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1. Introduction

In this paper, we have four goals:

1. We wish to extend some of the results of Viennet [19] for stationary β-
mixing sequences to the much larger class of β̃-dependent sequences, as
introduced in [8], [9] (see Sections 5–6 and the simple model (1.2) below
for natural examples that are β̃-dependent but not β-mixing). In her arti-
cle, Viennet proved that, if the β-mixing coefficients β(n) of a stationary
sequence (Yi)i∈Z are such that

∞∑
k=0

kp−2β(k) < ∞ , for some p ≥ 2, (1.1)

then the L
p-integrated risk of the usual estimators of the density of Yi

behaves as in the independent and identically distributed (iid) case (as
described in the paper by Bretagnolle and Huber [4]).
For Kernel estimators, we shall obtain a complete extension of Viennet’s
result (assuming only as an extra hypothesis that the Kernel has bounded
variation). For projection estimators, the situation is more delicate, be-
cause our dependency coefficients cannot always give a good upper bound
for the variance of the estimator (this was already pointed out in [8]).
However, for estimators based on piecewise polynomials (including His-
tograms), the result of Viennet can again be fully extended.

2. We shall consider the L
p-integrated risk for any p ∈ [1,∞), and not only

for p ≥ 2 (which was the range considered in [19]). Two main reasons for
this: first the case p = 1 is of particular interest, because it gives some
information on the total variation between the (possibly signed) measure
with density fn (the estimated density) and the distribution of Yi. The
variation distance is a true distance between measures, contrary to the
L
p-distance between densities, which depends on the dominating mea-

sure. Secondly, we have in mind applications to some classes of dynamical
systems (see point 4 below), for which it is known either that the den-
sity has bounded variation over [0, 1] or that it is non-decreasing on (0, 1]
(and blows up as x → 0). In such cases, it turns out that the bias of our
estimators is well controlled in L

1([0, 1], dx).
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3. We want to know what happens if Condition (1.1) is not satisfied, or if∑
k≥0 β(k) = ∞ in the case where p ∈ [1, 2]. Such results are not given

in the paper [19], although Viennet could have done it by refining some
computations. For β̃-dependent sequences and p = 2, the situation is clear
(see [8]): the rate of convergence of the estimator depends on the regularity
of f and of the behavior of

∑n
k=0 β̃1,Y (k) (the coefficients β̃1,Y (k) will be

defined in the next section, and are weaker than the corresponding β-
mixing coefficients). Hence, in that case, the consistency holds as soon as
β̃1,Y (n) tends to zero as n tends to infinity, and one can compute the rates

of convergence as soon as one knows the asymptotic behavior of β̃1,Y (n).
This is the kind of result we want to extend to any p ∈ [1,∞). Once again,
we have precise motivations for this, coming from dynamical systems that
can exhibit long-range dependence (see point 4 below).

4. As already mentioned, our first motivation was to study the robustness of
the usual estimators of the density, showing that they apply to a larger
class of dependent processes than in [19]. But our second main objective
was to be able to visualize the invariant density of the iterates of expand-
ing maps of the unit interval. For uniformly expanding maps the invariant
density has bounded variation, and one can estimate it in L

1([0, 1], dx)
at the usual rate n−1/3 by using an appropriate Histogram (see Subsec-
tion 5.1). The case of the intermittent map Tγ (as defined in (5.6) for
γ ∈ (0, 1)) is even more interesting. In that case, one knows that the in-
variant density hγ is equivalent to the density x → (1 − γ)x−γ on (0, 1)
(see the inequality (6.1)). Such a map exhibits long-range dependence as
soon as γ ∈ (1/2, 1), but we can use our upper bound for the random
part + bias of a regular Histogram, to compute the appropriate number
of breaks of the Histogram (more precisely we give the order of the num-
ber of breaks as a function of n, up to an unknown constant). In Figure 5
of Section 6, we plot the Histograms of the invariant density hγ , when
γ = 1/4 (short-range dependent case), γ = 1/2 (the boundary case), and
γ = 3/4 (long-range dependent case).

