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Abstract: We consider the task of learning the structure of the graph
underlying a mutually-exciting multivariate Hawkes process in the high-
dimensional setting. We propose a simple and computationally inexpensive
edge screening approach. Under a subset of the assumptions required for pe-
nalized estimation approaches to recover the graph, this edge screening ap-
proach has the sure screening property: with high probability, the screened
edge set is a superset of the true edge set. Furthermore, the screened edge set
is relatively small. We illustrate the performance of this new edge screening
approach in simulation studies.
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1. Introduction

1.1. Overview of the multivariate Hawkes process

In a seminal paper, Hawkes (1971) proposed the multivariate Hawkes process, a
multivariate point process model in which a past event may trigger the occur-
rence of future events. The Hawkes process and its variants have been widely
applied to model recurrent events, with notable applications in modeling earth-
quakes (Ogata, 1988), crime rates (Mohler et al., 2011), interactions in social
networks (Simma and Jordan, 2012; Perry and Wolfe, 2013; Zhou, Zha and Song,
2013a,b), financial events (Chavez-Demoulin, Davison and McNeil, 2005; Bow-
sher, 2007; Aı̈t-Sahalia, Cacho-Diaz and Laeven, 2015), and spiking histories of
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neurons (see e.g., Brillinger, 1988; Okatan, Wilson and Brown, 2005; Paninski,
Pillow and Lewi, 2007; Pillow et al., 2008).

In this section, we provide a very brief review of the multivariate Hawkes
process. A more comprehensive discussion can be found in Liniger (2009) and
Zhu (2013).

Following Brémaud and Massoulié (1996), we define a simple point process
N on R

+ as a family {N(A)}A∈B(R+) taking integer values (including positive
infinity), where B(R+) denotes the Borel σ-algebra of the positive half of the
real line. Further let t1, t2, . . . ∈ R

+ be the event times of N . In this notation,
N(A) =

∑
i 1[ti∈A] for A ∈ B(R+). We write N

(
[t, t + dt)

)
as dN(t), where dt

denotes an arbitrary small increment of t. Let Ht be the history of N up to time
t. Then the Ht-predictable intensity process of N is defined as

λ(t)dt = P(dN(t) = 1 | Ht). (1)

Now suppose that N is a marked point process, in which each event time
ti is associated with a mark mi ∈ {1, . . . , p} (see e.g., Definition 6.4.I. in Da-
ley and Vere-Jones, 2003). We can then view N as a multivariate point pro-
cess

(
Nj

)
j=1,...,p

, of which the jth component process is given by Nj(A) =∑
i 1[ti∈A,mi=j] for A ∈ B(R+). To simplify the notation, we let tj,1, tj,2, . . . ∈

R
+ denote the event times of Nj .
The intensity of the jth component process is

λj(t)dt = P(dNj(t) = 1 | Ht).

In the case of the linear Hawkes process, this function takes the form (Brémaud
and Massoulié, 1996; Hansen, Reynaud-Bouret and Rivoirard, 2015)

λj(t) = μj +

p∑
k=1

⎛⎝ ∑
i:tk,i≤t

ωj,k(t− tk,i)

⎞⎠ . (2)

We refer to μj ∈ R as the background intensity, and ωj,k(·) : R+ �→ R as the
transfer function.

For p fixed, Brémaud and Massoulié (1996) established that the linear Hawkes
process with intensity function (2) is stationary given the following assumption.

Assumption 1. Let Ω be a p × p matrix whose entries are Ωj,k =∫∞
0

|ωj,k(Δ)| dΔ, for j, k = 1, . . . , p. We assume that the spectral norm of Ω
is strictly less than 1, i.e., Γmax(Ω) ≤ γΩ < 1, where γΩ is a generic constant.

We now define a directed graph with node set {1, . . . , p} and edge set

E ≡ {(j, k) : ωj,k �= 0, 1 ≤ j, k ≤ p} , (3)

for ωj,k given in (2). Let

s ≡ max
1≤j≤p

p∑
k=1

1{(j,k)∈E} (4)
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denote the maximum in-degree of the nodes in the graph. In this paper, we
propose a simple screening procedure that can be used to obtain a small superset
of the edge set E .

1.2. Estimation and theory for the Hawkes process

We first consider the low-dimensional setting, in which the dimension of the
process, p, is fixed, and T , the time period during which the point process is
observed, is allowed to grow. In this setting, asymptotic properties such as the
central limit theorem have been established; for instance, see Bacry et al. (2013)
and Zhu (2013). Consequently, estimating the edge set E is straightforward in
low dimensions.

In high dimensions, when p might be large, we can fit the Hawkes process
model using a penalized estimator of the form

minimize
ωj,k∈F,1≤j,k≤p

L
(
ωj,k; {Nj}pj=1

)
+ λ

∑
j,k

P
(
ωj,k; {Nj}pj=1

)
, (5)

where L
(
· ; {Nj}pj=1

)
is a loss function, based on, e.g., the log-likelihood (Bacry,

Gäıffas and Muzy, 2015) or least squares (Hansen, Reynaud-Bouret and Rivoir-
ard, 2015); P

(
· ; {Nj}pj=1

)
is a penalty function, such as the lasso (Hansen,

Reynaud-Bouret and Rivoirard, 2015); λ is a nonnegative tuning parameter;
and F is a suitable function class. Then, a natural estimator for E is {(j, k) :
ω̂j,k �= 0}.

Recently, Reynaud-Bouret and Schbath (2010), Bacry, Gäıffas and Muzy
(2015), and Hansen, Reynaud-Bouret and Rivoirard (2015) have established
that under certain assumptions, penalized estimation approaches of the form
(5) are consistent in high dimensions, provided that the edge set E is sparse.
For instance, Hansen, Reynaud-Bouret and Rivoirard (2015) establish the ora-
cle inequality of the lasso estimator for the Hawkes process, given that certain
conditions hold on the observed event times. However, to show that these condi-
tions hold with high probability for arbitrary samples, these theoretical results
require that the point process is mutually-exciting — that is, an event in one
component process can increase, but cannot decrease, the probability of an event
in another component process. This amounts to assuming that ωj,k(Δ) ≥ 0 for
all Δ ≥ 0, for ωj,k defined in (1).

When the dimension p is large, penalized estimation procedures of the form
(5) (Bacry, Gäıffas and Muzy, 2015; Hansen, Reynaud-Bouret and Rivoirard,
2015) become computationally expensive: they require O(Tp2) operations per
iteration in an iterative algorithm. This is problematic in contemporary applica-
tions, in which p can be on the order of tens of thousands (Ahrens et al., 2013).
These concerns motivate us to propose a simple and computationally-efficient
edge screening procedure for estimating the true edge set E in high dimensions.
Under very few assumptions, our proposed screening procedure is guaranteed
to select a small superset of the true edge set E .
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1.3. Organization of paper

The rest of this paper proceeds as follows. In Section 2, we introduce our screen-
ing procedure for estimating the edge set E , and establish its theoretical prop-
erties. We present simulation results in support of our proposed procedure in
Section 3. Proofs of theoretical results are presented in Section 4, and the Dis-
cussion is in Section 5.

2. An edge screening procedure

2.1. Approach

For j = 1, . . . , p, let Λj denote the mean intensity of the jth point process
introduced in Section 1. That is,

Λj ≡ E[dNj(t)]/dt. (6)

Following Equation 5 of Hawkes (1971), for any Δ ∈ R, the (infinitesimal)
cross-covariance of the jth and kth processes is defined as

Vj,k(Δ) ≡
{
E[dNj(t)dNk(t−Δ)]/{dtd(t−Δ)} − ΛjΛk j �= k

E[dNk(t)dNk(t−Δ)]/{dtd(t−Δ)} − Λ2
k − Λkδ(Δ) j = k

, (7)

where δ(·) is the Dirac delta function, which satisfies
∫∞
−∞ δ(x)dx = 1 and

δ(x) = 0 for x �= 0.
For a given value of Δ, we can estimate the cross-covariance function Vj,k(Δ)

using kernel smoothing:

V̂j,k(Δ)

=

⎧⎨⎩
1
Th

∫∫
[0,T ]2

K
(

(t′−t)+Δ
h

)
dNj(t)dNk(t

′)− 1
T 2Nj([0, T ])Nk([0, T ]) j �= k

1
Th

∫∫
[0,T ]2\{t=t′} K

(
(t′−t)+Δ

h

)
dNk(t)dNk(t

′)− 1
T 2N

2
k ([0, T ]) j= k

,

(8)

where K(·) is a kernel function with bandwidth h, and
∫ T

0
f(t)dNj(t) is the

Stieltjes integral, defined as∫ T

0

f(t)dNj(t) ≡
∑

i:tj,i∈[0,T ]

f(tj,i).

