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Abstract: We introduce a nonparametric prior on the conditional distri-
bution of a (univariate or multivariate) response given a set of predictors.
The prior is constructed in the form of a two-stage generative procedure,
which in the first stage recursively partitions the predictor space, and then
in the second stage generates the conditional distribution by a multi-scale
nonparametric density model on each predictor partition block generated
in the first stage. This design allows adaptive smoothing on both the pre-
dictor space and the response space, and it results in the full posterior
conjugacy of the model, allowing exact Bayesian inference to be completed
analytically through a forward-backward recursive algorithm without the
need of MCMC, and thus enjoying high computational efficiency (scaling
linearly with the sample size). We show that this prior enjoys desirable the-
oretical properties such as full L1 support and posterior consistency. We
illustrate how to apply the model to a variety of inference problems such
as conditional density estimation as well as hypothesis testing and model
selection in a manner similar to applying a parametric conjugate prior,
while attaining full nonparametricity. Also provided is a comparison to two
other state-of-the-art Bayesian nonparametric models for conditional den-
sities in both model fit and computational time. A real data example from
flow cytometry containing 455,472 observations is given to illustrate the
substantial computational efficiency of our method and its application to
multivariate problems.
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1. Introduction

In recent years there has been growing interest in nonparametrically modeling
probability densities based on multi-scale partitioning of the sample space. A
prime example in the Bayesian nonparametric literature is the Pólya tree (PT)
[12, 22, 31] and its extensions [17, 18, 45, 21, 27]. In particular, Wong and Ma
[45] introduced randomization into the partitioning component (involving both
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random selection of partition directions as well as optional stopping) of the PT
framework, which enhances the model’s ability to approximate the shape and
smoothness of the underlying density. A PT model with these features is called
an optional Pólya tree (OPT).

A further desirable feature of the PT and its relatives such as the OPT and
the more recently introduced adaptive Pólya tree (APT) [27] is the computa-
tional ease for carrying out inference. It turns out that the extra component
of randomized partitioning such as that employed in the OPT does not impair
the conjugacy enjoyed by the PT. For example, after observing i.i.d. data, the
corresponding posterior of an OPT is still an OPT, that is, the same generative
procedure for random probability distributions with its parameters updated to
their posterior values. Moreover, the corresponding posterior parameter values
can be computed exactly through a sequence of recursive computations, which
is in essence a forward-backward algorithm [25]. This, together with the con-
structive nature of these models, allows one to draw samples from the exact
posterior directly without resorting to Markov Chain Monte Carlo (MCMC)
procedures, and to compute various summary statistics of the posterior analyti-
cally. Furthermore, the marginal posterior of the random partitioning adapts to
the underlying structure of the data—the sample space will with high posterior
probability be more finely divided in places where the underlying distribution
has richer structure, i.e., less uniform shape.

Motivated by the computational efficiency and statistical properties of the
OPT, which is tied to its use of recursive random partitioning, we aim to further
exploit the random recursive partitioning idea in the context of multi-scale den-
sity modeling, and build such a model for conditional densities for a response
(vector) Y given a predictor (vector) X. The objective is to construct a flexi-
ble nonparametric model for conditional distributions that maintain all of the
desirable statistical and computational properties of PT and OPT.

A variety of inference tasks involve estimation, prediction, and testing regard-
ing conditional distributions, and nonparametric inference on conditional den-
sities has been studied from both frequentist and Bayesian perspectives. Many
frequentist works are based on kernel estimation methods [10, 16, 11], and they
achieve proper smoothing through bandwidth selection, which often involves re-
sampling procedures such as cross-validation [2, 19, 11] and the bootstrap [16].
An alternative frequentist strategy introduced more recently is to employ the
so-called block-wise shrinkage [8, 9]. In Bayesian nonparametrics, inference on
conditional distributions is often referred to as covariate-dependent distribution
modeling, and existing methods fall into two categories. The first category is
methods that construct priors for the joint distribution of the response and
the predictors, and then use the induced conditional distribution for inference.
Some examples are [32, 37, 33, 41], which propose using mixtures of multivari-
ate normals as the model for joint distributions, along with different priors for
the mixing distribution. The other category is methods that construct condi-
tional distributions directly without specifying the marginal distribution of the
predictors. Many of these methods are based on extending the stick breaking
construction for the Dirichlet Process (DP) [39]. Some notable examples, among
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others, are proposed in [29, 20, 13, 15, 7, 4, 36, 1]. Some recent works in this
category do not utilize stick breaking. In [43], the authors propose to use the
logistic Gaussian process [23, 42] together with subspace projection to construct
smooth conditional distributions. In [21], the authors incorporate covariate de-
pendency into tail-free processes by generating the conditional tail probabilities
from covariate-dependent logistic Gaussian processes, and propose a mixture
of such processes as a way for modeling conditional distributions. The authors
of [24] introduce dependent normalized complete random measures. In [44] the
authors introduce the covariate-dependent multivariate Beta process, and use
it to generate the conditional tail probabilities of Pólya trees. More recently,
in [40] the authors use the tensor product of B-splines to construct a prior for
conditional densities, and incorporate a variable selection feature. While many
of these nonparametric models on conditional distributions enjoy desirable theo-
retical properties, inference using these priors generally relies on intense MCMC
sampling, and can take substantial computing time even when both the response
and the covariate are one-dimensional.

We introduce a new prior, called the conditional optional Pólya tree, for the
conditional density of Y given X, in the form of a two-stage generative proce-
dure consisting of first randomly partitioning the predictor space ΩX , and then
for each predictor partition block, generates the response distribution on each
block using an OPT, which implicitly employs a further random partitioning
of the response space ΩY . We show that this new prior is a fully nonparamet-
ric model and yet achieves extremely high computational efficiency even for
multivariate responses and covariates. It enjoys all of the desirable theoreti-
cal properties of the PT and the OPT priors—namely large support, posterior
consistency, and posterior conjugacy, and its posterior parameters can also be
computed exactly through forward-backward recursion. Under this two-stage
design, the posterior distribution on the partitions reflect the structure of the
conditional distribution at two levels—first, the predictor space will be parti-
tioned finely in parts where the conditional distribution changes most abruptly,
shedding light on how the conditional distribution depends on the predictors;
second, the response space will be divided adaptively for different locations of
the predictor space, to capture the local structure of the conditional density
through adaptive smoothing.

The rest of the paper is organized as follows. In Section 2 we introduce our
two-stage prior and show that it is fully nonparametric—with full (integrated)
L1 support—for conditional densities. In addition, we make a connection to
Bayesian CART and show that our method can be considered a nonparametric
version of the latter. In Section 3 we show the full conjugacy of the model,
derive the exact form of the posterior through forward-backward recursion, and
thereby provide a recipe for carrying out Bayesian inference using the prior. We
also prove the posterior consistency of such inference. In Section 4 we discuss
practical computational issues in implementing the inference. In Section 5 we
provide four simulation examples to illustrate the work of our method. The first
two are for estimating conditional densities, and the last two concern model
selection and hypothesis testing. In Section 6 we apply the proposed method to
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estimating conditional densities in a flow cytometry data set involving a large
number (455,472) of observations, and demonstrate the computational efficiency
of the method and its application when both the response and the predictor are
multivariate. Section 7 concludes with some discussions. All proofs are given in
the Appendix.

