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1. Introduction

We examine the change-point detection problem on the drift parameters of
a generalised version of the Ornstein-Uhlenbeck (OU) process introduced in
Dehling et al. (2010); see also Dehling et al. (2014) and Nkurunziza and Zhang
(2016), which is a compact version of Zhang (2015). Such a process Xt is a
solution to the stochastic differential equation (SDE)

dXt = S(θ, t,Xt)dt+ σdWt, 0 < t ≤ T, (1.1)

where S(θ, t,Xt) = L(t) − aXt =
∑p

i=1 μiϕk(t) − aXt, i = 1, . . . , p, θ =
(μ1, . . . , μp,−a)� and � denotes the transpose of a matrix. Here, Wt is a
one-dimensional standard Brownian motion defined on some probability space
(Ω,F , P ). In particular, if L(t) = μ then (1.1) is the SDE of the classical OU
process, which is commonly used to model the stochastic dynamics of various
financial variables.

The OU process was initially introduced for problems in the physical sciences
(e.g., Lansky and Sacerdote (2001)). Further, many economic indicators, prices
in the financial market as well as processes in the natural and engineering are
captured sufficiently by the OU model. The classical work of Vasiček (1977)
employs an OU model for bond valuation. The importance of this stochastic
process is also demonstrated by its ubiquity in many fields. For instance, the
OU process is used in mathematical models of the electricity market (e.g., Erl-
wein et al. (2010)), commodity futures market (e.g., Date et al. (2013)), weather
derivatives (e.g., Elias et al. (2014)), central-bank rate setting policy (e.g., El-
liott and Wilson (2007)), spreads between pairs of securities (e.g., Elliott et al.
(2005)), stochastic control-driven insurance problems (e.g., Liang et al. (2011)),
spot freight rates in the shipping industry (e.g., Benth et al. (2015)), risk man-
agement (e.g., Date and Bustreo (2016)), and power generation (e.g., Howell
et al. (2011)). In the OU-modelling context, Tenyakov et al. (2016) proposed
a signal processing-based approach to determine presence of market liquidity
regimes. Various applications of the OU process are also highlighted in biology
(e.g., Rohlfs et al. (2010)), neurology (e.g., Shinomoto et al. (1999)), survival
analysis (e.g., Aalen and Gjessing (2004)), and chemistry (e.g., Lu (2003, 2004)).

We note that the mean-reverting level of an OU process is constant, which
can be a notable weakness for many financial datasets. This may be rectified
by introducing a generalised OU process where a time-dependent function de-
scribes its level of mean reversion. Such a generalised version incorporates time-
inhomogeneity and seasonality of mean reversion simultaneously. Dehling et al.
(2014) developed the framework to study a change-point phenomenon under
the generalised OU process. This allows the model to capture drastic changes
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at certain time points (e.g., dramatic changes to interest rates due to the out-
breaks of financial crisis or war). In practice, many data series are characterised
by some potential changes in their evolution structure, i.e., a sudden change in
mean or variance and other model parameters. It is then of interest to determine
the (i) existence and (ii) location of the change point. This implies segregating
the data series into different segments and analysing them in a less efficient but
more accurate way. Thus, our research contributions support and complement
the objective of papers employing regime-switching OU-process as we provide
a methodology to verify the switching phenomenon in the data. We go further
by precisely estimating where the switch occurred and how many switches are
possible given a data set. An instance of this support and complementarity are
depicted in Subsection 3.1 of Tenyakov et al. (2016), where a simple statistical
testing of regime-switching in the data was performed.

Pioneering contributions to this field of change-point detection were spear-
headed by Page (1954) and Shiryaev (1963). Advances in recent years have
tackled the (i) estimation of change points and coefficients of linear regression
models with multiple change points (Bai and Perron (1998); Perron and Qu
(2006); Lu and Lund (2007), Gombay (2010), and Chen and Nkurunziza (2015));
(ii) change-point testing for the drift parameters of a periodic mean-reverting
process (cf. Dehling et al. (2014)); (iii) applications in finance (cf. Spokoiny
(2009)); (iv) detection of malware within software (Yan et al. (2008)); (v) cli-
matology (Reeves et al. (2007), Robbins et al. (2011), Gallagher et al. (2012));
and epidemiology (Yu et al. (2013)). The analysis of change points could be
described more generally as a hypothesis-testing problem for the existence of
change points in various locations. This could be viewed, from another per-
spective, as a model selection problem where the change points are additional
unknown parameters to be estimated.

The change-point problems are typically examined depending on two alter-
natives: (i) the number of change points is known but their exact locations are
unknown (Perron and Qu (2006) and Chen and Nkurunziza (2015)) and (ii)
both the number and the exact locations of the change points are unknown.
The estimation methods under the first scenario only require the identifica-
tion of the exact locations of the change points. Clearly, the first alternative is
more tractable but less realistic than the second. Closed-form solutions for the
direct calculation of the change point are usually not available. Current change-
point estimation approaches are normally constructed to perform a search at
every possible location of unknown candidate change points via some efficient
computational algorithms subject to some constraint or criteria. Examples of
well-known algorithms for change point detection include: (i) the binary seg-
mentation type algorithm (Scott and Knott (1974); Sen and Srivastava (1975)),
(ii) the segment-neighbourhood type algorithm (Auger and Lawrence (1989);
Bai and Perron (1998)) with adaption to the restricted regression model (Per-
ron and Qu (2006)); and (iii) the optimal partitioning type algorithm (Jackson
et al. (2002)) and its pruned version, PELT method by Killick et al. (2012).
Further details of these algorithms can be found in Killick et al. (2012) and
Maidstone et al. (2014).
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The intents of our work are motivated by two major research results. The first
motivation is from Dehling et al. (2010) that derives a maximum likelihood esti-
mator (MLE) for the drift parameters of the diffusion process and establishes its
asymptotic properties. This was extended in Dehling et al. (2014), where there is
one unknown change point and a likelihood-ratio test statistic was constructed
to determine such change point. The second motivation is from Nkurunziza and
Zhang (2016) that establishes the asymptotic properties of both the unrestricted
and restricted MLE for the drift parameters of the generalised OU process with
a single change point. A James-Stein-type shrinkage estimator for the drift pa-
rameters is proposed in Nkurunziza and Zhang (2016) as an improvement and
it is also shown that the previously established asymptotic properties also hold
for any consistent estimator for the rate of the change point.

Neither Dehling et al. (2014) nor Nkurunziza and Zhang (2016) offer a spe-
cific methodology to identify the change point, although Nkurunziza and Zhang
(2016) suggest using a method in Chen and Nkurunziza (2015). The Chen and
Nkurunziza (2015) method is, however, designed to find change points in mul-
tiple regression models, and is not particularly designed for the detection of
change points in OU processes. This hole in the literature led us to develop
the three main contributions of the current paper. First, we extend the single-
change point framework to the multiple-change point setting and present two
consistent methods to estimate the unknown locations of change points. Second,
we prove the asymptotic normality of the drift parameters’ MLE. Third, we em-
ploy information-based statistics to resolve the issue of estimating the unknown
number of change points and then created three algorithms to implement the
calculations. We validate the performance of our estimation techniques using
simulated and real market data.

This paper is structured as follows. In Section 2, we present the formulation of
the multiple change-point problem. Section 3 summarises the results of Dehling
et al. (2014) and Nkurunziza and Zhang (2016) on MLE and the related asymp-
totic properties, which provide an impetus on the asymptotic performance of our
proposed methods. Two estimation methods are put forward to determine the
unknown locations of change points in section 4 along with the discussion of the
asymptotic properties of the estimators; we find that the asymptotic properties
obtained in Nkurunziza and Zhang (2016) also hold in our proposed techniques.
Section 5 deals with the problem of both the existence issue and location of the
change points using an information approach. We develop computing algorithms
in section 6 in order to implement the proposed methods. In section 7, we as-
sess the applicability of our methods through numerical examples on simulated
and observed financial market data. Finally, section 8 provides some concluding
remarks.

2. Problem description in determining change points

We study the generalised version of the OU process with SDE representation
given in (1.1). It is assumed that there exist m (m ≥ 1) unknown change points



Inference for a mean-reverting stochastic process with change points 2203

τj = sjT , where j = 1, . . . ,m and 0 < s1 < . . . < sm < 1. To simplify the

notation, we let τ0 = 0 and τm+1 = T . In our setup θ = (θ(1)�, . . . , θ(m+1)�)�

with θ(j) = (μ
(j)
1 , . . . , μ

(j)
p ,−a(j))� for τj−1 < t ≤ τj and

S(θ, t,Xt) =

m+1∑
j=1

(
p∑

k=1

μ
(j)
k ϕk(t)− a(j)Xt

)
1(τj−1<t<τj) (2.1)

with 1(.) as the indicator function. Note that θ(j) may also be a vector.
We start by assuming that the number of change points m is known, but the

exact value of each change point denoted by τ01 , . . . , τ
0
m (and correspondingly

the exact rates s0j , j = 1, . . . ,m) are unknown. Furthermore, considering that
we have multiple change points in the model, we posit that these change points
are asymptotically distinct. We further impose the following assumptions.

Assumption 1. τ0j = Ts0j , 0 < s01 < · · · < s0m < 1. We call sj =
τ0j
T

the change

points’ arrival rate, and if we have ŝj , the value τ̂0j is immediate.

Assumption 1 implies that the length of each regime [τ0j−1, τ
0
j ] is proportional

to T . The structure of the model in each regime is similar to that of the no-
change point process studied in Dehling et al. (2010); see also Nkurunziza and
Zhang (2016) for the case of a single change point. This means that the results
established in the existing literature could also be adapted to the case of multiple
change points.

MLEs for the drift parameters and their asymptotic properties were shown
in Dehling et al. (2010) for the case of no change point and in Nkurunziza
and Zhang (2016) for the case of one change point. Certainly, Nkurunziza and
Zhang (2016) is a special case of our study with m = 1. The next section reviews
previous results and extends them to the multiple change points problem.

3. Prior MLE-based results and our extension

The asymptotic normality for the MLE estimator of the drift parameters in
Nkurunziza and Zhang (2016) assumes that the estimator is already consistent.
In our case, we shall prove (rather than simply assume) that such an estimator
of the change point is consistent.

In the subsequent discussion, we write “
p−−−−→

T→∞
”, “

D−−−−→
T→∞

′′
, and “

a.s.−−−−→
T→∞

′′
to

mean convergence in probability, convergence in distribution, and convergence
almost surely, respectively. The notation ||.|| denotes the Frobenius norm for
matrices. We use bold, unitalicised English or Greek letters in lowercase for vec-
tors; and bold, unitalicised English or Greek letters in upper case for matrices.

The “O(·)” denotes the Landau symbol, also known as the “Big O” notation,
which is used to describe the asymptotic behaviour of functions. So, for a set
of random variables Un and a corresponding set of constants an, Un = Op(an)
means Un/an is stochastically bounded. Formally, this means ∀ε > 0, ∃ M > 0,
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� P (|Un/an| > M) < ε, ∀n. On the other hand, the symbol involving “small o”,
i.e., Un = op(an) means Un/an converges in probability to zero as n approaches
an appropriate limit. So, since Un = op(an) is equivalent to Un/an = op(1),
convergence in probability to zero is here defined as lim

n→∞
(P (|Un/an)| ≥ ε) = 0.

3.1. Log-likelihood function

The following assumption from Dehling et al. (2010) is also retained here.

Assumption 2. P
(∫ T

0
S2(θ, t,Xt) < ∞

)
= 1, for all 0 < T < ∞ and elements

θ(j) of θ involved in S(θ, t,Xt) given by equation (2.1).

Under Assumptions 1–2 and Theorem 7.6 of Lipster and Shiryaev (2001), the
corresponding likelihood function in our modelling framework is

�∗(θ, Xt) = exp

(
1

σ2

∫ T

0

S (θ, t,Xt) dXt −
1

2σ2

∫ T

0

S2 (θ, t,Xt) dt

)
.

The log-likelihood function is therefore

log �(θ, Xt) =
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S2(θ, t,Xt)dt

=
1

σ2

m+1∑
j=1

θ(j)�r̃(τ0
j−1,τ

0
j )

− 1

2σ2

m+1∑
j=1

θ(j)�Q(τ0
j−1,τ

0
j )

θ(j),

where r̃(τ0
j−1,τ

0
j )

=

(∫ τ0
j

τ0
j−1

ϕ1(t)dXt, . . . ,
∫ τ0

j

τ0
j−1

ϕp(t)dXt,−
∫ τ0

j

τ0
j−1

XtdXt

)�
and

Q(τ0
j−1,τ

0
j )
=

⎡⎢⎢⎢⎣
∫ τ0

j

τ0
j−1

ϕ2
1(t)dt . . .

∫ τ0
j

τ0
j−1

ϕ1(t)ϕp(t)dt −
∫ τ0

j

τ0
j−1

ϕ1(t)Xtdt

...
...

...
...

−
∫ τ0

j

τ0
j−1

ϕ1(t)Xtdt . . . −
∫ τ0

j

τ0
j−1

ϕp(t)Xtdt
∫ τ0

j

τ0
j−1

X2
t dt

⎤⎥⎥⎥⎦ .

Note that the (i1, i2) entry (i.e., the element in the i1-th row and i2-th column)

of Q(τ0
j−1,τ

0
j )
, i1, i2 = 1, . . . , p+1 is of the form

∫ τ0
j

τ0
j−1

ζi1(t)ζi2(t)dt, where ζi(t) =

ϕi(t) for i = 1, . . . , p and ζp+1(t) = −Xt.

3.2. Maximum likelihood estimators for the drift parameters

By setting the first partial derivatives with respect to each of the parameters of
�(θ, Xt) to 0, we obtain the MLE of the drift parameters, provided Q(τ0

j−1,τ
0
j )

is

invertible for each j = 1, . . . ,m+ 1. When Q(τ0
j−1,τ

0
j )

is invertible, Remark 3 of

Dehling et al. (2010) shows the existence of limT→∞(s0j − s0j−1)TQ
−1
(τ0

j−1,τ
0
j )

and
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examines its asymptotic properties (note that the term ‘ 1T Q
−1’ in the remark

may be a typo and the corrected form, as one can confirm from Proposition
4.5 in Dehling et al. (2010), should be TQ−1). Further, Nkurunziza and Zhang
(2016) revisits this topic and employs the incompleteness condition of basis
functions (see Assumption 3) to guarantee that the denominator of expression
(14) in Dehling et al. (2010) does not equal to 0, which is an essential condi-
tion for limT→∞

1
(s0j−s0j−1)T

Q(τ0
j−1,τ

0
j )

to be positive definite and thus invertible.

Nkurunziza and Zhang (2016) also extends the asymptotic results established in
Dehling et al. (2010) to the case of single change point. The results in Nkurunz-
iza and Zhang (2016) can be further adapted to give the asymptotic properties
of 1

(s0j−s0j−1)T
Q(τ0

j−1,τ
0
j )

(as well as its inverse) under the following assumption.

Assumption 3 (Assumption 2 in Nkurunziza and Zhang (2016)). For any
T > 0, the basis functions {ϕk(t), k = 1, . . . , p} are Riemann-integrable on
[0, T ] and satisfy three properties.

(1) Periodicity. That is, ϕk(t+ v) = ϕk(t) ∀ k = 1, . . . , p and v is the period in
the data.

(2) Orthogonality. That is, ∀ k1, k2 = 1, . . . , p,
∫ v

0
ϕk1(t)ϕk2(t)dt is equal to v

if k1 = k2 and 0 otherwise.

Remark 1. The two points under Assumption 3 correspond to similar assump-
tions in Dehling et al. (2014). Also, for T large, the family of basis functions
{ϕk(t) : k = 1, . . . , p} is incomplete, and this is imposed in Nkurunziza and
Zhang (2016) to establish the positive definiteness of 1

T Q(0,T ). Note that the

link between the incomplete basis functions and positive definiteness of 1
T Q(0,T )

is discussed in Zhang (2015), and Nkurunziza and Zhang (2016) applied this
result directly. The set of basis functions is incomplete in the sense that there
are smooth functions which can not be represented as their linear combination
(to fix ideas, consider the set {1, cos( 2πjxT )}pj=1 on the interval [0, 2π]).

Another condition used in Nkurunziza and Zhang (2016) in proving the
asymptotic properties of the proposed estimators is the boundedness of the
basis function (see the proof of Theorem 6.1 in Nkurunziza and Zhang (2016)
for more details). Following the methodologies in Nkurunziza and Zhang (2016),
we require the incomplete basis function {ϕk(t), k = 1, . . . , p} to be sufficiently
well behaved so that the asymptotic results similar to those in Nkurunziza and
Zhang (2016) can be established. A restructure was to guarantee this which
still admits practical choices for basis functions, for example, Fourier basis, to
require ϕk(t), k = 1, . . . , p, t ∈ [0, T ] to be bounded on R

+ (i.e. ϕk(t) ≤ Kϕ for
some 0 < Kϕ < ∞ ) as for every k the basis function ϕk(t) is bounded on [0, T ]
and v-periodic. Moreover, for the rest of this paper, we assume without loss of
generality that the sample size T is an integral multiple of the period length v,
i.e., T = Nv for some integer N . Without loss of generality, we let v = 1, which
implies that ϕk(t+ 1) = ϕk(t).