In this paper, we focus on kernel functions that are bounded by 1 and are defined
on a bounded support, i.e., 0 ≤ K(x/h) ≤ 1 for x ∈ [−h, h], and K(x/h) = 0
for x /∈ [−h, h] (e.g., the Epanechnikov kernel).

Let B denote a tuning parameter that defines the time range of interest for
Vj,k(Δ), i.e. Δ ∈ [−B,B]. For any ζ, we define the set of screened edges as

Ê(ζ) ≡ {(j, k) : ‖V̂j,k‖2,[−B,B] > ζ}, (9)

where ‖f‖2,[l,u] ≡
{ ∫ u

l
f2(t)dt

}1/2
is the �2-norm of a function f on the interval

[l, u].
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The screened edge set Ê(ζ) in (9) can be calculated quickly: ‖V̂j,k‖2,[−B,B] can

be calculated in O(T ) computations, and so Ê(ζ) can be calculated in O(Tp2)
computations. The procedure can be easily parallellized.

There are three tuning parameters in the procedure: the bandwidth h in (8),
the range B in (9), and the screening threshold ζ in (9). The bandwidth h can be
chosen by cross-validation. The range B can be selected based on the problem
setting. For instance, when using the multivariate Hawkes process to model a
spike train data set in neuroscience, we can set B to equal the maximum time
gap between a spike and the spike it can possibly evoke. The choice of screening
threshold ζ can be determined based on the sparsity level that we expect based
on our prior knowledge. Alternatively, we may wish to use a small value of ζ in
order to reduce the chance of false negative edges in Ê(ζ), or a larger value due
to limited computational resources in our downstream analysis.

2.2. Theoretical results

We consider the asymptotics of triangular arrays (Greenshtein and Ritov, 2004),
where the dimension p is allowed to grow with T . When unrestricted, it is
possible to cook up extreme networks, where, for instance, the mean intensity
Λj in (6) diverges to infinity. To avoid such cases, we pose the following regularity
assumption.

Assumption 2. There exist positive constants Λmin, Λmax, and Vmax such that
0 < Λmin ≤ Λj ≤ Λmax and maxΔ∈R |Vj,k(Δ)| ≤ Vmax for all 1 ≤ j, k ≤ p, where
Λj and Vj,k are defined in (6) and (7), respectively. Furthermore, Λmin, Λmax,
and Vmax are generic constants that do not depend on p.

Next, we make some standard assumptions on the transfer functions ωj,k in
(2).

Assumption 3. The following hold:

(a) The transfer functions are non-negative: ωj,k(Δ) ≥ 0 for all Δ ≥ 0.
(b) There exists a positive constant βmin such that

min
(j,k):ωj,k �=0

(∫ ∞

0

ω2
j,k(Δ)dΔ

)
≥ β2

min.

(c) There exist positive constants b, θ0, and C such that, for all 1 ≤ j, k ≤ p,
and for any Δ1, Δ2 ∈ R, supp(ωj,k) ⊂ (0, b], maxΔ |ωj,k(Δ)| ≤ C, and
|ωj,k(Δ1)− ωj,k(Δ2)| ≤ θ0|Δ1 −Δ2|.

Assumption 3(a) guarantees that the multivariate Hawkes process is mutually-
exciting: that is, an event may trigger (but cannot inhibit) future events. This
assumption is shared by the original proposal of Hawkes (1971). Furthermore,
existing theory for penalized estimators for the Hawkes process requires this as-
sumption (Bacry, Gäıffas and Muzy, 2015; Hansen, Reynaud-Bouret and Rivoir-
ard, 2015).
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Assumption 3(b) guarantees that the non-zero transfer functions are non-
negligible. Such an assumption is needed in order to establish variable selection
consistency (Bühlmann and van de Geer, 2011; Wainwright, 2009) for the pe-
nalized estimator (5).

Assumption 3(c) guarantees that the transfer functions are sufficiently
smooth; this guarantees that the cross-covariances are smooth (see Section A.2
in Appendix), and hence can be estimated using a kernel smoother (8). Instead
of Assumption 3(c), we could assume that ωj,k is an exponential function (Bacry,
Gäıffas and Muzy, 2015) or that it is well-approximated by a set of smooth basis
functions (Hansen, Reynaud-Bouret and Rivoirard, 2015).

Recall that s was defined in (4). We now state our main result.

Theorem 1. Suppose that the Hawkes process (2) satisfies Assumptions 1–3.
Let h = c1s

−1/2T−1/6 in (8) and ζ = 2c2s
1/2T−1/6 in (9) for some constants

c1 and c2. Then, for some positive constants c3 and c4, with probability at least
1− c3T

7/6s1/2p2 exp(−c4T
1/6),

(a) E ⊂ Ê(ζ);
(b) card

(
Ê(ζ)

)
= O

(
card(E)s−1T 1/3γΩ(1− γΩ)

−2Λ2
max

)
.

Theorem 1(a) guarantees that, with high probability, the screened edge set

Ê(ζ) contains the true edge set E . Therefore, screening does not result in false
negatives. This is referred to as the sure screening property in the literature (Fan
and Lv, 2008; Fan, Samworth and Wu, 2009; Fan and Song, 2010; Fan, Feng
and Song, 2011; Fan, Ma and Dai, 2014; Liu, Li and Wu, 2014; Song et al., 2014;
Luo, Song and Witten, 2014). Typically, establishing the sure screening property
requires assuming that the marginal association between a pair of nodes in E
is sufficiently large; see e.g. Condition 3 in Fan and Lv (2008) and Condition C
in Fan, Feng and Song (2011). In contrast, Theorem 1(a) requires only that the
conditional association between a pair of nodes in E is sufficiently large; see
Assumption 3(b).

Theorem 1(b) guarantees that Ê(ζ) is a relatively small set, on the
order of O(card(E)s−1T 1/3). Suppose that p2 ∝ s−1/2 exp(c4T

1/6−ε) for some
positive constant ε < 1/6; this is the high-dimensional regime, in which the

probability statement in Theorem 1 converges to one. Then the size of Ê(ζ),
O(card(E)s−1T 1/3), can be much smaller than p2, the total number of node
pairs. We note that the rate of T 1/3 is comparable to existing results for non-
parametric screening in the literature (see e.g., Fan, Feng and Song 2011; Fan,
Ma and Dai 2014).

To summarize, Theorem 1 guarantees that under a small subset of the as-
sumptions required for penalized estimation methods to recover the edge set E ,
the screened edge set Ê(ζ) (9) is small and contains no false negatives. We note
that this is not the case for other types of models. For instance, in the case of
the Gaussian graphical model, Luo, Song and Witten (2014) considered estimat-
ing the conditional dependence graph by screening the marginal covariances. In
order for this procedure to have the sure screening property, one must make
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an assumption on the minimum marginal covariance associated with an edge in
the graph, which is not required for variable selection consistency of penalized
estimators (Cai, Liu and Luo, 2011; Luo, Song and Witten, 2014; Ravikumar
et al., 2011; Saegusa and Shojaie, 2016).

It is important to note that Theorem 1 considers an oracle procedure, where
the tuning parameters depend on unknown parameters. The heuristic selection
guidelines suggested at the end of Section 2.1 may not satisfy the requirements
of Theorem 1. We leave the discussion of optimal tuning parameter selection
criteria for future research. Also, note that the bandwidth h ∝ T−1/6 is wider
than the typical bandwidth for kernel smoothing, which is T−1/3 (Tsybakov,

2009). This is because we aim to minimize a concentration bound on V̂j,k −
Vj,k (see the proof of Lemma 3 in the Appendix), rather than the usual mean
integrated square error as in, e.g., Theorem 1.1 in Tsybakov (2009).