2. Conditional optional Pólya trees

In this section we introduce our proposed prior constructively in terms of a two-
stage generative procedure that produces random conditional densities. First
we introduce some notions and notations that will be used throughout. Let
each observation be a predictor-response pair (X,Y ), where X denotes the
predictor (or covariate) vector and Y the response (vector) with ΩX being the
predictor space and ΩY the response space. In this work we consider sample
spaces that are either finite spaces, compact Euclidean rectangles, or a product
of the two, and ΩX and ΩY do not have to be of the same type. (See for instance
Example 3.) Let μX and μY be the “natural” measures on ΩX and ΩY . (That
is, the counting measure for finite spaces, the Lebesgue measure for Euclidean
rectangles, and the corresponding product measure if the space is a product
of the two.) Let μ = μX × μY be the “natural” product measure on the joint
sample space ΩX × ΩY .

A partition rule R on a sample space Ω specifies a collection of possible ways
to divide any subset A of Ω into a number of smaller sets. For example, for Ω =
[0, 1]k, the unit rectangle in R

k, the coordinate-wise dyadic mid-split rule allows
each rectangular subset A of Ω whose sides are parallel to the k coordinates
to be divided into two halves at the middle of the range of each coordinate.
For simplicity, in this work we only consider partition rules that allow a finite
number of ways for dividing each set. Such partition rules are said to be finite.
(Interested readers can refer to [28, Sec. 2] for a more detailed treatment of
partition rules and to Examples 1 and 2 in [45] for examples of the coordinate-
wise dyadic mid-split rule over Euclidean rectangles and 2k contingency tables.)

We are now ready to introduce our prior for conditional densities as a two-
stage constructive procedure. It is important to note that the following de-
scribes the generation of conditional densities under our prior and not the op-
erational steps for inference under the prior, which will be addressed Section 3
and Section 4.

Stage I. Predictor partition: We randomly partition ΩX according to a
given partition rule RX on ΩX in the following recursive manner. Starting
from A = ΩX , draw a Bernoulli variable

S(A) ∼ Bernoulli(ρ(A)).

That is, P(S(A) = 1) = ρ(A). If S(A) = 1, then the partitioning procedure
on A terminates and we arrive at a trivial partition of a single block over A.
(Thus S(A) is called the stopping variable, and ρ(A) the stopping probability.)
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If instead S(A) = 0, then we randomly select one out of the possible ways for
dividing A under RX and partition A accordingly. More specifically, if there are
N(A) ways to divide A under RX , we randomly draw

J(A) ∈ {1, 2, . . . , N(A)} such that P(J(A) = j) = λj(A)

for j = 1, 2, . . . , N(A) with
∑N(A)

j=1 λj(A) = 1, and partition A in the jth way if

J(A) = j. (We call λ(A) =
(
λ1(A), λ2(A), . . . , λN(A)(A)

)
the partition selection

probabilities for A.) Let Kj(A) be the number of child sets that arise from this
partition, and let Aj

1, A
j
2, . . . , A

j
K(A) denote these children. We then repeat the

same partition procedure, starting from the drawing of a stopping variable, on
each of these children.

The following lemma, first proved in [45], states that as long as the stop-
ping probabilities are (uniformly) away from 0, this random recursive parti-
tioning procedure will eventually terminate almost everywhere and produce a
well-defined partition of ΩX .

Lemma 1. If there exists a δ > 0 such that the stopping probability ρ(A) > δ for
all A ⊂ ΩX that could arise after a finite number of levels of recursive partition,
then with probability 1 the recursive partition procedure on ΩX will stop μX a.e.

Stage II. Generating conditional densities: Next we move onto the second
stage of the procedure to generate the conditional density of the response Y on
each of the predictor partition blocks generated in Stage I. Specifically, for each
stopped subset A on ΩX produced in Stage I, we let the conditional distribution
of Y given X = x be the same across all x ∈ A, and generate this (conditional)

distribution on ΩY , denoted as q0,AY , from a prior specific to A. We refer to this
prior as a “local” prior to emphasize its locality on A. (This is to be distinguished
from the notions of local/nonlocal priors commonly used in Bayesian shrinkage.)

When the response space ΩY is finite, q0,AY is simply a multinomial dis-
tribution, and so a simple choice of such a local prior is the Dirichlet prior:
q0,AY ∼ Dirichlet(αA

Y ) where αA
Y represents the pseudo-count hyperparameters

of the Dirichlet. In this case, we note that the two-stage prior essentially reduces
to a version of the Bayesian CART proposed by Chipman et al in [3] for the
classification problem. When ΩY is infinite (or finite but with a large number of

elements), one may restrict q0,AY to be from a parametric family. For example,

when ΩY = R, one may require q0,AY to be normal with some mean μA and
variance σ2

A, and let μA|σ2
A ∼ N(μ0, σ

2) and σ2
A ∼ inverse-Gamma(ν/2, νκ/2).

In this case the two-stage prior again reduces to a Bayesian CART, this time
for the regression problem [3].

The focus of our current work, however, is on the case when no parametric
assumptions are placed on the conditional density. To this end, one can draw
q0,AY from a nonparametric prior. A desirable choice for the local prior, which will
result in analytic simplicity and computational efficiency as we will later show,
is a Pólya tree type model [27], and in particular an optional Pólya tree (OPT)
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distribution [45]:

q0,AY ∼ OPT(RA
Y ; ρAY ,λA

Y ,αA
Y )

independently across As given the partition, where RA
Y denotes a partition rule

on ΩY and ρAY , λA
Y , and αA

Y are respectively the stopping, selection, and pseudo-
count hyperparameters [45]. In general we allow the partition rule for these
“local” OPTs to depend on A as indicated in the superscript, but adopting a
common partition rule on ΩY —that is to let RA

Y ≡ RY for all A—will suffice
for most problems. In the rest of the paper, unless stated otherwise we assume
that a common rule RY is adopted.

This completes the description of our two-stage procedure. We now formally
define the resulting prior.

Definition 1. A conditional distribution that arises from the above two-stage
procedure is said to have a conditional optional Pólya tree (cond-OPT) distri-
bution. The hyperparameters are the predictor partition rule RX , the response
partition rule RY , the stopping probability ρ(A), the partition selection proba-
bilities λ(A), and the local parameters (ρAY ,λA

Y ,αA
Y ) for all A ⊂ ΩX that could

arise during the predictor partition under RX .

Remark I: To ensure that this definition is meaningful, one must check that the
two-stage procedure will in fact generate a well-defined conditional distribution
with probability 1. To see this, first note that because the collection of all
potential sets A on ΩX that can arise during Stage I is countable, by Theorem 1
in [45], with probability 1, the two-stage procedure will generate an absolutely
continuous conditional distribution of Y given X = x for x in the stopped part
of ΩX , provided that ρAY is uniformly bounded away from 0. The two-stage
generation procedure for the conditional density of Y can then be completed
by letting Y given X be uniform on ΩY for the μX -null subset of ΩX on which
the recursive partition in Stage I never stops.

Remark II: While the cond-OPT prior involves many hyperparameters, one can
appeal to very simple symmetry and self-similarity principles for choosing their
values. Specifically, such considerations lead to the simple choice: (i) ρ(A) ≡
ρ ∈ [0, 1], (ii) λj(A) = 1/N(A), and (iii) ρAY ≡ ρY , λA

Y ≡ λY , and αA
Y ≡ αY

for all A, following the default choices in [45]. We note that when useful prior
knowledge about the structure of the underlying distribution is not available
or when one is unwilling to assume particular structures over the distribution,
it is desirable to specify the prior parameters in a symmetric and self-similar
way. The common stopping probability ρ should not be too close to 0 or 1, but
taking a moderate value between 0.1 and 0.9. A sensitivity analysis for such
choices demonstrating the robustness of such choices in the context of OPTs is
provided in [28]. As for the partition rules, the coordinate-wise dyadic mid-split
rule can serve as a simple default choice for both RX and RY . We will adopt
such a specification in all of our numerical examples.