Using the results in Dehling et al. (2010) and Nkurunziza and Zhang (2016),
the MLE of the drift parameters based on the log likelihood function provided
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above are given by θ̂ = (θ̂
(1)�

, . . . , θ̂
(m+1)�

)� with

θ̂
(j)

= Q−1
(τ0

j ,τ
0
j−1)

r̃(τ0
j ,τ

0
j−1)

, j = 1, . . . ,m+ 1. (3.1)

Substituting (1.1) into (3.1) and going through some algebraic computations
will lead to

θ̂
(j)

= θ(j) + σTQ−1
(τ0

j ,τ
0
j−1)

1

T
r(τ0

j ,τ
0
j−1)

, j = 1, . . . ,m+ 1, (3.2)

where r(a,b) =
(∫ b

a
ϕ1(t)dWt, . . . ,

∫ b

a
ϕp(t)dWt,−

∫ b

a
XtdWt

)�
for 0 ≤ a < b ≤

T .

3.3. Asymptotic properties of the MLE

To study the asymptotic proprieties of the MLE in the next section, equation
(3.1) to be precise, we review the established asymptotic results in Dehling et al.
(2010) for the case where there is no change point (m = 0) and also the results
in Nkurunziza and Zhang (2016) when there exists one change point (m = 1).

If there is no change point (m = 0 and θ = θ(1) for 0 < t ≤ T ), the solution
of the SDE (1.1) has the explicit representation

Xt = e−a(1)tX0 + h(1)(t) + z
(1)
t , 0 < t ≤ T, (3.3)

where h(j)(t) = e−a(j)t

p∑
i=1

μ
(j)
i

∫ t

0

ea
(j)sϕi(s)ds and z

(j)
t = σe−a(j)t

∫ t

0

ea
(j)sdWs.

Note that as the process {Xt, t ≥ 0} is not stationary in the ordinary sense,
it is impossible to apply the ergodic theorem directly. To circumvent this, a
stationary solution, for t ∈ R instead of t ≥ 0, was introduced in Dehling et al.
(2010). Consider

X̃t = h̃(1)(t) + Z̃
(1)
t , 0 < t ≤ T, (3.4)

where h̃(j)(t) = e−a(j)t

p∑
i=1

μ
(j)
i

∫ t

−∞
ea

(j)sϕk(s)ds, Z̃t = σe−a(j)t

∫ t

0

ea
(j)sdB̃s,

and (B̃s)s∈R denotes a bilateral Brownian motion, i.e.,

B̃s = Bs1R+(s) + B̄−s1R−(s),

where (Bs)s≥0 and (B̄s)s≥0 are two independent standard Brownian motions.
Then, from Lemma 4.3 in Dehling et al. (2010), the sequence of C[0, 1]-valued
random variables Wk(s) = X̃k−1+s, 0 ≤ s ≤ 1, k ∈ N is stationary and ergodic.
In this case, by Proposition 4.5 of Dehling et al. (2010),

1

T

∫ T

0

X̃tϕk(t)dt
a.s.−−−−→

T→∞

∫ 1

0

(h̃(1)(t))ϕk(t)dt,

1

T

∫ T

0

X̃2
t dt

a.s.−−−−→
T→∞

∫ 1

0

(h̃(1)(t))2dt+
σ2

2a(1)
.

(3.5)
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Moreover, under Assumptions 1–3, Lemma 4.4 in Dehling et al. (2010),

|X̃t −Xt| a.s.−−−→
t→∞

0. (3.6)

Using (3.6), we have the following properties:

1

T

∫ T

0

X̃tϕk(t)dt−
1

T

∫ T

0

Xtϕk(t)dt
a.s.−−−−→

T→∞
0,

1

T

∫ T

0

X̃2
t dt−

1

T

∫ T

0

X2
t dt

a.s.−−−−→
T→∞

0.

It follows from (3.5) that

1

T

∫ T

0

Xtϕk(t)dt
a.s.−−−−→

T→∞

∫ 1

0

h̃(1)(t)ϕk(t)dt,

1

T

∫ T

0

X2
t dt

a.s.−−−−→
T→∞

∫ 1

0

h̃(1)(t)2dt+
σ2

2a(1)
.

Hence,
TQ−1

(0,T )

a.s.−−−−→
T→∞

Σ−1
0 , (3.7)

where

Σ0 =

[
Ip Λ(0,T )

Λ�
(0,T ) w

]

with Λ(0,T ) =

(∫ 1

0

h̃(1)(t)ϕ1(t)dt, . . . ,

∫ 1

0

h̃(1)(t)ϕp(t)dt

)�

and

w =

∫ 1

0

(h̃(1))2(t)dt+
σ2

2a(1)
.

Furthermore, under Assumptions 1–3, the following properties for r(0,T ) hold.

1. {r(0,T ), T > 0} is a martingale.

2. 1
T r(0,T )

a.s.−−−−→
T→∞

0.

3. 1√
T
r(0,T )

D−−−−→
T→∞

r ∼ Np+2(0,Σ0).

For more details about the above properties, readers may refer to Dehling et al.
(2010) or Nkurunziza and Zhang (2016).

These properties, together with Slutsky’s theorem, yield

1√
T
(θ̂ − θ) D−−−−→

T→∞
r ∼ Np+1

(
0,Σ−1

0

)
.

Nkurunziza and Zhang (2016) extend the above asymptotic properties to the
case of a single change point. Using similar arguments, we extend these results
in the context of multiple change points. We first present a result covering the
coefficients of SDE (1.1).
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Proposition 3.1. Under Assumptions 1–3, the coefficients in SDE (1.1) for
m ≥ 1 satisfy both the space-variable Lipschitz and the spatial growth conditions.

Proof. See Appendix A.

Using Proposition 3.1 and the mean-reverting property of OU process, to-
gether with the similar arguments employed in the proof of Theorem 3.1 (as
well as Lemma 3.3) in Nkurunziza and Zhang (2016), it may be verified that
SDE (1.1) admits a solution that is uniformly bounded in L2 and

sup
t≥0

E
(
X2

t

)
≤ K1 (3.8)

for some 0 < K1 < ∞.
Employing (3.8), we (3.3) and (3.4) to their representations in context of

multiple change points (m ≥ 1) given by

Xt = e−a(j)tX
(j)
0 + h(j)(t) + z

(j)
t , τ0j−1 < t ≤ τ0j , j = 1, . . . ,m+ 1, (3.9)

where X
(j)
0 = Xτj−1 and

X̃t = h̃(j)(t) + Z̃
(j)
t , τ0j−1 < t ≤ τ0j , j = 1, . . . ,m+ 1. (3.10)

Then
1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt
a.s.−−−−→

T→∞
(s0j − s0j−1)

∫ 1

0

h̃(j)(t)ϕk(t)dt (3.11)

and

1

T

∫ τ0
j

τ0
j−1

X̃2
t dt

a.s.−−−−→
T→∞

(s0j − s0j−1)

(∫ 1

0

(h̃(j)(t))2dt+
σ2

2a(j)

)
. (3.12)

Using (3.6) and (3.8) and similar arguments in the proof of Theorem 3.1 in
Nkurunziza and Zhang (2016) with the estimated change point replaced by the
exact value of the change points, the following properties hold:

1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt−
1

T

∫ τ0
j

τ0
j−1

Xtϕk(t)dt
a.s.−−−−→

T→∞
0,

and
1

T

∫ τ0
j

τ0
j−1

X̃2
t dt−

1

T

∫ τ0
j

τ0
j−1

X2
t dt

a.s.−−−−→
T→∞

0.

Thus,

1

T

∫ τ0
j

τ0
j−1

Xtϕk(t)dt
a.s.−−−−→

T→∞
(s0j − s0j−1)

∫ 1

0

h̃(j)(t)ϕk(t)dt

and
1

T

∫ τ0
j

τ0
j−1

X2
t dt

a.s.−−−−→
T→∞

(s0j − s0j−1)

(∫ 1

0

(h̃(j)(t))2dt+
σ2

2a(j)

)
.



Inference for a mean-reverting stochastic process with change points 2209

So,

1

T
Q(τ0

j−1,τ
0
j )

a.s.−−−−→
T→∞

(s0j − s0j−1)Σj , (3.13)

where

Σj =

[
Ip Λj

Λ′
j wj

]
(3.14)

withΛj =
(∫ 1

0
h̃(j)(t)ϕ1(t)dt, . . . ,

∫ 1

0
h̃(j)(t)ϕp(t)dt

)�
and wj =

∫ 1

0
(h̃(j))2(t)dt+

σ2

2a(j) , j = 1, . . . ,m+ 1. Further, by the Continuous Mapping Theorem,

TQ−1
(τ0

j−1,τ
0
j )

a.s.−−−−→
T→∞

1

(s0j − s0j−1)
Σ−1

j . (3.15)

So long as Assumptions 1–3 hold and with the aid of similar argument used in
the proof of Proposition 2.1 in Nkurunziza and Zhang (2016), it may be shown
that Σj is positive definite.

Note that (3.13) and (3.15) are key elements in analysing the asymptotic
properties of Q(τ̂j−1,τ̂j) and its inverse, where τ̂j is the estimator of τ0j .

Invoking the boundedness property of ϕk(t), we have

E

(∫ T

0

(
1√
T
ϕk(t)1(τ

0
j−1 < t ≤ τ0j )

)2

dt

)
=

∫ T

0

1

T
ϕ2
k(t)1(τ

0
j−1 < t ≤ τ0j )dt

≤ K2
ϕ(s

0
j − s0j−1) < ∞ (3.16)

for k = 1, . . . , p and j = 1, . . . ,m. Similarly, using (3.8),

E

(∫ T

0

(
1√
T
Xt1(τ

0
j−1 < t ≤ τ0j )

)2

dt

)
=

∫ T

0

1

T
E(X2

t )1(τ
0
j−1 < t ≤ τ0j )dt

≤ K2
1 (s

0
j − s0j−1) < ∞. (3.17)

From Proposition 1.21 in Kutoyants (2004), we get(
1√
T
r(0,τ0

1 )
, . . . ,

1√
T
r(τ0

m,T )

)
D−−−−→

T→∞
N(m+1)(p+1)

(
0, Σ̃

)
, (3.18)

where 0 is a vector of zeros and Σ̃ = diag(s01Σ1, (s
0
2−s01)Σ2, . . . , (1−s0m)Σm+1).

Combining (3.13), (3.15) and (3.18), along with the Slutsky’s Theorem and some
algebraic computations (see Proposition 6.3 in Nkurunziza and Zhang (2016) for
more details),

1√
T
(θ̂ − θ0)

D−−−−→
T→∞

N(m+1)(p+1)(0, σ
2Σ̃

−1
), (3.19)

where Σ̃−1 = diag
(

1
s01
Σ−1

1 , 1
s02−s01

Σ−1
2 , . . . , 1

1−s0m
Σ−1

m+1

)
.
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The above asymptotic properties are established based on the exact values
of the locations of the change points τ0j , j = 1, . . . ,m. However, in practice, τ0j
are often unknown. Hence, we shall devise methods to estimate the unknown
τ0j and investigate whether the above asymptotic normality still hold for the
estimated change points.

4. Estimation of change points and pertinent asymptotic properties

In Subsections 4.1 and 4.2, we develop two techniques to estimate the unknown
locations of change points. The asymptotic normality of θ̂ based on the estimated
change points is discussed in Subsection 4.3.

4.1. Least sum squared error method

We introduce the least sum of squared errors (LSSE) method then investigate
the consistency of our proposed estimator. Consider a partition 0 = t0 < · · · <
tn = T on a time period [0, T ] with constant increment Δt = ti+1 − ti. Also, let
Yi = Xti+1 −Xti and zi = (ϕ1(ti), . . . , ϕp(ti),−Xti)Δt.

Due to the uncertain locations of estimated change points, the exact value of
the drift parameters θ and the MLE may have different indices. For example,
if τ̂j > τ0j , then for all ti ∈ (τ0j , τ̂j ], the associated exact value of the drift

parameters is θ(j+1) but the MLE is θ̂
(j)

. So here, θi and θ̂i refer to the exact
value and MLE of the drift parameters at time point ti, respectively. In this case,

θi =
∑m+1

j=1 θ(j)1(τ0j−1 ≤ ti ≤ τ0j ) and θ̂i =
∑m+1

j=1 θ̂
(j)

1(τ̂j−1 ≤ ti ≤ τ̂j) with

θ̂
(j)

= Q−1
(τ̂j−1,τ̂j)

r̃(τ̂j−1,τ̂j) for j = 1, . . . ,m + 1. Then by the Euler-Maruyama

discretisation method,

Yi = ziθi + εi, i = 1, . . . , T, (4.1)

where εi is the error term σ
√
Δtωi, and ωi is the ith independent draw from

a standard normal variable. Therefore, we could now use the LSSE method to
estimate the change points.

From (4.1), the estimates for the multiple change points τ0 = (τ01 , . . . , τ
0
m)

are given by

τ̂ = argmin
τ

SSE([0, T ], τ , θ̂(τ )), (4.2)

where

SSE([0, T ], τ , θ̂(τ )) =
∑

ti∈[0,T ]

(Yi − ziθ̂i)
�(Yi − ziθ̂i). (4.3)
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Consistency of the proposed estimator

Under Assumptions 1–3,
∑

ti∈(τ0
j−1,τ

0
j ]
z�i zi for j = 1, . . . ,m, the discretised

versions of Q(τ0
j−1,τ

0
j )

are both positive definite with probability 1 provided

that the basis functions {ϕk(t), i = 1, . . . , p} are incomplete. Moreover, using
(3.13) (see also Proposition 2.1 in Nkurunziza and Zhang (2016)), we have that

1
(s0j−s0j−1)T

Q(τ0
j−1,τ

0
j )

converges in probability to some positive definite matrices

for large T , as do their respective discretised versions. Hence, for large T , it
is reasonable to impose a useful assumption in proving the consistency of the
estimators of the change points.

Assumption 4. For every j = 1, . . . ,m, there exists an L0 > 0 such that for all
L > L0 the minimum eigenvalues of

1

�

∑
ti∈(τ0

j
,τ0

j
+L]

z
′
izi and of

1

�

∑
ti∈(τ0

j
−L,τ0

j
]

z
′
izi, as

well as their respective continuous-time versions 1
�Q(τ0

j ,τ
0
j +L) and 1

�Q(τ0
j −L,τ0

j ]
,

are all bounded away from 0.

For the motivation of the above assumption, see Perron and Qu (2006) and
Chen and Nkurunziza (2015). The next two propositions provide results char-
acterising consistency.

Proposition 4.1. Suppose that θ(1) − θ(2), the shift in the drift parameters, is
of fixed non-zero magnitude independent of T . Then, under Assumption 1–4,

and ŝj − s0j
P−−−−→

T→∞
0, j = 1, . . . ,m.

Proof. See Appendix B.

Proposition 4.2. Suppose the conditions in Proposition 4.1 hold. Then, for
every ε > 0, there exists a C > 0 such that for large T , P (T |ŝj − sj | > C) < ε,
for every j = 1, . . . ,m.

Proof. See Appendix B.

Proposition 4.1 shows that the estimated rate ŝj =
τ̂j
T is consistent for s0j , for

j = 1, . . . ,m. Proposition 4.2 gives the convergence rate T of τ̂j , j = 1, . . . ,m.
In reality we may encounter the case where the shift is time-dependent, and, in
particular as T tends to infinity, the shift may shrink towards 0 at rate vT , i.e.,
θ(j) − θ(j−1) = MvT , where M is independent of T and vT −−−−→

T→∞
0. In this

case, the validity of Propositions 4.1 and 4.2 depends on the speed vT . In fact,
using similar arguments as in the proofs of Propositions 4.1 and 4.2, we have
the following corollary.

Corollary 4.1. Suppose that θ(j) − θ(j−1) = MvT , where j = 1, . . . ,m + 1,
M is independent of T and vT −−−−→

T→∞
0 but T 1/2−r∗vT −−−−→

T→∞
∞ for some 0 <

r∗ < 1/2. Then under Assumptions 1–4, we have (i) ŝ− s0
P−−−−→

T→∞
0 and (ii) for

every ε > 0, there exists a C > 0 such that for large T , P
(
Tv2T |ŝ− s| > C

)
< ε.

Proof. See Appendix B.
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4.2. Maximum log-likelihood method

We introduce an alternative method to estimate the location of the change points
based on the maximum of log-likelihood function. Recall that the log-likelihood
function for (1.1) with the exact change points τ01 , . . . τ

0
m is given by

log �(τ01 , . . . , τ
0
m, θ) =

1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S2(θ, t,Xt)dt

=
1

σ2

m+1∑
j=1

∫ τ0
j

τ0
j−1

S(θ(j), t,Xt)dXt

− 1

2σ2

m+1∑
j=1

∫ τ0
j

τ0
j−1

S2(θ(j), t,Xt)dt. (4.4)

From (4.4), the estimator of the location of the change points is given

τ̂ = argmax
τ

log �(τ , θ̂(τ )), (4.5)

where θ̂(τ ) is the MLE of θ based on the given change points τ = (τ1, . . . , τm).

In practice, the calculation of log �(τ , θ̂(τ )) in (4.5) relies on numerical ap-
proximation methods (see Auger and Lawrence (1989)) to compute the integrals
inside log �(τ , θ̂(τ )). For example, by approximating the Riemann sum based on
a partition 0 = t∗0 < . . . < t∗n = T with Δ∗

t = t∗i+1 − t∗i , (4.5) is calculated as

log �∗([0, T ], τ , θ̂(τ )) =
1

σ2

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

θ̂
(j)′

V (t)′(Xt∗i+1
−Xt∗i

)

− 1

2σ2

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

(
θ̂
(j)′

V (t)′
)2

Δ∗
t . (4.6)

The approximated version of (4.5) is then

τ̂ = arg max
τ=(τ1,...,τm)

log �∗([0, T ], τ , θ̂(τ )). (4.7)

Consistency of the proposed estimator

We now link results (4.7) and (4.2), which are the respective results from the
LSSE- and MLE-based methods.

