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Abstract: The concept of P-value was proposed by Fisher to measure in-
consistency of data with a specified null hypothesis, and it plays a central
role in statistical inference. For classical linear regression analysis, it is a
standard procedure to calculate P-values for regression coefficients based
on least squares estimator (LSE) to determine their significance. However,
for high dimensional data when the number of predictors exceeds the sam-
ple size, ordinary least squares are no longer proper and there is not a
valid definition for P-values based on LSE. It is also challenging to define
sensible P-values for other high dimensional regression methods such as
penalization and resampling methods. In this paper, we introduce a new
concept called oracle P-value to generalize traditional P-values based on
LSE to high dimensional sparse regression models. Then we propose several
estimation procedures to approximate oracle P-values for real data anal-
ysis. We show that the oracle P-value framework is useful for developing
new and powerful tools to enhance high dimensional data analysis, includ-
ing variable ranking, variable selection, and screening procedures with false
discovery rate (FDR) control. Numerical examples are then presented to
demonstrate performance of the proposed methods.

Keywords and phrases: False discovery rate, high dimensional data,
inference, P-value, variable selection.

Received December 2014.

1. Introduction

Many contemporary data are featured with high dimensionality. Given a set of
observations {(xi, yi)}ni=1, where xi ∈ R

p is a predictor and yi is a response, the
dimension p is oftentimes comparable to or much larger than the sample size
n. For high dimensional regression models, a large number of methodologies
have recently been developed for model selection, coefficient estimation, and
prediction; see Fan & Lv (2010) and Bühlmann & van de Geer (2011) for a
comprehensive overview.

Let S∗ denote the true model and Ŝ denote the selected model by a procedure.
In general, S∗ is assumed to be sparse for high dimensional data. Depending
on the signal-to-noise ratio level, there are three types of variable selection
results. When the signal is strong enough, it is possible to achieve model selection
consistency provided some assumptions on the design matrix; see Zhao & Yu
(2006); Fan & Lv (2011); Zhang (2010), among others. If the signal is relatively
strong but there are too many noise variables, a weaker result known as screening
consistency is achievable (Fan & Lv, 2008; Wang, 2009). However, for many data
sets in high-throughput sciences, some signals are too weak to be distinguished
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from many trivial effects. In this case, it might be more realistic to give up
screening consistency and allow some false negatives. A practical approach is
to control false positives via the family-wise error rate (FWER), false discovery
rate (FDR), or false discovery proportion (FDP). See Table 1 for a list of high-
dimensional variable selection results.

Table 1

Three types of variable selection results. Here S∗ is the true model, Ŝ is the selected model,
and n is the sample size.

Model selection consistency P (Ŝ = S∗) → 1

Screening consistency P (Ŝ ⊃ S∗) → 1, |Ŝ| � n

FDR-type error control control 1− |Ŝ∩S∗|
|Ŝ| or similar quantities

To access FDR-type error rates, it is necessary to assign a significance level
for each variable, as in the context of multiple hypothesis testing. For traditional
linear models, P-values are well defined based on least squares estimator (LSE)
(Bauer et al., 1988; Bunea et al., 2006). In the classical low-dimensional setup,
it is known that P-values follow Unif[0, 1] under the null hypothesis. However,
it is hard to define valid P-values in high dimensional situations, and the topic
has not been studied until recent emerging interests in assigning uncertainties,
significance, or confidence to covariate effects. The difficulty is two-fold. First,
the ordinary LSE is not well defined for high dimensional models. Second, the
distributions of modern penalized least squares estimators such as the LASSO
(Tibshirani, 1996) are too complex to access. In the literature, there are some
recent proposals of P-values for high dimensional linear regression, including
the screen-and-clean approach (Wasserman & Roeder, 2009), the multi-split
approach (Meinshausen et al., 2009), and the low dimensional projection (LDP)
approach (Zhang & Zhang, 2014; Bühlmann et al., 2013), and a recent work
on hypothesis tests for generic penalized M-estimators (Ning & Liu, 2016). In
particular, the screen-and-clean approach has three stages: fit a set of candidate
models, select one model by cross validation, and then use classical hypothesis
testing to eliminate some variables. The procedure involves spitting the data into
two disjoint parts, with one used for variable selection and the other used for sig-
nificance testing. The multi-split approach of Meinshausen et al. (2009) extends
the screen-and-clean approach in the following way: randomly split the data
into two parts, use one part for variable selection and the other part for fitting
LSE and calculating P-values for the selected variables, repeat the splitting-
and-fitting step multiple times and calculate P-values based on each split, and
aggregate the P-values over multiple splits. The P-values are further adjusted by
multiplying a suitable constant to control the FWER. Meinshausen et al. (2009)
shows that the final multiplicity-adjusted P-values can asymptotically provide
the FWER control. The LDP approach is proposed to construct confidence in-
tervals for regression coefficients in high-dimensional situations, which focuses
on a relevant question rather than on directly defining valid P-values. Another
seminal work is Fan et al. (2012b) which discusses the issue of FDP control
based on marginal regression models instead of joint linear regression models.
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One main advantage of their method is that the known covariance structure of
P-values can be fully used to improve the accuracy of FDP control. Besides these
pioneering works, there have been many breakthroughs in this field. We refer to
Dezeure et al. (2015) for a review of recent works. In spite of these developments,
it seems that a natural property of P-value is often ignored. That is, P-value
under null hypothesis follows a standard uniform distribution. Many “P-values”
proposed in recent literatures on high-dimensional inference do not satisfy this
fundamental property, which may cause conceptual difficulty to understand the
meaning of P-values.

