ > 0, σt ∼ ξt as t → ∞. Furthermore, it is known that σt/t → 0
when ξ ≤ 0.

Note that for a given T fixed, the tail of a truncated model X defined through
(4) has an extreme value index ξX = −1, see for instance Figure 2.8 in Beirlant
et al. (2004).

Truncation of a distribution Y satisfying (2) at a value T necessarily requires
t < T → ∞. The threshold t is mostly taken at the theoretical quantileQT (1− k

n )
= UT (n/k), which in practice is estimated by the empirical quantile Xn−k,n.
Given the fact that our model is only defined choosing t = tn, T = Tn → ∞ as
the sample size n → ∞, the underlying model depends on n and a triangular
array formulation Xn1, . . . , Xnn of the observations should be used in order
to emphasise the nature of the model. However, in statistical procedures as
presented here, when a single sample is given, the notation X1, . . . , Xn is more
natural and will be used throughout.

The model considered in this paper is then given by

(M) For a sequence Tn → ∞, {Xn1, . . . , Xnn} = {X1, . . . , Xn} are independent
copies of a random variable X = XTn where X = XTn is distributed as
Y |Y < Tn, with Y satisfying (2) or equivalently (8).

Now we consider the distribution of the POT values for the data of the
truncated distribution under (M):

P

(
X − t

σt
> x

∣∣∣∣X > t

)
= P

(
Y − t

σt
> x

∣∣∣∣ t < Y < T

)

=
P(Y > t+ xσt)− P(Y > T )

P(Y > t)− P(Y > T )

=

P(Y >t+xσt)
P(Y >t) − P(Y >T )

P(Y >t)

1− P(Y >T )
P(Y >t)

. (10)

One can now consider two cases as t, T → ∞:

• (Tt) Rough truncation with the threshold t = tn:

(T − t)/σt → κ > 0, (11)

and hence from (2) and with local uniform convergence in (2)

P(Y > T )

P(Y > t)
→ (1 + ξκ)−1/ξ. (12)

This entails that for x ∈ (0, κ)

P

(
X − t

σt
> x

∣∣∣∣X > t

)
→ (1 + ξx)−1/ξ − (1 + ξκ)−1/ξ

1− (1 + ξκ)−1/ξ
=: F̄ξ,κ(x). (13)

This corresponds to situations where the deviation from the Pareto be-
haviour due to truncation at a high value T will be visible in the data
from t on, and the approximation of the POT distribution using the limit
distribution in (13) appears more appropriate than with a simple GPD.
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• (T̄t) Light truncation with the threshold t = tn : P(Y >T )
P(Y >t) → 0.

This entails

P

(
X − t

σt
> x

∣∣∣∣X > t

)
→ (1 + ξx)−1/ξ, 1 + ξx > 0. (14)

Light truncation is introduced for mathematical completeness. But (T̄t)
means that the truncation is not really visible in the data above t, and
the classical extreme value modelling without truncation is appropriate.
Hence, it will be practically impossible to discriminate light truncation
from no truncation (i.e. T = ∞).

Under (Tt) with t = tk,n = UT (n/k) we find from applying FY to both sides
of (6) with u = n/k that

F̄Y (t) = FY (T )
1 + (n/k)DT

n/k
= FY (T )

(
k

n
+DT

)
,

from which, dividing by F̄Y (T ), we obtain

F̄Y (t)

F̄Y (T )
=

1

DT

(
k

n
+DT

)
,

while, using (2) and (Tt),

F̄Y (T )

F̄Y (t)
→ (1 + ξκ)−1/ξ,

and hence under (Tt)
k

nDT
→ (1 + ξκ)1/ξ − 1. (15)

Now in order to be able to construct extreme quantile estimators under (Tt),
remark that from (8) with vy = 1/p, y = 1/F̄Y (t) and kξ(u) = (uξ − 1)/ξ, we
have as t → ∞ and F̄Y (t)/p → C for some constant C > 0 that

QY (1− p)− t

σt
− kξ

(
F̄Y (t)

p

)
→ 0.

Hence, with (7) and p = F̄Y (T )(1 +
1

uDT
) we obtain

UT (u)− t

σt
=

UY

(
1

F̄Y (t)
[1 + 1

uDT
]−1

)
− t

σt

= kξ

(
F̄Y (t)

F̄Y (T )[1 +
1

uDT
]

)
+ o(1).

Using (15) and (2) with y = κ we obtain under (Tt) that

F̄Y (t)

F̄Y (T )
∼ (1 + ξκ)1/ξ ∼ 1 +

k

nDT
.
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Hence, we conclude that under (Tt) for 1/(uDT ) → 0

UT (u)− t

σt
− kξ

(
1 + k

nDT

1 + 1
uDT

)
→ 0. (16)

These derivations will motivate the proposed estimators of DT and extreme
quantiles QT (1− p).

3. Inference

3.1. Estimators and goodness-of-fit

Estimation of the parameters (ξ, σ) in the classical POT without truncation is
well-developed (Coles, 2001; Beirlant et al., 2004). Fitting the scaled GPD with
RTF (1 + ξ

σx)
−1/ξ to the excesses X − t given X > t (based on (13)) using

maximum likelihood is by far the most popular method in this respect. Here we
rely on the generalisation (13) under (Tt), with t replaced by a random threshold
Xn−k,n and using the exceedances Ej,k = Xn−j+1,n −Xn−k,n (j = 1, 2, . . . , k)
for some k ≥ 2. Substituting E1,k/σ for κ following (11), the log-likelihood is
given by

logLk,n(ξ, σ) = log

⎛
⎜⎝ k∏

j=2

σ−1
(
1 + ξ

σEj,k

)−(1/ξ)−1

1−
(
1 + ξ

σE1,k

)−1/ξ

⎞
⎟⎠

= −(k − 1) log σ −
(
1 +

1

ξ

) k∑
j=2

log

(
1 +

ξ

σ
Ej,k

)

−(k − 1) log

(
1−

(
1 +

ξ

σ
E1,k

)−1/ξ
)
,

or, by reparametrising (ξ, σ) to (ξ, τ) with τ = ξ/σ,

logLk,n(ξ, τ) = (k − 1) log τ − (k − 1) log ξ −
(
1 +

1

ξ

) k∑
j=2

log(1 + τEj,k)

−(k − 1) log
(
1− (1 + τE1,k)

−1/ξ
)
.