Proposition 4.3. Consider the observed process Xt, t ∈ [0, T ]. If the incre-
ment Δ∗

t is equal to Δt defined in Section 4.1 then under Assumptions 1–4, the
asymptotic results given in Propositions 4.1 and 4.2 as well as in Corollary 4.1
also hold for (4.7).

Proof. See Appendix B.

Using the consistency properties, we can establish the asymptotic normality
for the MLE of drift parameters based on the estimated change points.



Inference for a mean-reverting stochastic process with change points 2213

4.3. Asymptotic normality of θ̂ based on the estimated change points

Previously, we established the T -rate consistency of the estimated change points.
Based on these asymptotic consistency results, we extend some of the asymptotic
normality results in Nkurunziza and Zhang (2016) that are related to our study
to the case of multiple change points.

Proposition 4.4. Let τ̂ = {τ̂1, . . . , τ̂m} be the estimated change points using
(4.2) or (4.5). Then, under Assumptions 1–4, we have that for i = 1, . . . , p,

1

T

∫ τ̂j

τ̂j−1

Xtϕk(t)dt
p−−−−→

T→∞
(sj − sj−1)

∫ 1

0

h̃(t)ϕk(t)dt. (4.8)

Similarly,

1

T

∫ τ̂j

τ̂j−1

X2
t dt

p−−−−→
T→∞

(sj − sj−1)

(∫ 1

0

h̃2(t)dt+
σ2

2a(j)

)
. (4.9)

Proof. See Appendix C.

Proposition 4.5. Under the same conditions as in Proposition 4.4, we have
that for i = 1, . . . , p,

P

(∫ T

0

(
1

√
T
ϕk(t)1τ̂i−1<t≤τ̂i

)2

< ∞
)

= 1, P

(∫ T

0

( −1
√
T
Xt1τ̂i−1<t≤τ̂i

)2

< ∞
)

= 1. (4.10)

Proof. This follows from (3.8) and similar arguments in the proofs of Lemmas
3.1 and 3.2 in Nkurunziza and Zhang (2016).

Employing Propositions 4.4 and 4.5, we have the following results.

Proposition 4.6.

TQ−1
(τ̂j−1,τ̂j)

P−−−−→
T→∞

1

s0j − s0j−1

Σ−1
j , j = 1, . . . ,m, (4.11)

where Σj is defined in (3.14).

Proof. See Appendix C (or Proposition 6.2 in Nkurunziza and Zhang (2016) for
the single change-point case).

Proposition 4.7. Let τ̂ = {τ̂1, . . . , τ̂m} be the estimated change points from
(4.2), and suppose that Assumptions 1–4 hold. Then,

1√
T
r(τ̂j−1,τ̂j) −

1√
T
r(τ0

j−1,τ
0
j )

P−−−−→
T→∞

0, (4.12)

where

r(τ̂j−1,τ̂j) =

(∫ τ̂j

τ̂j−1

ϕ1(t)dWt, . . . ,

∫ τ̂j

τ̂j−1

ϕp(t)dWt,−
∫ τ̂j

τ̂j−1

XtdWt

)�

.
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Proof. See Appendix C (or Proposition 6.2 in Nkurunziza and Zhang (2016) for
the case of only a single change point).

The next result following from Propositions 4.6 and 4.7 plays an essential
role in proving the asymptotic normality of MLE of the drift parameter based
on the proposed estimated change points.

Proposition 4.8. Suppose that Assumptions 1–4 hold. Then(
1√
T
r(0,τ0

1 )
, . . . ,

1√
T
r(τ0

m,T )

)
D−−−−→

T→∞
r ∼ N(m+1)(p+1)

(
0, Σ̃

)
, (4.13)

where Σ̃ = diag
(
s01Σ1, (s

0
2 − s01)Σ2, . . . , (1− s0m)Σm+1

)
.

Proof. This proposition follows from Proposition 3.1 in Nkurunziza and Zhang
(2016).

From Proposition 4.8 together with Slutsky’s Theorem, the following corol-

lary establishes the asymptotic normality for θ̂ =
(

θ̂
(1)

, . . . , θ̂
(m)

)
.

Corollary 4.2. Let τ̂ = {τ̂1, . . . , τ̂m} be the estimated change points from (4.2),
and supposes that Assumption 1–4 hold.

√
T (θ̂ − θ) D−−−−→

T→∞
ρ ∼ N((m+1)(p+1))

(
0, σ2Σ̃

−1
)
, (4.14)

where Σ̃
−1

= diag
(

1
s01
Σ−1

1 , 1
s02−s01

Σ−1
2 , . . . , 1

1−s0m
Σ−1

m+1

)
.

Proof. See Appendix C.

5. Estimating the number of change points

In the last section, we developed two consistent estimation methods for the case
when the number of change points is known. In this section, we extend our
examination of the change-point problem when the number of change points is
also unknown. Hence, we are interested in knowing the number of change points
as well as their exact locations.

One popular methodology for detecting the unknown number of change points
is to treat this issue as a model-selection problem. For instance, adding one
change point into (1.1) brings p+1 extra drift parameters into the model. Thus,
detecting the number of change points can be considered as selecting the most
suitable statistical model from a series of candidate models with different num-
ber of change points, and this can be solved using an informational approach.
Such approach deems the most appropriate model as the one which minimises
the log-likelihood-based information criterion

IC(m) = −2 log �(τ , θ̂) + (m+ 1)h(p)φ(T ). (5.1)

In (5.1), log �(τ , θ̂) is defined in (4.4); τ̂ is obtained via (4.5) corresponding to
each m; h(p) = p+ 1 if there is no change in σ (or p+ 2 if there is a change in
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σ); φ(T ) is a non-decreasing function of T , the length of the data set; and m is
the potential number of change points to be determined.

Based on the asymptotic results for the Riemann sum approximation of the
log-likelihood function log �(τ , θ̂), we use the criterion

IC(m) = −2 log �∗([0, T ], τ , θ̂(τ )) + (m+ 1)(p+ 1)φ(T ), (5.2)

where log �∗([0, T ], τ , θ̂(τ )) is given in (4.6).

Note that, if the number of change points is known, the term (m+1)h(p)φ(T )
is fixed and the approach covering (5.2) is equivalent to the maximum log-
likelihood method introduced in the previous section. The efficiency of informa-
tion criterion depends on the choice of the penalty criterion φ(T ). For example,
if φ(T ) = 2, then (5.2) reduces to the well-known Akaike information criterion
(AIC) Akaike (1973). However, in practice, a model selected by minimising the
AIC may not be asymptotically consistent in terms of the model order; see
Schwarz (1978). Modified information criteria were, thus, proposed to overcome
this problem. One example is the Schwarz information criterion (SIC) Schwarz
(1978), which sets φ(T ) as the logarithm of the sample size. The SIC has been
successfully applied to the change-point analysis in the literature. As it gives an
asymptotically consistent estimate of the order of the true model, we also adapt
the SIC for our theoretical development.

Note that the penalty term (m+1)(p+1)φ(T ) in SIC increases as the sample
size increases. Hence, for large sample size, SIC tends to ignore the relatively
small changes in the process. This feature makes it useful for those who are
mainly interested in studying only the major changes within certain time period.
Further, based on the SIC, we have the following asymptotic results for (5.2).

Proposition 5.1. Under Assumptions 1–4, we have that for large T , (i) IC(m =
m0) < IC(m < m0) with probability 1 and (ii) IC(m = m0) < IC(m > m0)
with probability 1.

Proof. See Appendix D.

Proposition 5.1 tells us that, for large T, IC(m) reaches its minimum value
when m = m0 and this allows us to detect the exact value of m0.

6. Computational algorithms

In this section, we put forward algorithms for computing (4.2) and (4.7) whenm0

is known. We also provide algorithms for computing (5.2) when m0 is unknown.
Based on these algorithms, a simulation study to examine the efficiency of the
proposed methods for different time periods T is presented in Section 7.1. Our
numerical results will show that, with our sample parameter set, the proposed
methods perform well for values of T as small as T = 5.
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6.1. Algorithm for (4.2) and (4.7) (with known m0)

In estimating the unknown locations of change points, a standard searching
method is to compute the criteria, i.e., least squared errors for (4.2) or maximum
log likelihoods for (4.7), through all possible locations of change points and
search for the one that returns the optimal value. However, for m change points
the associated costs for the above searching procedure are of order O((T/Δt)

m).
Thus, for large T and small Δt, the computations can be time consuming. To
overcome this problem, we adopt to our two proposed LSSE and MLE methods a
dynamic programming algorithm due to Bai and Perron (1998), see also Perron
and Qu (2006), to reduce the computational cost to O(m(T/Δt)

2) for m change
points. This algorithm is very efficient when m ≥ 2.

Algorithm 1. Let H1(r, Tr) be either H1(r, Tr) = minτ SSE([0, Tr], τ , θ̂(τ )),
the least sum squared error for (4.2) or H1(r, Tr) = maxτ log �

∗([0, Tr], τ , θ̂(τ )),
the maximum Riemann sum approximation of log likelihood for (4.7)) com-
puted based on the optimal partition of time interval [0, Tr] that contains r
change points. Also, let H2(a, b) be the SSE for (4.2) or Riemann sum approx-
imation of log likelihood for (4.7)) computed based on a time regime (a, b].
Further, we assume that Assumption 1 holds and let h = εT be the minimal
permissible length of a time regime. Then (4.2) or (4.7) with known m = m0

can be computed as follows.

Step 1: Compute and save H2(a, b) for all time periods (a, b] that satisfy b−a ≥
h.

Step 2: Compute and save H1(1, T1) for all T1 ∈ [2h, T − (m − 1)h] by solving
the optimisation problem

H1(1, T1) =

{
mina∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.2)

maxa∈[h,T1−h][H2(0, a) +H2(a, T1)] for (4.7).

Step 3: Sequentially compute and save

H1(r, Tr) =

{
mina∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.2)

maxa∈[rh,Tr−h][H1(r − 1, a) +H2(a, Tr)] for (4.7)

for r = 2, . . .m− 1, and Tr ∈ [(r + 1)h, T − (m− r)h].
Step 4: Finally, the estimated change points are obtained by solving

H1(m,T ) =

{
mina∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.2)

maxa∈[mh,T−h][H1(m− 1, a) +H2(a, T )] for (4.7)

and H1(m− 1, a) = H2(0, a) if m = 1.

The steps in Algorithm 1 can be viewed as a combination of two components.
Step 1 computes all possible choices of H2, and the computations in this step are
at most of order O((T/Δt)

2) as there are at most (T/Δt)
2 different time periods
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(a, b] in the dataset. This step is useful, since in the succeeding steps some pairs
of (a, b] will be visited more than once during the optimisation process, so using
previously saved results for H2(a, b) will be helpful to reduce computations.
Steps 2-4 can be treated as an application of the Segment Neighbourhood Search
(SNS) method introduced by Auger and Lawrence (1989). The goal of Steps 2–
4 is to search for the global optimal locations of the m change points and the
total computation costs in these steps are also of O(m(T/Δt)

2). Note that when
m = m0 = 1 (a single change point), only the last step is needed to search for
the optimal location of a change point, and the related computations costs are
of O(T/Δt).

When m0 > 1 and T is large, Algorithm 1 can be extremely time-consuming
because of the O(m(T/Δt)

2) computations, we aim to decrease the compu-
tational costs in this case. Apparently, some computations in Step 1 may be
redundant. For example, in Step 2, the domain for the optimisation problem is
a ∈ [h, T1 − h] for each T1 ∈ [2h, T − (m0 − 1)h]; so the calculations of H2(0, b

∗)
for all b∗ > T −m0h in Step 1 become unnecessary as these results will not be
used. Thus, the computations in Step 1 could be moved into Steps 2- 4 so that
only the necessary H2 are computed and stored. This means one could begin
the algorithm from Step 2 by computing and storing H2(0, b) for b ∈ [h, T −mh]
and H2(a, b) for a ∈ [h, T −mh], b ∈ [2h, T − (m−1)h], then solve for H1(1, T1).
In Step 3, for r = 2, . . . ,m− 1, one only needs to compute and save H2(a, b) for
(a ∈ [T − (m − r + 2)h, T − (m − r + 1)h], b ∈ [(r + 1)h, T − (m − r)h])

⋃
(a ∈

[rh, T − (m− r + 2)h], b ∈ [T − (m− r + 1)h, T − (m− r)h]) before solving for
H1(1, T1). Finally, in Step 4, we compute and store H2(a, T ) for a ∈ [mh, T −h]
before solving for H1(m,T ).

6.2. Algorithm for (5.2) (with unknown m0)

When m0 is unknown, one may compute and compare the m values of (5.2) and
m varies from 0 up to mmax for some 0 ≤ mmax ≤ 
[T/h]� . The upper bound
mmax can also be predetermined from the descriptive analysis of the observed
processes. For each m, one can first apply Algorithm 1 to obtain the estimated
change points and compute (5.2) accordingly. After the mmax computations, the
desired m̂ is the one that returns the minimum value of (5.2). By Proposition 5.1,
m̂ is consistent when T is large, provided m0 ∈ [0,mmax].

If we directly apply Algorithm 1 to m = 1, . . . ,mmax, the total computa-
tions will be of order O((1 + 2 + . . . + mmax)(T/Δt)

2). To further simplify
the computations, we study the behaviour of Step 2–3 in Algorithm 1 when
m increases from m∗ to m∗ + 1. In this case, the ranges of Tr reduces from
Tr ∈ [(r+1)h, T−(m∗−1)h] to Tr ∈ [(r+1)h, T−(m∗)h] for each r = 1, . . . ,m−1.
This implies that the stored optimisation results of Steps 2 and 3 in Algorithm 1
at the previous step (m = m∗) can also be used in the current step (m = m∗+1).
Therefore, with the previously stored results, the only step that needs to be up-
dated for each m is when r = m−1 and r = m, and the associated computations
are of order O((T/Δt)

2) at r = m − 1 and O(T/Δt) at r = m. Based on these
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considerations, we tailor the SNS algorithm for (5.2) and the related computa-
tions for m = 0 . . . ,mmax are of order O(mmax(T/Δt)

2).

Algorithm 2 (SNS method). Step 1: Follows all steps in Algorithm 1 to search
for the optimal locations of the m estimated change points then store
the computed value of (5.2) for m = 0, 1, 2. Note that the results of
H2(a, b) for all (a, b] such that a − b ≥ h as well as the optimisation
results of H1(r, Tr) for all r = 1, . . . ,m and Tr ∈ [(r+1)h, T − (m−r)h]
need to be stored for future use.

Step 2: For m = 3, . . . ,mmax, first let r = m−1 and Tr ∈ [(r+1)h, T−(m−r)h]
then compute and store H1(r, Tr). Next let r = m and the estimated
change points are obtained by solving H1(m,T ), where H1(r, Tr) and
H1(m,T ) are defined in Algorithm 1. Finally, based on the estimated
m change points, compute and store IC(m).

Step 3: m̂ is obtained from m = 1, . . . ,mmax that returns the smallest value of
(5.2).

The advantage of SNS method is that it returns the optimal locations of change
points for every m = 1, . . . ,mmax. Hence, it is useful if one interested in in-
vestigating the relationships between the locations of change points and m.
However, for large T and mmax, the O(mmax(T/Δt)

2) computational costs in
the SNS method may be high.

In addition to SNS method, another dynamic programming algorithm for
finding the unknown number of change points is called the Optimal Partitioning
(OP) algorithm introduced by Jackson et al. (2002). The related computational
costs are of order O(T/Δt)

2) for any m; hence, it is more efficient than SNS
when mmax is large. Based on the OP algorithm, Killick et al. (2012) introduced
the Pruned Exact Linear Time (PELT) method. Although the maximum com-
putational costs for the PELT algorithm is still up to O(n2) for a data set with
size n, the computations in the PELT method, which involved pruning of the
solution space under some conditions can be much less than those required in
the OP.

However, the PELT method introduced in Killick et al. (2012) may not satisfy
Assumption 1, which is essential for most of the theoretical properties developed
in this paper. In fact, under Assumption 1: (i) there is no change point in time
period [0, h), where h is defined in Algorithm 1; (ii) if there is a change point
τ∗ ∈ [h, 2h), then there is no non-zero change point prior to τ∗; and (iii) for
any potential change point τ∗ ∈ [2h, T ], the minimal distance between it and
the most recent change point prior to this change point is at least h. Based
on these considerations, we use the following modified version of the PELT
algorithm.

Algorithm 3 (Modified PELT method). Let n = T/Δt be the length of the
data set based on the partition 0 = t0 < t1 < . . . < tn = T of time period
[0, T ] with increment Δt, and let th = h/Δt. Set SS2th = {0} and F (ti) = 0 for
i = 1, . . . , th− 1. Then, for i = th, . . . , n, compute and store the values obtained
from the following steps.



Inference for a mean-reverting stochastic process with change points 2219

Step 1: For i = th, . . . , 2th−1, compute and store F (ti) = −2∗ log �∗([0, ti], θ̂)+
(p+1) log(n), where log �∗([a, b], θ̂) is the Riemann sum approximation
(midpoints) of the log likelihood (no change point) evaluated at time

period [a, b] with θ = θ̂.
Step 2: For i = 2th, . . . , n, compute and store: (i) F (ti) = mint∈SSti

F (t) −
2 ∗ log �∗((t, ti], θ̂) + (p + 1) log(n); (2). τ∗ti = argmint∈SSti

F (t) − 2 ∗
log �∗((t, ti], θ̂)+(p+1) log(n); (3). SSti+1 = {0}∪{t ∈ SSti∪{ti−th+1} :

F (t)− 2 ∗ log �∗((t, ti], θ̂) ≤ F (ti)}.
Step 3: Denote cp(0) = ∅. Then, the optimal change points can be obtained by

solving cp(t∗) = (cp(t∗ = τ∗t∗), τ
∗
t ) with t∗ starts from T and iterates

recursively until τ∗t∗ = 0.