In this paper, we propose a new concept called “oracle P-value” to quantify
significance of each predictor in high dimensional regression. Compared to exist-
ing works, the oracle P-value framework has both theoretical and computational
advantages. Theoretically, the oracle P-values follow Unif[0, 1] under the null hy-
pothesis, which is the same as classical results for low-dimensional situations.
Moreover, the covariance structure of oracle P-values are completely known, so
the FDR-type quantities can be better controlled. Computationally, the estima-
tion of oracle P-values is simple and fast, as it does not involve multiple data
split and model fitting. The basic idea is described as follows. Assume the true
model S∗ is sparse and its model size is smaller than n. We define the oracle
P-value for the jth variable via LSE by fitting the model S∗ ∪ {j}. The oracle
P-value is not available in practice without knowing S∗, but one can obtain an
estimated model Ŝ by existing state-of-the-art model selection or screening pro-
cedures. We point out that, as long as Ŝ is a reasonable estimator of S∗, oracle
P-values can be estimated well. We propose several ways to access significance of
predictors based on their oracle P-values in practice. Furthermore, we illustrate
how the oracle P-value can be useful to enhance variable ranking and screening
with FDR control, which makes it a valuable tool for high dimensional modeling
and inference.

The paper is organized as follows. Section 2 introduces the concept of the
oracle P-value. Section 3 illustrates several practical procedures to mimic the
oracle P-value. Section 4 discusses the applications of oracle P-values to variable
ranking and screening with FDR control. Numerical studies are demonstrated
in Section 5. The paper ends with a short discussion.

2. Oracle P-value

Consider a linear regression model

Y = Xβ + ε, (1)

where Y = (Y1, ..., Yn)
T is an n-vector of responses, X is an n × p design

matrix, β = (β1, ..., βp)
T is a p-vector of parameters, and ε = (ε1, ..., εn)

T is
an n-vector of independent and identically distributed (i.i.d.) random noises
with mean 0 and variance σ2. In model (1), a subset of variables are assumed
to be relevant to the response, denoted by S∗ = {j : βj �= 0}. We call these
variables in S∗ important variables and the rest noise variables. For any subset



3254 N. Hao and H. H. Zhang

M ⊂ {1, 2, ..., p}, we denote by XM, depending on the context, the submatrix
of X consisting of columns indexed by M or a submodel with variables in M.

A significance level, or P-value, for each variable can be assigned through the
testing hypotheses

H0
j : βj = 0 versus Ha

j : βj �= 0, j = 1, ..., p. (2)

When p < n, a natural testing procedure is based on LSE. For each variable
Xj , one calculates its least squares estimator β̂j , the standard error se(β̂j),

t-statistic tj = |β̂j |/se(β̂j) and the P-value defined based on the cumulative
distribution function (CDF) of Student’s t or normal distribution. The P-value
under null hypothesis follows a uniform distribution exactly or asymptotically
due to the central limit theorem, depending on the error distribution. For high
dimensional models with p > n, this machinery does not work any more. Instead
we introduce a concept of oracle P-value for a high dimensional sparse linear
model. Assume s = |S∗| < n.

Definition 1. For each variable Xj , we define its oracle P-value, denoted by
poj , as{

the P-value based on LSE via linear model Y ∼ XS∗ , if j ∈ S∗;
the P-value based on LSE via linear model Y ∼ XS∗∪{j}, if j /∈ S∗.

It is straightforward to show that poj ∼ Unif[0, 1] for j /∈ S∗. In practice, since S∗

is unknown, one can not obtain the exact oracle P-value. But this concept offers
us an intuitive and simple way to assign significance levels for variables. Its clear
interpretation can serve as a benchmark when evaluating other methods. In the
next, we propose several procedures to mimic oracle P-values.