The partial derivatives are given by

1

k − 1

∂ logLk,n(ξ, τ)

∂ξ
= −1

ξ
+

1

ξ2
1

k − 1

k∑
j=2

log(1 + τEj,k)

+
1

ξ2
(1 + τE1,k)

−1/ξ log(1 + τE1,k)

1− (1 + τE1,k)−1/ξ
,
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1

k − 1

∂ logLk,n(ξ, τ)

∂τ
=

1

τ
−
(
1 +

1

ξ

)
1

k − 1

k∑
j=2

Ej,k

1 + τEj,k

− 1

ξ
E1,k

(1 + τE1,k)
−1−1/ξ

1− (1 + τE1,k)−1/ξ
,

from which the likelihood equations defining the pseudo maximum likelihood
estimators (ξ̂k, τ̂k) are obtained:

1

k − 1

k∑
j=2

log(1 + τ̂kEj,k) +
(1 + τ̂kE1,k)

−1/ξ̂k log(1 + τ̂kE1,k)

1− (1 + τ̂kE1,k)−1/ξ̂k
= ξ̂k (17)

1

k − 1

k∑
j=2

1

1 + τ̂kEj,k
=

1

1 + ξ̂k

1− (1 + τ̂kE1,k)
−1−1/ξ̂k

1− (1 + τ̂kE1,k)−1/ξ̂k
. (18)

When computing (ξ̂k, τ̂k), one has to impose the model restrictions. In order to
meet the restrictions σ = ξ/τ > 0 and 1 + τEj,k > 0 for j = 1, . . . , k, in our
implementation we require the estimates of these quantities to be larger than
the numerical tolerance value 10−10.

An estimator of DT now follows from taking u = n in (16):

UT (n)− UT (n/k) ≈ σkξ

(
1 + k

nDT

1 + 1
nDT

)
.

Estimating UT (n)− UT (n/k) by E1,k we obtain

D̂T,k := max

{
0,

k

n

(1 + τ̂kE1,k)
−1/ξ̂k − 1

k

1− (1 + τ̂kE1,k)−1/ξ̂k

}
. (19)

Similarly taking u = 1/p in (16) with np/k → 0, we obtain estimators for
QT (1− p):

Q̂T,k(1− p) = Xn−k,n +
1

τ̂k

⎡
⎣{D̂T,k + k

n

D̂T,k + p

}ξ̂k

− 1

⎤
⎦ . (20)

Setting p = 0 in (20) one obtains an estimator for the truncation point T :

T̂k = Xn−k,n +
1

τ̂k

⎡
⎣{ 1− k−1

(1 + τ̂kE1,k)−1/ξ̂k − k−1

}ξ̂k

− 1

⎤
⎦ . (21)

Based on (3) and (5) an estimator for tail probabilities P(X > c) can be derived:

p̂T,k(c) = (1 + D̂T,k)
k

n
(1 + τ̂k(c−Xn−k,n))

−1/ξ̂k − D̂T,k. (22)
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Note that all proposed estimators from (17), (18), (20) and (22) are direct
generalisations of the classical POT estimators under no-truncation which are
obtained by setting D̂T,k equal to 0.

From (6) it follows that when p−(1−p)DT > 0, or p > DT /(1+DT ) = F̄Y (T )

QY (1− p) = QT ((1− p)(1 +DT )) = QT (1− {p− (1− p)DT }),

from which the following estimator reconstructing QY (1− p) of the parent dis-
tribution Y follows:

Q̂Y,k(1− p) = Q̂T,k

(
1− [p− (1− p)D̂T,k]

)

= Xn−k,n +
1

τ̂k

⎡
⎣{ D̂T,k + k

n

p(D̂T,k + 1)

}ξ̂k

− 1

⎤
⎦ . (23)

In the specific case ξ > 0 the estimators developed above can be compared
with those developed in Beirlant, Fraga Alves and Gomes (2016) for this special
Pareto-type case:

Hk,n = ξ̂+k +
R

1/ξ̂+k
k,n logRk,n

1−R
1/ξ̂+k
k,n

,

D̂+
T,k = max

⎧⎨
⎩0,

k

n

R
1/ξ̂+k
k,n − 1

k

1−R
1/ξ̂+k
k,n

⎫⎬
⎭ ,

log Q̂+
T,k(1− p) = logXn−k,n + ξ̂+k log

(
D̂+

T,k + k
n

D̂+
T,k + p

)
,

with Hk,n = 1
k

∑k
j=1 logXn−j+1,n − logXn−k,n the Hill (1975) statistic, and

Rk,n = Xn−k,n/Xn,n.

Of course, in practice there is a clear need for detecting rough truncation. Let
(T̄k) and (Tk) denote light and rough truncation with the thresholds Xn−k,n. A
test for

H0,k : (T̄k) versus H1,k : (Tk)

can be constructed generalising the goodness-of-fit test which was proposed by
Aban, Meerschaert and Panorska (2006) within a Pareto context, rejecting H0,k

at asymptotic level q ∈ (0, 1) when

Tk,n := k (1 + τ̂kE1,k)
−1/ξ̂k > log(1/q), (24)

while the P-value is given by e−Tk,n , as under H0,k, Tk,n approximately follows
a standard exponential distribution as will be shown in Theorem 3 below.
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3.2. Simulation study

The authors have performed an extensive simulation study concerning all the
proposed estimators for different distributions of Y . We compare the results with
the results from a Pareto analysis ξ̂+k and Q̂+

T,k(1− p) (Aban, Meerschaert and
Panorska, 2006; Beirlant, Fraga Alves and Gomes, 2016), with the classical POT

maximum likelihood results denoted by ξ̂∞k , Q̂∞
k (1 − p), and with the classical

moment estimators (Dekkers, Einmahl and de Haan, 1989)

ξ̂Mk = M
(1)
k + 1− 1

2

⎡
⎢⎣1−

(
M

(1)
k

)2
M

(2)
k

⎤
⎥⎦
−1

,

Q̂M
k (1− p) = Xn−k,n +Xn−k,nM

(1)
k

(
1− ξ̂Mk

) ( k
np

)ξ̂Mk − 1

ξ̂Mk
,

with M
(j)
k := 1

k

∑k
l=1 log

j (Xn−l+1,n/Xn−k,n), j = 1, 2. In the Appendix we give
a selection from these simulation results for Y following the standard Pareto
distribution, the standard lognormal distribution, the standard exponential dis-
tribution, and the GPD with RTF H−0.2. For each setting, 1000 samples for
X of size 500 were generated where we consider different levels of truncation:
T = QY (0.975), T = QY (0.99) and T = QY (1). Note that the last case corre-
sponds to no truncation, or X =d Y . The samples were generated using inverse
transform sampling with the quantile function QT (p) = QY (pFY (T )) (which
can easily be deduced from (5)).

To show the performance of the test for truncation, we plot the average
P-values over the 1000 simulations as a function of k in the first columns of
Figures 7–10 (full line). Additionally, the median (dashed line), first quartile
(dotted line) and third quartile (dotted line) of the P-values over the 1000
simulations are also plotted as a function of k. This corresponds to the box
of the boxplot of P-values as a function of k. Finally, we add blue horizon-
tal lines (dash-dotted line) indicating the standard significance levels of 1%
and 5%. When truncation is present (T = QY (0.975) or T = QY (0.99)), the
average P-values show that the test rejects the null hypothesis of no trun-
cation when k is large enough. For the standard exponential, standard log-
normal and GPD(-0.2,1) truncated at T = QY (0.99), the average P-value is
higher than, or just below, the 5% significance level, even for high values of
k. However, when looking at the median values and the third quartile, we see
that the majority, and sometimes more than 75%, of the P-values are below
the 5% significance level. When the data are not truncated, i.e. X =d Y ,
the P-values are on average always well above the considered significance lev-
els, hence correctly not rejecting the null hypothesis. The first quartile of the
P-values is also above the 5% significance level, except for smaller values of
k. Note that when we look at Y ∼ GPD(−0.2, 1), Y itself is bounded by
−σ/ξ = 5, but still X =d Y when we set T = QY (1). The simulation results
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show that the test performs as expected: rejecting the null hypothesis when
T = QY (0.975) or T = QY (0.99), and not rejecting the null hypothesis when
T = QY (1).