Remark III: One constraint in the cond-OPT is that given the random parti-
tion generated in Stage I, the generation of the conditional distribution across
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different predictor blocks is independent, i.e., in a similar manner as that for
Bayesian CART. As we shall see, this constraint is key to the tremendous com-
putational efficiency of the model. It is important to note however that due
to the randomized partitioning incurred in Stage I, the marginal prior for the
conditional distributions on nearby values of X are in fact dependent, thereby
achieving smoothing over ΩX to some extent. More flexible smoothing could be
achieved through modeling the “local” priors jointly, but that would incur the
need for MCMC sampling and the most desirable feature of PT type models
would be lost.

We have emphasized that the cond-OPT prior imposes no parametric as-
sumptions on the conditional distribution. One may wonder whether this prior
is truly “nonparametric” in the sense that it can generate all possible condi-
tional densities. Our next theorem confirms this—under mild conditions on the
parameters, which the default specification satisfies, the cond-OPT will place
positive probability in arbitrarily small L1 neighborhoods of any conditional
density. (A definition of an L1 neighborhood for conditional densities is also
implied in the statement of the theorem.)

Theorem 2 (Large support). Suppose q(·|·) is a conditional density function
that arises from a cond-OPT prior whose parameters ρ(A) and λ(A) for all A
that could arise during the recursive partitioning on ΩX are uniformly away
from 0 and 1, and the local OPTs all have full L1 support on the densities on
ΩY . Moreover, suppose that the underlying partition rules RX and RY both
satisfy the following “fine partition criterion”: ∀ε > 0, there exists a partition of
the corresponding sample space such that the diameter of each partition block is
less than ε. Then for any conditional density function f(·|·) : ΩY ×ΩX → [0,∞),
and any τ > 0,

P

(∫
|q(y|x)− f(y|x)|μ(dx× dy) < τ

)
> 0.

Furthermore, let fX(x) be any density function on ΩX w.r.t. μX . Then we have
∀τ > 0,

P

(∫
|q(y|x)− f(y|x)|fX(x)μ(dx× dy) < τ

)
> 0.

Remark: Sufficient conditions for OPTs to have full L1 support on densities is
given in Theorem 2 of [45].

3. Bayesian inference with cond-OPT

Next we investigate how Bayesian inference on conditional densities can be car-
ried out using this prior. First, we note that Chipman et al [3] and Denison
et al [6] each proposed MCMC algorithms that enable posterior inference for
Bayesian CART. These sampling and stochastic search algorithms can be ap-
plied directly here as the local OPT priors can be marginalized out and so the
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marginal likelihood under each partition tree that arises in Stage I of the cond-
OPT is available in closed form [45, 28]. However, as noted in [3] and other
works, due to the multi-modal nature of tree structured models, the mixing
behavior of the MCMC algorithms is often undesirable. This problem is exacer-
bated in higher dimensional settings. Chipman et al [3] suggested using MCMC
as a tool for searching for good models rather than a reliable way of sampling
from the actual posterior.

The main result of this section is that under simple partition rules such as
the coordinate-wise dyadic mid-split rule, Bayesian inference under a cond-OPT
prior can be carried out in an exact manner in the sense that the corresponding
posterior distribution can be computed in closed form and directly sampled
from, without resorting to MCMC algorithms. Not only is the computation
feasible for multivariate sample spaces of moderate dimensions, but it is in fact
highly efficient, scaling linearly with the number of observations.

First let us investigate what the posterior of a cond-OPT prior is. Suppose
we have observed (x,y) = {(x1, y1), (x2, y2), . . . , (xn, yn)} where given the xi’s,
the yi’s are independent with some density q(y|x). We assume that q(·|·) has a
cond-OPT prior denoted by π. Further, for any A ⊂ ΩX we let

x(A) := {x1, x2, . . . , xn} ∩A and y(A) := {yi : xi ∈ A, i = 1, 2, . . . , n},
and let n(A) denote the number of observations with predictors lying in A, that
is n(A) = |x(A)| = |y(A)|.

For A ⊂ ΩX , we use q(A) to denote the (conditional) likelihood under q(·|·)
contributed from the data with predictors x ∈ A. That is

q(A) :=
∏

i:xi∈A

q(yi|xi).

Then conditional on the event that A arises during the recursive partition pro-
cedure on ΩX , we can write q(A) recursively in terms of S(A), J(A), and qAY as
follows

q(A) =

⎧⎨
⎩

q0(A) if S(A) = 1

∏Kj(A)
i=1 q(Aj

i ) if S(A) = 0 and J(A) = j,

where
q0(A) :=

∏
i:xi∈A

q0,AY (yi),

the likelihood from the data with x ∈ A if the partitioning stops on A. Equiva-
lently, we can write

q(A) = S(A)q0(A) + (1− S(A))

KJ(A)(A)∏
i=1

q(A
J(A)
i ). (3.1)

Integrating out the randomness over both sides of Eq. (3.1), we get

Φ(A) = ρ(A)M(A) +
(
1− ρ(A)

)N(A)∑
j=1

λj(A)
∏
i

Φ(Aj
i ), (3.2)
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where

Φ(A) :=

∫
q(A)π(dq |A arises during the recursive partitioning)

is defined to be the marginal likelihood from data with x ∈ A given that A
arises during the recursive partitioning on ΩX , whereas

M(A) :=

∫
q0(A)π(dq0,AY ) (3.3)

is the marginal likelihood from the data with x ∈ A if the recursive par-
titioning procedure stops on A and the integration is taken over the local
OPT(RY ; ρAY ,λA

Y ,αA
Y ) prior for q0,AY . We note that Eqs. (3.1), (3.2) and (3.3)

hold for Bayesian CART as well, with M(A) being the corresponding marginal
likelihood of the local normal model or the multinomial model under the corre-
sponding priors such as those given earlier.

Eq. (3.2) provides a recursive recipe for calculating Φ(A) for all A. It is
recursive in the sense that Φ(A) is computed based on the value of Φ(·) on A’s
children. (Of course, to complete the calculation the recursion must eventually
terminate everywhere on ΩX . We shall describe the terminal conditions in the
next section.) This recursive algorithm is a special case of the forward-backward
algorithm [27].

The next theorem establishes the posterior conjugacy of cond-OPT.

Theorem 3 (Conjugacy). After observing {(x1, y1), (x2, y2), . . . , (xn, yn)} where
given the xi’s, the yi’s are independent with density q(y|x), which has a cond-
OPT prior, the posterior of q(·|·) is again a cond-OPT (with the same partition
rules on ΩX and ΩY as the prior). Moreover, for each A ⊂ ΩX that could arise
during the recursive partitioning, the posterior parameters are given as follows.

1. Stopping probability:

ρ(A|x,y) = ρ(A)M(A)/Φ(A).

2. Selection probabilities:

λj(A|x,y) = λj(A)
(1− ρ(A))

∏Kj(A)
i=1 Φ(Aj

i )

Φ(A)− ρ(A)M(A)
.

3. The local parameters: ρ̃AY , λ̃A
Y , and α̃A

Y are the corresponding posterior
parameters for the local OPT after updating using the observed values for
the response y(A), OPT(RA

Y ; ρ̃AY , λ̃A
Y , α̃A

Y ).

This theorem shows that a posteriori our knowledge about the underlying
conditional distribution of Y givenX can again be represented by the same two-
stage procedure that randomly partitions the predictor space and then generates
the response distribution accordingly on each of the predictor blocks, except
that now the parameters that characterize this two-stage procedure have been
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updated to reflect the information contained in the data. Moreover, the theorem
also provides a recipe for computing these posterior parameters based on Φ(A)
and M(A). Given this exact posterior, Bayesian inference can then proceed—
samples can be drawn from the posterior cond-OPT directly through vanilla
Monte Carlo (as opposed to MCMC) and summary statistics calculated.