3. Mimicking oracle P-values

In practice, since S∗ is unknown, we need to mimic the oracle procedure. The
key idea is to identify a set of variables as a good approximation of S∗ in the
oracle procedure. For each variable Xj , we propose to choose a set Mj such that
the P-value of Xj , pj , mimics its oracle P-value. Based on the definition of the
oracle P-value, an ideal approximation set Mj should be chosen such that the
P-value pj based on LSE via linear model Y ∼ XMj is (approximately) from
Unif[0, 1] if Xj is a noise variable, and pj is close to 0 if Xj is important. The
set Mj can be of form M∪{j} for a common M or chosen data adaptively for
each j. After we obtain the sets {Mj}pj=1, a set of P-values {pj}pj=1 mimicking
the oracle one can be easily calculated. In particular, for the oracle P-value,
Mj = S∗ ∪ {j} is used.

Before we discuss how to choose Mj ’s in practice, we first make the following
observations. The first observation is that the testing procedure is tolerant with
some noise variables in Mj . In other words, the P-value is valid as long as
Mj ⊃ S∗, |Mj | < n. The second observation is that absence of an important
variable from Mj would not affect much on the procedure if, conditional on
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XMj\{j}, the missing important variable is independent of Xj . For each variable
Xj , we define Sj ⊂ S∗ such that XS∗\Sj |= Xj | XSj . The following proposition
gives a sufficient condition for the P-value of a noise variable to be uniformly
distributed on [0, 1].

Proposition 1. If Mj ⊃ Sj , the P-value pj for a noise variable Xj based on
the LSE via linear model Y ∼ XMj satisfies pj ∼ Unif [0, 1].

Proof. First, Y |= Xj | XS∗ as Xj is a noise variable. By definition of Sj ,
XS∗\Sj |= Xj | XSj , which implies XS∗ |=Xj | XSj , and hence Y |= Xj | XSj .
Finally, Y |= Xj | XMj\{j} as Mj ⊃ Sj , so we conclude pj ∼ Unif[0, 1].

Moreover, when Mj ⊃ S∗, the joint distribution of these P-values can be
accessed by the corresponding LSEs. Recall we calculate, for each j, the LSE
β̂j |Mj , or β̂j for short when Mj is clearly defined from the context. Write

Xj = X⊥
j +X�

j whereX
�

j is the projection ofXj to the column space ofXMj\{j}.
Then

β̂j = (X⊥
j )

�Y/(X⊥
j )

�Xj (3)

cov(β̂j , β̂k) = σ2(X⊥
j )

�X⊥
k /||X⊥

j ||2||X⊥
k ||2 (4)

Then we have the following result:

Proposition 2. Under linear model (1) with Gaussian noise. If Mj ⊃ S∗,

the conditional LSE β̂ = (β̂1, ..., β̂p)
� defined above is jointly normal N(β,Σ∗)

where
Σ∗

jk = σ2(X⊥
j )

�X⊥
k /||X⊥

j ||2||X⊥
k ||2.

The proof is straightforward and hence omitted here. This result indicates
that the covariance information of the P-values is completely determined by
the design matrix X. With this important information, we can rank and screen
variables by P-values and control the FDR in an accurate way. See next section
for more details.

In order to construct Mj , we start with a subset Ŝ, which is obtained from
existing selection or screening procedures. One preferred choice is a procedure
which has sure screening properties. Another important factor is computational
cost, especially when p is large. Based on the above concerns, we propose to
mimic the oracle P-values using the sure independence screening (SIS) proce-
dures (Fan & Lv, 2008) and the LASSO (Tibshirani, 1996). Next, we describe
three practical procedures to construct Mj .

Procedure 1. Use sure independence screening (SIS) to obtain Ŝ, i.e., Ŝ =
{k : |corr(Y,Xk)| > c} for some threshold value c. Define Mj = Ŝ ∪ {j}.

Procedure 2. Use sure independence screening (SIS) to identify Ŝ = {k :
|corr(Y,Xk)| > c}. Let Hj = {k : |corr(Xj ,Xk)| > cj}, which includes those
variables which are highly correlated to Xj . Define Mj = {k : |corr(Y,Xk)| >
c} ∪ {k : |corr(Xj ,Xk)| > cj}. Here the threshold values c and cj are both
pre-specified.

Procedure 3. Use LASSO to obtain Ŝ. Define Mj = Ŝ ∪ {j}.
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The strategy of Procedure 2 is particularly useful if there is some priori knowl-
edge on the covariance structures of the covariates, such as a block structure
or a tapped/fast decayed covariance structure, so Hj can be chosen according

to the covariance structure. Moreover, when Ŝ misses some important variables
which are also correlated to Xj , the set Hj may make up these variables.

4. Applications to variable screening and ranking

4.1. Variable screening

Variable selection is a central topic in high dimensional data analysis, because it
can effectively achieve dimension reduction by identifying important predictors
and screening out noise. From the viewpoint of hypothesis testing, the problem
of variable selection can be treated as p separate testing problems (2), as the
rejected hypotheses can naturally result an estimator Ŝ for S∗. When p < n, a
testing procedure based on LSE for model selection is described as follows. We
calculate the P-values based on LSE and then choose a threshold p∗ to control
the FWER or FDR. This approach has been shown to achieve consistency in
model selection (Bauer et al., 1988; Bunea et al., 2006). However, it requires
that the data dimensionality p is fixed or much smaller than n. When p � n,
this strategy does not work any more. In the following, we propose an FDR
approach based on oracle P-values for high dimensional sparse linear regression.