Concerning the estimation of ξ, see the second and third columns in Fig-
ures 7–10, the behaviour of ξ̂k in the standard Pareto case exhibits a slightly
smaller bias but quite a larger variance compared to ξ̂+T,k from Aban, Meer-
schaert and Panorska (2006); Beirlant, Fraga Alves and Gomes (2016) which
was constructed exclusively for the case ξ > 0. The classical POT and moment
estimators exhibit large bias under truncation, as they tend to −1 when the
threshold tends to xn,n. The mean squared error of ξ̂k is comparable to the
mean squared error (MSE) of these estimators for k ≥ 200. In case of no trun-

cation the bias of ξ̂k is the smallest for k ≥ 100 while the mean squared error is
the worst of the four estimators.

When ξ ≤ 0, the estimator ξ̂+T,k from the Pareto analysis is breaking down as
can be expected whereas the difference between the classical estimators and the
newly proposed POT estimator is small for k ≥ 200 in case ξ = 0 and k ≥ 300 in
the case ξ < 0. In all presented cases ξ̂k compares well for k sufficiently large with
the classical estimators when there is no truncation. Note that all estimators
have a large bias for the (truncated) lognormal distribution. As can clearly be
seen, the bias of all estimators decreases as truncation becomes lighter, or when
there is no truncation, as expected. Moreover, the stable area of the ξ̂k estimates
starts for smaller values of k when the truncation point gets larger.

Concerning the estimation of QT (1−p), see Figures 11–18 with p = 0.01 and
0.005 and T = QY (0.975), QY (0.99), the estimator Q̂T,k(1− p) has the smallest
bias, uniformly over all distributions and values of p considered, while the MSE
values are always comparable with the best performing estimators. Even in case
of no truncation Q̂T,k(1 − p) does not lose too much accuracy in comparison
with the classical MLE estimator.

3.3. Asymptotic results

Here we present the asymptotic normality of (ξ̂, τ̂) and Q̂T,k(1−p) under rough
truncation, and the asymptotic null distribution of the goodness-of-fit test statis-
tic Tk,n. The proofs are provided in the Appendix.

We assume a second-order remainder relation in (8) as in Theorem 3.4.2 in
de Haan and Ferreira (2006): with ξ > −1

2 ,

lim
t→∞

UY (tx)−UY (t)
aY (t) − xξ−1

ξ

A(t)
= Ψξ,ρ(x) for all x > 0, (25)

where

Ψξ,ρ(x) =

∫ x

1

sξ−1

∫ s

1

uρ−1 du ds,

with ρ ≤ 0. Furthermore, we introduce the notations bT,k,n := k+1
(n+1)DT

, aT,k,n :=

aY
(
1/(F̄Y (T )(1 + bT,k,n))

)
, and we denote the limit of k/(nDT ) under rough

truncation as derived in (15) by β := (1 + ξκ)1/ξ − 1.
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Theorem 1. Let X1, X2, . . . , be i.i.d. random variables with distribution func-
tion FT following (5) where UY satisfies (25). Let n, k = kn → ∞, k

n → 0,

T → ∞. Then, under (Tt) we have that as
√
kA(1/[F̄Y (T )(1+bT,k,n)]) → λ ∈ R

√
k
(
ξ̂k − ξ, τ̂kaT,k,n − ξ

)′
= I−1

β Nξ,β + λI−1
β fξ,β,ρ + op(1)1,

where

Iβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− 1+β
β2 log2(1 + β) 1

ξ

[
− ξ

1+ξ
1+β
β

(1− (1 + β)−1−ξ)

+ 1+β
β2 log(1 + β)(1− (1 + β)−ξ)

]

− 1
ξ

[
− ξ

1+ξ
1+β
β

(1− (1 + β)−1−ξ) − 1
ξβ

[
ξ

1+2ξ
(1 + β)(1− (1 + β)−1−2ξ)

+ 1+β
β2 log(1 + β)(1− (1 + β)−ξ)

]
− 1+β

β
1
ξ
(1− (1 + β)−ξ)2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Nξ,β =
β

1 + β

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ
∫ 1

0
Wn(u)

(
1+uβ
1+β

)−1

du

−ξWn(1)
(
− (1+β)1−ξ log(1+β)

β2 + ξ(1+β)−ξ+(1+β)
(1+ξ)β

)

ξ(1 + ξ)
∫ 1

0
Wn(u)

(
1+uβ
1+β

)−1+ξ

du

−Wn(1)
(

ξ(1+ξ)(1+β)
(1+2ξ)β

(1− (1 + β)−1−2ξ)

− (1+β)1−ξ

β2 (1− (1 + β)−ξ)
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

fξ,β,ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ
∫ 1

0
Ψξ,ρ(

1+β
1+uβ

)
(

1+uβ
1+β

)ξ

du

−ξΨξ,ρ(1 + β)(1 + β)−ξ
(

(1+β) log(1+β)

β2 − 1
β

)

ξ(1 + ξ)
∫ 1

0
Ψξ,ρ(

1+β
1+uβ

)
(

1+uβ
1+β

)2ξ

du

−Ψξ,ρ(1 + β) (1+β)1−ξ

β2 (1− (1 + β)−ξ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for a sequence of Brownian motions {Wn(s); s ≥ 0}.
Under (T̄t) the asymptotic result for (ξ̂k, τ̂k) can be checked to be identical to

that of the classical MLE estimators under no truncation as given in Theorem
3.4.2 in de Haan and Ferreira (2006).

Note that the information matrix Iβ equals 0 when κ = 0, or equivalently β =
0, so that the asymptotic variances are unbounded in such case. In practice this
induces large variances for smaller values of k. This also appears in Figures 7–
10. Fortunately, the bias stays reasonably small for larger values of k, as can be
deduced for instance in case of the lognormal distribution.

In order to state the asymptotic result for the quantile estimator Q̂T,k(1− p)
with p = pn → 0, we use the notation dn = k/(npn). Furthermore, we will use
the result that when UY satisfies (25), we have that

lim
t→∞

aY (tx)
aY (t) − xξ

A(t)
= Cxξ x

ρ − 1

ρ
(26)

for some constant C (see B.3.4 in de Haan and Ferreira (2006)).
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Theorem 2. Let X1, X2, . . . , be i.i.d. random variables with distribution func-
tion FT following (5) where UY satisfies (25). Let n, k = kn → ∞, k

n → 0,

T → ∞, p = pn → 0 and npn/
√
k → 0. Then, under (Tt) we have that(

Q̂T,k(1− p)−QT (1− p)
)

aY

(
1

F̄Y (T )

)
= −β

k
(E − 1) +Op

(
1

k2
∨ 1

d2n

)

− β

(
1

dn
− 1

k

)[
A

(
1

F̄Y (T )

)
C
(1 + β)−ρ − 1

ρ

+

(
ξ̂k
τ̂k

1

aT,k,n
− 1

)

−
(
ξ̂k − ξ

) 1

ξ

(1 + β) log(1 + β)

β

+ (τ̂kaT,k,n − ξ)
1− (1 + β)−ξ

ξ

(
1 +

1 + β

ξβ

)

+ (1 + β)−ξ

(
1 + β

β
+ ξ

)

×
(
−Wn(1)√

k
+A

(
1

F̄Y (T )

)
(1 + β)−ξΨξ,ρ(1 + β)

)]
,

where E is a standard exponential random variable and {Wn(s); s ≥ 0} a se-
quence of Brownian motions.