7. Numerical demonstrations

The Monte-Carlo simulation technique will be used in Subsection 7.1 (i) to
evaluate the comparative performance of the two estimation methods, viz. LSSE
in (4.2) and MLL in (4.7) to determine the unknown location ofm0 change points
assumed to already exist; and (ii) to test the method in (5.2) for detecting the
unknown number of change points. In Subsection 7.2, we illustrate the various
implementation details of our proposed methods on some observed financial
market data.

7.1. Monte-Carlo simulation study

Our simulation considers two different scenarios (or cases). In the first case, we
study the performance of the proposed methods under the classical OU process
defined by

dXt = (μ(j) − α(j)Xt)dt+ σdWt, if s0j−1T < t < s0jT, j = 1, . . . ,m. (7.1)

In the second case, the performance evaluation of the proposed methods is tested
assuming a periodic mean-reverting OU process, with 2-dimensional periodic

incomplete set of basis functions
{
1,
√
2 cos

(
πt
2Δt

)}
(which are orthogonal on

[0,T ] with weight fixed to 1), given by

dXt =

[
μ
(j)
1 + μ

(j)
2

√
2 cos

(
πt

2Δt

)
− α(j)Xt

]
dt+ σdWt, (7.2)

where j = 1, . . . ,m; Δt = ti+1 − ti is the increment for [0, T ]; and s0j−1T < t <

s0jT.
Each case consists of 500 iterations. Although an exact solution is available,

we choose to use the Euler-Maruyama discretisation scheme to be consistent
with the results of Nkurunziza and Zhang (2016). In each iteration, we first
generate a desired simulated process based on a given period T with pre-assigned
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“true” parameters such as the number and location of change points and the
model coefficients. To evaluate the performance of (4.2) and (4.7), we specify
the number of change points to be known but the rate is unknown. Then, we
estimate and record the change points’ arrival rates by applying (4.2) and (4.7)
on the simulated process. The detailed simulation setup and results are reported
in Subsection 7.1.1.

In Subsection 7.1.2, we also use the Monte-Carlo simulation method to in-
vestigate the performance of (5.2). That is, we assume that m0 is unknown
and apply (5.2) with m ranging from 0 to m0 + 3. Then, the m that returns
the minimum value of (5.2) is chosen as the estimated value for the number of
change points. After 500 iterations, we analyse the performance of the proposed
methods based on the recorded results.

7.1.1. Estimating the rate sj of change points

We first study the performance of (4.2) and (4.7) in estimating the rates of the
change points with known m0. For the simulation setup, we consider the case
where m0 = 2 and 3 with different time periods T = 5, 10, 20, respectively. The
pre-assigned values of the coefficients are provided in Table 1.

For each case, after 500 iterations we record the mean of the estimates based
on (4.2) and (4.7), together with the 95% empirical confidence interval (i.e.,
locating the 2.5 and 97.5 percentiles) and also the mean-squared error. The
results are reported in Tables 2–5. In this section, we also report the following

Table 1

Pre-assigned coefficients (with known number of change points)

2 change points (0.35T , 0.7T ) 3 change points (0.25T , 0.5T , 0.75T )
Case Coefficient j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 4

1
μ(j) 0.08 2.50 0.08 0.08 2.50 0.08 2.50

α(j) 0.10 1.00 0.50 0.10 1.00 0.50 1.00

2
μ
(j)
1 0.08 2.50 0.08 0.08 2.50 0.08 2.50

μ
(j)
2 0.02 1.20 0.02 0.02 1.20 0.02 1.20

α(j) 0.10 1.00 0.50 0.10 1.00 0.50 1.00

Table 2

Simulation results of ŝj , j = 1, . . . ,m0 for case 1, (7.1) with m0 = 2, true values of
parameters as in Table 1

T=5 T=10
ŝj Mean 95% C.I. MSE Mean 95% C.I. MSE

ŝ1, (LSSE) 0.348 (0.313, 0.371) 1.75×10−4 0.349 (0.333, 0.363) 9.35×10−5

ŝ1, (MLL) 0.348 (0.313, 0.371) 1.76×10−4 0.349 (0.333, 0.363) 9.35×10−5

ŝ2, (LSSE) 0.701 (0.638, 0.742) 4.61×10−4 0.702 (0.676, 0.736) 1.76×10−4

ŝ2, (MLL) 0.701 (0.638,0.742) 4.61×10−4 0.702 (0.676, 0.736) 1.76×10−4

T=20
ŝj Mean 95% C.I. MSE

ŝ1, (LSSE) 0.350 (0.341, 0.356) 3.47×10−5

ŝ1, (MLL) 0.350 (0.341, 0.356) 3.75×10−5

ŝ2, (LSSE) 0.700 (0.682, 0.716) 5.62×10−5

ŝ2, (MLL) 0.700 (0.682, 0.716) 5.19×10−5
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Table 3

Simulation results of ŝj , j = 1, . . . ,m0 for case 2, (7.2) with m0 = 2, true values of
parameters as in Table 1

T=5 T=10
ŝj Mean 95% C.I. MSE Mean 95% C.I. MSE

ŝ1, (LSSE) 0.349 (0.333, 0.362) 6.97×10−5 0.350 (0.341, 0.358) 1.51×10−5

ŝ1, (MLL) 0.349 (0.332, 0.362) 0.70×10−5 0.350 (0.342, 0.358) 1.53×10−5

ŝ2, (LSSE) 0.701 (0.667, 0.734) 1.97×10−4 0.700 (0.684, 0.718) 6.38×10−5

ŝ2, (MLL) 0.701 (0.667, 0.733) 2.01×10−4 0.700 (0.684,0.718) 6.40×10−5

T=20
ŝj Mean 95% C.I. MSE

ŝ1, (LSSE) 0.350 (0.344, 0.355) 7.63×10−6

ŝ1, (MLL) 0.350 (0.344, 0.355) 7.60×10−6

ŝ2, (LSSE) 0.70 (0.690, 0.707) 1.76×10−5

ŝ2, (MLL) 0.70 (0.690, 0.707) 1.80×10−5

Table 4

Simulation results of ŝj , j = 1, . . . ,m0 for case 1, (7.1) with m0 = 3, true values of
parameters as in Table 1

T=5 T=10
ŝj Mean 95% C.I. MSE Mean 95% C.I. MSE

ŝ1, (LSSE) 0.248 (0.217, 0.263) 1.23 ×10−4 0.249 (0.231, 0.258) 3.95×10−5

ŝ1, (MLL) 0.248 (0.217, 0.264) 1.32 ×10−4 0.249 (0.231, 0.258) 4.14×10−5

ŝ2, (LSSE) 0.502 (0.468, 0.549) 3.38×10−4 0.502 (0.477, 0.532) 1.58×10−4

ŝ2, (MLL) 0.502 (0.468, 0.549) 3.39×10−4 0.502 (0.477, 0.532) 1.58×10−4

ŝ3, (LSSE) 0.752 (0.725, 0.785) 1.74 ×10−4 0.751 (0.740, 0.770) 4.78×10−5

ŝ3, (MLL) 0.752 (0.725, 0.785) 1.73×10−4 0.751 (0.740, 0.770) 4.78×10−5

T=20
ŝj Mean 95% C.I. MSE

ŝ1, (LSSE) 0.250 (0.242, 0.256) 2.66 ×10−5

ŝ1, (MLL) 0.250 (0.242, 0.256) 2.18×10−5

ŝ2, (LSSE) 0.501 (0.485, 0.522) 6.44×10−5

ŝ2, (MLL) 0.501 (0.486, 0.522) 6.23×10−5

ŝ3, (LSSE) 0.750 (0.746, 0.755) 5.65×10−6

ŝ3, (MLL) 0.750 (0.746, 0.755) 5.65×10−6

Table 5

Simulation results of ŝj , j = 1, . . . ,m0 for case 2, (7.2) with m0 = 3, true values of
parameters as in Table 1

T=5 T=10
ŝj Mean 95% C.I. MSE Mean 95% C.I. MSE

ŝ1, (LSSE) 0.248 (0.231, 0.262) 6.48 ×10−5 0.250 (0.240, 0.259) 1.93×10−5

ŝ1, (MLL) 0.248 (0.233, 0.263) 6.37×10−5 0.249 (0.242, 0.259) 1.83×10−5

ŝ2, (LSSE) 0.502 (0.475, 0.539) 1.94×10−4 0.500 (0.483, 0.515) 5.09×10−5

ŝ2, (MLL) 0.502 (0.475, 0.539) 1.94×10−4 0.500 (0.484, 0.517) 5.03×10−5

ŝ3, (LSSE) 0.750 (0.727, 0.774) 1.20 ×10−4 0.750 (0.743, 0.760) 1.39×10−5

ŝ3, (MLL) 0.751 (0.727, 0.774) 1.17×10−4 0.750 (0.743, 0.760) 1.42×10−5

T=20
ŝj Mean 95% C.I. MSE

ŝ1, (LSSE) 0.250 (0.244, 0.253) 5.29×10−6

ŝ1, (MLL) 0.250 (0.244, 0.254) 5.39×10−5

ŝ2, (LSSE) 0.499 (0.489, 0.506) 1.72×10−5

ŝ2, (MLL) 0.500 (0.489, 0.507) 1.73×10−5

ŝ3, (LSSE) 0.750 (0.746, 0.753) 3.20×10−6

ŝ3, (MLL) 0.750 (0.746, 0.754) 3.07×10−6
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histograms: Figure 1 presents the histograms of the estimated rates based on
MLL method for Case 1 with m0 = 3 when T increases from 5 to 20, which
shows the behavior of the estimated rates as T increases. Figure 2 shows the
histograms of the estimated rates for the two cases under the same conditions
(i.e.m0 = 3, T = 10 and the rates are estimated by LSSE method). Moreover, for
the convenience of the reader, all histograms of the estimated rates for m0 = 3
are provided in E (Figures 8–13) for reference.

From Tables 2–5 (along with Figures 1, 2 and 8–13 in E), we see that in
Cases 1 and 2, both proposed methods (4.2) and (4.7) estimate very accurately
the exact rates of change points. In particular, the sample means of the esti-
mated change points’ arrival rates are close to the exact values, and the results
obtained by the 2 proposed methods are very close, which confirms Proposi-
tion 4.3. We also clearly observe that as T increases from 5 to 20, the lengths
of the 95% empirical confidence intervals and MSEs of the two estimators all
decrease. This is well substantiated for example by the pertinent histograms
in Figure 1, which shows that when MLL method is employed to estimate the
change points’ arrival rates in Case 1 with m0 = 3, the central tendencies of
the estimated rates are all close to their exact values, and the sample variances
decrease as T becomes larger. Similar evidences are shown for other choices of
scenarios (different combinations of cases, methods and time period T ) as illus-
trated in Figures 8–13. Although not shown in this paper, the histograms for
the case m0 = 2 exhibit similar features. These outcomes confirm the theoret-
ical findings regarding the asymptotic consistency of our two proposed meth-
ods.

Also, from Tables 2–5 and Figure 1 (see E as well), the lengths of the 95%
confidence intervals (C.I.’s), with corresponding MSEs, of the estimated rates
for the first and the last unknown change points (ŝ1 and ŝ3) are more accurate
than those of the middle change point (ŝ2). Moreover, the improved accuracy of
ŝ1 and ŝ3 is more sensitive to the increase of T as compared to that of ŝ2. This
is because the unknown change point’s arrival rate sj satisfies sj−1 < sj < sj+1

for j = 1, . . . ,m. For s1 and sm, one of their boundaries is known (which are
s0 = 0 and sm+1 = 1, respectively), whilst for the intermediate rates both the
upper and lower bounds sj−1 and sj+1 are unknown. Therefore, under the same
condition, the uncertainties of the first and the last change points’ arrival rates
would be lower than that in the middle.

For the comparisons between Case 1 and 2, we can see from the selected
scenario (m0 = 3, T = 10, LSSE method) shown in Figure 2, along with the
results in Tables 2–5 that under the same conditions, the lengths of the 95%
empirical C.I. and MSEs in Case 2 are all smaller than those in Case 1. How-
ever, since the simulated processes in the 2 cases are generated from different
SDEs, it may be inappropriate to make conclusion based only on the results
shown in the provided tables and figures. In fact, note that the main difference
between (7.1) and (7.2) is the number of coefficients in the models. Therefore,
the comparison between the 2 models when fitting them to the same process
can be considered as a model selection problem that has been well studied in
the literature.
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Figure 1. Histogram of ŝ based on MLL method for Case 1 with m0 = 3, T = (5, 10, 20) and
exact value s0 = (0.25, 0.50, 0.75)

Figure 2. Histogram of ŝ based on LSSE method for Case 1 and 2, when m0 = 3, T = 10
and exact value s0 = (0.25, 0.50, 0.75)
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7.1.2. Estimating the number of change points

In this subsection, we study the performance of (5.2) in estimating the un-
known number of the change points based on Algorithms 2 (SNS) and 3 (Mod-
ified PELT). For the simulation setup, we assume the exact value of m0 = 2,
with different time periods T = 5, 10, 15, 20. The pre-assigned coefficients are
provided in Table 6.

Based on the simulated process, we apply Algorithms 2 and 3 with m rang-
ing from 0 to 5 to estimate the unknown number of change points. In Tables 7,
we count and report the cumulative frequency (CF) of 500 iterations that re-

turn the correct estimates
(∑500

i=1 1(m̂i = m0)
)
and the relative frequency (RF)(

1
500

∑500
i=1 1(m̂i = m0)× 100%

)
.

Table 6

Pre-assigned coefficients (with unknown number of change points)

Case Coefficient j = 1 j = 2 j = 3

1
μ(j) 0.08 2.50 0.08

α(j) 0.10 1.00 0.50

2
μ
(j)
1 0.08 2.50 0.08

μ
(j)
2 0.02 1.20 0.02

α(j) 0.10 1.00 0.50

Table 7

Cumulative frequency and relative frequency in 500 iterations that return the correct
estimates

T=5 T=10 T=15 T=20
Case Algorithm CF RF CF RF CF RF CF RF
1 2 (SNS) 492 98.4% 498 99.7% 500 100.0% 500 100.0%
2 2 (SNS) 500 100.0% 500 100.0% 500 100.0% 500 100.0%
1 3 (PELT) 494 98.8% 499 99.8% 500 100.0% 500 100.0%
2 3 (PELT) 497 99.4% 500 100.0% 500 100.0% 500 100.0%

For the estimated number m̂ of change points, one could see from Table 7
that, when m0 = 2, the proposed methods perform very well in both cases
with different time periods. Furthermore, the accuracy of the estimating results
in different cases all increase as T increases. These results suggest that our
proposed method is asymptotically consistent, which confirms the theoretical
finding in Proposition 5.1.

7.2. Implementation on observed financial market data with
discussion

We apply the estimation methods to the Brent oil one-month futures settlement
daily price data for the period 18 March 1993 to 25 September 2015. The data
set is available at www.quandl.com.

The empirical studies of Schwartz (1997) and Chen (2010) showed that mean-
reversion features hold for prices of several commodities including oil. Hence, we

http://www.quandl.com
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Figure 3. Log-transformed Brent oil 1 month futures settlement prices: 18 March 1993 – 25
September 2015

use OU-types processes to model such price behaviour. We first fit the classical
OU process without any change point, i.e., using the dynamics dXt = (μ −
αXt)dt + σdWt), to the log-transformed data series with σ’s estimate as the

data’s realised volatility
(
σ̂ =

√∑
ti∈[0,T ](Xti+1 −Xti)

2/T
)
. The MLE of the

drift parameters are given by μ̂ = 0.48 and α̂ = 0.12. Based on these MLE
values, the log likelihood (via the Riemann-sum approximation) is about 1.02
and IC(m = 0) = 15.27.

However, from the plot of the price series in Figure 3, there are several changes
in the shapes of the price evolution. This observed feature suggests that it may
be more appropriate to use (7.1) with unknown (m > 0) change points.

The data set covers approximately 22.5 years giving a sample size of 5735
trading days. The recorded yearly number of trading days varies from year to
year; so, for convenience, we let Δt = 22.5/5735. Since the size of the data set
is large, we apply Algorithm 3 using a minimum permissible regime-time length
h of 0.25/Δt ≈ 63 trading days (quarterly). The algorithm detects m̂ = 2
change points, which occurs on 24 September 2008 and 23 December 2008, with
a corresponding log likelihood increase (via Riemann-sum approximation) of
26.81 and IC(m = 2) = −1.69 lower than IC(m = 0). To confirm the results,
we also apply Algorithm 2 with LSSE and MLL methods respectively and mmax

set to be 10. The results are the same as that obtained from Algorithm 3.