We first describe an oracle procedure for controlling FDR-type error rates for
the ideal situation when oracle P-values were available.
Oracle Procedure: (ideal case)

1. Calculate poj for each j = 1, . . . , p.

2. Choose a threshold p∗ and reject H0
j if poj < p∗.

In practice, the true important set S∗ is generally unknown, and therefore
oracle P-values are not available. In the following, we propose an oracle proxy
procedure which first approximates oracle P-values and then controls the FDR
based on the approximated P-values

Oracle Proxy Procedure:
Stage 1: For each j = 1, . . . , p, find Mj using the procedures proposed in

Section 3 and calculate pj based on LSE β̂j via model Y ∼ XMj .
Stage 2: Choose a threshold p∗ and reject H0

j if pj < p∗.

For implementation practice, we suggest first splitting the data into two parts
and then using one half to obtain {Mj}pj=1 and the other half to compute pj .
After {pj}pj=1 are obtained, one can apply any FDR-control method to determine
the threshold p∗. In the following, we discuss three procedures to control FDR-
type at the target level 0 < α < 1.

Benjamini-Hochberg 1 (BH1) method: Let p(1) ≤ p(2) ≤ · · · p(p) be the or-

dered P-values. Define k = max{j : p(j) ≤ j
pα} and reject H0

(1),..., H
0
(k). This

has become a standard procedure to control FDR since it was proposed in the



Oracle P-values and variable screening 3257

seminal work of Benjamini & Hochberg (1995). The BH1 is expected to work
well when the test statistics are independent or in some special scenarios of
dependence (Benjamini & Yekutieli, 2001).

Benjamini-Hochberg 2 (BH2) method: Let p(1) ≤ p(2) ≤ · · · p(p) be the or-

dered P-values. Define k = max{j : p(j) ≤ j
p

α∑p
i=1 i−1 } and reject H0

(1),..., H
0
(k).

In theory, this procedure can control the FDR under arbitrary dependence struc-
tures (Benjamini & Yekutieli, 2001) but it can be conservative.

Principle Factor Approximator (PFA) method: This procedure, proposed by
Fan et al. (2012b), is designed to make use of the covariance information of
the test statistics to improve the control of FDP, which is a realized FDR
and arguable more relevant quantity to control. In particular, for a multivariate
normal test statistic with known covariance, they expressed the test statistic by
an approximate factor model with weakly dependent random errors, and derived
an explicit formula for the FDP in large-scale simultaneous tests. Note that,
in Proposition 2, we showed that the covariance structure of test statistic β̂ is
completely known except for the variance parameter σ2, which can estimated by
refitted cross-validation (Fan et al., 2012a). Moreover, the following proposition
indicates that, when n 
 p, the leading eigenvalues of Σ∗ dominates its trace,
which is a key condition to make PFA work. Therefore, the PFA procedure can
be applied directly to our proposed procedures for FDR control.

Proposition 3. The covariance matrix Σ∗ defined in Proposition 2 has rank
at most n, so PFA theory can be applied when n 
 p.

Proof: Define Z = (X⊥
1 , · · · ,X⊥

p ) and D = diag(‖X⊥
1 ‖2, · · · , ‖X⊥

p ‖2). Then
Σ∗ = D−1Z�ZD−1. So the rank of Σ∗ is at most n.

The first two procedures, i.e., BH1 and BH2, are easy to implement. However,
the obtained P-values in this paper are usually highly correlated so BH1 can
not control the FDR to the targeted level. BH2 can control the FDR under
the targeted level but is often too conservative. On the other hand, PFA can
fully take the advantage of the known covariance structure and control the FDP
accurately, which is also confirmed by our numerical studies. We implement and
compare performance of these three procedures to control FDR based on the
oracle P-values in Section 5.

4.2. Variable ranking

Variable ranking is of practical importance since an informative and accurate
ranking helps to understand relative importance of the predictors to the re-
sponse. In practice, it is desired to rank the predictors in the decreasing order of
their relevance to the output, i.e., more relevant variables are ranked at the top
while noise variables are at the bottom. A reliable list of variable ranking can
be used as a variable selection procedure by only retaining variables ranked at
the top of the list in the model, or equivalently, discarding those ranked at the
bottom. A critical question is how to determine the boundary between “top”
and “bottom” variables.
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Based on Definition 1, the magnitudes of oracle P-values reflect relative im-
portance of important variables and noise variables. In general, oracle P-values
of important variables are expected to be much smaller than those of noise vari-
ables. Therefore, we can use oracle P-values or their approximations to rank
variables into two clusters. In Section 5, we use two examples to illustrate the
ranking performance of oracle P-values. As pointed out by one reviewer, our
P-value based ranking measures the relative importance of a variable in a joint
model with other variables adjusted. It is not the same as marginal ranking
utilized in sure screening approaches (Fan & Lv, 2008), which rank variables
based on the marginal correlation between each individual predictor with the
response, without the presence of other variables in the model. Therefore, our
rank is more informative by taking into account contributions of other variables
to the model.