This result should be compared to Theorem 4.3.1 in de Haan and Ferreira
(2006) stating the basic asymptotic result for the quantile estimator based on
the classical ML estimators under no truncation. Note that under (Tt) the rate
of the stochastic part in the asymptotic representation is Op(1/k) rather than

the classical Op(1/
√
k).

Theorem 3. Let X1, X2, . . . , be i.i.d. random variables with distribution func-
tion FT following (5) where UY satisfies (25). Let n, k = kn → ∞, k

n → 0,
T → ∞. Then, under (T̄k) with nDT → 0 we have that

Tk,n =d E(1 + op(1))

where E is a standard exponential random variable.

4. Case studies

Analysing the magnitude data from the Groningen area, it appears that the
given 200 top data confirm the Gutenberg-Richter law with ξ̂k clearly indicat-
ing that Y = M belongs to the Gumbel ξ = 0 domain. The goodness-of-fit test
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Fig 4. Groningen earthquake magnitude data: ξ̂+k , ξ̂k, ξ̂
∞
k and ξ̂Mk (top left); P-values for test

for truncation (top right); D̂+
T,k and D̂T,k (middle left); the logarithmic transform of T̂+

E,k

and T̂M,k (middle right); exponential QQ-plot with fit based on k = 50 largest magnitudes
(bottom).

rejects light truncation for k ≥ 40 and the proposed truncation model fits well
to the top 50 data as indicated on the exponential QQ-plot in Figure 4. Further-
more, D̂T,k indicates a truncation volume DT between 0.01 and 0.02. Finally,
the endpoint can be estimated in two ways: directly on the magnitude data
using T̂M,k = Q̂T,k(1), or using a Pareto analysis T̂+

E,k = Q̂+
T,k(1) based on the

energy data and transforming back to the magnitude scale with a logarithmic
transformation. Both approaches lead to a value around 3.75.

Concerning the diamond data introduced in Figure 2, ξ̂k and ξ̂+k , respectively

D̂T,k and D̂+
T,k, correspond well for k ≥ 250 and lead to a Pareto fit with extreme
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Fig 5. Diamond data: ξ̂+k , ξ̂k, ξ̂∞k and ξ̂Mk (top left); P-values for test for truncation (top

right); D̂+
T,k and D̂T,k (middle left); Q̂+

T,k(0.99), Q̂T,k(0.99), Q̂+
Y,k(0.99) and Q̂Y,k(0.99)

(middle right); log-log plot with fit based on k = 250 largest sizes (bottom).

value index around 0.5 and a truncation odds DT around 0.02. The goodness-
of-fit test now rejects light truncation for k ≥ 110. Reconstructing QY (0.99)
with Q̂Y,k(0.99) and Q̂+

Y,k(0.99) leads to a value of 120 cts at k = 250.

Finally with the Molenbeek data, the goodness-of-fit test and the fit of the
proposed truncation model on the exponential QQ-plot on the top 100 data,
again indicate that this Y belongs to the Gumbel domain with an odds DT

around 0.02. Here, the Pareto domain estimators ξ̂+k and D̂+
T,k clearly do not

show a stable pattern as a function of k. Reconstructing QY (0.97) leads to a
value Q̂Y,100(0.97) = 6.5 m3/s.
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Fig 6. Molenbeek flow data: ξ̂+k , ξ̂k, ξ̂
∞
k and ξ̂Mk (top left); P-values for test for truncation (top

right); D̂+
T,k and D̂T,k (middle left); Q̂T,k(0.97) and Q̂Y,k(0.97) (middle right); exponential

QQ-plot with fit based on k = 100 largest flows (bottom).

5. Discussion

We proposed a general tail estimation approach for cases where truncation af-
fects the ultimate right tail of the distribution. Using applications from geo-
physics, hydrology and geology we motivated the importance of this problem.
The proposed estimators of the extreme value index, and quantiles of the trun-
cated and underlying non-truncated distribution, in most cases compare well
with the best performing alternatives, even in case there is no truncation. The
proposed estimator of extreme quantiles of a truncated distribution is perform-
ing uniformly best. While the alternative procedures sometimes break down in
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at least one situation, our proposals remain always useful for large enough k.
Hence, in addition to the existing methods, this method can be an interesting
extra tool when analysing tails.

Appendix: Proofs of Theorems

Proposition 1. Under the condition of Theorem 1, one can define a sequence
of Brownian motions {Wn(s) | s > 0}, such that for ε > 0

(a)

max
j=1,...,k

(
j

k+1

)0.5+ε
∣∣∣∣∣
√
k

⎡
⎣Xn−j+1,n − UT

(
n+1
k+1

)
aT,k,n

− 1

ξ

⎛
⎝( 1+ j

k+1
bT,k,n

1+ bT,k,n

)−ξ

− 1

⎞
⎠
⎤
⎦

+
bT,k,n

1 + bT,k,n

(
1 + j

k+1
bT,k,n

1 + bT,k,n

)−1−ξ

Wn

(
j

k + 1

)

+
√
kA

(
1

F̄Y (T )(1 + bT,k,n)

)
Ψξ,ρ

(
1 + bT,k,n

1 + j
k+1

bT,k,n

) ∣∣∣∣∣ →p 0

(b)

max
j=1,...,k

(
j

k + 1

)0.5+ε
∣∣∣∣∣
√
k

⎡
⎣Xn−j+1,n −Xn−k,n

aT,k,n
− 1

ξ

⎛
⎝( 1 + j

k+1
bT,k,n

1 + bT,k,n

)−ξ

− 1

⎞
⎠
⎤
⎦

+
bT,k,n

1 + bT,k,n

⎡
⎣( 1 + j

k+1
bT,k,n

1 + bT,k,n

)−1−ξ

Wn

(
j

k + 1

)
−Wn(1)

⎤
⎦

+
√
kA

(
1

F̄Y (T )(1 + bT,k,n)

)
Ψξ,ρ

(
1 + bT,k,n

1 + j
k+1

bT,k,n

) ∣∣∣∣∣ →p 0.