The plot of the price series, with change points indicated, is depicted in Fig-
ure 4. It shows that, from September 2008 to March 2009, there is a decreasing
trend in the log-transformed futures prices and then the trend is slightly increas-
ing after this period. Further, based on the estimated change points, the MLE
of the drift parameters, and the associated statistics such as (long-term) means
(i.e., μ̂(j)/α̂(j)) and variances (i.e., σ̂2/(2α̂(j))) are given in Table 8. From Ta-
ble 8, there are huge changes in the MLEs of the drift parameters under different
T ’s. Based on the MLEs, we also plot two simulated series based on the OU
process with and without change points; see Figures 5 and 6, respectively. As
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Figure 4. Highlighting the two detected change points in the log-transformed one-month fu-
tures settlement prices on Brent oil: 18 March 1993–25 September 2015

most notably expected, the simulated series based on the OU process with two
change points is closer to the original series, especially during the period span-
ning 25 September–23 December 2008, than the simulated series based on the
OU process without change point. Judging from these observed characteristics
and taking into account the above-mentioned substantial improvements in the
log likelihood and SIC values, we conclude that the OU-process with two change
points occurring on 25 September 2008 and 23 December 2008 is the appropriate
model for the data set that we analysed. Moreover, we see from Figure 4 that
from 18 March 1993 to 25 September 2008 (the first estimated change point),
there are several noticeable changes in the series. For example, from 1996 to
1998 there was a fall in the futures price. However, based on the SIC, these
changes are not significant enough to warrant the inference of a regime change
and they are therefore ignored by the proposed methods. We take a closer look
concentrating only on the 18-Mar-1993-to-25-Sep-2008 data set to see if there is
any change point at all. This analysis is equivalent to reducing the sample size
and the penalty term of the SIC accordingly. Algorithm 3 is re-applied to the
reduced data set with a sample size 3928 and maintaining the same Δt and σ as
those in our other experiments. The resulting SIC indicates still no change point
during the shortened period. Furthermore, we employ the estimated parameters
and sample size in our reduced data set to run a simulation similar to that in
Subsection 7.1.2 in assessing the performance of the proposed methods, and we
obtained an RF of 86.2% in producing the correct estimates.

Table 8

MLEs of the drift parameters, (long term) mean, variances and approximate log likelihoods
for the OU process with two change points in modelling the Brent oil’s one-month futures

settlement prices from 18 March 1993 to 25 September 2015

Time period μ̂ α̂ μ̂/α̂ σ̂ σ̂2/(2α̂) log �
18 Mar. 1993 to 25 Sept. 2008 0.128 0.005 25.794 0.328 10.889 0.884
26 Sept. 2008 to 23 Dec. 2008 5.501 2.418 2.275 0.328 0.022 23.367
24 Dec. 2008 to 25 Sept. 2015 3.977 0.879 4.524 0.328 0.061 2.557
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Figure 5. Simulated log-transformed one-month futures settlement prices on Brent oil based
on OU process without change point: 18 March 1993–25 September 2015

Figure 6. Simulated log-transformed one-month futures settlement prices on Brent oil based
on OU process with two change points: 18 March 1993–25 September 2015

The above result tells us that an OU process without a change point would be
appropriate to model the data series from 18 March 1993 to 25 September 2008.
However, from Table 8 the respective long-term mean and variance (of values,

not returns)
μ̂

α̂
and

σ2

2α̂
are 25.794 and 10.889, which are both higher than those

in the two other time periods. Such high statistics may be less preferable in prac-
tice, although they reasonably explain the increasing trend in the investigated
time period. On the other hand, we know that imposing more change points,
which is equivalent to increasing the number of coefficients in the model, can
reduce the variance. Hence, we examine the potential reduction in the variance
by imposing a change point into this period. To this end, we fit an OU process
with one change point to the series and use Algorithm 1 to estimate the location
in the OU process. The estimated change point is at 15 February 1999, which
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Figure 7. log-transformed one-month futures settlement prices on Brent oil based on OU
process with one change point: 18 March 1993–25 September 2008

Table 9

MLEs of the drift parameters, (long-term) mean, variances and approximate log likelihoods
for for the OU process with one change point in modeling Brent oil’s one-month futures

settlement prices from 18 March, 1993 to 25 September, 2008

Time period μ̂ α̂ μ̂/α̂ σ̂ σ̂2/(2α̂) log �
18 March 1993 to 15 February 1999 1.688 0.638 2.646 0.328 0.085 0.762

16 February 1999 to 25 September 2008 1.450 0.329 4.407 0.328 0.163 4.199

is near the bottom of the series; see Figure 7. Based on Table 9, by imposing

a change point at 15 February 1999, the means
μ̂

α̂
before and after the change

point both strikingly decrease to 2.646 and 4.407, respectively, in comparison to

the previous result of 25.794. Additionally, the variances
σ2

2α̂
for the time periods

before and after the change point also markedly go down to respective values
of 0.085 and 0.163. The approximate log likelihood increases correspondingly
to 4.199 for the period 16 February 1999 – 25 September 2008. This implies
that imposing a change point (15 February 1999) into the model does improve
the accuracy. Nevertheless, recall that our SIC-based method shows no change
point at this time period. Therefore, we demonstrated a strong potential for an
over-fitting problem to arise when a change-point assumption is unnecessarily
introduced into the model. This also reminds us of a trade-off between accuracy
improvement and issue of over fitting that must be avoided whenever possible.

8. Conclusion

The main contribution of this paper is the development of MLL- and LSSE-
based methods in detecting the unknown number of multiple change points
along with the identification of their locations in a generalised univariate OU
process. Additionally, we showed that our proposed estimators for the change
points’ locations satisfy the asymptotically consistent and normality properties
under certain suitable conditions that we painstakingly imposed. These results



Inference for a mean-reverting stochastic process with change points 2229

guided the design of three computing algorithms customised for the efficient
implementation of our proposed methods. The numerical applications we show-
cased covering both simulated and observed data illustrated the excellent per-
formance and accuracy of the estimation approaches that we created to handle
change points detection. The usefulness of our results have relevance to regu-
latory authorities’ policy-making, trading strategy’s construction by investors
and provider’s of financial products and services, and other scientific endeavours
in the natural and social sciences impacted by sudden and significant changes
(e.g., break, jumps, shifts, etc) in the time-series data. This work provides im-
petus for the investigation and development of methodology suited in tackling
further the multiple-change point problem for a multivariate OU process and
other closely related modelling challenges in the research literature and practice
that entail the statistical inference of stochastic processes.

Appendix A: Proof of Proposition 3.1

Proof of Proposition 3.1. We first need to prove that the coefficients of (1.1)
satisfy the space-variable Lipschitz condition. That is,

|μ(t, x)− μ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ Ka|x− y|2, for some Ka > 0.

Given that σ(t, x) is constant in our modelling framework, the second term
above is 0. Hence,

|μ(t, x)− μ(t, y)|2 + |σ(t, x)− σ(t, y)|2

=

⎛⎝m+1∑
j=1

(
S
(

θ(j), t, x
)
− S

(
θ(j), t, y

))
1{τ0

j−1<t≤τ0
j }

⎞⎠2

=

m+1∑
j=1

(L(j)(t)− a(j)x− L(j)(t) + a(j)y)21{τ0
j−1<t≤τ0

j }

=

m+1∑
j=1

(a(j)(x− y))21{τ0
j−1<t≤τ0

j } ≤
m+1∑
j=1

(a(j)(x− y))2 = (x− y)2
m+1∑
j=1

(a(j))2.

Since a(j) < ∞ for j = 1, . . . , p, there exists aKa > 0 such that
(∑m+1

j=1 (a(j))2
)
≤

Ka. Then,

|μ(t, x)− μ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ Ka|x− y|2.

Next, we prove the spatial growth condition. That is,

|μ(t, x)|2 + |σ(t, x)|2 ≤ Kb(1 + x2), for some Kb > 0.

Note that

|μ(t, x)|2 + |σ(t, x)|2 =

⎡⎣m+1∑
j=1

S
(

θ(j), t, x
)

1{τ0
j−1<t≤τ0

j }

⎤⎦2

+ σ2
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=
m+1∑
j=1

(
L(j)(t)− a(j)x

)2

1{τ0
j−1<t≤τ0

j } + σ2

≤
m+1∑
j=1

(
L(j)(t)− a(j)x

)2

+ σ2.

Using the identity (a+ b)2 ≤ 2a2 + 2b2, we have

|μ(t, x)|2 + |σ(t, x)|2 ≤ 2

m+1∑
j=1

(
L(j)(t)

)2

+ σ2 + 2

m+1∑
j=1

(
a(j)

)2

x2.

Since {ϕk(t), i = 1, . . . , p} are bounded, we can find a constant Kb > 0 such
that

max

⎛⎝2

m+1∑
j=1

(
L(j)(t)

)2

+ σ2, 2

m+1∑
j=1

(
a(j)

)2

⎞⎠ ≤ Kb.

This gives

|μ(t, x)|2 + |σ(t, x)|2 ≤ Kb(1 + x2).

Moreover, let Kc = max(Ka,Kb). Then

|μ(t, x)− μ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ Kc|x− y|2

and

|μ(t, x)|2 + |σ(t, x)|2 ≤ Kc(1 + x2).

Appendix B: Proof of the propositions in section 4

Proof of Proposition 4.1. Let ûi be the residual of the ith element based on
the estimated change points {τ̂j}, j = 1, . . . ,m + 1, i.e., ûi = Yi − ziθ̂i =

ziθi−ziθ̂i+ui, for ti ∈ [0, T ], where θi and θ̂i are defined in Section 4 as the true
value and MLE of the parameters based on the assigned estimated change points
of the coefficients associated with the ith element. Also, let û0

i be the residual
of the ith element based on the exact change points {τ0j , j = 1, . . . ,m+ 1} and

θ̂
0

i =
∑m+1

j=1 θ̂
(j,0)

1(τ0j−1 ≤ ti ≤ τ0j ) with θ̂
(j,0)

= Q−1
(τ0

j ,τ
0
j−1)

r̃(τ0
j ,τ

0
j−1)

.

The proof relies on investigating the behaviour of

1

T

⎛⎝ ∑
ti∈[0,T ]

û2
i −

∑
ti∈[0,T ]

(û0
i )

2

⎞⎠ . (B.1)

By (4.2), (B.1) ≤ 0 with probability 1. Hence, it remains to show that if one
of the change points is not consistently estimated, (B.1) > 0 with positive
probability yielding a contradiction.
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Using the quadratic expansion (a + b)2 = a2 + 2ab + b2 and some algebraic
computations, (B.1) can be expressed as

(B.1) =
1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂i

))2

− 1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂

0

i

))2

+
2

T

∑
ti∈[0,T ]

(
uizi

(
θi − θ̂

0

i

))
− 2

T

∑
ti∈[0,T ]

(
uizi

(
θi − θ̂i

))
. (B.2)

We aim to show that if there exists a change point τ0j , j = 1 . . . ,m, and it is

not consistently estimated, the first term 1
T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂i

))2

is larger

than a positive constant with positive probability, whilst the rest of terms is
of op(1) and hence, (B.1) > 0 with positive probability. To this end, we first
provide a lemma, which will be useful in deriving the asymptotic consistency of
the estimated change points.

Lemma B.1. If at least one of the change points, say τ0j , can not be consistently
estimated, then for large T ,

1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂i

))2

≥ C0

∥∥∥θ(j) − θ(j+1)
∥∥∥2 with positive probability.

Proof. If the change point τ0j is not consistently estimated, then with some
positive probability there exists an η > 0 such that there is no estimated change
point in [τ0j − ηT, τ0j + ηT ] for some η > 0. Without loss of generality, let

τ̂k−1 ≤ τ0j − ηT ≤ τ0j + ηT ≤ τ̂k. Then, since (zi(θi − θ̂i))
2 ≥ 0 for each i,

1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂i

))2

≥ η

⎛⎝(
θ(j) − θ̂

(k)
)� 1

ηT

∑
ti∈(τ0

j −ηT,τ0
j ]

z�i zi
(

θ(j) − θ̂
(k)

)⎞⎠
+ η

⎛⎝(
θ(j+1) − θ̂

(k)
)� 1

ηT

∑
ti∈(τ0

j ,τ
0
j +ηT ]

z�i zi
(

θ(j+1) − θ̂
(k)

)⎞⎠ . (B.3)

Let γ1 and γ2 be the smallest eigenvalues of 1
ηT

∑
ti∈(τ0

j −ηT,τ0
j ]
z�i zi and

1
ηT

∑
ti∈(τ0

j ,τ
0
j +ηT ] z

�
i zi, respectively. Then,

(B.3) ≥ ηγ1

∥∥∥θ(j) − θ̂
(k)

∥∥∥2 + ηγ2

∥∥∥θ(j+1) − θ̂
(k)

∥∥∥2
≥ ηmin(γ1, γ2)

(∥∥∥θ(j) − θ̂
(k)

∥∥∥2 + ∥∥∥θ(j+1) − θ̂
(k)

∥∥∥2) .
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Using the convexity of a quadratic function, we have∥∥∥θ(j) − θ̂
(k)

∥∥∥2 + ∥∥∥θ(j+1) − θ̂
(k)

∥∥∥2 ≥ 1

2

∥∥∥θ(j) − θ(j+1)
∥∥∥2 .

Hence,

1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂i

))2

≥ η
min(γ1, γ2)

2

∥∥∥θ(j) − θ(j+1)
∥∥∥2 .

Under Assumption 4, γ1 and γ2 are both bounded away from 0 and min(γ1, γ2) is
also bounded away from 0. Therefore, the right-hand side of the above inequality

is positive. Then, the proof is complete by letting C0 = η
min(γ1, γ2)

2
.

Lemma B.2. Under Assumptions 1–3, 1
T Q(ŝj−1T,ŝjT )

a.s.−−−−→
T→∞

(ŝj − ŝj−1)Σj for

s0j−1 ≤ ŝj−1 < ŝj ≤ s0j .

For the proof of Lemma B.2, one may refer to Proposition 6.2 in Nkurunziza
and Zhang (2016). To emphasise again, both lemmas B.1 and B.2 are key in
proving the asymptotic properties of the proposed estimators.

Next, note that for ti ∈ (τ0j−1, τ
0
j ], j = 1, . . . ,m, we have θi = θ(j) and θ̂

0

i =

θ(j)+Q−1
(τ0

j−1,τ
0
j )
σr(τ0

j−1,τ
0
j )
. Substituting them into

1

T

∑
ti∈[0,T ]

(
zi

(
θi − θ̂

0

i

))2

, we

get

m∑
j=1

1

T
r�(τ0

j−1,τ
0
j )
Q−1

(τ0
j−1,τ

0
j )

∑
ti∈(τ0

j−1,τ
0
j ]

z�i ziQ
−1
(τ0

j−1,τ
0
j )
r(τ0

j−1,τ
0
j )
. (B.4)

To proceed further, we first prove the following inequality. Suppose 0 < τ∗1 <
τ∗2 ≤ T . By the Markov inequality, Itô’s isometry and (3.8), we have

P

⎛⎝ |
∫ τ2

∗

τ∗
1

XtdWt|√
τ∗2 − τ∗1

> K∗

⎞⎠ ≤
E
(
|
∫ τ∗

2

τ∗
1
XtdWt|2

)
(τ∗2 − τ∗1 )(K

∗)2
=

∫ τ∗
2

τ∗
1
E(X2

t )dt

(τ∗2 − τ∗1 )(K
∗)2

≤ K1(τ
∗
2 − τ∗1 )

(τ∗2 − τ∗1 )(K
∗)2

=
K1

(K∗)2
. (B.5)

Therefore, by letting K∗ = (log T )a
∗
, for some 0 < a∗ < 1/2, the above proba-

bility tends to 0 as T tends to infinity. This implies that for some 0 < a∗ < 1/2,

1√
τ∗2 − τ∗1

∥∥r(τ∗
1 ,τ∗

2 )

∥∥ = Op((log T )
a∗
) for any 0 < τ∗1 < τ∗2 ≤ T. (B.6)

Now, continuing the proof of Proposition 4.1, we note that under Assump-
tion 3, sup

0≤t≤T
|ϕk(t)| ≤ Kϕk

< ∞ for i = 1, . . . , p. By similar argument used to
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obtain (B.6), we have 1√
τ∗
2 −τ∗

1

∫ τ̂j
τ̂j−1

ϕk(t)dWt = Op

(
(log T )a

∗)
for i = 1, . . . , p

so that

∥∥∥∥ 1√
τ∗
2 −τ∗

1

r(τ̂j−1,τ̂j)

∥∥∥∥ = Op

(
(log T )a

∗)
. Moreover, since

∑
ti∈(τ∗

1 ,τ
∗
2 ] uizi is

the discretised versions of r(τ∗
1 ,τ

∗
2 ), it follows that

∥∥∥∥ 1√
τ∗
2 −τ∗

1

∑
ti∈(τ∗

1 ,τ
∗
2 ] uizi

∥∥∥∥ =

Op

(
(log T )a

∗)
. Also,

∑
ti∈(τ0

j−1,τ
0
j ]
z�i zi is the discretised version of Q(τ0

j−1,τ
0
j )
,

thus the asymptotic results in (3.13) and (3.15) also hold for
∑

ti∈(τ0
j−1,τ

0
j ]
z�i zi.

Therefore, by the Cauchy-Schwarz inequality, (3.13) and (3.15) we have, after
some algebraic manipulations,

(B.4) ≤
m∑
j=1

1

T

∥∥∥∥∥∥ 1√
(s0j − s0j−1)T

r(τ0
j−1,τ

0
j )

∥∥∥∥∥∥
2 ∥∥∥(s0j − s0j−1)TQ

−1
(τ0

j−1,τ
0
j )

∥∥∥2

×

∥∥∥∥∥∥ 1

(s0j − s0j−1)T

∑
ti∈(τ0

j−1,τ
0
j ]

z�i zi

∥∥∥∥∥∥ = op(1). (B.7)

It remains to investigate the quantity

2

T

∑
ti∈[0,T ]

(uizi(θi − θ̂
0

i ))−
2

T

∑
ti∈[0,T ]

(uizi(θi − θ̂i)) =
2

T

∑
ti∈[0,T ]

(uizi(θ̂i − θ̂
0

i )).