5. Numerical results

We use several numerical examples to illustrate the properties of oracle P-values
and their approximations. Four different regression model settings are consid-
ered, including both independent predictors and correlated predictors. To assess
robustness of the methods in relatively weak signal settings, Examples 3 and 4
are designed to include predictors with very small regression coefficients, which
is difficult to select at the model selection step. In each setting, we run M = 100
Monte Carlo simulations and summarize the results. Recall that the full model
index set is {1, . . . , p} and the true model set is S∗, where |S∗| = s < n.

We compare the true oracle procedure (referred to as “Oracle”) and three es-
timation procedures: Procedure 1 (referred to as “SIS-1”), Procedure 2 (referred
to as “SIS-2”), and Procedure 3 (referred to as “LASSO”). The oracle procedure
serves as the gold standard, and it is generally not available in practice. Both
SIS-1 and SIS-2 methods implement the SIS procedure of Fan & Lv (2008) to
obtain Ŝ and Mj . For SIS-1 and SIS-2, we select a model with fixed model size
�n/ logn; for LASSO, we select the tuning parameter (λ) by cross validation.
Furthermore, to compare with existing P-value procedures widely used in the
literature, we also include two methods of Dezeure et al. (2015): the hdi (mul-
tiple split) method and the ridge projection method, both implemented using
their R package hdi.

Example 1 (independent predictors). Let (n, p, q) = (200, 1000, 5). Generate
X’s i.i.d. from MVN(0, Ip), and the response from the linear model Yi =
β0 + XT

i β + εi, i = 1, · · · , n, with the error ε ∼ N(0, σ2). The true β =
(1, 1, 2, 0, 2, 0, 0,−1,0992). The error variance σ2 is chosen such that R2 = 0.6.
The true model set S∗ = {1, 2, 3, 5, 8}.
Example 2 (AR correlation). Consider the same setup as Example 1, except
that X follows MVN with mean 0 and Cov(Xj , Xk) = 0.5|j−k| for 1 ≤ j, k ≤ p.

Example 3 (weak signal, independent predictors). Consider the same set up
as Example 1, except the true β = (1, 0.5, 2, 0, 2, 0, 0,−1,0992). The true model
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set S∗ = {1, 2, 3, 5, 8}. In this example, X2 has a small coefficient, so it is a
relatively weaker predictor.

Example 4 (weak signal, AR correlation). Consider the same setup as Example
3, except that X follows MVN with mean 0 and Cov(Xj , Xk) = 0.5|j−k| for
1 ≤ j, k ≤ p.

5.1. Distribution of oracle P-values

Proposition 1 states that for any j /∈ S∗, its oracle P-value has a marginal distri-
bution Unif[0, 1]. We illustrate this by showing the distribution of oracle P-values
and their estimates given by SIS-1, SIS-2, LASSO, hdi, and ridge projection.
To start with, we use the quantile-quantile (q-q) plot to compare quantiles of
oracle P-values against those of the null distribution Unif[0, 1]. Then, for a more
rigorous analysis, we conduct the Kolmogorov-Smirnov (K-S) test for the em-
pirical distribution functions of oracle P-values compared with the reference
probability distribution Unif[0, 1]. The K-S test statistic measures the distance
between the empirical distribution function of oracle P-values and the cumula-
tive distribution function of the reference distribution Unif[0, 1]. We compute
the K-S statistics and their associated P-values over 100 Monte Carlo samples
and report their average values.

Figure 1 shows Q-Q plots for oracle P-values against the quantiles of Unif[0, 1]
for Example 1. Due to the space constraint, we only show the plots for the first
six variables. Recall that X1, X2, X3, X5 are important variables, while X4 and
X6 are noise variables. The first row is for the true oracle P-values, calculated
based on Definition 1. The next three rows are for the approximately oracle
P-values given by SIS-1, SIS-2, and LASSO, respectively. We observe that, the
Q-Q plots of noise variables follow a straight line, and those for important vari-
ables seriously deviate from a straight line. For the remaining 994 variables, we
observe the similar pattern, showing that the oracle P-values of noise variables
follow a Unif[0, 1]. The last row displays the Q-Q plots produced by the hdi
method, suggesting that the distribution of the P-values for X4 and X6 does
not follow Unif(0,1) under the null hypothesis. We also implement the ridge pro-
jection method and observe the same pattern. The reason is that the hdi-type
procedures intentionally set P-values for unimportant variables to be one. Due
to the space constraint, we only present the Q-Q plots for the hdi method in
Figure 1. Example 2 considers correlated predictors and we observe the similar
pattern as in Example 1. In particular, the last row in Figure 2 show the Q-Q
plots for the ridge projection method, also suggesting that the null distribution
of the P-values for X4 and X6 does not follow Unif(0,1). The same pattern is
also observed for the hdi method. Examples 3 and 4 contain a weak signal X2

which has a small regression coefficient. In Figures 3 and 4, we observe that its
Q-Q plot deviates from a straight line, suggesting that its oracle P-value does
not follow Unif[0, 1].