Remark 1. In light of Theorem 1, consider applying a constraint induced by
Ê(ζ) to (5):

minimize
ωj,k∈F,1≤j,k≤p

L
(
ωj,k; {Nj}pj=1

)
+ λ

∑
j,k

P
(
ωj,k; {Nj}pj=1

)
subject to ωj,k = 0 for (j, k) /∈ Ê(ζ). (10)

Theorem 1 can be combined with existing results on consistency of penalized
estimators of the Hawkes process (Bacry, Gäıffas and Muzy, 2015; Hansen,
Reynaud-Bouret and Rivoirard, 2015) in order to establish that (10) results
in consistent estimation of the transfer functions ωj,k. As a concrete example,
Hansen, Reynaud-Bouret and Rivoirard (2015) considered (10) with
L
(
ωj,k; {Nj}pj=1

)
taken to be the least-squares loss, and P

(
ωj,k; {Nj}pj=1

)
a

lasso-type penalty. Our simulation experiments in Section 3 indicate that in
this setting, (10) can actually have better small-sample performance than (5)
when p is very large. Furthermore, solving (10) can be much faster than solv-
ing (5): the former requires O(T 4/3s−1card(E)) computations per iteration,
compared to O(Tp2) per iteration for the latter (using e.g. coordinate descent,
Friedman, Hastie and Tibshirani, 2010). In the high-dimensional regime when
p2 ∝ s−1/2 exp(c4T

1/6−ε) for some positive constant ε < 1/6, we have that
T 4/3s−1card(E) � Tp2. We note that in order to solve (10), we must first com-

pute Ê(ζ), which requires an additional one-time computational cost of O(Tp2).

3. Simulation

3.1. Simulation set-up

In this section, we investigate the performance of our screening procedure in a
simulation study with p = 100 point processes. Intensity functions are given by
(2), with μj = 0.75 for j = 1, . . . , p, and ωj,k(t) = 2t exp(1 − 5t) for (j, k) ∈ E .
By definition, ωj,k = 0 for all (j, k) /∈ E . We consider two settings for the edge
set E , Setting A and Setting B. These settings are displayed in Figure 1.
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Fig 1. Left: In Setting A, the edge set E is composed of 5 connected components, each of
which is a chain graph containing 20 nodes. Right: In Setting B, E is composed of 10 connected
components, each of which contains 10 nodes.

In what follows, it will be useful to think about the (undirected) node pairs
as belonging to three types. (i) We let

Ẽ ≡ {(j, k) : (j, k) ∈ E or (k, j) ∈ E} . (11)

(ii) With a slight abuse of notation, we will use Ẽc ∩ supp(V) to denote node
pairs that are not in Ẽ with non-zero population cross-covariance, defined in (7).
(iii) Continuing to slightly abuse notation, we will use Ẽc\supp(V) to denote
node pairs that are not in Ẽ and that have zero population cross-covariance.

Throughout the simulation, we set the bandwidth h in (8) to equal T−1/6,
and the range of interest B in (9) to equal 5. Thus, h satisfies the requirements of
Theorem 1, and [−B,B] covers the majority of the mass of the transfer function
ωj,k. However, these simulation results are not sensitive to the particular choices
of h or B.

3.2. Investigation of the estimated cross-covariances

In Setting A, within a single connected component, all of the node pairs that
are not in Ẽ are in Ẽc ∩ supp(V). However, for the most part, the population
cross-covariances corresponding to node pairs in Ẽc ∩ supp(V) are quite small,
because they are induced by paths of length two and greater. This can be seen
from the left-hand panel of Figure 2. Given the left-hand panel of Figure 2, we
expect the proposed screening procedure to work very well in Setting A: for a
sufficiently large value of the time period T , there exists a value of ζ such that,
with high probability, Ê(ζ) = Ẽ .

In Setting B, six nodes receive directed edges from the same set of four nodes.
Therefore, we expect the pairs among these six nodes to be in the set Ẽc ∩
supp(V), and to have substantial population cross-covariances. This intuition
is supported by the center panel of Figure 2, which indicates that the node
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Fig 2. The quantiles of ‖V̂jk‖2,[−5,5] are displayed, for node pairs in Ẽ (11), Ẽc∩ supp(V), and

Ẽc\supp(V), as a function of the time period T . Left: Results for Setting A. The estimated
cross-covariances of node pairs in Ẽc\supp(V) and Ẽc ∩ supp(V) overlap. Center: Results
for Setting B. The estimated cross-covariances of node pairs in Ẽ and Ẽc ∩ supp(V) overlap.
Right: The color legend is displayed.

pairs in Ẽc ∩ supp(V) have relatively large estimated cross-covariances, on the
same order as the node pairs in Ẽ . In light of Figure 2, we anticipate that for
a sufficiently large value of the time period T , the screened edge set Ê(ζ) will
contain the edges in Ẽ as well as many of the edges in Ẽc ∩ supp(V).

3.3. Size of smallest screened edge set

We now define ζ∗ ≡ max
{
ζ : E ⊆ Ê(ζ)

}
, and calculate card

(
Ê(ζ∗)

)
. This

represents the size of the smallest screened edge set that contains the true edge
set.

Results, averaged over 200 simulated data sets, are shown in Figure 3.
We see that in Setting A, for sufficiently large T , card

(
Ê(ζ∗)

)
= card(Ẽ),

which implies that Ê(ζ∗) = Ẽ . In other words, in Setting A, the screening pro-
cedure yields perfect recovery of the set Ẽ (11). This is in line with our intuition
based on the left-hand panel of Figure 2.

In contrast, in Setting B, even when T is very large, card(Ê(ζ∗)) > card(Ẽ),
which implies that Ê(ζ∗) ⊇ Ẽ . This was expected based on the center panel of
Figure 2.

3.4. Performance of constrained penalized estimation

We now consider the performance of the estimator (10), which we obtain by

calculating the screened edge set Ê(ζ), and then performing a penalized regres-
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Fig 3. For each of 200 simulated data sets, we calculated card(Ê(ζ∗)), where ζ∗ ≡ max
{
ζ :

E ⊆ Ê(ζ)
}
, as a function of the time period T . The curves represent the mean of card

(
Ê(ζ∗)

)
( ); the 2.5% and 97.5% quantiles of card

(
Ê(ζ∗)

)
( ); card(Ẽ) ( ); and card(supp(V ))

( ). Left: Data generated under Setting A. Right: Data generated under Setting B.

sion subject to the constraint that ωjk = 0 for (j, k) /∈ Ê(ζ). Note that rather
than assuming a specific functional form for ωj,k, Hansen, Reynaud-Bouret and
Rivoirard (2015) use a basis expansion to estimate ωj,k. Following their lead,
we use a basis of step functions, of the form 1((m−1)/2,m/2](t) for m = 1, . . . , 6.
Instead of applying a lasso penalty to the basis function coefficients (Hansen,
Reynaud-Bouret and Rivoirard, 2015), we employ a group lasso penalty for ev-
ery 1 ≤ j, k ≤ p (Yuan and Lin, 2006; Simon and Tibshirani, 2012). Thus, (10)
consists of a squared error loss function and a group lasso penalty. We let

ÊP ≡ {(j, k) : ∃Δ s.t. ω̂j,k(Δ) �= 0} , (12)

where ω̂j,k solves (10).
Results are shown in Figure 4. In Setting A, solving the constrained opti-

mization problem (10) leads to substantially better performance than solving
the unconstrained problem (5). The improvement is especially noticeable when
T is small. In Setting B, solving the constrained optimization problem (10)
leads to only a slight improvement in performance relative to solving the un-
constrained problem (5), since, as we have learned from Figures 2 and 3, the

screened set Ê(ζ) contains many edges in Ẽc ∩ supp(V). In both settings, solv-
ing the constrained optimization problem leads to substantial computational
improvements.