In the next section, we provide more details on how to implement such in-
ference in practice. Before that, we present our last theoretical result about the
cond-OPT prior—its posterior consistency, which assures the statistician that
the posterior cond-OPT distribution will “converge” in some sense to the truth
as the amount of data increases. To this end, we first need a notion of neighbor-
hoods for conditional densities under which such convergence holds. We adopt
the notion discussed in [35] and [34], by which a (weak) neighborhood of a con-
ditional density function is defined in terms of a (weak) neighborhood of the
corresponding joint density. More specifically, for a conditional density function
f0(·|·) : ΩY × ΩX → [0,∞), weak neighborhoods with respect to a marginal
density f0

X(·) on ΩX are collections of conditional densities of the form

U =
{
f(·|·) :

∣∣∣ ∫ gif(·|·)f0
Xdμ−

∫
gif0(·|·)f0

Xdμ
∣∣∣ < εi, i = 1, 2, . . . , l

}

where the gi’s are bounded continuous functions on ΩX × ΩY .

Theorem 4 (Weak consistency). Let (x1, y1), (x2, y2), . . . be independent iden-
tically distributed vectors from a probability distribution on ΩX × ΩY , F , with
density dF/dμ = f(x, y) = f(y|x)fX(x). Suppose the conditional density f(·|·)
is generated from a cond-OPT prior for which the conditions in Theorem 2 all
hold. In addition, assume that the conditional density function f(·|·) and the
joint density f(·, ·) are bounded. Then for any weak neighborhood of f(·|·) w.r.t
fX , U , we have

π(U |(x1, y1), (x2, y2), . . . , (xn, yn)) −→ 1

with F∞ probability 1, where π(·|(x1, y1), (x2, y2), . . . , (xn, yn)) denotes the cond-
OPT posterior for f(·|·).

4. Practical implementation

Next we address some practical issues in computing the posterior and imple-
menting the inference. For simplicity, from now on we shall refer to a set A ⊂ ΩX

that can arise during the (Stage I) recursive partitioning procedure as a “node”
(i.e., as a node in the partition tree).

A prerequisite for applying Theorem 3 is the availability of the Φ(A) terms,
which can be determined recursively through Eq. (3.2). Of course, to carry out
the computation of Φ(A) one must specify terminal conditions on Eq. (3.2), or
in other words, on what kind of A’s the recursion should terminate. We call
such nodes terminal nodes.
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There are two kinds of nodes for which the value of Φ(A) is available di-
rectly according to theory, and thus recursion can terminate on them. They
are (i) nodes that cannot be further divided under the partition rule RX , and
(ii) nodes that contain no more than one data point. For a node A that cannot
be further divided, we must have ρ(A) = 1 and so Φ(A) = M(A). For a node A
with no data point, it has no contribution to the likelihood and so Φ(A) = 1. For
a node A with exactly one data point, Φ(A) is the predictive density of the local
OPT on A evaluated at that data point, which is exactly the density of the prior
mean of the local OPT and is directly known when the default symmetric and
self-similar prior specification for the local OPTs is adopted as recommended
in [45].

Note that with these two types of “theoretical” terminal nodes, in principle
the recursion will eventually terminate if one divides the predictor space deep
enough. In practice, however, it is unnecessary to take the recursion all the way
down to these theoretical terminal nodes. Instead, one can adopt early termi-
nation by imposing a technical limit—such as a minimum size (or maximum
depth) of the nodes either in terms of the natural measure μX(A) or the num-
ber of observations therein n(A)—to end the recursion. Nodes that are smaller
than the chosen size threshold are forced to be terminal, which is equivalent to
setting ρ(A) = 1 and thus Φ(A) = M(A) for these nodes. We call these nodes
“technical” terminal nodes.

With these theoretical and technical terminal nodes, one can then compute
Φ(A) through the recursion formula (3.2), and compute the posterior according
to Theorem 3. Putting all the pieces together, we can summarize the procedure
to carry out Bayesian inference with the cond-OPT prior as a four-step recipe:

I. For all terminal nodes, compute Φ(A).
II. For each non-terminal node A (those that are ancestors of the termi-

nal nodes), compute M(A) and use Eq. (3.2) to compute Φ(A) through
bottom-up recursion.

III. Given the values ofM(A) and Φ(A), apply Theorem 3 to get the parameter
values of the posterior cond-OPT distribution.

IV. Sample from the exact posterior by direct simulation of the random two-
stage procedure, and/or compute summary statistics of the posterior.

For the last step, direct simulation from the posterior is straight-forward, but we
have not discussed what summary statistics to compute and how to do that. This
is problem-specific and will be illustrated in our numeric examples in Section 5.
We do note, however, that common summaries such as the posterior predictive
density (PPD) of the cond-OPT are available analytically following a similar
algorithm as the one for computing the PPD of Pólya tree type models given in
[27, Sec. 2.4].

5. Examples

In this section we provide four examples to illustrate inference using the cond-
OPT prior. The first two illustrate the estimation of conditional densities, the
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latter two are for model selection and hypothesis testing. In these examples, the
partition rules used on both ΩX and ΩY are always the coordinate-wise dyadic
mid-split rule. We adopt the same prior specification across all the examples: the
prior stopping probability on each non-terminal node is always set to 0.5, the
prior partition selection probability is always evenly spread over the possible
ways to partition each set, and the probability assignment pseudo-counts for
the local OPTs are all set to 0.5. For continuous sample spaces, nodes at 12
levels down the partition tree, i.e., with μX(A) = μ(ΩX)/212, are set to be the
technical terminal nodes.

Example 1 (Estimating conditional density with abrupt changes over predictor
values). In this example we simulate (X,Y ) pairs according to the following
distributions.

X ∼ Beta(2, 2)

Y |X < 0.25 ∼ Beta(30, 20)

Y |0.25 ≤ X ≤ 0.5 ∼ Beta(10, 30)

Y |X > 0.5 ∼ Beta(0.5, 0.5).

We generate data sets of three different sample sizes, n = 100, n = 500, and
n = 2, 500, and place the cond-OPT prior on the distribution of Y given X.
Following the four-step recipe given in the previous section, we can compute
the posterior cond-OPT and sample from it.

A representative summary of the posterior partitioning mechanism is the
so-called hierarchical maximum a posteriori (hMAP) [45] partition tree, which
can be computed from the posterior analytically [45] and is plotted in Figure 1
for the different sample sizes. (Chipman et al [3] and Wong and Ma [45] both
discussed reasons why the commonly adopted MAP is not a good summary for
tree-structured posteriors due to their multi-level nature. See [45, Sec. 4.2] for
further details and reasons why the hMAP is often preferred to the MAP.)

In Figure 1, within each “leaf” node we plot the corresponding posterior mean
of the local OPT. Also plotted for each node is the posterior stopping proba-
bility. Even with only 100 data points, the posterior suggests that ΩX should
be divided into three pieces—[0,0.25], [0.25,0.5], and [0.5,1]—within which the
conditional distribution of Y |X is homogeneous across X. Note that the pos-
terior stopping probabilities on those three intervals are large, in contrast to
the near 0 values on the larger sets. Reliably estimating the actual conditional
density function on these sets nonparametrically appears to require more than
100 data points. In this example, a sample size of 500 already does a decent
job.

We compare both the model fit and the computing speed of our cond-OPT
prior to two existing Bayesian nonparametric models for conditional densities—
namely the linear dependent Dirichlet process mixture of normals (LDDP) [5]
and the linear dependent Dirichlet process mixture of Bernstein polynomials
(LDBP) [1], both available in the DPpackage in R. In this example and the next,
for LDDP and LDBP, we draw 1,000 posterior samples from the MCMC with
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Fig 1. The hMAP partition tree structures on X and the posterior mean estimate of Y |X
conditional on the random partition for Example 1. For each node, ρ indicates the posterior
stopping probability for each node and n represents the number of data points in each node.
The plot under each stopped node gives the mean of the posterior local OPT for Y within that
node (solid line) along with the true conditional densities (dashed line).
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a 2,000 burn-in period and a thinning interval of 3, and used prior specification
given in the examples of the DPpackage. For details, please see the documenta-
tion for these two functions in the DPpackage manual on CRAN.