Proof. In order to derive (a), note that for j = 1, . . . , k,

Xn−j+1,n − UT

(
n+ 1

k + 1

)
=d UT (Yn−j+1,n)− UT

(
n+ 1

k + 1

)

= UY

(
1 + bT,k,n

1 + 1
Yn−j+1,nDT

1

F̄Y (T )(1 + bT,k,n)

)
− UY

(
1

F̄Y (T )(1 + bT,k,n)

)

where we used (7), and where Y1,n ≤ Y2,n ≤ . . . ≤ Yn,n denote the order statis-
tics of an i.i.d. sample from a standard Pareto distribution with distribution
function 1− 1/x for x ≥ 1. Hence, using (25) with

t =
1

F̄Y (T )(1 + bT,k,n)
and x =

1 + bT,k,n

1 + n+1
jYn−j+1,n

j
k+1bT,k,n

,

we obtain
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Xn−j+1,n − UT

(
n+1
k+1

)
aT,k,n

=
1

ξ

⎛
⎝(1 + n+1

jYn−j+1,n

j
k+1bT,k,n

1 + bT,k,n

)−ξ

− 1

⎞
⎠

+A

(
1

F̄Y (T )(1 + bT,k,n)

)
Ψξ,ρ

(
1 + bT,k,n

1 + j
k+1bT,k,n

)
+ op(1). (27)

Using Lemma 2.4.10 in de Haan and Ferreira (2006) applied to the standard
Pareto distribution one gets

max
j=1,...,k

(
j

k + 1

)0.5+ε
∣∣∣∣∣
√
k

(
Yn−j+1,n

j

n
− 1

)
−
(

j

k + 1

)−1

Wn

(
j

k + 1

) ∣∣∣∣∣→p 0.

Using the mean value theorem we now obtain

1

ξ

⎛
⎝(1 + n+1

jYn−j+1,n

j
k+1bT,k,n

1 + bT,k,n

)−ξ

−
(
1 + j

k+1bT,k,n

1 + bT,k,n

)−ξ
⎞
⎠

=
bT,k,n

1 + bT,k,n

j

k + 1

(
1 + j

k+1bT,k,n

1 + bT,k,n

)−1−ξ (
jYn−j+1,n

n
− 1

)
(1 + op(1)).

Hence, combining this with (27) and the result from Lemma 2.4.10 in de Haan
and Ferreira (2006), we arrive at (a). Combining (a) with the analogous result
for j = k + 1, one arrives at (b). To this end note that Ψξ,ρ(1) = 0.

Proof of Theorem 1. This proof follows the approach of the proof of Theo-
rem 3.4.2 in de Haan and Ferreira (2006). Let τ̂kaT,k,n = τ̂ sk , and

ZT,k,n

(
j

k + 1

)
=

bT,k,n

1 + bT,k,n

⎛
⎝(1 + j

k+1bT,k,n

1 + bT,k,n

)−1−ξ

Wn

(
j

k + 1

)
−Wn(1)

⎞
⎠

+
√
kA

(
1

F̄Y (T )(1 + bT,k,n)

)
Ψξ,ρ

(
1 + bT,k,n

1 + j
k+1bT,k,n

)
.

Then, uniformly in j ∈ {1, . . . , k},

1 + τ̂ sk
Ej,k

aT,k,n
=

(
1 + j

k+1bT,k,n

1 + bT,k,n

)−ξ

+
1

ξ
(τ̂ sk − ξ)

⎛
⎝(1 + j

k+1bT,k,n

1 + bT,k,n

)−ξ

− 1

⎞
⎠

+ τ̂ sk
1√
k
ZT,k,n

(
j

k + 1

)
+ op(1).

Using log(1 + u) = u(1 + o(1)) if u ↓ 0, we get
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log

⎛
⎝( 1 + j

k+1
bT,k,n

1 + bT,k,n

)ξ (
1 + τ̂s

k
Ej,k

aT,k,n

)⎞⎠ =
1

ξ
(τ̂s

k − ξ)

⎛
⎝1−

(
1 + j

k+1
bT,k,n

1 + bT,k,n

)ξ
⎞
⎠

+ τ̂s
k

1√
k
ZT,k,n

(
j

k + 1

)(
1 + j

k+1
bT,k,n

1 + bT,k,n

)ξ

+ op(1).

Hence, the first term on the left hand side of (17) is given by

1

k − 1

k∑
j=2

log(1 + τ̂kEj,k) =

[
−ξ

∫ 1

0

log

(
1 + ubT,k,n

1 + bT,k,n

)
du

+
1

ξ
(τ̂ sk − ξ)

∫ 1

0

(
1−

(
1 + ubT,k,n

1 + bT,k,n

)ξ
)

du

+τ̂ sk
1√
k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)ξ

du

]

∼
[
ξ

(
1− log(1 + bT,k,n)

bT,k,n

)

+
1

ξ
(τ̂ sk − ξ)

(
1− 1 + bT,k,n

bT,k,n(1 + ξ)

(
1− (1 + bT,k,n)

−1−ξ
))

+τ̂ sk
1√
k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)ξ

du

]
. (28)

Moreover, using Proposition 1(b) with j = 1, we obtain

(
1 + τ̂s

k
E1,k

aT,k,n

)−1/ξ̂k

=

(
1 + τ̂s

k
1

ξ

(
(1 + bT,k,n)

ξ − 1
)
+ τ̂s

k
1√
k
ZT,k,n

(
1

k + 1

))−1/ξ̂k

= (1 + bT,k,n)
− ξ

ξ̂k

(
1 + (τ̂s

k − ξ)
1

ξ

(
1− (1 + bT,k,n)

−ξ
)

+τ̂s
k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)−1/ξ̂k

= (1 + bT,k,n)
−1

(
1 + (ξ̂k − ξ)

1

ξ
log(1 + bT,k,n)

−(τ̂s
k − ξ)

1

ξ2

(
1− (1 + bT,k,n)

−ξ
)

− τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)
(1 + op(1))

where we used the series expansions

e
−
(

ξ

ξ̂k
−1

)
log(1+bT,n,k)

= 1−
(

ξ

ξ̂k
− 1

)
log(1 + bT,n,k)(1 + op(1))

and (1+u)−1/ξ = 1− u
ξ (1+ o(1)). Hence, the second term on the left hand side
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of (17) equals

− ξ̂k

(
1 + τ̂s

k
E1,k

aT,k,n

)−1/ξ̂k
log

(
1 + τ̂s

k
E1,k

aT,k,n

)−1/ξ̂k

1−
(
1 + τ̂s

k

E1,k

aT,k,n

)−1/ξ̂k

= −ξ̂k(1 + bT,k,n)
−1

(
1 +

(ξ̂k − ξ)

ξ
log(1 + bT,k,n)−

(τ̂s
k − ξ)

ξ2

(
1− (1 + bT,k,n)

−ξ
)

− τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)

× log(1 + bT,k,n)
−1 ×

(
1− (ξ̂k − ξ)

ξ
+

(τ̂s
k − ξ)

ξ2

(
1− (1 + bT,k,n)

−ξ
)

log(1 + bT,k,n)

+
τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

log(1 + bT,k,n)

)

/

[
bT,k,n

1 + bT,k,n

(
1− (ξ̂k − ξ)

ξ

log(1 + bT,k,n)

bT,k,n
+

(τ̂s
k − ξ)

ξ2

(
1− (1 + bT,k,n)