4. Proofs of theoretical results

In this section, we prove Theorem 1. In Section 4.1, we review an important prop-
erty of the Hawkes process, the Wiener-Hopf integral equation. In Section 4.2,
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Fig 4. The constrained penalized optimization problem (10) was performed, for a range of

values of the tuning parameter λ. The x-axis displays the size of the estimated edge set ÊP (12),
and the y-axis displays the number of true positives, averaged over 200 simulated data sets.
The curves represent performance when ζ is chosen to yield card(Ê(ζ)) = 4card(Ẽ) (T = 300

[ ]and T = 600 [ ]), and when ζ is chosen to yield card(Ê(ζ)) = 8card(Ẽ) (T = 300 [ ]
and T = 600 [ ]). We also display performance of the unconstrained penalized optimization
problem (5) (T = 300 [ ] and T = 600 [ ]).

we list three technical lemmas used in the proof of Theorem 1. Theorem 1 is
proved in Section 4.3. Proofs of the technical lemmas are provided in the Ap-
pendix.

4.1. The Wiener-Hopf integral equation

Recall that the transfer functions ω = {ωj,k}1≤j,k≤p were defined in (2), the

cross-covariances V = {Vj,k}1≤j,k≤p were defined in (7), and the mean intensi-

ties Λ = (Λ1, . . . ,Λp)
T
were defined in (6). If the Hawkes process defined in (2)

is stationary, then for any Δ ∈ R
+,

V (Δ) = ω(Δ)diag(Λ) + (ω ∗ V )(Δ), (13)

where

[ω ∗ V ]j,k(Δ) ≡
p∑

l=1

[ωj,l ∗ Vl,k](Δ)

and

[ωj,l ∗ Vl,k](Δ) ≡
∫ ∞

0

ωj,l(Δ
′)Vl,k(Δ−Δ′)dΔ′.

Equation (13) belongs to a class of integral equations known as the Wiener-Hopf
integral equations.
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4.2. Technical lemmas

We state three lemmas used to prove Theorem 1, and provide their proofs in the
Appendix. The following lemma is a direct consequence of (13) and our assump-
tions. Recall that [0, b] is a superset of supp(ωj,k) introduced in Assumption 3.

Lemma 1. Under Assumptions 1–3, for sufficiently large B such that B ≥ b,
we have that ‖Vj,k‖2,[−B,B] ≥ βminΛmin for (j, k) ∈ E.

The next lemma shows that the cross-covariance is Lipschitz continuous given
the smoothness assumption on ωj,k (Assumption 3(c)). We will use this lemma
in the proof of Theorem 1, in order to bound the bias of the kernel smoothing
estimator (8). Recall that s, the maximum node in-degree, was defined in (4).

Lemma 2. Under Assumptions 1–3, the cross-covariance function is Lipschitz
for 1 ≤ j, k ≤ p. More specifically, there exists some θ1 > 0 such that |Vj,k(x)−
Vj,k(y)| ≤ θ1s|x− y| for any x, y ∈ R.

Recall that the bandwidth h was defined in (8). The following concentration
inequality holds on the estimated cross-covariance.

Lemma 3. Suppose that Assumptions 1–3 hold, and let h = c1s
−1/2T−1/6 for

some constant c1. Then

P

⎛⎝ ⋂
1≤j≤k≤p

[∥∥V̂j,k −Vj,k

∥∥
2,[−B,B]

≤ c2s
1/2T−1/6

]⎞⎠ ≥ 1−c3s
1/2T 7/6p2e−c4T

1/6

.

4.3. Proof of Theorem 1

Proof. In what follows, we will consider the event

M ≡
{∥∥V̂j,k − Vj,k

∥∥
2,[−B,B]

≤ c2s
1/2T−1/6 for all 1 ≤ j, k ≤ p

}
.

We will first show that part (b) of Theorem 1 holds. From the Wiener-Hopf
equation, (13), for each (j, k), we can write

Vj,k = ωj,kΛk + ωj,· ∗ V ·,k. (14)

We thus have

‖Vj,k‖2,(−∞,∞) ≤ Λk‖ωj,k‖2,(−∞,∞) + ‖ωj,· ∗ V ·,k‖2,(−∞,∞)

≤ Λk‖ωj,k‖2,(−∞,∞) +

p∑
l=1

‖ωj,l ∗ Vl,k‖2,(−∞,∞)

≤ Λk‖ωj,k‖2,(−∞,∞) +

p∑
l=1

(∫ ∞

−∞
|ωj,l(Δ)| dΔ

)
‖Vl,k‖2,(−∞,∞),

(15)
where the last inequality follows from Young’s inequality (see e.g., Theorem
3.9.4 in Bogachev (2007)), which takes the form
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‖f ∗ g‖r,(−∞,∞) ≤ ‖f‖p,(−∞,∞)‖g‖q,(−∞,∞),
1

p
+

1

q
=

1

r
+ 1, (16)

with ‖f‖p,(−∞,∞) ≡
[ ∫∞

−∞ |f(x)|p dx
]1/p

. Here, we let r = q = 2, p = 1, f = ωj,l,
and g = Vl,k.

From Assumption 3(c), we know that ωj,k is bounded by C. Therefore, by
the Cauchy-Schwartz inequality,

‖ωj,k‖2,R =

{∫ ∞

−∞
ω2
j,k(Δ) dΔ

}1/2

≤
{∫ ∞

−∞
C|ωj,k(Δ)| dΔ

}1/2

= C1/2Ω
1/2
j,k .

Using (15) and letting V̄j,k ≡ ‖Vj,k‖2,(−∞,∞), we get

V̄j,k ≤ C1/2Ω
1/2
j,k Λk +Ωj,· · V̄ ·,k. (17)

The �2-norm of the vector V̄ ·,k can then be bounded using the triangle inequal-
ity,

|V̄ ·,k‖2 ≤ C1/2Λk

⎡⎣ p∑
j=1

Ωj,k

⎤⎦1/2

+ ‖ΩV̄ ·,k‖2.

Thus, by Assumption 1,

‖V̄ ·,k‖2 ≤ C1/2Λk‖Ω·,k‖1/21 + γΩ‖V̄ ·,k‖2.

Rearranging the terms, and using the fact that γΩ < 1, gives

‖V̄ ·,k‖2 ≤ C1/2(1− γΩ)
−1Λmax‖Ω·,k‖1/21 . (18)

Hence, ∑
j,k

V̄ 2
j,k =

∑
k

‖V̄ ·,k‖22 ≤ C(1− γΩ)
−2Λ2

max

p∑
k=1

‖Ω·,k‖1. (19)

Now, recall that the number of non-zero elements inΩ is card(E), and Ωj,k ≤ γΩ.
Thus, the inequality becomes∑

j,k

V̄ 2
j,k ≤ C(1− γΩ)

−2Λ2
maxcard(E)γΩ. (20)

Hence, no more than (C/c22)card(E)s−1T 1/3γΩ(1− γΩ)
−2Λ2

max elements of V̄j,k

exceed c2s
1/2T−1/6. Recalling that V̄j,k = ‖Vj,k‖2,(−∞,∞), this implies that no

more than
(C/c22)card(E)s−1T 1/3γΩ(1− γΩ)

−2Λ2
max

elements of ‖Vj,k‖2,(−B,B) exceed c2s
1/2T−1/6.

Given the event M, only edges in the set

{(j, k) : ‖Vj,k‖2,[−B,B] ≥ c2s
1/2T−1/6, 1 ≤ j, k ≤ p}
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can be contained in Ê(ζ) for ζ = 2c2s
1/2T−1/6. This implies that the size of

Ê(ζ) is on the order of (C/c22)card(E)s−1T 1/3γΩ(1− γΩ)
−2Λ2

max.
We now proceed to prove part (a) of Theorem 1. Lemma 1 states that

‖Vj,k‖2,[−B,B] ≥ βminΛmin for (j, k) ∈ E . If the event M holds, then for T

sufficiently large, ‖V̂j,k‖2,[−B,B] > 2c2s
1/2T−1/6 = ζ for (j, k) ∈ E . Therefore,

E ⊂ Ê(ζ).
Finally, Theorem 1 follows from the fact that, by Lemma 3, the event M

holds with probability at least 1− c3s
1/2T 7/6p2 exp(−c4T

1/6).