(B.8)
Note that the structure of θ̂i is affected by the location of the estimated

change points. It is, therefore, difficult to substitute the expressions for θ̂i into
(B.8) directly. Without loss of generality, we consider m = 2 (but the procedure
can be extended to the general case m > 0), and assume that 0 = τ0 < τ̂1 <
τ01 < τ02 < τ̂2 < τ03 = T . Other cases can be analysed in a similar manner. With
m = 2, (B.8) reduces to

(B.8) =
2

T

∑
ti∈(0,τ̂1]

(
uizi(θ̂

(1,0) − θ̂
(1)

)
)
+

2

T

∑
ti∈(τ̂1,τ0

1 ]

(
uizi

(
θ̂
(1,0) − θ̂

(2)
))

+
2

T

∑
ti∈(τ0

1 ,τ
0
2 ]

(
uizi

(
θ̂
(2,0) − θ̂

(2)
))

+
2

T

∑
ti∈(τ0

2 ,τ̂2]

(
uizi

(
θ̂
(3,0) − θ̂

(2)
))

+
2

T

∑
ti∈(τ̂2,T ]

(
uizi

(
θ̂
(3,0) − θ̂

(3)
))

, (B.9)

where

θ̂
(1)

= θ(1) + σQ−1
(0,τ̂1)

r(0,τ̂1),

θ̂
(2)

= Q−1
(τ̂1,τ̂2)

(Q(τ̂1,τ0
1 )

θ(1) +Q(τ0
1 ,τ

0
2 )

θ(2) +Q(τ0
2 ,τ̂2)

θ(3) + σr(τ̂1,τ̂2)),

θ̂
(3)

= Q−1
(τ̂2,T )(Q(τ̂2,T )θ

(3) + σr(τ̂2,T )),
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θ̂
(1,0)

= Q−1
(0,τ0

1 )
(Q(0,τ0

1 )
θ(1) + σr(0,τ0

1 )
),

θ̂
(2,0)

= Q−1
(τ0

1 ,τ
0
2 )
(Q(τ0

1 ,τ
0
2 )

θ(2) + σr(τ0
1 ,τ

0
2 )
), and

θ̂
(3,0)

= Q−1
(τ0

2 ,T )
(Q(τ0

2 ,T )θ
(2) + σr(τ0

2 ,T )).

Using the Cauchy-Schwarz inequality, (B.6), Lemma B.2 along with the Con-
tinuous Mapping Theorem, the first term in (B.8) is bounded above, i.e.,

2

T

∑
ti∈[0,τ̂1]

(uizi(θ̂
(1,0) − θ̂

(1)
))

≤ 2
√
ŝ1√

s01T

∥∥∥∥∥∥ 1√
ŝ1T

∑
ti∈[0,τ̂1]

uizi

∥∥∥∥∥∥
∥∥∥s01TQ−1

(0,τ0
1 )

∥∥∥∥∥∥∥∥ 1√
s01T

r(0,τ0
1 )

∥∥∥∥∥
− 2

T

∥∥∥∥∥∥ 1√
ŝ1T

∑
ti∈[0,τ̂1]

uizi

∥∥∥∥∥∥
∥∥∥ŝ1TQ−1

(0,τ̂1)

∥∥∥∥∥∥∥ 1√
ŝ1T

r(0,τ̂1)

∥∥∥∥ = op(1).

Similarly, one can show that the rest of the terms in (B.8) are all of op(1).
Following these arguments, it can be shown that in the general case whenm > 0,
the terms in (B.8) are all of order op(1). So, if one of the change points’ arrival
rates, say s0j , is not consistently estimated, (B.1) is dominated by the first term,
which is larger than 0 with positive probability. This gives a contradiction.

Therefore, ŝj − s0j
p−−−−→

T→∞
0 for every j = 1, . . . ,m.

Proof of Proposition 4.2. Without loss of generality, assume that m = 3. We
provide an explicit proof dealing with the rate T -consistency for τ̂2 only. The
consistency analysis for τ̂1 and τ̂3 can be similarly completed. By Proposition 4.1,
τ̂j ∈ {τ : |τj − τ0j | ≤ ηT, 1 ≤ j ≤ m} for each η > 0. For C > 0, define the set

Vη(C) := {τ : |τj − τ0j | ≤ ηT, 1 ≤ j ≤ m; |τ2 − τ02 | > C}.
Let SSE1 = SSE(τ1, τ2, τ3) =

∑
ti∈[0,T ](Yi − ziθ̂i)

2, where θ̂i is the MLE

of θ associated with the ith element under the change point (τ1, τ2, τ3), and
let SSE2 = SSE(τ1, τ

0
2 , τ3). So, we have min(τ1,τ2,τ3)(SSE1 − SSE2) ≤ 0 with

probability 1. If we can show that for each ε > 0, there exists a C > 0, 0 < η < 1
such that for large T and any τ ∈ Vη(C), P (minτ∈Vη(C)(SSE1−SSE2) > 0) < ε,
this would imply that for some C > 0, the global optimisation can not be
achieved on the set Vη(C). Thus with large probability, |τ̂ − τ0| ≤ C.

Let τ̂ = argminτ∈Vη(C)(SSE1 − SSE2). Assume, without loss of generality,
that τ̂1 ≤ τ01 < τ02 < τ̂2 < τ̂3 ≤ τ03 . We now focus on the behaviour of

(SSE1 − SSE2) /(τ̂2 − τ02 ). (B.10)

Applying the identity (a + b)2 = a2 + 2ab + b2 into (B.10) and then breaking
the time period [0, T ] into different intervals, we have
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SSE1 − SSE2

= −
∑

ti∈(τ̂1,τ0
2 ]

(
zi

(
θ(1) − θ̂

(2,0)
))2

−
∑

ti∈(τ0
1 ,τ

0
2 ]

(
zi

(
θ(2) − θ̂

(2,0)
))2

−
∑

ti∈(τ0
2 ,τ̂3]

(
zi

(
θ(3) − θ̂

(3,0)
))2

(B.11)

+
∑

ti∈(τ̂1,τ0
2 ]

2uizi

(
θ̂
(2,0) − θ̂

(2)
)
+

∑
ti∈(τ0

2 ,τ̂2]

2uizi

(
θ̂
(3,0) − θ̂

(2)
)

+
∑

ti∈(τ̂2,τ̂3]

2uizi

(
θ̂
(3,0) − θ̂

(3)
)

(B.12)

+
∑

ti∈(τ̂1,τ0
1 ]

(
zi

(
θ(1) − θ̂

(2)
))2

+
∑

ti∈(τ0
1 ,τ

0
2 ]

(
zi

(
θ(2) − θ̂

(2)
))2

+
∑

ti∈(τ0
2 ,τ̂2]

(
zi

(
θ(3) − θ̂

(2)
))2

+
∑

ti∈(τ̂2,τ̂3]

(
zi

(
θ(3) − θ̂

(3)
))2

(B.13)

where

θ̂
(2)

= Q−1
(τ̂1,τ̂2)

(
Q(τ̂1,τ0

1 )
θ(1) +Q(τ0

1 ,τ
0
2 )

θ(2) +Q(τ0
2 ,τ̂2)

θ(3) + σr(τ̂1,τ̂2)

)
,

θ̂
(3)

= Q−1
(τ̂2,τ̂3)

(
Q(τ̂2,τ̂3)θ

(3) + σr(τ̂2,τ̂3)

)
,

θ̂
(2,0)

= Q−1
(τ̂1,τ0

2 )

(
Q(τ̂1,τ0

1 )
θ(1) +Q(τ0

1 ,τ
0
2 )

θ(2) + σr(τ̂1,τ0
2 )

)
, and

θ̂
(3,0)

= Q−1
(τ0

2 ,τ̂3)

(
Q(τ0

2 ,τ̂3)
θ(3) + σr(τ0

2 ,τ̂3)

)
.

It remains to show that for large T ,
(B.13) + (B.11) + (B.12)

τ̂2 − τ02
is positive with

probability 1. Note that this depends on the choice of τ̂2 ∈ Vη(C); (B.11)/(τ̂2 −
τ02 ) can be Op(1) instead of op(1), and thus the arguments we used in the proof
of Proposition 4.1 cannot be applied here directly. To overcome this problem,

we need to expand each term in (B.13). We note that θ(1) − θ̂
(2)

is equal to

Q−1
(τ̂1,τ̂2)

(
Q(τ0

1 ,τ
0
2 )

(
θ(1) − θ(2)

)
+Q(τ0

2 ,τ̂2)

(
θ(1) − θ(3)

))
+ σQ−1

(τ̂1,τ̂2)
r(τ̂1,τ̂2).

So,∑
ti∈(τ̂1,τ0

2 ]

(
zi(θ(1) − θ̂

(2)
)
)2

=
(

θ(1) − θ(2)
)�

Q(τ0
1 ,τ

0
2 )
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ

0
2 )

(
θ(1) − θ(2)

)
+ 2

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(1) − θ(3)

)
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+ 2
(

θ(1) − θ(3)
)�

Q(τ0
2 ,τ̂2)

Q−1
(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(1) − θ(3)

)
+ 2σ

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

+ 2σ
(

θ(1) − θ(3)
)
Q(τ0

2 ,τ̂2)
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

+ r�(τ̂1,τ̂2)Q
−1
(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2),

and ∑
ti∈(τ̂1,τ0

2 ]

(
zi

(
θ(1) − ziθ̂

(2,0)
))2

=
(

θ(1) − θ(2)
)�

Q(τ0
1 ,τ

0
2 )
Q−1

(τ̂1,τ0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
Q(τ0

1 ,τ
0
2 )

(
θ(1) − θ(2)

)
+ 2σ

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )
Q−1

(τ̂1,τ0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )

+ r�(τ̂1,τ0
2 )
Q−1

(τ̂1,τ0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )
.

By Tobing and McGilchrist (1992), we have

Q−1
(τ̂1,τ̂2)

= Q−1
(τ̂1,τ0

2 )
+Op

(
τ̂2 − τ02
T 2

)
. (B.14)

Hence,(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ0
2 )Q

−1
(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ0

2 )

(
θ(1) − θ(2)

)
−
(

θ(1) − θ(2)
)�

Q(τ0
1 ,τ0

2 )Q
−1

(τ̂1,τ
0
2 )

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ
−1

(τ̂1,τ
0
2 )
Q(τ0

1 ,τ0
2 )

(
θ(1) − θ(2)

)

= 2Op

(
τ̂2 − τ0

2

T 2

)(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ0
2 )Q

−1

(τ̂1,τ
0
2 )

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ(τ0
1 ,τ0

2 )

(
θ(1) − θ(2)

)

+Op

(
(τ̂2 − τ0

2 )
2

T 4

)(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ0
2 )

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ(τ0
1 ,τ0

2 )

(
θ(1) − θ(2)

)
.

(B.15)

Using the asymptotic results in Proposition 4.1, we have that
τ0
1−τ̂1
T

p−−−−→
T→∞

0.

Therefore,

2

τ̂2 − τ0
2

Op

(
τ̂2 − τ0

2

T 2

)(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ0
2 )Q

−1

(τ̂1,τ
0
2 )

∑
ti∈(τ̂1,τ

0
2 ]

z′iziQ(τ0
1 ,τ0

2 )

(
θ(1) − θ(2)

)
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≤ 2Op

(
τ̂2 − τ0

2

T 2

)
(τ0

2 − τ0
1 )

2(τ0
1 − τ̂1)

(τ0
2 − τ̂1)

∥∥∥θ(1) − θ(2)
∥∥∥2

∥∥∥∥ 1

(τ0
2 − τ0

1 )
Q(τ0

1 ,τ0
2 )

∥∥∥∥2

×
∥∥∥(τ0

2 − τ̂1)Q
−1

(τ̂1,τ
0
2 )

∥∥∥ 1

(τ0
1 − τ̂1)

∥∥∥∥∥∥
∑

ti∈(τ̂1,τ
0
2 ]

z′izi

∥∥∥∥∥∥ = op(1).

Similarly,

1

τ̂2 − τ0
2

Op

(
(τ̂2 − τ0

2 )
2

T 4

)(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ0
2 )

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ(τ0
1 ,τ0

2 )

(
θ(1) − θ(2)

)

is of order op(1). Thus, (B.15)/(τ̂2 − τ02 ) = op(1). Furthermore, using the same
argument above together with (B.6), we have

2σ

τ̂2 − τ02

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

− 2σ

τ̂2 − τ02

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )
Q−1

(τ̂1,τ0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )

= Op

(
1

T 2

)
4σ

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )

+Op

(
(τ̂2 − τ02 )

T 4

)
2σ

(
θ(1) − θ(2)

)�
Q(τ0

1 ,τ
0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z′izir(τ̂1,τ0
2 )

= op(1).

With the aid of the identity r(τ̂1,τ̂2) = r(τ̂1,τ0
2 )

+ r(τ0
2 ,τ̂2)

, (B.14) and the
Cauchy-Schwarz inequality, we get

σ2

τ̂2 − τ02
r�(τ̂1,τ̂2)Q

−1
(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

− σ2

τ̂2 − τ02
r�(τ̂1,τ0

2 )
Q−1

(τ̂1,τ0
2 )

∑
ti∈(τ̂1,τ0

2 ]

z�i ziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )
= op(1)

and the following two terms are of order op(1), respectively:

1

τ̂2 − τ0
2

2
(

θ(1) − θ(3)
)�

Q(τ0
2 ,τ̂2)

Q−1
(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(1) − θ(3)

)
,

2σ

τ̂2 − τ0
2

(
θ(1) − θ(3)

)
Q(τ0

2 ,τ̂2)
Q−1

(τ̂1,τ̂2)

∑
ti∈(τ̂1,τ

0
2 ]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2),

Combining the above results, we have

∑
ti∈(τ̂1,τ0

2 ]

(
zi

(
θ(1) − θ̂

(2)
))2

−
∑

ti∈(τ̂1,τ0
2 ]

(
zi

(
θ(1) − θ̂

(2,0)
))2

τ̂2 − τ02
= op(1).
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Similarly, ∑
ti∈(τ̂2,τ̂3]

(zi(θ(3) − θ̂
(3)

))2 −
∑

ti∈(τ0
2 ,τ̂3]

(zi(θ(3) − θ̂
(3,0)

))2

= σ2r�(τ̂2,τ̂3)Q
−1
(τ̂2,τ̂3)

∑
ti∈(τ̂2,τ̂3]

z�i ziQ
−1
(τ̂2,τ̂3)

r(τ̂2,τ̂3)

− σ2r�(τ0
2 ,τ̂3)

Q−1
(τ0

2 ,τ̂3)

∑
ti∈(τ0

2 ,τ̂3]

z�i ziQ
−1
(τ0

2 ,τ̂3)
r(τ0

2 ,τ̂3)
. (B.16)

Note that r(τ0
2 ,τ̂3)

= r(τ0
2 ,τ̂2)

+ r(τ̂2,τ̂3). So, from (B.5), r(τ0
2 ,τ̂2)

/
√
τ̂2 − τ02 =

Op

(
(τ̂2 − τ02 )

a∗)
for some 0 < a∗ < 1/2. Moreover,∑
ti∈(τ0

2 ,τ̂3]

z�i zi =
∑

ti∈(τ0
2 ,τ̂2]

z�i zi +
∑

ti∈(τ̂2,τ̂3]

z�i zi,

and by Tobing and McGilchrist (1992), Q−1
(τ0

2 ,τ̂3)
= Q−1

(τ̂2,τ̂3)
+Op

(
τ̂2−τ0

2

T 2

)
. Again,

when these results are combined, one may verify that, with a suitable choice of

C, for large T the order of
(B.16)

(τ̂2 − τ02 )
is op(1).

The above procedure can also be applied to investigate the behaviour of
(B.12). For example,∑

ti∈(τ̂1,τ0
2 ]

2uizi

(
θ(2,0) − ziθ̂

(2)
)

=
∑

ti∈(τ̂1,τ0
2 ]

2uiziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ

0
2 )

(
θ(1) − θ(2)

)
−

∑
ti∈(τ̂1,τ0

2 ]

2uiziQ
−1
(τ̂1,τ0

2 )
Q(τ0

1 ,τ
0
2 )

(
θ(1) − θ(2)

)
+

∑
ti∈(τ̂1,τ0

2 ]

2uiziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(1) − θ(3)

)
+ 2σ

∑
ti∈(τ̂1,τ0

2 ]

uiziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

− 2σ
∑

ti∈(τ̂1,τ0
2 ]

uiziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )
,

with

2

τ̂2 − τ02

( ∑
ti∈(τ̂1,τ0

2 ]

uiziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ

0
2 )

(
θ(1) − θ(2)

)

−
∑

ti∈(τ̂1,τ0
2 ]

uiziQ
−1
(τ̂1,τ0

2 )
Q(τ0

1 ,τ
0
2 )

(
θ(1) − θ(2)

))
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= Op

(
1

T 2

) ∑
ti∈(τ̂1,τ0

2 ]

uiziQ(τ0
1 ,τ

0
2 )

(
θ(1) − θ(2)

)
= op(1),

2

τ̂2 − τ02

∑
ti∈(τ̂1,τ0

2 ]

uiziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(1) − θ(3)

)

≤

∥∥∥∥∥∥ 1

T

∑
ti∈(τ̂1,τ0

2 ]

uizi

∥∥∥∥∥∥
∥∥∥TQ−1

(τ̂1,τ̂2)

∥∥∥ ∥∥∥∥ 2

τ̂2 − τ02
Q(τ0

2 ,τ̂2)

∥∥∥∥ ∥∥∥(θ(1) − θ(3)
)∥∥∥ = op(1)

and

2σ

τ̂2 − τ02

⎛⎝ ∑
ti∈(τ̂1,τ0

2 ]

uiziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2) −
∑

ti∈(τ̂1,τ0
2 ]

uiziQ
−1
(τ̂1,τ0

2 )
r(τ̂1,τ0

2 )

⎞⎠ = op(1).