−ξ
)

bT,k,n

+
τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

bT,k,n

)]
(1 + op(1))

∼
[
ξ̂k

log(1 + bT,k,n)

bT,k,n
+ (ξ̂k − ξ)

log(1 + bT,k,n)

bT,k,n

(
−1 +

1 + bT,k,n

bT,k,n
log(1 + bT,k,n)

)

− (τ̂s
k − ξ)

ξ

(
1− (1 + bT,k,n)

−ξ
)(1 + bT,k,n

bT,k,n
− 1

log(1 + bT,k,n)

)
log(1 + bT,k,n)

bT,k,n

−τ̂s
k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

×
(
1 + bT,k,n

bT,k,n
− 1

log(1 + bT,k,n)

)
log(1 + bT,k,n)

bT,k,n

]
. (29)

Combining (17), (28) and (29) gives

[
ξ

(
1− log(1 + bT,k,n)

bT,k,n

)
+

1

ξ
(τ̂s

k − ξ)

(
1− 1 + bT,k,n

bT,k,n(1 + ξ)

(
1− (1 + bT,k,n)

−1−ξ
))

+τ̂s
k

1√
k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)ξ

du

]
(1 + op(1))

+

[
ξ̂k

log(1 + bT,k,n)

bT,k,n
+ (ξ̂k − ξ)

log(1 + bT,k,n)

bT,k,n

(
−1 +

1 + bT,k,n

bT,k,n
log(1 + bT,k,n)

)

− (τ̂s
k − ξ)

ξ

(
1− (1 + bT,k,n)

−ξ
)(1 + bT,k,n

bT,k,n
− 1

log(1 + bT,k,n)

)
log(1 + bT,k,n)

bT,k,n

−τ̂s
k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

×
(
1 + bT,k,n

bT,k,n
− 1

log(1 + bT,k,n)

)
log(1 + bT,k,n)

bT,k,n

]
= ξ̂k(1 + op(1)).
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This equation can be written as

0 =

[
(ξ̂k − ξ)

(
−1 +

(1 + bT,k,n) log
2(1 + bT,k,n)

b2T,k,n

)

+
1

ξ
(τ̂ sk − ξ)

(
ξ

1 + ξ

1 + bT,k,n

bT,k,n

(
1− (1 + bT,k,n)

−1−ξ
)

− (1 + bT,k,n)

b2T,k,n

log(1 + bT,k,n)
(
1− (1 + bT,k,n)

−ξ
))

+
τ̂ sk√
k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)ξ

du

− τ̂ sk√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

×
(
(1 + bT,k,n) log(1 + bT,k,n)

b2T,k,n

− 1

bT,k,n

)]
(1 + op(1)). (30)

The left hand side of (18) yields, using similar asymptotic methods as above,

1

k − 1

k∑
j=2

(
1 + j

k+1bT,k,n

1 + bT,k,n

)ξ
⎡
⎣1− (τ̂ sk − ξ)

ξ

⎛
⎝1−

(
1 + j

k+1bT,k,n

1 + bT,k,n

)ξ
⎞
⎠

− τ̂ sk√
k
ZT,k,n

(
j

k + 1

)⎛⎝1−
(
1 + j

k+1bT,k,n

1 + bT,k,n

)ξ
⎞
⎠
⎤
⎦ (1 + op(1))

=

[
1

1 + ξ

1 + bT,k,n

bT,k,n

(
1− (1 + bT,k,n)

−1−ξ
)

− (τ̂ sk − ξ)

ξ

(
ξ(1 + bT,k,n)

(1 + ξ)(1 + 2ξ)
− (1 + bT,k,n)

−ξ

1 + ξ
+

(1 + bT,k,n)
−2ξ

1 + 2ξ

)

− τ̂ sk√
k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)2ξ

du

]
(1 + op(1)). (31)

The right hand side of (18) is asymptotically equivalent to (where we used
again Proposition 1(b) with j = 1)

1

1 + ξ̂k

[
1− 1

1 + bT,k,n

(
1 +

ξ̂k − ξ

ξ
log(1 + bT,k,n)−

τ̂s
k − ξ

ξ2

(
1− (1 + bT,k,n)

−ξ
)

−τ̂s
k

1

ξ̂k
√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)

×
(
(1 + bT,k,n)

ξ +
τ̂s
k − ξ

ξ

(
(1 + bT,k,n)

ξ − 1
)
+ τ̂s

k
1√
k
ZT,k,n

(
1

k + 1

))−1
]

×
[
1− 1

1 + bT,k,n

(
1 +

ξ̂k − ξ

ξ
log(1 + bT,k,n)−

τ̂s
k − ξ

ξ2

(
1− (1 + bT,k,n)

−ξ
)
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−τ̂s
k

1

ξ̂k
√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)]−1

∼ 1

1 + ξ̂k

(1 + bT,k,n)
(
1− (1 + bT,k,n)

−1−ξ
)

bT,k,n

×
(
1− ξ̂k − ξ

ξ
log(1 + bT,k,n)

(1 + bT,k,n)
−1−ξ

1− (1 + bT,k,n)−1−ξ

+(τ̂s
k − ξ)

1 + ξ

ξ2
(1 + bT,k,n)

−1−ξ

1− (1 + bT,k,n)−1−ξ

(
1− (1 + bT,k,n)

−ξ
)

+
τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
1 + ξ̂k

ξ̂k

(1 + bT,k,n)
−1−2ξ

1− (1 + bT,k,n)−1−ξ

)

×
[
1− ξ̂k − ξ

ξ

log(1 + bT,k,n)

bT,k,n
+

τ̂s
k − ξ

ξ2
1− (1 + bT,k,n)

−ξ

bT,k,n

+
τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

bT,k,n

]−1

∼ 1

1 + ξ̂k

(1 + bT,k,n)
(
1− (1 + bT,k,n)

−1−ξ
)

bT,k,n

+
(ξ̂k − ξ)

ξ(1 + ξ)

1 + bT,k,n

b2T,k,n

log(1 + bT,k,n)
(
1− (1 + bT,k,n)

−ξ
)

+
τ̂s
k − ξ

ξ2(1 + ξ)

1 + bT,k,n

bT,k,n

(
1− (1 + bT,k,n)

−ξ
)(

− 1− (1 + bT,k,n)
−1−ξ

bT,k,n

+ (1 + ξ)(1 + bT,k,n)
−1−ξ

)

− 1

1 + ξ

τ̂s
k

ξ̂k

1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

1−ξ

b2T,k,n

(
1− (1 + bT,k,n)

−ξ
)
. (32)

Combining (18), (31) and (32) leads to (after some lengthy calculations)

1

ξ

1 + bT,k,n

bT,k,n

(
ξ

1 + ξ

(
1− (1 + bT,k,n)

−1−ξ
)

− log(1 + bT,k,n)

bT,k,n

(
1− (1 + bT,k,n)

−ξ
))

− (τ̂ sk − ξ)
1 + bT,k,n

bT,k,n

1

ξ

(
ξ

1 + 2ξ

(
1− (1 + bT,k,n)

−1−2ξ
)

− 1

bT,k,n

1

ξ

(
1− (1 + bT,k,n)

−ξ
)2)

=
ξ(ξ + 1)√

k

∫ 1

0

ZT,k,n (u)

(
1 + ubT,k,n

1 + bT,k,n

)2ξ

du

− 1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

1−ξ

b2T,k,n

(
1− (1 + bT,k,n)

−ξ
)
. (33)



Fitting tails affected by truncation 2049

Proof of Theorem 2.