5. Discussion

In this paper, we have proposed a very simple procedure for screening the edge
set in a multivariate Hawkes process. Provided that the process is mutually-
exciting, we establish that this screening procedure can lead to a very small
screened edge set, without incurring any false negatives. In fact, this result holds
under a subset of the conditions required to establish model selection consistency
of penalized regression estimators for the Hawkes process (Wainwright, 2009;
Hansen, Reynaud-Bouret and Rivoirard, 2015). Therefore, this screening should
always be performed whenever estimating the graph for a mutually-exciting
Hawkes process.

The proposed screening procedure boils down to just screening pairs of nodes
by thresholding an estimate of their cross-covariance. In fact, this approach is
commonly taken within the neuroscience literature, with a goal of estimating the
functional connectivity among a set of p neuronal spike trains (Okatan, Wilson
and Brown, 2005; Pillow et al., 2008; Mishchencko, Vogelstein and Paninski,
2011; Berry et al., 2012). Therefore, this paper sheds light on the theoretical
foundations for an approach that is often used in practice.

Appendix A: Technical proofs

A.1. Proof of Lemma 1

Proof. First, we observe that, if Vj,k is non-negative for all j and k, then ωj,l∗Vl,k

is non-negative for any j, l, k. Under Assumption 1, we know that (13) holds.
We can see from (13) that

Vj,k(Δ) ≥ ωj,k(Δ)Λk.

Therefore, we have

‖Vj,k(Δ)‖2,[−B,B] ≥ ‖ωj,k(Δ)‖2,[−B,B]Λmin = ‖ωj,k(Δ)‖2,[0,b]Λmin, (21)

where the inequality follows from Assumption 2 and the equality holds since

supp(ωj,k) ⊂ (0, b] ⊂ [−B,B].

From Assumption 3(b), we have that ‖Vj,k(Δ)‖2,[−B,B] ≥ βminΛmin for (j, k) ∈
E .
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We now show that the elements of V are non-negative, i.e., Vl,k(Δ) ≥ 0 for
1 ≤ l, k ≤ p, and Δ ∈ R. Recall from the definition (7) in the main paper that

Vl,k(Δ) ≡E[dNl(t) dNk(t−Δ)]/{dt d(t−Δ)} − ΛlΛk

=E[λl(t) dNk(t−Δ)]/{d(t−Δ)} − ΛlΛk,
(22)

where the second equality follows from

E[ dNl(t) dNk(t−Δ)] = E
[
E
[
dNl(t) | Ht

]
dNk(t−Δ)

]
= E[λl(t) dNk(t−Δ)] dt.

(23)
In this proof, we use the Stieltjes integral to rewrite λl(t) in (2) as

λl(t) = μl+

p∑
k=1

( ∑
i:tk,i≤t

ωl,k(t− tk,i)
)
= μl+

p∑
k=1

∫ ∞

0

ωl,k(Δ)dNk(t−Δ). (24)

Plugging in λl(t) from (24) into (22) gives

Vl,k(Δ) =− ΛlΛk + E[μl dNk(t−Δ)]/{d(t−Δ)}

+ E

[
p∑

m=1

∫ b

0

ωl,m(Δ′) dNm(t−Δ′) dNk(t−Δ)

]
/{d(t−Δ)}

=

p∑
m=1

∫ b

0

ωl,m(Δ′)E
[
dNm(t−Δ′) dNk(t−Δ)

]
/{d(t−Δ)}

+ E[μl dNk(t−Δ)]/{d(t−Δ)} − ΛlE[ dNk(t−Δ)]/{d(t−Δ)},

where we use the definition Λk = E[ dNk(t−Δ)]/{d(t−Δ)}.
Using the fact that (see e.g., Hawkes and Oakes (1974))

Λl = μl +

p∑
m=1

∫ b

0

ωl,m(Δ′) dΔ′μm,

we have

Vl,k(Δ) =

p∑
m=1

∫ b

0

ωl,m(Δ′)E
[
dNm(t−Δ′) dNk(t−Δ)

]
/{d(t−Δ)}

+ E
[
μl dNk(t−Δ)

]
/{d(t−Δ)}

−
{
μl +

p∑
m=1

∫ b

0

ωl,m(Δ′)μm dΔ′

}
E
[
dNk(t−Δ)

]
/{d(t−Δ)}

=

p∑
m=1

∫ b

0

ωl,m(Δ′)E
[
dNm(t−Δ′) dNk(t−Δ)

]
/{d(t−Δ)}

−
p∑

m=1

∫ b

0

ωl,m(Δ′)μm dΔ′
E
[
dNk(t−Δ)

]
/{d(t−Δ)}.
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Rearranging the terms gives

Vl,k(Δ) =

p∑
m=1

∫ b

0

ωl,m(Δ′)

d(t−Δ)

{
E
[
dNm(t−Δ′) dNk(t−Δ)

]
− E

[
μm dΔ′ dNk(t−Δ)

]}
. (25)

Next, we will rewrite (25) by taking the conditional expectation of dNk or
dNm as in (23). Note here that, when Δ′ < Δ, we condition dNm on the history
up to t−Δ′, i.e., Ht−Δ′ . Given Ht−Δ′ , dNk(t−Δ) is fixed since t−Δ < t−Δ′.
When Δ′ > Δ, we condition dNk on the history up to t − Δ. These cases are
discussed separately in the following.

When Δ′ < Δ, for each integral of the summation, it holds that

E{ dNm(t−Δ′) dNk(t−Δ)} = E{λm(t−Δ′) dΔ′ dNk(t−Δ)}.

From the definition of λm(t) in (2), we know that λm(t−Δ′) ≥ μm. Hence, in
(25), if Δ′ < Δ, it holds that

E{ dNm(t−Δ′) dNk(t−Δ)}/{d(t−Δ)}−E{μm dΔ′ dNk(t−Δ)}/{d(t−Δ)} ≥ 0.
(26)

On the other hand, when Δ′ ≥ Δ, we have

E{dNm(t−Δ′)dNk(t−Δ)}/{d(t−Δ)}−E{μmdΔ′dNk(t−Δ)}/{d(t−Δ)}
=E{dNm(t−Δ′)λk(t−Δ)} − E{μmdΔ′λk(t−Δ)}
=E{dNm(t−Δ′)λk(t−Δ)} − μmΛkdΔ

′.

Expanding λk and Λk yields

E{ dNm(t−Δ′)λk(t−Δ)} − μmΛk dΔ
′

=E{ dNm(t−Δ′)μk}+
p∑

i=1

∫ b

0

ωk,i(Δ
′′)E

[
dNm(t−Δ′) dNi(t−Δ−Δ′′)

]
− μmμk dΔ

′ −
p∑

i=1

∫ b

0

ωk,i(Δ
′′) dΔ′′μiμm dΔ′

=(Λm − μm)μk dΔ
′

+

p∑
i=1

∫ b

0

ωk,i(Δ
′′)
{
E
[
dNm(t−Δ′) dNi(t−Δ−Δ′′)

]
− μiμm dΔ′ dΔ′′

}
.