Hence, for large T ,∑
ti∈(τ̂1,τ0

2 ]

2uizi

(
θ̂
(2,0) − ziθ̂

(2)
)
/(τ̂2 − τ02 ) = op(1).

In an analogous manner, one can show that, with a suitable choice of C, for
large T ,∑

ti∈(τ0
2 ,τ̂2]

2uizi

(
θ̂
(3,0) − ziθ̂

(2)
)
τ̂2 − τ02 +

∑
ti∈(τ̂2,τ̂3]

2uizi

(
θ̂
(3,0) − θ̂

(3)
)

τ̂2 − τ02

is of order op(1). Finally, we investigate the behaviour of the remaining term.

∑
ti∈(τ0

2 ,τ̂2]

(
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(

θ(3) − θ̂
(2)
))2

τ̂2 − τ0
2

=
(

θ(2) − θ(3)
)�
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1
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2
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(
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(
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0
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1
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ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)
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1
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2

∑
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−1
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+ 2
(
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)�
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1
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−1
(τ̂1,τ̂2)

∑
ti∈(τ0

2 ,τ̂2]
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By Proposition 4.1, s01 − ŝ1
p−−−−→

T→∞
0. Hence, applying again the Cauchy-

Schwarz inequality and similar reasoning as before, we have(
θ(1) − θ(3)

)�
Q(τ̂1,τ0

1 )
Q−1

(τ̂1,τ̂2)

1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ̂1,τ0
1 )

(
θ(1) − θ(3)

)

≤ (s01 − ŝ1)
2
∥∥∥θ(1) − θ(3)

∥∥∥∥∥∥TQ−1
(τ̂1,τ̂2)

∥∥∥2 ∥∥∥∥ 1

(s01 − ŝ1)T
Q(τ̂1,τ0

1 )

∥∥∥∥2 ∥∥∥θ(1) − θ(3)
∥∥∥

×

∥∥∥∥∥∥ 1

τ̂2 − τ02

∑
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2 ,τ̂2]

z�i zi

∥∥∥∥∥∥ = op(1).

Also, the following terms
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(
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(τ̂1,τ̂2)

1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ

0
2 )

(
θ(2) − θ(3)

)
,

2
(

θ(1) − θ(3)
)�

Q(τ̂1,τ0
1 )
Q−1

(τ̂1,τ̂2)

1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2),

2
(

θ(2) − θ(3)
)�

Q(τ0
1 ,τ

0
2 )
Q−1

(τ̂1,τ̂2)

1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2),

and

r�(τ̂1,τ̂2)Q
−1
(τ̂1,τ̂2)

1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

r(τ̂1,τ̂2)

are all of order op(1), respectively.
Moreover, it follows from the identity Q(τ0

1 ,τ
0
2 )

= Q(τ̂1,τ̂2)−Q(τ̂1,τ0
1 )
−Q(τ0

2 ,τ̂2)

that(
θ(2) − θ(3)

)�
Q(τ0

1 ,τ0
2 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
1 ,τ0

2 )

(
θ(2) − θ(3)

)
=
(

θ(2) − θ(3)
)� 1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)

+
(

θ(2) − θ(3)
)�

Q(τ̂1,τ
0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ̂1,τ
0
1 )

(
θ(2) − θ(3)

)
+
(

θ(2) − θ(3)
)�

Q(τ0
2 ,τ̂2)

Q−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(2) − θ(3)

)
+ 2

(
θ(2) − θ(3)

)�
Q(τ̂1,τ

0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(2) − θ(3)

)
− 2

(
θ(2) − θ(3)

)�
Q(τ0

2 ,τ̂2)
Q−1

(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)
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− 2
(

θ(2) − θ(3)
)�

Q(τ̂1,τ
0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)
,

with the following terms(
θ(2) − θ(3)

)�
Q(τ̂1,τ

0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ̂1,τ
0
1 )

(
θ(2) − θ(3)

)
,

(
θ(2) − θ(3)

)�
Q(τ0

2 ,τ̂2)
Q−1

(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(2) − θ(3)

)
,

2
(

θ(2) − θ(3)
)�

Q(τ̂1,τ
0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i ziQ
−1
(τ̂1,τ̂2)

Q(τ0
2 ,τ̂2)

(
θ(2) − θ(3)

)
,

2
(

θ(2) − θ(3)
)�

Q(τ0
2 ,τ̂2)

Q−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)
,

2
(

θ(2) − θ(3)
)�

Q(τ̂1,τ
0
1 )Q

−1
(τ̂1,τ̂2)

1

τ̂2 − τ0
2

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)

are all of order op(1). Now, suppose γ4 be the smallest eigenvalue of
1

τ̂2−τ0
2

∑
ti∈(τ0

2 ,τ̂2]
z�i zi. With a suitable C, γ4 is bounded away from 0. Hence,

(
θ(2) − θ(3)

)′ 1

τ̂2 − τ02

∑
ti∈(τ0

2 ,τ̂2]

z�i zi
(

θ(2) − θ(3)
)
≥ γ4||θ(2) − θ(3)||2 > 0

with probability 1 and this dominates the rest of the terms in (B.10) when T
is large. This implies that (B.10) is positive with probability 1, which gives a
contradiction and it indicates that with large probability τ̂2 cannot be in the
set Vη(C).

Proof of Corollary 4.1. Part (i) of Corollary 4.1 follows from the same argu-
ments utilised in the proof of Proposition 4.1 with the term 1

T in (B.1) replaced

by
1

T 2r∗
, together with the fact that T

T 2r∗ ||θ(1) − θ(2)||2 = (T 1−2r∗v2T ||M||2)
−−−−→
T→∞

∞ and log T/T 2r∗ −−−−→
T→∞

0. On the other hand, part (ii) may be verified

by employing similar arguments as in the proof of Proposition 4.2 in investigat-
ing the set Vη(C, vT ) = {τ : C/v2T < |τ − τ0| < ηT} instead of Vη(C).

Proof of Proposition 4.3. To examine the behaviour of (4.7), we first define
Y ∗
i = Xt∗i+1

−Xt∗i
and z∗i = V (t = t∗i )Δ

∗
t . Then,

log �∗(τ , θ̂(τ )) =
m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

θ̂
(j)�

z∗
�

i Y ∗
i

Δ∗
tσ

2
− 1

2Δ∗
tσ

2

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

(
θ̂
(j)′

z∗�i

)2

− 1

2Δ∗
tσ

2

∑
t∗i ∈[0,T ]

Y ∗�
i Y ∗

i +
1

2Δ∗
tσ

2

∑
t∗i ∈[0,T ]

Y ∗�
i Y ∗

i .
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After some computations, we get

log �∗(τ , θ̂(τ )) =
1

2Δ∗
tσ

2

⎛⎝ ∑
t∗i ∈[0,T ]

Y ∗�
i Y ∗

i −
m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

(
Y ∗
i − z∗i θ̂

(j)
)2

⎞⎠ .

The term
∑m+1

j=1

∑
t∗i ∈(τj−1,τj ]

(
Y ∗
i − z∗i θ̂

(j)
)2

is non-negative. For an ob-

served process Xt = xt with constant Δ∗
t and known σ,

∑
t∗i ∈[0,T ] Y

∗�
i Y ∗

i is

fixed and does not depend on the change points τ . Hence, finding the change
points τ = (τ1, . . . , τm) that maximise (4.7) is equivalent to the minimisation of
the term

m+1∑
j=1

∑
t∗i ∈(τj−1,τj ]

(
Y ∗
i − z∗i θ̂i

)2

. (B.17)

If Δ∗
t = Δt, the structure of (B.17) is the same as SSE(T, τ , θ̂(τ )) in (4.3).

The rest of the proof for Proposition 4.3 follows directly via the same arguments
used in establishing Proposition 4.1 and 4.2.

Appendix C: Proof of the properties in section 4.3

Proof of Proposition 4.4. Note that by (3.11) and (3.12),

1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt
a.s.−−−−→

T→∞
(sj − sj−1)

∫ 1

0

h̃(t)ϕk(t)dt

and

1

T

∫ τ0
j

τ0
j−1

X̃2
t dt

a.s.−−−−→
T→∞

(s0j − s0j−1)

(∫ 1

0

(h̃(j)(t))2dt+
σ2

2a(j)

)
. (C.1)

In addition, invoking similar statements as in Theorem 6.2 in Nkurunziza
and Zhang (2016), we have

1

T

∫ τ̂j

τ̂j−1

Xtϕk(t)dt−
1

T

∫ τ̂j

τ̂j−1

X̃tϕk(t)dt
P−−−−→

T→∞
0 (C.2)

and
1

T

∫ τ̂j

τ̂j−1

X2
t dt−

1

T

∫ τ̂j

τ̂j−1

X̃2
t dt

P−−−−→
T→∞

0. (C.3)

Therefore, it suffices to prove that

1

T

∫ τ̂j

τ̂j−1

X̃tϕk(t)dt−
1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt
p−−−−→

T→∞
0. (C.4)
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Similarly,

1

T

∫ τ̂j

τ̂j−1

X̃2
t dt−

1

T

∫ τ0
j

τ0
j−1

X̃2
t dt

p−−−−→
T→∞

0. (C.5)

Let 0 < δj < min((s0j+1 − s0j ), (s
0
j − s0j−1))/2. Then, it follows form Proposi-

tion 4.2 that
lim

T→∞
P (|ŝj − s0j | > δj) = 0, j = 1, . . . ,m.

Therefore, we have

P

(
1

T
|
∫ τ̂j

τ̂j−1

X̃tϕk(t)dt−
1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt| > ε

)

= P

(
1

T
|
∫ τ̂j

τ̂j−1

X̃tϕk(t)dt−
1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt| > ε, |ŝj − s0j | ≤ δj ,

|ŝj−1 − s0j−1| ≤ δj−1

)
. (C.6)

Since |ŝj −s0j | ≤ δj is equivalent to s0j − δj ≤ ŝj ≤ s0j + δj , and it follows that,
for every j,∥∥∥∥∥

∫ τ̂j

τ̂j−1

X̃tϕk(t)dt−
∫ τ0

j

τ0
j−1

X̃tϕk(t)dt

∥∥∥∥∥ ≤
∫ τ0

j−1+δj−1T

τ0
j−1−δj−1T

|X̃tϕk(t)|dt

+

∫ τ0
j +δjT

τ0
j −δjT

|X̃tϕk(t)|dt.

Hence,

(C.6) ≤ P

(
1

T

(∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃tϕk(t)|dt+
∫ τ0

j +δjT

τ0
j −δjT

|X̃tϕk(t)|dt
)

> ε

)

≤ P

(
1

T

∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃tϕk(t)|dt > ε/2

)

+ P

(
1

T

∫ τ0
j +δjT

τ0
j −δjT

|X̃tϕk(t)|dt > ε/2

)
. (C.7)

It then follows from the Markov’s inequality and Jensen’s inequality that

P

(
1

T

∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃tϕk(t)|dt > ε/2

)
≤

4E

[(∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃t||ϕk(t)|dt
)2

]
ε2T 2

≤
4E

(∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃t|2|ϕk(t)|2dt
)

ε2T 2
.



2244 F. Chen et al.

In the same vein,

P

(
1

T

∫ τ0
j +δjT

τ0
j −δjT

|X̃tϕk(t)|dt > ε/2

)
≤

4E

[(∫ τ0
j +δjT

τ0
j −δjT

|X̃t||ϕk(t)|dt
)2

]
ε2T 2

≤
4E

(∫ τ0
j +δjT

τ0
j −δjT

|X̃t|2|ϕk(t)|2dt
)

ε2T 2
.

Consequently,

(C.7) ≤
4E

(∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃t|2|ϕk(t)|2dt+
∫ τ0

j +δjT

τ0
j −δjT

|X̃t|2|ϕk(t)|2dt
)

ε2T 2
. (C.8)

Then, it follows from (3.8) that E(|X̃t|2) < K1 < ∞, for all t ≥ 0. Also,
|ϕk(t)| ≤ Kϕ. Therefore,

(C.8) ≤
8 (δj−1 + δj)TK

2
1K

2
ϕ

ε2T 2
.

Hence,

P

(
1

T

∣∣∣∣∣
∫ τ̂j

τ̂j−1

X̃tϕk(t)dt−
1

T

∫ τ0
j

τ0
j−1

X̃tϕk(t)dt

∣∣∣∣∣ > ε

)

≤ lim
T→∞

P

(
1

T

(∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

|X̃tϕk(t)|dt+
∫ τ0

j +δjT

τ0
j −δjT

|X̃tϕk(t)|dt
)

> ε/2

)

≤ lim
T→∞

8(δj−1 + δj)TK
2
1K

2
ϕ

ε2T 2
= 0.

Similarly, we have

P

(
1

T

∣∣∣∣∣
∫ τ̂j

τ̂j−1

X̃2
t dt−

∫ τ0
j

τ0
j−1

X̃2
t dt

∣∣∣∣∣ > ε, |ŝj − s0j | ≤ δj , |ŝj−1 − s0j−1| ≤ δj−1

)

≤ P

(
1

T

∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

X̃2
t dt > ε/2

)
+ P

(
1

T

∫ τ0
j +δjT

τ0
j −δjT

X̃2
t dt > ε/2

)
. (C.9)

Again, using the Markov’s inequality,

(C.9) ≤ 4K1(δj−1 + δj)T

εT
=

4K1(δj−1 + δj)

ε
. (C.10)

Using the consistency properties of the estimators ŝj provided in Section 4, i.e.,

ŝj − s0j
P−−−−→

T→∞
0, we can choose arbitrarily small δj−1 and δj such that

lim
T→∞

(C.9) ≤ lim
T→∞

4K1(δj−1 + δj)

ε
= 0.
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Proof of Proposition 4.6. By Propositions 4.4–4.5 (see also Proposition 6.2 in
Nkurunziza and Zhang 2016), it may be shown that

1

T
Q(τ̂j−1,τ̂j)

P−−−−→
T→∞

(s0j − s0j−1)Σj , j = 1, . . . ,m. (C.11)

Under Assumptions 2–4,
1

T
Q(τ̂j−1,τ̂j) is positive definite. Then, by the Contin-

uous Mapping Theorem,

TQ−1
(τ̂j−1,τ̂j)

= g

(
1

T
Q(τ̂j−1,τ̂j)

)
P−−−−→

T→∞

1

s0j − s0j−1

Σ−1
j = g

((
s0j − s0j−1

)
Σj

)
,

(C.12)
where j = 1, . . . ,m and g(X) = X−1 for any positive definite matrix X.

Proof of Proposition 4.7. Here we only prove that

1√
T

∫ τ̂j

τ̂j−1

XtdWt −
1√
T

∫ τ0
j

τ0
j−1

XtdWt
P−−−−→

T→∞
0. (C.13)

The convergence of the remaining components may be proved analogously by
the same approach.

Since by Proposition 4.2, lim
T→∞

P
(
|ŝj − s0j | > δj

)
= 0, j = 1, . . . ,m,

P

(
1

T

∣∣∣∣∣
∫ τ̂j

τ̂j−1

XtdWt −
1

T

∫ τ0
j

τ0
j−1

XtdWt

∣∣∣∣∣ > ε

)
.

is equal to

P

(
1

T

∣∣∣∣∣
∫ τ̂j

τ̂j−1

XtdWt −
∫ τ0

j

τ0
j−1

XtdWt

∣∣∣∣∣ > ε, |ŝj − s0j | ≤ δj , |ŝj−1 − s0j−1| ≤ δj−1

)
.

(C.14)
Without loss of generality, we assume that τ̂j−1 < τ0j−1 < τ0j < τ̂j . Then,∣∣∣∣∣

∫ τ̂j

τ̂j−1

XtdWt −
∫ τ0

j

τ0
j−1

XtdWt

∣∣∣∣∣ =
∣∣∣∣∣
∫ τ0

j−1

τ̂j−1

XtdWt +

∫ τ̂j

τ0
j

XtdWt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ τ̂j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣+
∣∣∣∣∣
∫ τ0

j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣+
∣∣∣∣∣
∫ τ0

j +δjT

τ0
j

XtdWt

∣∣∣∣∣
+

∣∣∣∣∣
∫ τj+δjT

τ̂j

XtdWt

∣∣∣∣∣ . (C.15)

With the same arguments as in the proof of (C.7), together with above inequal-
ity, (C.14) is not greater than

P

(
1√
T

∣∣∣∣∣
∫ τ̂j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣ > ε/4

)
+ P

(
1√
T

∣∣∣∣∣
∫ τ0

j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣ > ε/4

)
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+ P

(
1√
T

∣∣∣∣∣
∫ τ0

j +δjT

τ̂j

XtdWt

∣∣∣∣∣ > ε/4

)
+ P

(
1√
T

∣∣∣∣∣
∫ τ0

j +δjT

τ0
j

XtdWt

∣∣∣∣∣ > ε/4

)
.