We summarize the K-S tests results in Tables 2 to 5. Each table consists
of two parts: the top part shows the K-S test statistics, and the bottom part
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Fig 1. The Q-Q plots of P-values estimated in Example 1 by various procedures: the pro-
posed oracle P-values, SIS-1, SIS-2, LASSO, and hdi. In each row, each column (from left to
right) corresponds to the Q-Q plot for one variable in {X1, . . . , X6}, respectively. Recall that
X1, X2, X3, X5 are important variables, and X4 and X6 are noise variables. In each plot,
x-axis represents the theoretical quantiles of Unif(0, 1), and y-axis represents the observed
quantiles for the calculated P-values.

reports the P-values for the corresponding K-S tests. Based on Tables 2 and 3,
we observe that the test results are significant for important variables, implying
the rejection of the null Unif[0, 1] distribution. By contrast, the K-S P-values
for noise variables are mostly larger than 0.05, suggesting that their distribu-
tion is from Unif[0, 1]. The K-S test results for the other noise variables are not
significant, though they are not reported here due to the space constraint. For
weak signal cases in Examples 3 and 4, the K-S P-value of X2 is close to zero,
suggesting that its oracle P-values do not follow Unif[0, 1]. Therefore, the pro-
posed oracle P-values and their approximations still work well for weak signal
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Fig 2. The Q-Q plots of P-values estimated in Example 2 by various procedures: the proposed
oracle P-values, SIS-1, SIS-2, LASSO, and ridge projection. In each row, each column (from
left to right) corresponds to the Q-Q plot for one variable in {X1, . . . , X6}, respectively.
Recall that X1, X2, X3, X5 are important variables, and X4 and X6 are noise variables. In
each plot, the x-axis represents the theoretical quantiles of Unif(0, 1), and the y-axis represents
the observed quantiles for the calculated P-values.

settings. The last two rows in Tables 2 to 5 suggest that, for both hdi and ridge
projection methods, the estimated P-valuves do not follow Unif[0, 1] under the
null hypothesis for noise variables {X4, X6, X7}.

5.2. Variable ranking

We show that oracle P-values provide an informative guide on the relative im-
portance of variables. In Figures 5–8, we depict the box plots for the ranks
of all the 1000 variables. Due to the space limit, only the ranks of first eight
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Fig 3. The Q-Q plots of P-values estimated in Example 3 by various procedures: the pro-
posed oracle P-values, SIS-1, SIS-2, LASSO, and hdi. In each row, each column (from left to
right) corresponds to the Q-Q plot for one variable in {X1, . . . , X6}, respectively. Recall that
X1, X2, X3, X5 are important variables, and X4 and X6 are noise variables. In each plot, the
x-axis represents the theoretical quantiles of Unif(0, 1), and the y-axis represents the observed
quantiles for the calculated P-values.

variables are reported here. In each figure, there are four panels, which corre-
spond the procedure of oracle, SIS 1, SIS 2 and LASSO. Overall, we observe
that the ranks of important variables in S∗ are much smaller than those of noise
variables. Therefore oracle P-values perform very well in ranking variables, by
putting important variables ahead of noise variables. In Examples 2 and 3, the
rank of the weak signal X2 is relatively larger than strong signals, but it is still
in average smaller those of noise variables, as shown in Figures 7 and 8. This
suggests the robust performance of the oracle P-values.
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Fig 4. The Q-Q plots of P-values estimated in Example 4 by various procedures: the proposed
oracle P-values, SIS-1, SIS-2, LASSO, and ridge projection. In each row, each column (from
left to right) corresponds to the Q-Q plot for one variable in {X1, . . . , X6}, respectively.
Recall that X1, X2, X3, X5 are important variables, and X4 and X6 are noise variables. In
each plot, the x-axis represents the theoretical quantiles of Unif(0, 1), and the y-axis represents
the observed quantiles for the calculated P-values.