Now, observe that Λm ≥ μm and E{dNi(t − Δ − Δ′′) dNm(t − Δ′)}/
{ dΔ′dΔ′′} ≥ μiμm by the nature of the mutually-exciting process. Thus, for
Δ′ ≥ Δ,

E{ dNm(t−Δ′) dNk(t−Δ)}/{d(t−Δ)}−E{μm dΔ′ dNk(t−Δ)}/{d(t−Δ)} ≥ 0.
(27)

Applying both (26) and (27) to (25) shows that Vl,k(Δ) ≥ 0.
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A.2. Proof of Lemma 2

Proof. For any Δ ≥ 0, the integral equation (13) gives

Vj,k(Δ) = ωj,k(Δ)Λk + (ωj,· ∗ V ·,k)(Δ). (28)

For any x, y ≥ 0, we can write∣∣Vj,k(x)− Vj,k(y)
∣∣

=
∣∣{ωj,k(x)− ωj,k(y)}Λk + (ωj,· ∗ V ·,k)(x)− (ωj,· ∗ V ·,k)(y)

∣∣
=
∣∣∣{ωj,k(x)− ωj,k(y)}Λk +

p∑
l=1

{
ωj,l ∗ Vl,k(x)− ωj,l ∗ Vl,k(y)}

∣∣∣
=
∣∣∣{ωj,k(x)− ωj,k(y)}Λk +

∑
l∈Ej

{
ωj,l ∗ Vl,k(x)− ωj,l ∗ Vl,k(y)}

∣∣∣, (29)

where the last inequality holds since ωj,l ≡ 0 for l /∈ Ej . We then have∣∣Vj,k(x)− Vj,k(y)
∣∣

≤
∣∣{ωj,k(x)− ωj,k(y)}Λk

∣∣︸ ︷︷ ︸
I

+
∑
l∈Ej

∣∣ωj,l ∗ Vl,k(x)− ωj,l ∗ Vl,k(y)
∣∣︸ ︷︷ ︸

IIl

. (30)

For I, we know from Assumptions 2 and 3(c) that

I ≡
∣∣{ωj,k(x)− ωj,k(y)}Λk

∣∣ ≤ θ0Λmax|x− y|. (31)

For IIl, we can expand the convolution

IIl =

∣∣∣∣∣
∫ b

0

ωj,l(Δ)Vl,k(x−Δ)dΔ−
∫ b

0

ωj,l(Δ)Vl,k(y −Δ)dΔ

∣∣∣∣∣
=

∣∣∣∣∣
∫ b−x

−x

ωj,l(Δ
′ + x)Vl,k(−Δ′)dΔ′ −

∫ b−y

−y

ωj,l(Δ
′ + y)Vl,k(−Δ′)dΔ′

∣∣∣∣∣ .
Without loss of generality, we consider only the case that x ≥ y. We can decom-
pose the integrals into parts on the intervals [−x,−y), [−y, b−x), and [b−x, b−y]
as

IIl ≤
∣∣∣∣∣
∫ b−x

−y

{
ωj,l(Δ

′ + x)− ωj,l(Δ
′ + y)

}
Vl,k(−Δ′) dΔ′

∣∣∣∣∣
+

∣∣∣∣∫ −y

−x

ωj,l(Δ
′ + x)Vl,k(−Δ′) dΔ′

∣∣∣∣+
∣∣∣∣∣
∫ b−y

b−x

ωj,l(Δ
′ + y)Vl,k(−Δ′) dΔ′

∣∣∣∣∣
≤
∫ b−x

−y

θ0
∣∣Δ′ + x−Δ′ − y

∣∣∣∣Vl,k(−Δ′)
∣∣ dΔ′
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+

∫ −y

−x

∣∣ωj,l(Δ
′ + x)Vl,k(−Δ′)

∣∣ dΔ′ +

∫ b−y

b−x

∣∣ωj,l(Δ
′ + y)Vl,k(−Δ′)

∣∣ dΔ′

≤
∫ b−x

−y

θ0
∣∣x− y

∣∣Vmax dΔ
′ +

∫ −y

−x

∣∣ωj,l(Δ
′ + x)

∣∣Vmax dΔ
′

+

∫ b−y

b−x

∣∣ωj,l(Δ
′ + y)

∣∣Vmax dΔ
′

≤(b− x+ y)θ0|x− y|Vmax + 2C(x− y)Vmax,

where we use Assumption 3(c) in the second inequality, Assumptions 2 in the
third inequality, and the boundedness of ωj,l from Assumption 3(c) in the last
inequality. Recalling that x ≥ y, we have

IIl ≤
(
bθ0Vmax + 2CVmax

)
|x− y|, (32)

Finally, plugging (31) and (32) into (30) gives∣∣Vj,k(x)− Vj,k(y)
∣∣ ≤ θ0Λmax|x− y|+ s

(
bθ0Vmax + 2CVmax

)
|x− y| ≤ sθ1|x− y|,

(33)
where we set θ1 ≡ θ0Λmax + bθ0Vmax + 2CVmax. Note that the last inequality
holds as long as s ≥ 1. (The result also holds if s = 0: in this case, the second
term in (30) is zero for every j and the bound (31) suffices.)

A.3. Proof of Lemma 3

Recall that the estimator of the cross-covariance (8) takes the form

1

h

1

T

∫∫
[0,T ]2

K

(
t− t′ +Δ

h

)
dNj(t

′) dNk(t)︸ ︷︷ ︸
Ij,k

−
[
1

T

∫ T

0

dNj(t)

]
︸ ︷︷ ︸

IIj

[
1

T

∫ T

0

dNk(t)

]
︸ ︷︷ ︸

IIk

.

The proof of Lemma 3 uses the following result. Lemma 4 is based on Propo-
sition 3 of Hansen, Reynaud-Bouret and Rivoirard (2015); for completeness, we
provide its proof in Section A.4.

Lemma 4. Suppose that Assumption 1 holds. We have

P

⎛⎝ ⋂
1≤j≤k≤p

[
|Ij,k − EIj,k| ≥ c6T

−1/3
]⎞⎠ ≤ c5p

2T exp(−c4T
1/6), (34)

P

⎛⎝ ⋂
1≤j≤p

[
|IIj − EIIj | ≥ c6T

−1/3+1/18
]⎫⎬⎭ ≤ c5p

2T exp(−c4T
1/6), (35)

where c4, c5, and c6 are constants.
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We are now ready to prove Lemma 3.

Proof. First, note that∣∣EIj,k − h[Vj,k(Δ) + ΛjΛk]
∣∣

=

∣∣∣∣∣ 1T
∫∫

[0,T ]2
K

(
t− t′ +Δ

h

)
E[ dNj(t

′) dNk(t)]

− 1

T

∫∫
[0,T ]2

K

(
t− t′ +Δ

h

)
[Vj,k(Δ) + ΛjΛk] dt dt

′

∣∣∣∣∣
=

∣∣∣∣∣ 1T
∫∫

[0,T ]2
K

(
t− t′ +Δ

h

)
{E[ dNj(t

′) dNk(t)]− ΛjΛk dt dt
′}

− 1

T

∫∫
[0,T ]2

K

(
t− t′ +Δ

h

)
Vj,k(Δ) dt dt′

∣∣∣∣∣
=

∣∣∣∣∣ 1T
∫∫

[0,T ]2
K

(
t− t′ +Δ

h

)
Vj,k(t

′ − t) dt dt′

− 1

T

∫∫
[0,T ]2

K

(
t− t′ +Δ

h

)
Vj,k(Δ) dt dt′

∣∣∣∣∣
=

∣∣∣∣∣ 1T
∫∫

[0,T ]2
K

(
t− t′ +Δ

h

)[
Vj,k(t

′ − t)− Vj,k(Δ)
]
dt dt′

∣∣∣∣∣ ,

(36)

where we use the definition of V in the third equality. Using the fact that the
kernel K(x/h) is defined on [−h, h], we can write∣∣EIj,k − h[Vj,k(Δ) + ΛjΛk]

∣∣
=

∣∣∣∣∣ 1T
∫ T

0

∫ min(T,t−Δ+h)

max(0,t−Δ−h)

K

(
t− t′ +Δ

h

)[
Vj,k(t

′ − t)− Vj,k(Δ)
]
dt dt′

∣∣∣∣∣
≤ 1

T

∫ T

0

∫ min(T,t−Δ+h)

max(0,t−Δ−h)

K

(
t− t′ +Δ

h

)
θ1s|t′ − t−Δ| dt dt′

≤ 1

T

∫ T

0

∫ min(T,t−Δ+h)

max(0,t−Δ−h)

K

(
t− t′ +Δ

h

)
θ1hsdt dt

′

≤ 1

T

∫ T

0

2θ1sh
2 dt

=2θ1sh
2,

(37)

where the first inequality follows from Lemma 2.
Recall that IIj ≡ T−1Nj(T ) and IIk ≡ T−1Nk(T ). Applying Lemma 4 and

(37), we have, with probability at least 1− 2c5p
2T exp(−c4T

1/6),
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∣∣∣

≤ 1

h
|Ij,k − EIj,k|+

1

h
|EIj,k − E[dNj(t−Δ)dNk(t)]/(dtdΔ)|

+

∣∣∣∣ 1T 2
(Nj(T )− TΛj)Nk(T )

∣∣∣∣+ ∣∣∣∣Λj
1

T
Nk(T )− ΛjΛk

∣∣∣∣
≤ c6T

−1/3h−1 + 2θ1hs+

(‖Λmax + c6T
−1/3+1/18)c6T

−1/3+1/18 + Λmaxc6T
−1/3+1/18.