To evaluate model fit, we generate an additional testing data set from the true
distribution of (X,Y ), and calculate the log-p score (i.e., the log predictive like-
lihood of the testing set) for the three methods. Table 1 presents the log-p score
for the three methods from a typical simulated data set and the corresponding
computing time on the same laptop computer with an Intel Core-i7 CPU us-
ing a single core without parallelization. A surprising phenomenon is that the
performance of LDBP, in terms of the log-p score for the testing sample, is not
always monotonically increasing in the sample size—that is, a larger training
sample does not always lead to better fit on the testing set. In the particular
simulation reported in Table 1, the performance of LDBP is actually monoton-
ically decreasing with sample size. The cause for this is likely to be that under
that model the conditional density is assumed to be smoothly varying over the
predictors, and so as the true conditional density involves abrupt changes, the
misspecified models can be consistently wrong even with large sample sizes.

Table 1

Log predictive score and computing time for three Bayesian nonparametric models on a
simulated data set in Example 1 at three sample sizes

cond-OPT LDDP LDBP
n = 100 log-p 75.5 17.6 34.3

CPU time (s) 0.48 7.3×102 1.3×102

cond-OPT LDDP LDBP
n = 500 log-p 78.2 24.9 31.4

CPU time (s) 0.82 3.4×103 4.0×102

cond-OPT LDDP LDBP
n = 2500 log-p 81.5 33.1 27.8

CPU time (s) 1.8 1.8×104 1.7×103

The previous example favors our method because (1) there are a small number
of clear boundaries of change for the underlying conditional distribution, and to
a lesser extent (2) those boundaries—namely 0.25 and 0.5—lie on the potential
partition points of the partition rule. In the next example, we examine the case
in which the conditional distribution changes smoothly across a continuous X
without any boundary of abrupt change.

Example 2 (Estimating conditional densities that vary smoothly with pre-
dictor values). In this example we generate (X,Y ) from a bivariate normal
distribution.

(X,Y )′ ∼ BN

((
0.6
0.4

)
,

(
0.12 0.005
0.005 0.12

))
.

We generate a data set of size n = 2, 000, and apply the cond-OPT prior on the
distribution of Y given X as we did in the previous example. Again we compute
the posterior cond-OPT following our four-step recipe. The hMAP tree and the
posterior mean estimate of the conditional density given the random partition is
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presented in Figure 2. Because the underlying predictor space ΩX is unbounded,
for simplicity in the above we used the empirically observed range of X as ΩX ,
which happens to be ΩX = [0.24, 0.92] for our simulated example. (Other ways
to handle this situation include transforming X to have a compact support such
as through a CDF or rank transform.

One interesting observation is that the “leaf” nodes in Figure 2 have very
large (close to 1) posterior stopping probability. This may seem surprising as the
underlying conditional distribution is not the same for any neighboring values of
X. The large posterior stopping probabilities indicate that on those sets, where
the sample size is not large, the gain in achieving better estimate of the common
features of the conditional distribution for nearby X values outweighs the loss
in ignoring the difference among them.

Fig 2. The hMAP tree on ΩX and the predictive conditional density of Y |X within the stopped
sets conditional on the partition tree for a sample of size n = 2000 in Example 2. The plot
under each stopped node gives the mean of the posterior local OPT for Y within that node
(solid line) along with the true conditional densities at the center value of the stopped predictor
intervals (dashed line). The ρ label above each node is the posterior stopping probability for
each node and n represents the number of data points in each node.

Again, to compare the model fit and computational efficiency with LDDP
and LDBP, we repeat a set of simulations with different sample sizes n = 100,
500, and 2500, and again use the log-p score on a testing sample of size 100
to evaluate the performance. The results are summarized in Table 2, and they
mostly confirm our intuition—the smooth priors overall outperform our model,
especially for small sample sizes. The performance difference vanishes as the
sample size increases. The computational advantage of our method remains.

Example 3 (Model selection over binary predictors). Next we show how one
can use cond-OPT to carry out model selection—that is, when multiple pre-
dictors are present, identifying the ones that affect the conditional distribution
of Y . Consider the case in which X = (X1, X2, . . . , X30) ∈ {0, 1}30 forming a
Markov Chain:

X1 ∼ Bernoulli(0.5) and P (Xi = Xi−1|Xi−1) = 0.7
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Table 2

Log predictive score and computing time for three Bayesian nonparametric models on a
simulated data set in Example 2

cond-OPT LDDP LDBP
n = 100 log-p 75.4 103 102

CPU time (s) 0.8 5.3× 102 1.3× 102

cond-OPT LDDP LDBP
n = 500 log-p 86.4 104 104

CPU time (s) 1.4 2.5× 103 3.4× 102

cond-OPT LDDP LDBP
n = 2500 log-p 103 105 105

CPU time (s) 2.5 1.4× 104 1.9× 103

for i = 2, 3, . . . , 30. Suppose the conditional distribution of a continuous response
Y is

Y ∼

⎧⎨
⎩

Beta(1, 6) if (X5, X20, X30) = (1, 0, 1)
Beta(12, 16) if (X5, X20) = (0, 1)
Beta(3, 4) otherwise.

In other words, three predictors X5, X20 and X30 impact the response in an in-
teractive manner. Our interest is in recovering this underlying interactive struc-
ture (i.e. the “model”). To illustrate, we simulate 500 data points from this
scenario and place a cond-OPT prior on Y |X, and consider predictor partitions
up to four levels deep. This is achieved by setting ρ(A) = 1 for A that arises
after four steps of partitioning, and it allows us to search for models involving
up to four-way interactions. We again carry out the four-step recipe to get the
posterior and calculate the hMAP. The hMAP tree structure along with the
predictive conditional density for Y |X within each stopped set given the ran-
dom partition is presented in Figure 3. The posterior concentrates on partitions
involving X5, X20 and X30 out of the 30 variables. While the predictive condi-
tional density for Y |X is very rough given the limited number of data points
in the stopped sets, the posterior recovers the exact interactive structure of the
predictors with little uncertainty.

In addition, we sample from the posterior and use the proportion of times
each predictor appears in the sampled models to estimate the posterior marginal
inclusion probabilities. Our estimates based on 1,000 draws from the posterior
are presented in Figure 4(a). Note that the sample size 500 is so large that the
posterior marginal inclusion probabilities for the three relevant predictors are
all close to 1 while those for the other predictors are close to 0. We carry out
the same simulation with a reduced sample size of 200, and plot the estimated
posterior marginal inclusion probabilities in Figure 4(b). We see that with a
sample size of 200, one can already use the posterior to reliably recover the
relevant predictors.

Example 4 (Test of independence). In this example, we illustrate an appli-
cation of the cond-OPT prior for hypothesis testing. In particular, we use it
to test the independence between X and Y . To begin, note that ρ(A|x,y) in
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Fig 3. The hMAP tree structure on ΩX and the posterior mean estimate of Y |X given the
random partition in each of the stopped sets for Example 3. The bold arrows indicate the “true
model”—predictor combinations that correspond to “non-null” Y |X distributions. For each
node, ρ indicates the posterior stopping probability for each node, λ represents the posterior
selection probability for the most probable direction if the partition does not stop on the node,
and n represents the number of data points in each node.