Q̂T,k(1− p)

= Xn−k,n +
1

τ̂k

((
1 +

k

nD̂T

)ξ̂k
(
1 +

1

dn

k

nD̂T

)−ξ̂k

− 1

)

= Xn−k,n +
1

τ̂k

⎛
⎜⎝
⎛
⎝ 1− 1

k

(1 + τ̂kE1,k)
− 1

ξ̂k − 1
k

⎞
⎠

ξ̂k (
1 +

1

dn

k

nD̂T

)−ξ̂k

− 1

⎞
⎟⎠

= Xn−k,n +
1

τ̂k

⎛
⎜⎝(1 + τ̂kE1,k)

⎛
⎝ 1− 1

k

1− 1
k
(1 + τ̂kE1,k)

1
ξ̂k

⎞
⎠

ξ̂k (
1 +

1

dn

k

nD̂T

)−ξ̂k

− 1

⎞
⎟⎠

= Xn−k,n +
1

τ̂k

(
(1 + τ̂kE1,k)

(
1− ξ̂k

k

(
1− (1 + τ̂kE1,k)

1
ξ̂k

)
(1 + op(1))

)

×
(
1− ξ̂k

dn

k

nD̂T

(1 + op(1))

)
− 1

)

= Xn−k,n +

(
E1,k + (1 + τ̂kE1,k)

(
− ξ̂k

τ̂kk

(
1− (1 + τ̂kE1,k)

1
ξ̂k

)
− ξ̂k

dnτ̂k

k

nD̂T

)

× (1 + op(1))

)

= Xn,n − ξ̂k
τ̂k

(1 + τ̂kE1,k)

(
1

k

(
1− (1 + τ̂kE1,k)

1
ξ̂k

)
+

1

dn

k

nD̂T

)
(1 + op(1)).

Hence,

Q̂T,k(1− p)−QT (1− p)

=

(
Xn,n −QT

(
1− 1

n

))
+

(
QT

(
1− 1

n

)
−QT (1− p)

)

− ξ̂k
τ̂k

(1 + τ̂kE1,k)

(
1

k

(
1− (1 + τ̂kE1,k)

1

ξ̂k

)
+

1

dn

k

nD̂T

)(
1 + op

(
1

dn

))
.

(34)

First, using again the notation Y1,n ≤ Y2,n ≤ . . . ≤ Yn,n for the order statistics
of an i.i.d. sample of size n from a standard Pareto distribution, we obtain using
(26)

Xn,n −QT

(
1− 1

n

)
=d UT (Yn,n)− UT (n)

= UY

⎛
⎝ 1

F̄Y (T )
(
1 + n

Yn,n

1
nDT

)
⎞
⎠ − UY

⎛
⎝ 1

F̄Y (T )
(
1 + 1

nDT

)
⎞
⎠

= UY

⎛
⎝ 1 + 1

nDT

1 + n
Yn,n

1
nDT

1

F̄Y (T )
(
1 + 1

nDT

)
⎞
⎠ − UY

⎛
⎝ 1

F̄Y (T )
(
1 + 1

nDT

)
⎞
⎠
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= aY

(
1

F̄Y (T )
(
1 + 1

k
bT,k,n

)
)⎛⎝ 1

ξ

⎛
⎝
⎛
⎝ 1 +

bT,k,n

k

1 + n
Yn,n

bT,k,n

k

⎞
⎠

ξ

− 1

⎞
⎠

+ A

(
1

F̄Y (T )
(
1 + 1

k
bT,k,n

)
)
Ψξ,ρ

⎛
⎝ 1 +

bT,k,n

k

1 + n
Yn,n

bT,k,n

k

⎞
⎠
⎞
⎠ (1 + op(1))

= aY

(
1

F̄Y (T )

)(
1 +

bT,k,n

k

)−ξ

⎛
⎜⎝1 +A

(
1

F̄Y (T )

)
C

⎛
⎜⎝
(
1 +

bT,k,n

k

)−ρ

− 1

ρ

⎞
⎟⎠
⎞
⎟⎠

×
(
−bT,k,n

1

k

(
n

Yn,n
− 1

)(
1 +Op

(
1

k

))
+Op

(
1

k2

))

= aY

(
1

F̄Y (T )

)(
1− ξbT,k,n

k
−A

(
1

F̄Y (T )

)
C
bT,k,n

k
+Op

(
1

k2

))

×
(
− bT,k,n

k
(E − 1) +Op

(
1

k2

))
. (35)

Here, we used that n
Yn,n

=d E+Op

(
1
n

)
and that Ψξ,ρ

(
1 + D

k

)
= O

(
1
k2

)
for any

constant D. Furthermore,

QT

(
1− 1

n

)
−QT (1− p)

= UY

⎛
⎝ 1

F̄Y (T )
(
1 + 1

nDT

)
⎞
⎠ − UY

⎛
⎝ 1

F̄Y (T )
(
1 + p

DT

)
⎞
⎠

= UY

⎛
⎝ 1 +

bT,k,n

dn

1 +
bT,k,n

k

1

F̄Y (T )
(
1 +

bT,k,n

dn

)
⎞
⎠ − UY

⎛
⎝ 1

F̄Y (T )
(
1 + p

DT

)
⎞
⎠

= aY

⎛
⎝ 1

F̄Y (T )
(
1 +

bT,k,n

dn

)
⎞
⎠
⎛
⎝ 1

ξ

⎛
⎝( 1 +

bT,k,n

dn

1 +
bT,k,n

k

)ξ

− 1

⎞
⎠

+ A

⎛
⎝ 1

F̄Y (T )
(
1 +

bT,k,n

dn

)
⎞
⎠Ψξ,ρ

(
1 +

bT,k,n

dn

1 +
bT,k,n

k

)⎞⎠ (1 + op(1))

= aY

(
1

F̄Y (T )

)(
1 +

bT,k,n

dn

)−ξ

⎛
⎜⎝1 +A

(
1

F̄Y (T )

)
C

⎛
⎜⎝
(
1 +

bT,k,n

dn

)−ρ

− 1

ρ

⎞
⎟⎠
⎞
⎟⎠

×
(
bT,k,n

(
1

dn
− 1

k

)(
1 +O

(
1

dn

))
+O

(
1

d2n

))

= aY

(
1

F̄Y (T )

)(
bT,k,n

(
1

dn
− 1

k

)
+O

(
1

d2n
∨ 1

k2

))
. (36)

Finally, using k/(nD̂T ) =
(
(1 + τ̂kE1,k)

1

ξ̂k − 1
)
(1+Op(1/k)) and derivations
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as in the proof of Theorem 1, the third term in the right hand side of (34) equals

−
(
ξ̂k
τ̂k

1

aT,k,n

)
aT,k,n(1 + τ̂kE1,k)