(38)

Letting h = c1s
−1/2T−1/6, (38) can be written as∣∣∣V̂j,k(Δ)− Vj,k(Δ)

∣∣∣ ≤ c′2s
1/2T−1/6. (39)

Lastly, we need a uniform bound on V̂j,k − Vj,k on the region [−B,B]. We first
see that the above probability statement holds for a grid of �s1/2T 1/6� points on
[−B,B], denoted as {Δi}�s

1/2T 1/6	
i=1 . The gap between adjacent points on this grid

is bounded by 2Bs−1/2T−1/6. Furthermore, for any Δ ∈ [−B,B], we can find
a point on the grid Δi such that |Δ −Δi| ≤ 2B/�s1/2T 1/6� ≤ 2Bs−1/2T−1/6.
From basic calculus we get that, for all Δ ∈ [−B,B],∣∣∣V̂j,k(Δ)− Vj,k(Δ)

∣∣∣
=
∣∣∣V̂j,k(Δ)− V̂j,k(Δi) + V̂j,k(Δi)− Vj,k(Δi) + Vj,k(Δi)− Vj,k(Δ)

∣∣∣
≤2Bs−1/2T−1/6 + c′2s

1/2T−1/6 + θ1ss
−1/2T−1/6

≤c2s
1/2T−1/6,

(40)

for some constant c2.
Therefore, with probability at least 1− c3s

1/2p2T 7/6 exp(−c4T
1/6),∥∥V̂j,k − Vj,k

∥∥
2,[−B,B]

≤ c2s
1/2T−1/6. (41)

A.4. Proof of Lemma 4

Lemma 4 follows directly from the proof of Proposition 3 in Hansen, Reynaud-
Bouret and Rivoirard (2015). The only difference is that we want a polynomial
bound on the deviation, while Hansen, Reynaud-Bouret and Rivoirard (2015)
consider a logarithmic bound. For completeness, we state the proof of Lemma 4
below, but note that the proof is almost identical to the proof of Proposition 3 in
Hansen, Reynaud-Bouret and Rivoirard (2015). We refer the interested readers
to the original proof in Section 7.4.3 of Hansen, Reynaud-Bouret and Rivoirard
(2015) for more details.

Throughout this section, we assume that N ≡ (N1, . . . , Np)
T is defined on

the full real line. We first state some notation that is only used in this section.
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1. Following Hansen, Reynaud-Bouret and Rivoirard (2015), we use C
(i)
a1,a2,...

to denote a constant that depends only on a1, a2, . . .; and we use the
superscript i to indicate that this is the ith constant appearing in the
proof.

2. Without loss of generality, we assume that supp(ωj,k) ⊂ (0, 1], as in
Hansen, Reynaud-Bouret and Rivoirard (2015).

3. As in Hansen, Reynaud-Bouret and Rivoirard (2015), we introduce a func-
tion Z(N) such that Z(N) depends only on {dN(t′), t′ ∈ [−A, 0)}, and
there exist two non-negative constants η and d such that

|Z(N)| ≤ d

{
1 +

(
p∑

l=1

Nl([−A, 0)]

)η}
. (42)

4. We also introduce the (time) shift operator St so that Z ◦St(N) depends
only on {dN(t′), t′ ∈ [−A + t, t)}, in the same way as Z(N) depends on
the points of N in [−A, 0).

We are now ready to prove the lemma. When proving the bound (34), we
only discuss the case when j �= k. The proof for the case when j = k follows
from the same argument and is thus omitted.

Proof. In this proof, we will consider a probability bound for
[
Z ◦ St(N) −

E(Z)
]
dt ≥ u, where, for some κ ∈ (0, 1) to be specified later,

u = c6T
(1−κ)(1−η)+κ. (43)

Note that, by applying the bound to −Z(·), we can obtain a bound for
∣∣Z ◦

St(N) − E(Z)
∣∣. To complete the proof, we will verify the statements (34) and

(35) by considering some specific choices of Z(·).
For any positive integer k such that x ≡ T/(2k) > A, we have

P

(∫ T

0

[
Z ◦ St(N)− E(Z)

]
dt ≥ u

)
=P

(
k−1∑
q=0

∫ 2qx+x

2qx

[
Z ◦ St(N)− E(Z)

]
dt+

∫ 2qx+2x

2qx+x

[
Z ◦ St(N)− E(Z)

]
dt ≥ u

)

≤2P

(
k−1∑
q=0

∫ 2qx+x

2qx

[
Z ◦ St(N)− E(Z)

]
dt ≥ u

2

)
,

where the inequality follows from the stationarity of N . As in Reynaud-Bouret
and Roy (2006), let {M̃x

q }∞q=1 be a sequence of independent Hawkes processes,
each of which is stationary with intensities λ(t) ≡ (λ1(t), . . . , λp(t))

T. See Sec-
tion 3 of Reynaud-Bouret and Roy (2006) for more details on the construction
of {M̃x

q }∞q=1. For each q, let Mx
q be the truncated process associated with M̃x

q ,
where truncation means that we only consider the points in [2qx−A, 2qx+ x].
Now, if we set

Fq =

∫ 2qx+x

2qx

[
Z ◦ St

(
Mx

q

)
− E(Z)

]
dt, (44)
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then

P

(∫ T

0

[
Z◦St(N)−E(Z)

]
dt ≥ u

)
≤ 2P

(
k−1∑
q=0

Fq ≥ u

2

)
+2

k−1∑
q=0

P

(
Te,q >

T

2k
−A

)
,

(45)
where Te,q is the time to extinction of the process Mx

q . The extinction time Te,q

is introduced in Sections 2.2 and 3 in Reynaud-Bouret and Roy (2006). Roughly
speaking, it is the last time when there is an event for the Hawkes process with
intensity λ(t) of the form (2), with background intensity μ ≡ (μ1, . . . , μp)

T set
to 0 for t ≥ 0. Since Te,q is identically distributed for all q, we can focus on one
Te,q. Denoting by al the ancestral points with marks l and by H l

al
the length of

the corresponding cluster whose origin is al, we have:

Te,q = max
l∈{1,...,p}

max
al

{
al +H l

al

}
. (46)

Then by the exact argument on page 48 of Hansen, Reynaud-Bouret and Rivoir-
ard (2015), we have

P(Te,q ≤ a) ≥ 1−
p∑

l=1

μ(l)cl/ϑl exp(−ϑla). (47)

Thus, there exists a constant C
(1)
A depending on A such that if we take k =

�C(1)
A Tκ�, for some κ ∈ (0, 1) to be specified later, then

k−1∑
q=0

P

(
Te,q >

T

2k
−A

)
≤ Tκp exp(−c4T

1−κ), (48)

where c4 is a constant. Note that x = T/2k ≈ T 1−κ is larger than A for T large
enough (depending on A).

Now, note that the event T ≡ {Te,q ≤ T/2k − A, for all q = 0, . . . , k} only
depends on the process N . We will first find a probability bound for the first
term in (45). In other words, we will show that, given the event T ,

P

(∫ T

0

[
Z ◦ St(N)− E(Z)

]
dt ≥ u

)
≤ c5T exp(−c4T

1−κ). (49)

Let

B = P

(
k−1∑
q=0

Fq ≥ u

2

)
.