5.3. Variable selection under FDR control

We illustrate the performance of oracle P-value for variable selection with FDR-
type control for the four examples. Three FDR-control methods are consid-
ered: Benjamini-Hochberg 1 (BH1), Benjamini-Hochberg 2 (BH2), and the PFA
method by Fan et al. (2012b). The target FDR level is set as 10% for each set-
ting. For each example, we run 100 simulations and report the average number
of true positive (TP), false positive (FP), and the average FDR. The results
are summarized in Tables 6–9, where TP represents “True Positive” and FP
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Table 2

Kolmogorov-Smirnov test results for Example 1. (* denotes important variables).

Method X∗
1 X∗

2 X∗
3 X4 X∗

5 X6 X7 X∗
8

K-S Statistic Oracle 0.942 0.905 1.000 0.053 1.000 0.065 0.076 0.914
SIS-1 0.855 0.847 1.000 0.074 0.993 0.074 0.089 0.836
SIS-2 0.665 0.647 0.972 0.054 0.945 0.067 0.060 0.703
LASSO 0.796 0.787 0.970 0.115 0.965 0.098 0.085 0.780
hdi 0.430 0.440 1.000 1.000 1.000 1.000 1.000 0.410
ridge projection 0.459 0.393 1.000 1.000 1.000 1.000 1.000 0.453

K-S P-value Oracle 0.000 0.000 0.000 0.939 0.000 0.796 0.604 0.000
SIS-1 0.000 0.000 0.000 0.640 0.000 0.642 0.411 0.000
SIS-2 0.000 0.000 0.000 0.934 0.000 0.760 0.865 0.000
LASSO 0.000 0.000 0.000 0.140 0.000 0.287 0.463 0.000
hdi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ridge projection 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3

Kolmogorov-Smirnov test results for Example 2. (* denotes important variables).

Method X∗
1 X∗

2 X∗
3 X4 X∗

5 X6 X7 X∗
8

K-S Statistic Oracle 0.786 0.694 0.982 0.078 0.988 0.074 0.069 0.840
SIS-1 0.712 0.613 0.932 0.096 0.940 0.068 0.274 0.764
SIS-2 0.498 0.452 0.827 0.062 0.841 0.080 0.138 0.505
LASSO 0.685 0.659 0.908 0.073 0.932 0.071 0.109 0.752
hdi 0.550 0.500 0.945 0.990 0.960 1.000 1.000 0.840
ridge projection 0.390 0.568 0.976 0.990 0.942 1.000 1.000 0.760

K-S P-value Oracle 0.000 0.000 0.000 0.575 0.000 0.643 0.730 0.000
SIS-1 0.000 0.000 0.000 0.315 0.000 0.749 0.000 0.000
SIS-2 0.000 0.000 0.000 0.833 0.000 0.541 0.044 0.000
LASSO 0.000 0.000 0.000 0.665 0.000 0.687 0.182 0.000
hdi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ridge projection 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4

Kolmogorov-Smirnov test results in Example 3. (* denotes important variables).

Method X∗
1 X∗

2 X∗
3 X4 X∗

5 X6 X7 X∗
8

K-S Statistic Oracle 0.953 0.568 1.000 0.053 1.000 0.065 0.076 0.931
SIS-1 0.881 0.489 1.000 0.081 0.999 0.096 0.058 0.884
SIS-2 0.670 0.325 0.987 0.060 0.953 0.084 0.069 0.711
LASSO 0.832 0.419 0.989 0.146 0.974 0.091 0.110 0.822
hdi 0.354 0.990 1.000 1.000 1.000 1.000 1.000 0.362
ridge projection 0.512 0.900 1.000 1.000 1.000 1.000 1.000 0.500

K-S P-value Oracle 0.000 0.000 0.000 0.939 0.000 0.796 0.604 0.000
SIS-1 0.000 0.000 0.000 0.535 0.000 0.312 0.893 0.000
SIS-2 0.000 0.000 0.000 0.863 0.000 0.480 0.731 0.000
LASSO 0.000 0.000 0.000 0.028 0.000 0.385 0.176 0.000
hdi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ridge projection 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

represents “False Positive”. Overall speaking, it is observed that all of the pro-
cedures perform reasonably well in controlling the FDR. In terms of achieving
the nominal FDR value, Fan et al. (2012b) performs slightly better than others.
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Table 5

Kolmogorov-Smirnov test results in Example 4. (* denotes important variables).

Method X∗
1 X∗

2 X∗
3 X4 X∗

5 X6 X7 X∗
8

K-S Statistic Oracle 0.835 0.279 0.995 0.078 0.989 0.074 0.069 0.873
SIS-1 0.764 0.366 0.941 0.077 0.955 0.077 0.331 0.792
SIS-2 0.537 0.188 0.853 0.055 0.857 0.086 0.128 0.555
LASSO 0.754 0.354 0.936 0.104 0.944 0.057 0.127 0.819
hdi 0.350 0.670 0.992 0.990 0.982 1.000 1.000 0.780
ridge projection 0.394 0.590 0.984 0.990 0.977 1.000 1.000 0.630

K-S P-value Oracle 0.000 0.000 0.000 0.575 0.000 0.643 0.730 0.000
SIS-1 0.000 0.000 0.000 0.588 0.000 0.595 0.000 0.000
SIS-2 0.000 0.000 0.000 0.927 0.000 0.450 0.007 0.000
LASSO 0.000 0.000 0.000 0.227 0.000 0.897 0.008 0.000
hdi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ridge projection 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fig 5. Boxplots of variable ranks for the first eight variables (Example 1).
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Fig 6. Boxplots of variable ranks for the first eight variables (Example 2).