Fig 4. Estimated posterior marginal inclusion probabilities for the 30 predictors in Exam-
ple 3 for two different sample sizes. The estimates are computed over 1,000 draws from the
corresponding posteriors.

Theorem 3 gives the posterior probability for the conditional distribution of Y
to be constant over all values of X in A, or in other words, for Y to be in-
dependent of X on A. Hence, one can consider ρ(ΩX |x,y) as a score for the
statistical significance of dependence between the observed variables. A permu-
tation null distribution of this statistic can be constructed by randomly pairing
the observed x and y values, and based on this, permutation p-values can be
computed for testing the null hypothesis of independence.

To illustrate, we simulate X = (X1, X2, . . . , X10) for a sample of size 400
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under the same Markov Chain model as in the previous example, and simulate
a response variable Y as follows.

Y ∼

⎧⎨
⎩

Beta(4, 4) if (X1, X2, X5) = (1, 1, 0)
Beta(0.5, 0.5) if (X5, X8, X10) = (1, 0, 0)
Unif[0, 1] otherwise.

In particular, Y is dependent on X but there is no mean or median shift in the
conditional distribution of Y over different values of X. Figure 5 gives the his-
togram of ρ(ΩX |x,y) for 1,000 permuted samples where the vertical dashed line
indicates the ρ(ΩX |x,y) for the original simulated data, which equals 0.0384.
For this particular simulation, 7 out of the 1,000 permuted samples produced a
more extreme test statistic.

Fig 5. Histogram of ρ(ΩX |x,y) for 1,000 permuted samples. The vertical line indicates
ρ(ΩX |x,y) for the original data.

Remark I: Note that by symmetry one can place a cond-OPT prior on the
conditional distribution of X given Y as well and that will produce a corre-
sponding posterior stopping probability ρ(ΩY |y,x). One can thus alternatively
use min{ρ(ΩX |x,y), ρ(ΩY |y,x)} as the test statistic for independence.

Remark II: Testing using the posterior stopping probability ρ(ΩX |x,y) is equiv-
alent to using a Bayes factor (BF). To see this, note that the BF for testing
independence under the cond-OPT can be written as

BFY |X =

∑N(A)
j=1 λj(A)

∏
i Φ(A

j
i )

M(A)

with A = ΩX where the numerator is the marginal conditional likelihood of Y
given X if the conditional distribution of Y is not constant over X (i.e. ΩX is
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divided) and the denominator is that if the conditional distribution of Y is the
same for all X (i.e. ΩX is undivided). By Eq. (3.2) and Theorem 3,

BFY |X =
ρ(ΩX)

1− ρ(ΩX)

(
1

ρ(ΩX |x,y) − 1

)
,

which is in a one-to-one correspondence to ρ(ΩX |x,y) given the prior parame-
ters.

6. Application to real data: Multivariate conditional density
estimation in flow cytometry

In flow cytometry experiments for immunological studies, a number (typically
4 to 10) of biomarkers are measured on large numbers of blood cells. Esti-
mated densities and conditional densities of such data can be used for tasks
such as automatic classification of the cells [30]. We apply cond-OPT to estimate
the conditional density of markers “CD4” and “CD8” given two other markers
“FSC-H” and “FSC-W” in a flow cytometry data set. So in this case both ΩX

and ΩY are two-dimensional. This particular data set contains n = 455, 472
cells. Flow cytometry experiments often involve large numbers of cells, and thus
practical methods must scale well in computing time and memory usage with
respect to the number of observations. This poses great challenge to existing
nonparametric models that require intense MCMC computation. The values of
the four markers are measured in the range of [0,1]. We use maximum level of
partitioning to 10 on both the predictor space ΩX and the response space ΩY

but otherwise the same prior specification as before.
Figure 6 presents the posterior mean of the conditional density of CD4 and

CD8 given FSC-H and FSC-W under the cond-OPT model given the random
partition on the predictor space being the one induced under the hMAP tree,
which splits the space into 50 pieces. A vast majority, in fact 44 out of the 50
predictor blocks are in fact not technical terminal regions, and so the model
indeed smooths the conditional density over the predictor space. Because the
number of predictor blocks is relatively large, we present the estimates for only
16 blocks in Figure 6. The entire computation of the full posterior, the hMAP
partition, as well as the conditional posterior expectation of the conditional
density given the hMAP tree, took about 360 seconds to complete on a single
3.6GHz Intel Core-i7 3820 desktop core without parallelization and required
about 8.2 Gbs of RAM. (Reducing the maximum level of partitions from 10 to 8
will reduce computing time to about 116 seconds and RAM to about 0.6 Gbs.)

7. Discussion

In this work we have introduced a Bayesian nonparametric prior on the space
of conditional densities. This prior, which we call the conditional optional Pólya
tree, is constructed based on a two-stage procedure that first divides the pre-
dictor space ΩX and then generates the conditional distribution of the response
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Fig 6. The posterior mean conditional densities of the two markers CD4 and CD8 given two
other markers FSC-H and FSC-W conditional on the hMAP partition on FSC-H and FSC-
W for the flow cytometry data set. The first and third columns indicate the corresponding
predictor block (in red) in the hMAP partition with the number of observations labeled on
top while the plots to their right illustrate the predictive conditional density on that block
conditional on the random partition. Due to space constraint, we only show 16 out of the 50
predictor blocks.
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through local OPT processes. We have established several important theoretical
properties of this prior, namely large support, conjugacy and posterior consis-
tency, and have provided a practical recipe for Bayesian inference using this
prior.

The construction of this prior does not depend on the marginal distribution
of X. One particular implication is that one can transform X before apply-
ing the prior on Y |X without invalidating the posterior inference. (Note that
transforming X is equivalent to choosing a different partition rule on ΩX .) In
certain situations it is desirable to perform such a transformation on X. For
example, if the data points are very unevenly spread over ΩX , then some parts
of the space may contain a very small number of data points. There the poste-
rior is mostly dominated by the prior specification and does not provide much
information about the underlying conditional distribution. One way to mitigate
this problem is to transform X so that the data are more evenly distributed
over ΩX . When ΩX is one-dimensional, for example, this can be achieved by a
rank transformation on X. Another situation in which a transformation of X
may be useful is when the dimensionality of X is very high. In this case a di-
mensionality reduction transformation can be applied on X before carrying out
the inference. Of course, in doing so one often loses the ability to interpret the
posterior conditional distribution of Y directly in terms of the original predic-
tors. An alternative approach when X is high-dimensional is through variable
selection that imposes certain sparsity assumptions, i.e., only a small number of
predictors are affecting the conditional density. Exact calculation of full poste-
rior and the marginal inclusion probabilities as we have carried out in Example 3
is impractical when the number of predictors is large (> 25 ∼ 30). One strategy
to overcome this difficulty is through sequential importance sampling as the one
proposed in [26].

A general limitation of CART type randomized partitioning methods is that
they require a natural ordering of the space to be partitioned on. General par-
titioning strategies can be designed for unordered spaces, but then the compu-
tational efficiency of the proposed model would be lost.

Finally, we note that while we have used recursive partitioning in conjunction
with the OPT to build a model for conditional density, one can build such models
by replacing the OPT with other multi-scale density models in the family of
Pólya tree type models, such as the more recently introduced adaptive Pólya
tree (APT) [27].