Consider the measurable events

Ωq =
{
sup
t

{
Mx

q |[t−A,t)

}
≤ Ñ

}
,

where Ñ is a constant that will be defined later and Mx
q |[t−A,t) represents the

number of points of Mx
q lying in [t−A, t). Let Ω =

⋂
0≤q≤k−1 Ωq. Then
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B ≤ P

(k−1∑
q=0

Fq ≥ u/2 and Ω

)
+ P

(
Ωc
)
.

We have P(Ωc) ≤
∑

q P(Ω
c
q), where each P(Ωc

q) can be easily controlled. Indeed,
it is sufficient to split [2qx−A, 2qx+x] into intervals of size A (there are about

C
(2)
A T 1−κ of these) and require the number of points in each sub-interval to be

smaller than Ñ/2. By stationarity, we then obtain

P
(
Ωc

q

)
≤ C

(2)
A T 1−κ

P(N[−A,0) > Ñ/2).

Using Proposition 2 in Hansen, Reynaud-Bouret and Rivoirard (2015) with
u = �Ñ/2�+ 1/2, we obtain:

P
(
Ωc

q

)
≤ C

(2)
A T 1−κ exp(−C

(3)
A , Ñ )

and, thus,

P
(
Ωc
)
≤ C

(4)
A T exp(−C

(3)
A Ñ ).

Note that this control holds for any positive choice of Ñ . Thus, for any Ñ > 0,

P
(
∃t ∈ [0, T ] such that Mx

q |[t−A,t) > Ñ
)
≤ C

(2)
A T 1−κ exp(−C

(3)
A Ñ ). (50)

Hence by taking Ñ = C
(5)
A T 1−κ, for C

(5)
A large enough, the right-hand side

of (50) is smaller than C
(2)
A T 1−κ exp(−c4T

1−κ).
It remains to obtain the rate of D ≡ P(

∑
q Fq ≥ u/2 and Ω). For any positive

constant ε that will be chosen later, we have:

D ≤ e−εu/2
E

(
eε
∑

q Fq
∏
q

1Ωq

)
(51)

≤ e−εu/2
∏
q

E
(
eεFq1Ωq

)
,

since the variables {Mx
q }q are independent. But,

E
(
eεFq1Ωq

)
= 1 + εE(Fq1Ωq ) +

∑
j≥2

εj

j!
E
(
F j
q 1Ωq

)
and E(Fq1Ωq ) = E(Fq)− E(Fq1Ωc

q
) = −E(Fq1Ωc

q
).

Next note that if for any integer l,

lÑ < sup
t

Mx
q |[t−A,t) ≤ (l + 1)Ñ ,

then
|Fq| ≤ xd

[
(l + 1)ηÑ η + 1

]
+ xE(Z).

Hence, cutting Ωc
q into slices of the type {lÑ < supt M

x
q |[t−A,t) ≤ (l+1)Ñ } and

using (50) with Ñ = C
(5)
A T 1−κ for a large enough C

(5)
A , we obtain
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∣∣ = ∣∣E(Fq1Ωc

q
)
∣∣

≤
+∞∑
l=1

x
(
d
[
(l + 1)ηÑ η + 1

]
+
∣∣E(Z)

∣∣)
× P

(
∃t ∈ [0, T ] such that Mx

q |[t−A,t) > �Ñ
)

≤ C
(2)
A

+∞∑
l=1

x
(
d
[
(l + 1)ηÑ η + 1

]
+
∣∣E(Z)

∣∣)T 1−κ exp(−c4lÑ )

≤ C
(6)
A

+∞∑
l=1

x
(
dÑ η +

∣∣E(Z)
∣∣)T 1−κ2lη exp{−c4lÑ }

≤ C
(7)
A T 2−2κdÑ η exp(−c4Ñ )

1− 2η exp(−c4Ñ )
,

where in the last inequality, we have used the fact that |E(Z)| ≤ dE[Nη
[−A,0)]

by (42). Plugging Ñ = C
(5)
A T 1−κ into the above equation gives∣∣E(Fq1Ωq )

∣∣ ≤ z1 ≡ C
(8)
A dT 2−2κT (1−κ)η exp(−c4T

1−κ).

In the same way, following Hansen, Reynaud-Bouret and Rivoirard (2015), we
can write

E
(
F j
q 1Ωq

)
≤ E

(
F 2
q 1Ωq

)
zj−2
b , (52)

where zb ≡ xd[Ñ η + 1] + xE(Z) = C
(9)
η,AdT

(1−κ)(1+η). Then, by stationarity,

E
(
F 2
q 1Ωq

)
≤ xE

[∫ 2qx+x

2qx

[
Z ◦ St′

(
Mx

q

)
− E(Z)

]2 ∩τ∈R 1Mx
q |[τ−A,τ)≤Ñ} dt

′
]

≤ xE

[∫ 2qx+x

2qx

[
Z ◦ St′

(
Mx

q

)
− E(Z)

]2
1{Mx

q |[t′−A,t′)≤Ñ} dt
′
]

≤ x2
E
([
Z(N)− E(Z)

]2
1N[−A,0)≤Ñ

)
≤ zv ≡ C

(10)
η,A T 2−2κσ2,

where σ2 ≡ E
[
Z(N)− E(Z)

]
. Going back to (51), by (52), we have

D ≤ exp

[
−εu

2
+ k log

(
1 + εz1 +

∑
j≥2

zvz
j−2
b

εj

j!

)]

≤ exp

[
−ε

(
u

2
− kz1

)
+ k

∑
j≥2

zvz
j−2
b

εj

j!

]
,

using the fact that log(1 + u) ≤ u. Since

kz1 = C(10)
η dTκT (2+η)(1−κ) exp(−c4T

1−κ),

one can choose c6 in the definition (43) of u (not depending on d) such that
u/2− kz1 ≥

√
2kzvz +

1
3zbz for some z = c4T

κ−2η(1−κ). Hence,
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D ≤ exp

[
−ε

(√
2kzvz +

1

3
zbz

)
+ k

∑
j≥2

zvz
j−2
b

εj

j!

]
.

One can choose ε (as in the proof of the Bernstein inequality in Massart (2007),
page 25) to obtain a bound on the right-hand side in the form of e−z. We can
then choose c4 large enough, and only depending on η and A, to guarantee that
D ≤ e−z ≤ c5 exp(−c4T

1−κ).
In summary, we have shown that, given the event T ,

P

(∫ T

0

[
Z ◦ St(N)−E(Z)

]
dt ≥ u

)
≤ c5 exp(−c4T

1−κ) + C
(4)
A T exp(−c4T

1−κ).

With a slight abuse of notation, letting c5 = max(c5, C
(4)
A ) gives (49).

To complete the proof, we apply the concentration inequality (49) with some
specific choices of Z(·).

For each pair (j, k), let

Z ◦ St(N) ≡
∫ t+h

t−h

K

(
t′ − t+Δ

h

)
dNj(t

′) dNk(t)/dt.

We can check that d = 1 and η = 2 satisfy (42). Then with κ = 5/6 in (49), we
get, given the event T ,

P

(
|Ij,k − EIj,k| ≥ c6T

−1/3
)
≤ c5T exp(−c4T

1/6).

Applying a union bound for all pairs (j, k), we have, given the event T ,

P

⎛⎝ ⋂
1≤j≤k≤p

[
|Ij,k − EIj,k| ≥ c6T

−1/3
]⎞⎠ ≤ c5Tp

2 exp(−c4T
1/6). (53)

Recall from the concentration inequality (48) that the event T holds with prob-
ability at least 1− pT 1/6 exp(−c4T

1/6). Thus, given that pT 1/6 exp(−c4T
1/6) is

dominated by the right-hand side of (53), it holds unconditionally that

P

⎛⎝ ⋂
1≤j≤k≤p

[
|Ij,k − EIj,k| ≥ c6T

−1/3
]⎫⎬⎭ ≤ c5Tp

2 exp(−c4T
1/6),

which is the statement on Ij,k in (34).
The statement on IIl, l = j, k, in (35) can be shown in a similar manner by

taking Z ◦ St(N) ≡ dNj(t)/dt, with η = 1, and κ = 13/18.
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genössische Technische Hochschule ETH Zürich, Nr. 18403, 2009.
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