Table 6

Variable selection results with FDR control at the level 10% (Example 1).

SIS-1 LASSO Oracle
FDR Method TP FP FDR TP FP FDR TP FP FDR

PFA 3.06 0.44 0.09 3.00 0.51 0.09 3.75 0.39 0.07
BH1 3.44 3.49 0.27 3.16 2.01 0.18 3.67 0.45 0.08
BH2 2.74 0.31 0.05 2.44 0.33 0.05 3.11 0.01 0.00

Table 7

Variable selection results with FDR control at the level 10% (Example 2).

SIS-1 LASSO Oracle
FDR Method TP FP FDR TP FP FDR TP FP FDR

PFA 1.55 0.20 0.06 1.74 0.41 0.11 2.51 0.29 0.06
BH1 1.65 0.78 0.15 1.84 0.77 0.11 2.27 0.28 0.06
BH2 1.00 0.04 0.02 1.29 0.08 0.02 1.83 0.02 0.01
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Fig 7. Boxplots of variable ranks for the first eight variables (Example 3).

Table 8

Variable selection results with FDR control at the level 10% (Example 3).

SIS-1 LASSO Oracle
FDR Method TP FP FDR TP FP FDR TP FP FDR

PFA 2.85 0.48 0.10 2.72 0.45 0.09 3.27 0.37 0.08
BH1 3.01 2.14 0.24 2.83 1.91 0.17 3.23 0.39 0.08
BH2 2.59 0.24 0.05 2.38 0.17 0.02 2.91 0.01 0.00

Table 9

Variable selection results with FDR control at the level 10% (Example 4).

SIS-1 LASSO Oracle
FDR Method TP FP FDR TP FP FDR TP FP FDR

PFA 1.84 0.30 0.08 2.08 0.36 0.08 2.66 0.29 0.07
BH1 1.89 0.84 0.15 1.97 0.78 0.12 2.49 0.29 0.07
BH2 1.32 0.08 0.03 1.51 0.08 0.01 2.04 0.02 0.01
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Fig 8. Boxplots of variable ranks for the first eight variables (Example 4).

5.4. Real data analysis

We apply the proposed methods to a microarray gene expression data set of
Scheetz et al. (2006). The whole experiment aims to under gene regulation in
the mammalian eye and to identify genetic variation relevant to human eye dis-
ease. The data set we use consists of 120 arrays, and each array contains 18,976
probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array) which exhibited
sufficient signal for reliable analysis and at least 2-fold variation in expression.
The complete gene expression data is available at Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo; accession number GSE5680). One pri-
mary objective of this study is to identify which gene expressions are related to
gene TRIM 32, which is recently found to cause Bardet-Biedl syndrome (Chiang
et al., 2006). The probe ID associated with the response, TRIM32, is 1389163
at.

http://www.ncbi.nlm.nih.gov/geo
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Fig 9. Histograms of oracle P-values for the rat microarray data set.

To identify which genes are correlated with TRIM32, we regress TRIM32 on
the remaining probes. For illustration, we first identify 2,000 top genes based on
their marginal correlation with the response. Then we assign their significance
using the proposed oracle P-value measures. In real data analysis, since the true
model is unknown, we can only use SIS-1, SIS-2, and LASSO to estimate the
oracle P-values. Figure 9 presents histograms of the oracle P-values obtained
by the three procedures. It is observed that, except a small portion of genes
with very small oracle P-values, the oracle P-values of the rest genes roughly
follow Unif[0, 1] distribution. This procedure is useful to provide a short list of
“potentially important” genes for scientists to further investigate. For example,
the LASSO procedure regards genes with index 180, 1428, 1614, 1769, and 1868
to be among the top-five list. The interpretation of these genes, or whether they
may lead to new scientific findings, will rely on scientists’ validation experiments.
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6. Discussion

For high dimensional linear models, a proper definition of P-value has drawn
much attention in literature. In the paper, we propose a new concept of the
oracle P-value for high dimensional sparse regression models and show that
it possesses a uniform distribution for noise variables. For implementation, we
propose several practical approaches to mimic the oracle procedure and show
their applications to variable ranking and variable screening subject to FDR
control. In this work, we illustrate the proposed concept only with simple and
fast procedures like SIS and LASSO. It is possible to extend the idea to other
procedures.
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