Software

The proposed model has been implemented in the R package PTT (for Pólya
tree type models) as the function cond.opt. A variant of the model that re-
places the OPT with an APT is also implemented in the package as function
cond.apt. This package is currently available for download at https://github.
com/MaStatLab/PTT and will be submitted to CRAN.

https://github.com/MaStatLab/PTT
https://github.com/MaStatLab/PTT
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Appendix: Proofs

Proof of Lemma 1. The proof of this lemma is very similar to that of Theorem 1
in [45]. Let T k

1 be the part of ΩX that has not been stopped after k levels of
recursive partitioning. The random partition of ΩX after k levels of recursive
partitioning can be thought of as being generated in two steps. First suppose
there is no stopping on any set and let J∗(k) be the collection of partition
selection variables J generated in the first k levels of recursive partitioning.
Let Ak(J∗(k)) be the collection of sets A that arise in the first k levels of non-
stopping recursive partitioning, which is determined by J∗(k). Then we generate
the stopping variables S(A) for each A ∈ Ak(J∗(k)) successively for k = 1, 2, . . .,
and once a set is stopped, let all its descendants be stopped as well. Now for
each A ∈ Ak(J∗(k)), let Ik(A) be the indicator for A’s stopping status after k
levels of recursive partitioning, with Ik(A) = 1 if A is not stopped and = 0
otherwise.

E(μX(T k
1 )|J∗(k)) = E

⎛
⎝ ∑

A∈Ak(J∗(k))

μX(A)Ik(A)|J∗(k)

⎞
⎠

=
∑

A∈Ak(J∗(k))

μX(A)E(Ik(A)|J∗(k))

≤ μX(ΩX)(1− δ)k.

Hence E(μX(T k
1 )) ≤ μX(ΩX)(1− δ)k, by Markov inequality and Borel-Contelli

lemma, we have μX(T k
1 ) ↓ 0 with probability 1.

Proof of Theorem 2. We prove only the second result as the first follows by
choosing fX(x) ≡ 1/μX(ΩX). Also, we consider only the case when ΩX and
ΩY are both compact Euclidean rectangles, because the cases when at least
one of the two spaces is finite follow as simpler special cases. For x ∈ ΩX and
y ∈ ΩY , let f(x, y) := fX(x)f(y|x) denote the joint density. First we assume
that the joint density f(x, y) is uniformly continuous. In this case it is bounded
on ΩX × ΩY . We let M := sup f(x, y) and

δ(ε) := sup
|x1−x2|+|y1−y2|<ε

|f(x1, y1)− f(x2, y2)|.

By uniform continuity, we have δ(ε) ↓ 0 as ε ↓ 0. In addition, we define

δX(ε) := sup
|x1−x2|<ε

|fX(x1)− fX(x2)|

≤
∫

sup
|x1−x2|<ε

|f(x1, y)− f(x2, y)|μY (dy) ≤ δ(ε)μY (ΩY ).

Note that in particular the continuity of f(x, y) implies the continuity of fX(x).
Let σ > 0 be any positive constant. Choose a positive constant ε(σ) such
that δX(ε(σ)) = δ(ε(σ))μY (ΩY ) < max(σ/2, σ3/2). Because all the param-
eters in the cond-OPT are uniformly bounded away from 0 and 1, there is
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positive probability that ΩX will be partitioned into ΩX = ∪K
i=1Bi where the

diameter of each Bi is less than ε(σ), and the partition stops on each of the
Bi’s. (The existence of such a partition follows from the fine partition crite-
rion.) Let Ai = Bi ∩ {X : fX(x) ≥ σ}, P (X ∈ Ai) =

∫
Ai

fX(x)μX(dx),

and fi(y) :=
∫
Ai

f(x, y)μX(dx)/μX(Ai) if μX(Ai) > 0, and 0 otherwise. Let

I ⊂ {1, 2, . . . ,K} be the set of indices i such that μX(Ai) > 0. Then∫
|q(y|x)− f(y|x)|fX(x)μ(dx× dy)

≤
∫
fX(x)<σ

|q(y|x)− f(y|x)|fX(x)μ(dx× dy)

+
∑
i∈I

∫
Ai×ΩY

∣∣∣q(y|x)− fi(y) ·
μX(Ai)

P (X ∈ Ai)

∣∣∣fX(x)μ(dx× dy)

+
∑
i∈I

∫
Ai×ΩY

fi(y)
∣∣∣ μX(Ai)

P (X ∈ Ai)
− 1

fX(x)

∣∣∣fX(x)μ(dx× dy)

+
∑
i∈I

∫
Ai×ΩY

∣∣∣fi(y)− f(x, y)
∣∣∣μ(dx× dy).

Let us consider each of the four terms on the right hand side in turn. First,∫
fX(x)<σ

|q(y|x)− f(y|x)|fX(x)μ(dx× dy) ≤ 2σμX(ΩX).

Note that for each i ∈ I, fi(y)μX(Ai)/P (X ∈ Ai) is a density function in y.
Therefore by the large support property of the OPT prior (Theorem 2 in [45]),
with positive probability,∫

ΩY

∣∣∣q0,Bi

Y (y)− fi(y) ·
μX(Ai)

P (X ∈ Ai)

∣∣∣μY (dy) < σ,

and so∫
Ai×ΩY

∣∣∣q(y|x)− fi(y) ·
μX(Ai)

P (X ∈ Ai)

∣∣∣fX(x)μ(dx× dy) < σP (X ∈ Ai)

for all i ∈ I. Also, for any x ∈ Ai, by the choice of ε(σ),∣∣∣ μX(Ai)

P (X ∈ Ai)
− 1

fX(x)

∣∣∣ ≤ δX(ε(σ))

σ(σ − δX(ε(σ))
≤ σ3/2

σ2/2
= σ.

Thus∫
Ai×ΩY

fi(y)
∣∣∣ μX(Ai)

P (X ∈ Ai)
− 1

fX(x)

∣∣∣fX(x)μ(dx×dy) ≤ σMμY (ΩY )P (X ∈ Ai).

Finally, again by the choice of ε(σ), |fi(y)− f(x, y)| ≤ δ(ε(σ)) < σ, and so∫
Ai×ΩY

∣∣∣fi(y)− f(x, y)
∣∣∣μ(dx× dy) < σμY (ΩY )μX(Ai).
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Therefore for any τ > 0, by choosing a small enough σ, we can have∫
|q(y|x)− f(y|x)|fX(x)μ(dx× dy) < τ

with positive probability. This completes the proof of the theorem for contin-
uous f(x, y). Now we can approximate any density function f(x, y) arbitrarily
close in L1 distance by a continuous one f̃(x, y). The theorem still holds be-
cause∫

|q(y|x)− f(y|x)|fX(x)μ(dx× dy) ≤
∫

q(y|x)|fX(x)− f̃X(x)|μ(dx× dy)

+

∫
|q(y|x)− f̃(y|x)|f̃X(x)μ(dx× dy)

+

∫
|f̃(x, y)− f(x, y)|μ(dx× dy).

≤
∫

|q(y|x)− f̃(y|x)|f̃X(x)μ(dx× dy)

+ 2

∫
|f̃(x, y)− f(x, y)|μ(dx× dy),

where f̃X(x) and f̃(y|x) denote the corresponding marginal and conditional
density functions for f̃(x, y).

Proof of Theorem 3. Given that a set A is reached during the random parti-
tioning steps on ΩX , Φ(A) is the marginal conditional likelihood of

{Y (A) = y(A)} given {X(A) = x(A)}.

The first term on the right hand side of Eq. (3.2), ρ(A)M(A), is the marginal
conditional likelihood of

{Stop partitioning on A, Y (A) = y(A)} given {X(A) = x(A)}.

Each summand in the second term, (1− ρ(A))λj(A)
∏

i Φ(A
j
i ), is the marginal

conditional likelihood of

{Partition A in the jth way, Y (A) = y(A)} given { X(A) = x(A)}.

Thus the conjugacy of the prior as well as the posterior updates for ρ, λj and
OPT(RA

Y ; ρAY ,λA
Y ,αA

Y ) follow from Bayes’ Theorem and the posterior conjugacy
of the standard optional Pólya tree prior (Theorem 3 in [45]).