(
1

k

(
1− (1 + τ̂kE1,k)

1
ξ̂k

)
+

1

dn

k

nD̂T

)

= −aY

(
1

F̄Y (T )

)
(1 + bT,k,n)

−ξ

(
1 +A

(
1

F̄Y (T )

)
C

(
(1 + bT,k,n)

−ρ − 1

ρ

))

×
(
1 +

(
ξ̂k
τ̂k

1

aT,k,n
− 1

))

× (1 + bT,k,n)
ξ

(
1 + (τ̂s

k − ξ)
1

ξ

(
1− (1 + bT,k,n)

−ξ
)

+
τ̂s
k√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)

×
((

1− (1 + τ̂kE1,k)
1
ξ̂k

)(
1

dn
− 1

k

)
+Op

(
1

dnk

))

= −aY

(
1

F̄Y (T )

)(
1 +A

(
1

F̄Y (T )

)
C

(
(1 + bT,k,n)

−ρ − 1

ρ

))(
1 +Op

(
1

k

))

×
(
1 +

(
ξ̂k
τ̂k

1

aT,k,n
− 1

))

×
(
1 + (τ̂s

k − ξ)
1

ξ

(
1− (1 + bT,k,n)

−ξ
)
+

τ̂s
k√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

−ξ

)

× bT,k,n

(
1

dn
− 1

k

)

×
(
1− (ξ̂k − ξ)

1

ξ

1 + bT,k,n

bT,k,n
log(1 + bT,k,n)

+(τ̂s
k − ξ)

1

ξ2
1 + bT,k,n

bT,k,n

(
1− (1 + bT,k,n)

−ξ
)

+
1√
k
ZT,k,n

(
1

k + 1

)
(1 + bT,k,n)

1−ξ

bT,k,n

)
. (37)

The result follows from joining (34), (35), (36) and (37) and retaining terms of

order O
(
1
k

)
, O

((
1
dn

− 1
k

)
A
(

1
F̄Y (T )

))
and O

((
1
dn

− 1
k

)
1√
k

)
.

Proof of Theorem 3. Note that using (6) and F̄Y (T ) = DTFY (T ), we obtain

Tk,n = k

(
1 + τ̂ sk

E1,k

aT,k,n

)−1/ξ̂k

= k

(
1 + τ̂ sk

UT (Yn,n)− UT (Yn−k,n)

aT,k,n

)−1/ξ̂k
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= k

⎛
⎝1 +

τ̂ sk

aY

(
1

DT (1+bT,k,n)FY (T )

)

×
[
UY

(
Yn,n

FY (T )(1+Yn,nDT )

)
−UY

(
Yn−k,n

FY (T )(1+Yn−k,nDT )

)])−1/ξ̂k

= k

⎛
⎝1 +

τ̂ sk

aY

(
n/k

(1+nDT /k)FY (T )

)

×

⎡
⎣UY

⎛
⎝ Yn,n

Yn−k,n

1+Yn,nDT

1+Yn−k,nDT

kYn−k,n

n
n
k

FY (T )
(
1 +

kYn−k,n

n
nDT

k

)
⎞
⎠

−UY

⎛
⎝ kYn−k,n

n
n
k

FY (T )
(
1 +

kYn−k,n

n
nDT

k

)
⎞
⎠
⎤
⎦
⎞
⎠

−1/ξ̂k

.

Now one applies (25) with t =
kYn−k,n

n
n
k

FY (T )
(
1+

kYn−k,n
n

nDT
k

) = n
k (1 + op(1)) and x =

Yn,n

Yn−k,n

1+Yn−k,nDT

1+Yn,nDT
= U−1

1,k (1 + op(1)) since
kYn−k,n

n = 1 + Op(1/
√
k), Yn,n/n =

1 + op(1), nDT → 0 and Yn−k,n/Yn,n =d U1,k, the minimum of an i.i.d. sample
of size k from the uniform (0,1) distribution. This, with τ̂ sk/ξ = 1+ op(1), yields

Tk,n

= k

(
1 +

τ̂s
k

ξ

[
U−ξ

1,k(1 + op(1))− 1 + ξA
(n
k
(1 + op(1))

)
Ψξ,ρ

(
U−1

1,k(1 + op(1))
)])−1/ξ̂k

= k
(
U−ξ

1,k(1 + op(1)) + ξA
(n
k
(1 + op(1))

)
Ψξ,ρ

(
U−1

1,k(1 + op(1))
))−(1/ξ)(1+Op(1/

√
k))

= kU1,k

(
1 + op(1) + ξUξ

1,kA
(n
k
(1 + op(1))

)
Ψξ,ρ(k(1 + op(1)))

)−1/ξ

because U−1
1,k = Op(k) and U ξ

1,kΨξ,ρ(k(1 + op(1))) = Op(1). The result now
follows from kU1,k =d E(1 + op(1)).

Appendix: Simulation results
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Fig 7. Means and boxplots of P-values for test (left), means (middle) and root MSE (right) of ξ̂+k , ξ̂k, ξ̂∞k and ξ̂Mk from the standard Pareto
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 8. Means and boxplots of P-values for test (left), means (middle) and root MSE (right) of ξ̂+k , ξ̂k, ξ̂∞k and ξ̂Mk from the standard lognormal
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 9. Means and boxplots of P-values for test (left), means (middle) and root MSE (right) of ξ̂+k , ξ̂k, ξ̂
∞
k and ξ̂Mk from the standard exponential

distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 10. Means and boxplots of P-values for test (left), means (middle) and root MSE (right) of ξ̂+k , ξ̂k, ξ̂
∞
k and ξ̂Mk from GPD(-0.2,1) truncated at

QY (0.975) (top), QY (0.99) (middle) and QY (1) (bottom).
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Fig 11. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1 − p)/QT (1 − p) and corresponding MSE with p = 0.01 for the standard Pareto
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 12. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1 − p)/QT (1 − p) and corresponding MSE with p = 0.005 for the standard Pareto
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 13. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1− p)/QT (1− p) and corresponding MSE with p = 0.01 for the standard lognormal
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 14. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1− p)/QT (1− p) and corresponding MSE with p = 0.005 for the standard lognormal
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 15. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1− p)/QT (1− p) and corresponding MSE with p = 0.01 for the standard exponential
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 16. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1−p)/QT (1−p) and corresponding MSE with p = 0.005 for the standard exponential
distribution truncated at QY (0.975) (top), QY (0.99) (middle) and non truncated (bottom).
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Fig 17. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1 − p)/QT (1 − p) and corresponding MSE with p = 0.01 for GPD(-0.2,1) truncated
at QY (0.975) (top), QY (0.99) (middle) and QY (1) (bottom).
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Fig 18. Mean deviations of Q̂+
T,k(1−p)/QT (1−p), Q̂T,k(1−p)/QT (1−p), Q̂∞

k (1−p)/QT (1−
p), Q̂M

k (1− p)/QT (1− p) and corresponding MSE with p = 0.005 for GPD(-0.2,1) truncated
at QY (0.975) (top), QY (0.99) (middle) and QY (1) (bottom).
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