(C.16)

Then, by Markov inequality and Itô’s isometry,

P

(
1√
T

∣∣∣∣∣
∫ τ0

j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣ > ε/4

)
≤

16E

[(∫ τ0
j−1

τ0
j−1−δj−1T

XtdWt

)2
]

ε2T

=
16

∫ τ0
j−1

τ0
j−1−δj−1T

E
[
X2

t

]
dt

T ε2

≤ 16K1δj−1T

ε2T

=
16K1δj−1

ε2
,

which tends to 0 for an infinitesimal δj−1. Similarly, the probability

P

(
1√
T

∣∣∣∣∣
∫ τ0

j +δjT

τ0
j

XtdWt

∣∣∣∣∣ > ε/4

)
also tends to 0 by choosing an infinitesimal

δj . Further, note that∫ τ̂j−1

τ0
j−1−δj−1T

XtdWt =

∫ T

0

Xt1(τ
0
j−1 − δj−1T ≤ t ≤ τ̂j−1)dWt.

So, again, by the Markov inequality and Itô’s isometry,

P

(
1√
T

∣∣∣∣∣
∫ τ̂j−1

τ0
j−1−δj−1T

XtdWt

∣∣∣∣∣ > ε/4

)

= P

(
1√
T

∣∣∣∣∣
∫ T

0

Xt1(τ
0
j−1 − δj−1T ≤ t ≤ τ̂j−1)dWt

∣∣∣∣∣ > ε/4

)

≤
16E

[(∫ T

0
Xt1(τ0j−1 − δj−1T ≤ t ≤ τ̂j−1)dWt

)2
]

ε2T

=
16

∫ τ0
j−1+δj−1T

τ0
j−1−δj−1T

E
[
X2

t

]
dt

T ε2

≤ 32K1δj−1T

ε2T

=
32K1δj−1

ε2
,

which goes to 0 for an infinitesimal δj−1. Similarly, P

(
1√
T

∣∣∣∣∫ τ0
j +δjT

τ̂j
XtdWt

∣∣∣∣ > ε/4

)
also approaches 0 by choosing an infinitesimal δj . This implies that (C.16) tends
to 0 for an infinitesimal δj−1 and δj .
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Proof of Corollary 4.2. Let r̃T (τ̂ ) =
(
r̃�(0,τ̂1), . . . , r̃

�
(τ̂m,T )

)�
,

rT (τ̂ ) =
(
r�(0,τ̂1), . . . , r�(τ̂m,T )

)�
and let Q̃(τ̂ )−1 = diag

(
Q−1

(0,τ̂1)
, . . . ,Q−1

(τ̂m,T )

)
.

Then, we have θ̂ = Q̃(τ̂ )−1r̃T (τ̂ ). By Propositions 4.6–4.8 and application of
Slutsky’s Theorem,

√
T Q̃(τ̂ )−1r̃T (τ̂ ) = T Q̃(τ̂ )−1 1√

T
rT (τ̂ )

D−−−−→
T→∞

ρ ∼ N((m+1)(p+1))

(
0, Σ̃−1

)
.

Next, we investigate the asymptotic behaviour of θ̂ based on τ̂ . Without
loss of generality, we assume that for the jth block, 1 ≤ j ≤ m, we have
τ̂j−1 < τ0j−1 < τ̂j < τ0j . In this case, we have

θ̂
(j)

= Q−1
(τ̂j−1,τ̂j)

(
Q(τ̂j−1,τ0

j−1)
θ(j−1) +Q(τ0

j−1,τ̂j)
θ(j) + σr(τ̂j−1,τ̂j)

)
.

Hence,

√
T
(

θ̂
(j) − θ(j)

)
= TQ−1

(τ̂j−1,τ̂j)

(
1√
T
Q(τ̂j−1,τ0

j−1)

(
θ(j−1) − θ(j)

)
+ σ

1√
T
r(τ̂j−1,τ̂j)

)
.

By Proposition 4.2, |τ̂j−1 − τ0j−1| ≤ C for some C > 0 with probability 1.
Invoking the Markov inequality,

P

(
1√
T

∫ τ̂j−1

τ0
j−1

X2
t dt > ε

)
≤

2E
[∫ τ̂j−1

τ0
j−1

X2
t dt

]
ε
√
T

≤ 2K1C

ε
√
T

and

P

(
1√
T

∫ τ̂j−1

τ0
j−1

Xtϕk(t)dt > ε

)
≤

4E
[∫ τ̂j−1

τ0
j−1

Xtϕk(t)dt
]2

ε2T
≤ 4K1KϕC

ε2T
.

Therefore,
∥∥∥ 1√

T
Q(τ̂j−1,τ0

j−1)

∥∥∥ p−−−−→
T→∞

0, which means

√
T (θ̂

(j) − θ(j))− σTQ−1
(τ̂j−1,τ̂j)

1√
T
r(τ̂j−1,τ̂j)

p−−−−→
T→∞

0.

So, √
T (θ̂ − θ)− σT Q̃(τ̂ )−1 1√

T
rT (τ̂ )

p−−−−→
T→∞

0

and
√
T (θ̂ − θ) =

√
T (θ̂ − θ)− σTQ̃(τ̂ )−1 1√

T
rT (τ̂ ) + σTQ̃(τ̂ )−1 1√

T
rT (τ̂ )

D−−−−→
T→∞

ρ

∼ N((m+1)(p+1))

(
0, σ2Σ̃−1

)
.
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Appendix D: Proof of Proposition 5.1

The proof of Proposition consists of two parts. In Part (i), we prove that IC(m =
m0) < IC(m < m0), whilst in Part (ii) we prove that IC(m = m0) > IC(m <
m0).

Part (i): IC(m = m0) < IC(m < m0) . From Proposition 4.3,

IC(m = m0) = −2
1

2Δ∗
tσ

2

⎛⎝ ∑
ti∈[0,T ]

Y ′
i Yi −

m0+1∑
j=1

∑
ti∈(τ̂j−1,τ̂j ]

(
Yi − ziθ̂

(j)
)2

⎞⎠
+ (m0 + 1)(p+ 1) log(T/Δt), (D.1)

where τ̂j , j = 1 . . . ,m0 are obtained via (4.5). Next, we define

IC0(m = m0) = −2
1

2Δtσ2

⎛⎝ ∑
ti∈[0,T ]

Y ′
i Yi −

m0+1∑
j=1

∑
ti∈(τ0

j−1,τ
0
j ]

(
Yi − ziθ̂

(j,0)
)2

⎞⎠
+ (m0 + 1)(p+ 1) log(T/Δt), (D.2)

where θ̂
(j,0)

was given in Appendix B. Since τ̂j , j = 1, . . . ,m0, are obtained by

maximising log �∗(τ , θ̂), or equivalently minimising −2 log �∗(τ , θ̂), we have that
IC(m = m0) ≤ IC0(m = m0) with probability 1. Hence, we must show that

IC(m < m0) > IC0(m = m0) (D.3)

with probability 1.
For any positive integer m∗ such that 0 < m∗ < m0, suppose that the esti-

mated locations of these m∗ change points are τ̂∗1 , . . . , τ̂
∗
m∗ , and the MLE of drift

parameters associated with the ith observation is θ̂
∗
i =

∑m∗+1
j=1 θ̂

(j,∗)
1(τ̂∗j−1 ≤

ti ≤ τ̂∗j ), where θ̂
(j,∗)

= Q−1
(τ̂∗

j−1,τ̂
∗
j )r̃(τ̂∗

j−1,τ̂
∗
j )
. Furthermore,

1

T
(IC(m = m∗)− IC0(m = m0))

=
1

TΔtσ2

⎛⎝m∗+1∑
j=1

∑
t∗i ∈(τ̂j−1,τ̂j ]

(
Yi − ziθ̂

∗
i

)2

−
m0+1∑
j=1

∑
ti∈(τ0

j−1,τ
0
j ]

(
Yi − ziθ̂

(j,0)
)2

⎞⎠
− (m0 −m∗)(p+ 1) log(T/Δ∗

t )

T
, (D.4)

Sincem∗ < m0, there exists at least one change point that cannot be consistently
estimated. Without loss of generality, let τ0j be the change point. With similar
arguments utilised in the proof of Lemma B.1, we get

1

T
(IC(m < m0)− IC0(m = m0)) ≥ C∗||θ(j) − θ(j+1)||2 + op(1) (D.5)
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for some C∗ > 0 with probability 1. Therefore, IC(m < m0) > IC0(m = m0)
with probability 1. This completes the proof of part (i).

Part (ii): IC(m = m0) < IC(m > m0). Since IC(m = m0) ≤ IC0(m = m0),
where IC0(m = m0) is defined in Part (i), it remains to show that the difference
IC(m = m∗ > m0)− IC0(m = m0) is positive with probability 1.

Note that for the case where m = m∗ > m0 and the estimated locations of
the m∗ change points are given by τ̂1 < τ̂2 <, . . . , < τ̂m∗ , we have

IC(m = m∗)− IC0(m = m0)

=
1

Δtσ2

⎛⎝ ∑
ti∈[0,T ]

(
Yi − ziθ̂

∗
i

)2

−
∑

ti∈[0,T ]

(
Yi − ziθ̂

0

i

)2

⎞⎠
+ (m∗ −m0)(p+ 1) log(T/Δ∗

t ), (D.6)

where θ̂
∗
i =

∑m∗+1
j=1 θ(j,∗)1(τ∗j−1 ≤ ti ≤ τ∗j ) with θ̂

(j,∗)
= Q−1

(τ̂∗
j ,τ̂

∗
j−1)

r̃(τ̂∗
j ,τ̂

∗
j−1)

.

We note that m∗ > m0, and from m∗ of these estimated change points, there
are m∗ − m0 estimated change points that divide the time interval [0, T ] into
m∗ − m0 + 1 regimes such that within each regime, the number of estimated
change points is equal to the number of exact change points. For example,
suppose that m0 = 2 and m∗ = 3 with 0 < τ̂∗1 < τ01 < τ̂∗2 < τ02 < τ̂∗3 < T .
Then, if we divide the given time interval into [0, τ̂∗2 ] and (τ̂∗2 , T ], we can see
that within these two intervals, the number of estimated change points is equal
to the number of exact change points.

Denote the particularm∗−m0 estimated change points by {τ̃∗j , j = 1, . . . ,m∗−
m0}. Also, let τ̃∗0 = 0 and τ̃∗m∗−m0+1 = T . Then,

(D.6) =
1

Δtσ2

m∗−m0+1∑
j=1

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

[(
Yi − ziθ̂

∗
i

)2

−
(
Yi − ziθ̂

0

i

)2

+
(m∗ −m0)(p+ 1) log(T/Δ∗

t )

m∗ −m0 + 1

]
.

Thus, it remains to show that in each regime (τ̃∗j−1, τ̃
∗
j ], j = 1, . . . ,m∗−m0+1,

1

Δtσ2

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

[(
Yi − ziθ̂

∗
i

)2

−
(
Yi − ziθ̂

0

i

)2

+
(m∗ −m0)(p+ 1) log(T/Δ∗

t )

m∗ −m0 + 1

]

=
1

Δtσ2

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

[(
zi

(
θi − θ̂

∗
i

))2

−
(
zi

(
θi − θ̂

0

i

))2

+ 2uizi

(
θ̂
∗
i − θ̂

0

i

)

+
(m∗ −m0)(p+ 1) log( T

Δ∗
t
)

m∗ −m0 + 1

]
(D.7)

is positive with probability 1.
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Since within (τ̃∗j−1, τ̃
∗
j ], the number of estimated change points and the num-

ber of exact change points are the same, we first consider the case where there
is no any change points within (τ̃∗j−1, τ̃

∗
j ]. In this case, we have τ0k∗−1 < τ̃∗j−1 <

τ̃∗j < τ0k∗ for some j and k∗. Then, θ̂
∗
i = Q−1

(τ̃∗
j−1,τ̃

∗
j )

(
Q(τ̃∗

j−1,τ̃
∗
j )θi + σr(τ̃∗

j−1,τ̃
∗
j )

)
=

θi + σQ−1
(τ̃∗

j−1,τ̃
∗
j )
r(τ̃∗

j−1,τ̃
∗
j ) and θ̂

0

i = θi + σQ−1
(τ0

k∗−1
,τ0

k∗ )
r(τ0

k∗−1
,τ0

k∗ ). Substituting

the above expressions into (D.7), we have

(D.7) =
1

Δtσ2

⎡⎣σ2r�(τ̃∗
j−1,τ̃

∗
j )
Q−1

(τ̃∗
j−1,τ̃

∗
j )

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

z�i ziQ
−1
(τ̃∗

j−1,τ̃
∗
j )
r(τ̃∗

j−1,τ̃
∗
j )

− σ2r�(τ0
k∗−1

,τ0
k∗ )

Q−1
(τ0

k∗−1
,τ0

k∗ )

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

z�i ziQ
−1
(τ0

k∗−1
,τ0

k∗ )
r(τ0

k∗−1
,τ0

k∗ )

+ 2
∑

ti∈(τ̃∗
j−1,τ̃

∗
j ]

uiziσ(Q
−1
(τ̃∗

j−1,τ̃
∗
j )r(τ̃∗

j−1,τ̃
∗
j )

−Q−1
(τ0

k∗−1
,τ0

k∗ )
r(τ0

k∗−1
,τ0

k∗ ))

+
(m∗ −m0)(p+ 1) log(T/Δ∗

t )

m∗ −m0 + 1

]
. (D.8)

From the approach used in the proof of Propositions 4.1 and 4.2, we have∥∥∥∥∥∥r�(τ̃∗
j−1,τ̂

∗
2 )Q

−1
(τ̃∗

j−1,τ̂
∗
2 )

∑
ti∈(τ̃∗

j−1,τ̂
∗
2 ]

z�i ziQ
−1
(τ̃∗

j−1,τ̂
∗
2 )r(τ̃∗

j−1,τ̂
∗
2 )

∥∥∥∥∥∥
≤
∥∥∥∥ 1√

T
r(τ̃∗

j−1,τ̂
∗
2 )

∥∥∥∥2 ∥∥∥TQ−1
(τ̃∗

j−1,τ̂
∗
2 )

∥∥∥2
∥∥∥∥∥∥ 1

T

∑
ti∈(τ̃∗

j−1,τ̂
∗
2 ]

z�i zi

∥∥∥∥∥∥
= Op

(
log2a

∗
(T )

)
for some 0 < a∗ < 1/2. Similar results also hold for the second and the third
terms of (D.8).

Therefore, for large T , (D.8) is dominated by
(m∗ −m0)(p+ 1) log(T/Δ∗

t )

m∗ −m0 + 1
,

which is positive. This implies that for large T , (D.6) is positive with probability
1.

Now, consider the case where there exist mj (0 < mj ≤ m0) exact change
points (so are the estimated change points) in (τ̃∗j−1, τ̃

∗
j ]. We label these mj

exact change points by τ̃∗j−1 < τ0(mj ,1)
<, . . . , < τ0(mj ,mj)

< τ̃∗j and similarly for

the estimated change points, τ̃∗j−1 < τ̂∗(mj ,1)
<, · · · , < τ̂∗(mj ,mj)

< τ̃∗j .

By the quadratic structure,
∑

ti∈(τ̃∗
j−1,τ̃

∗
j ]
(Yi−ziθ̂

0

i )
2 ≤

∑
ti∈[0,T ](Yi−ziθ̂

0

i )
2,

and∑
ti∈[0,T ]

(Yi − ziθ̂
0

i )
2 =

m∑
j=1

r�(τ0
j−1,τ

0
j )
Q−1

(τ0
j−1,τ

0
j )

∑
ti∈(τ0

j−1,τ
0
j ]

z′iziQ
−1
(τ0

j−1,τ
0
j )
r(τ0

j−1,τ
0
j )
.
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It follows from (B.7) that

m∑
j=1

r�(τ0
j−1,τ

0
j )
Q−1

(τ0
j−1,τ

0
j )

∑
ti∈(τ0

j−1,τ
0
j ]

z�i ziQ
−1
(τ0

j−1,τ
0
j )
r(τ0

j−1,τ
0
j )

= Op

(
(log T )2a

∗
)

for some 0 < a∗ < 1/2. By similar methods employed in the proof of Proposi-

tion 4.1, we have
∑

ti∈(τ̃∗
j−1,τ̃

∗
j ] 2uizi(θ̂

∗
i − θ̂

0

i ) = Op

(
(log T )2a

∗)
. Since for large

T , (log T )2a
∗
<

(m∗ −m0)(p+ 1) log(T/Δ∗
t )

m∗ −m0 + 1
, we have that for large T , (D.7)

is dominated by either
(m∗ −m0)(p+ 1) log(T/Δ∗

t )

(m∗ −m0 + 1)Δtσ2
or

1

Δtσ2

∑
ti∈(τ̃∗

j−1,τ̃
∗
j ]

(zi(θi−

θ̂
∗
i ))

2 and they are both positive. This implies that for large T , (D.6) is positive
with probability 1.

Appendix E: Histograms of the estimated change points’ arrival
rates (Section 7.1.1)

Figure 8. Histogram of ŝ for Case 1, m0 = 3 and T = 5 with exact value s0 = (0.25, 0.50, 0.75)



2252 F. Chen et al.

Figure 9. Histogram of ŝ for Case 2, m0 = 3 and T = 5 with exact value s0 = (0.25, 0.50, 0.75)

Figure 10. Histogram of ŝ for Case 1, m0 = 3 and T = 10 with exact value s0 =
(0.25, 0.50, 0.75)
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Figure 11. Histogram of ŝ for Case 2, m0 = 3 and T = 10 with exact value s0 =
(0.25, 0.50, 0.75)

Figure 12. Histogram of ŝ for Case 1, m0 = 3 and T = 20 with exact value s0 =
(0.25, 0.50, 0.75)
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Figure 13. Histogram of ŝ for Case 2, m0 = 3 and T = 20 with exact value s0 =
(0.25, 0.50, 0.75)
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