Proof of Theorem 4. By Theorem 2.1 in [34], which follows directly from
Schwartz’s theorem (see [38] and [14, Theorem 4.4.2]), we just need to prove
that the prior places positive probability mass in arbitrarily small Kullback-
Leibler (K-L) neighborhoods of f(·|·) w.r.t fX . Here a K-L neighborhood w.r.t
fX is defined to be the collection of conditional densities
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Kε(f) =
{
h(·|·) :

∫
f(y|x) log f(y|x)

h(y|x)fX(x)μ(dx× dy) < ε
}

for some ε > 0.
To prove this, we just need to show that any conditional density that satisfies

the conditions given in the theorem can be approximated arbitrarily well in K-L
distance by a piecewise constant conditional density of the sort that arises from
the cond-OPT procedure. We first assume that f(·|·) is continuous. Following
the proof of Theorem 2, let δ(ε) denote the modulus of continuity of f(·|·). Let
ΩX = ∪K

i=1Ai be a reachable partition of ΩX such that the diameter of each
partition block Ai is less than ε. Next, for each Ai, let ΩY = ∪N

j=1Bij be a

partition on ΩY allowed under OPT(RY ; ρAi

Y ,λAi

Y ,αAi

Y ) such that the diameter
of each Bij is also less than ε. Let

gij = sup
x∈Ai,y∈Bij

f(y|x) and gi(y) =
∑
j

gijIBij (y).

Let Gi =
∫
Ai×ΩY

gi(y)fX(x)μ(dx× dy). Then

0 ≤
∑
i

Gi − 1 =
∑
i

∫
Ai×ΩY

(
gi(y)− f(y|x)

)
fX(x)dμ ≤ δ(2ε)μY (ΩY ),

and so
∑

i Gi ≤ 1 + δ(2ε)μY (ΩY ).

Now let g(y|x) =
∑

i

(
gi(y)/

∫
ΩY

gi(ỹ)μY (dỹ)
)
IAi(x), which is a step func-

tion that can arise from the cond-OPT prior. Then

0 ≤
∫

f(y|x) log
(
f(y|x)/g(y|x)

)
fX(x)dμ

=
∑
i

(∫
Ai×ΩY

f(y|x) log
(
f(y|x)/gi(y)

)
fX(x)dμ

+

∫
Ai×ΩY

f(y|x) log
(∫

ΩY

gi(ỹ)μY (dỹ)

)
fX(x)dμ

)

≤
∑
i

log

(∫
ΩY

gi(ỹ)μY (dỹ)

)
P (X ∈ Ai)

≤ log

(∑
i

∫
ΩY

gi(ỹ)μY (dỹ)P (X ∈ Ai)

)
= log(

∑
i

Gi) ≤ δ(2ε)μY (ΩY ),

which can be made arbitrarily close to 0 by choosing a small enough ε. Now if
f(·|·) is not continuous, then for any ε′ > 0, there exists a compact set E ⊂
ΩX × ΩY such that f(·|·) is uniformly continuous on E and μ(Ec) < ε′. Now
let

gij =

(
sup

(x,y)∈E∩(Ai×Bij)

f(y|x) + δ(ε/2)

)
∨ ε′′
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for some constant ε′′ > 0, while keeping the definitions of gi, Gi and g(y|x) in
terms of gij unchanged. Let M be a finite upperbound of f(·|·) and f(·, ·). We
have ∑

i

Gi − 1 =
∑
i

∫
E∩(Ai×ΩY )

(
gi(y)− f(y|x)

)
fX(x)dμ

+
∑
i

∫
Ec∩(Ai×ΩY )

(
gi(y)− f(y|x)

)
fX(x)dμ.

Thus, ∑
i

Gi − 1 ≥ δ(ε/2)μY (ΩY )− (2M + ε′′)MμY (ΩY )ε′,

which is positive for small enough ε′. At the same time,∑
i

Gi − 1 ≤
(
δ(2ε) + ε′′

)
μY (ΩY ) + (2M + ε′′)MμY (ΩY )ε′,

which can be made arbitrarily small by taking ε, ε′, and ε′′ all ↓ 0.
Now

0 ≤
∫

f(y|x) log
(
f(y|x)/g(y|x)

)
fX(x)dμ

=
∑
i

(∫
Ai×ΩY

f(y|x) log
(
f(y|x)/gi(y)

)
fX(x)dμ

+

∫
Ai×ΩY

f(y|x) log
(∫

ΩY

gi(ỹ)μY (dỹ)

)
fX(x)dμ

)

=
∑
i

∫
E∩(Ai×ΩY )

f(y|x) log
(
f(y|x)/gi(y)

)
fX(x)dμ

+
∑
i

∫
Ec∩(Ai×ΩY )

f(y|x) log
(
f(y|x)/gi(y)

)
fX(x)dμ

+
∑
i

∫
Ai×ΩY

f(y|x) log
(∫

ΩY

gi(ỹ)μY (dỹ)

)
fX(x)dμ

≤ 0 +Mε′ log(M/ε′′) + log(
∑
i

Gi)

≤ Mε′ log(M/ε′′) +
(
δ(2ε) + ε′′

)
μY (ΩY ) + (2M + ε′′)MμY (ΩY )ε′.

The right hand side ↓ 0 if we take ε ↓ 0 and ε′ = ε′′ ↓ 0. This completes the
proof.
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trees and random distributions. Ann. Statist. 20, 3, 1203–1221. MR1186247

[32] Müller, P., Erkanli, A., and West, M. (1996). Bayesian curve fit-
ting using multivariate normal mixtures. Biometrika 83, 1 (Mar.), 67–79.
http://dx.doi.org/10.1093/biomet/83.1.67. MR1399156

http://eprints.qut.edu.au/5939/
http://www.ams.org/mathscinet-getitem?mr=1689221
http://www.ams.org/mathscinet-getitem?mr=1951256
http://www.ams.org/mathscinet-getitem?mr=2279479
http://www.ams.org/mathscinet-getitem?mr=1905751
http://www.ams.org/mathscinet-getitem?mr=2054299
http://www.ams.org/mathscinet-getitem?mr=2836406
http://www.ams.org/mathscinet-getitem?mr=1186248
http://dx.doi.org/10.2307/2288870
http://www.ams.org/mathscinet-getitem?mr=0971380
http://dx.doi.org/10.3150/13-BEJ521
http://www.ams.org/mathscinet-getitem?mr=3217444
http://www.ams.org/mathscinet-getitem?mr=1842342
http://www.ams.org/mathscinet-getitem?mr=3367265
http://projecteuclid.org/euclid.ba/1473276260
http://www.ams.org/mathscinet-getitem?mr=2896856
http://www.ams.org/mathscinet-getitem?mr=1186247
http://dx.doi.org/10.1093/biomet/83.1.67
http://www.ams.org/mathscinet-getitem?mr=1399156


A multi-scale prior for conditional distributions 1325

[33] Norets, A. and Pelenis, J. (2012). Bayesian modeling of joint and con-
ditional distributions. Journal of Econometrics 168, 2, 332–346. http://
www.sciencedirect.com/science/article/pii/S0304407612000577.
MR2923772

[34] Norets, A. and Pelenis, J. (2014). Posterior consistency in conditional
density estimation by covariate dependent mixtures. Econometric Theory
30, 3 (006), 606–646. https://www.cambridge.org/core/article/div-class-
title-posterior-consistency-in-conditional-density-estimation-by-covariate-
dependent-mixtures-div/68481163FABF988BDBF92699F00F22DE.
MR3205608

[35] Pati, D., Dunson, D., and Tokdar, S. (2011). Posterior consistency
in conditional distribution estimation. Tech. rep., Duke University Depart-
ment of Statistical Science.
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