Let us explain the main difference between our approach and that of Wu et
al. [20]. In this paper, the authors study the classical Kernel density estimator
for a wide class of non-linear time series, under a framework which is different
from the one based on the classical mixing conditions. In that setting, they
gave a quite complete picture of the situation, by considering the L

p-integrated
risks (for p ∈ (1,∞)), uniform error bounds, and a central limit theorem for the
pointwise Kernel estimator. The dependence conditions are expressed as the
L
p-norm of a difference of two conditional densities. However, the existence of

the conditional density of Yk given Y0 is in fact a restrictive condition, which
excludes many natural dependent processes. For instance, let us consider the
simple AR(1) process

Yn+1 =
1

2
(Yn + εn+1) , (1.2)
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where Y0 is uniformly distributed over [0, 1], and (εi)i≥1 is a sequence of iid
random variables with distribution B(1/2), independent of Y0. One can check
that the transition Kernel of this chain is

K(f)(x) =
1

2

(
f
(x
2

)
+ f

(
x+ 1

2

))
,

and that the uniform distribution on [0, 1] is the unique invariant distribution by
K. Hence, the chain (Yi)i≥0 is strictly stationary, but there is of course no joint
densities (all the mass of the distribution of (Y0, Yk) is located on the segments
{y = 2−kx + j2−k, x ∈ [0, 1], 0 ≤ j ≤ 2k − 1} of the unit square). One of our
objectives in the present paper is to show that, when considering L

p-integrated
risks, there is no need to assume the existence of joint densities.

Moreover the β-mixing coefficients of the chain (Yi)i≥0 defined by (1.2) are
equal to

β(n) =
1

2

∫ 1

0

sup
‖f‖∞≤1

∣∣∣∣Kn(f)(x)−
∫ 1

0

f(u)du

∣∣∣∣ dx = 1 .

Hence, for this simple Markov chain, the L
p-integrated risks of the usual den-

sity estimators cannot be handled via the estimates given in [19] or [20]. By
contrast, since the β̃-coefficients decrease geometrically to 0 (see Section 6.1),
the estimates given in our Propositions 3.1, 3.2, 4.1 and 4.2 give the same rates
of convergences as in the iid case.

One word about the main probabilistic tool used in the present paper. As
shown in [19], to control the L

p-integrated risks for p > 2, the appropriate
tool is a precise Rosenthal-type inequality. Such an inequality is not easy to
prove in the β-mixing case, and the β̃-dependent case is even harder to handle
because we cannot use Berbee’s coupling (see [1]) as in [19]. A major step to
get a good Rosenthal bound has been made by Merlevède and Peligrad [14]:
they proved a very general inequality involving only conditional expectations of
the random variables with respect to the past σ-algebra, which can be applied
to many situations. However, it does not fit completely to our context, and
leads to small losses when applied to kernel estimators (see Section 5 in [14]). In
Section 2, we shall prove a taylor-made inequality, in the spirit of that of Viennet
but expressed in terms of our weaker coefficients. This inequality will give the
complete extension of Viennet’s results for Kernel estimators and estimators
based on piecewise polynomials, when p > 2.

As in [19] or [20], we shall not discuss here minimaxity or adaptivity. Note
however, that in the short range dependent case (i.e., when

∑∞
k=0 β̃1,Y (k) < ∞),

the rates that we obtain are the same as in the iid situation, and are in that
sense minimax (because the class of iid sequences is of course short-range de-
pendent). Concerning adaptivity, some works have been done for instance in
[18] (wavelets and β-mixing), [5] (model selection and β-mixing) or [12] (model
selection and τ -mixing). For these notions of mixing, one can use coupling tools
to prove some appropriate concentration inequalities. Up to now, such concen-
tration inequalities are not available in our more general context.
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2. A Rosenthal inequality for β̃-dependent sequences

From now, (Yi)i∈Z is a strictly stationary sequence of real-valued random vari-
ables. We define the β̃-dependence coefficients of (Yi)i∈Z as in [9]:

Definition 2.1. Let P be the law of Y0 and P(Yi,Yj) be the law of (Yi, Yj). Let
F� = σ(Yi, i ≤ �), let PYk|F�

be the conditional distribution of Yk given F�,
and let P(Yi,Yj)|F�

be the conditional distribution of (Yi, Yj) given F�. Define the
functions

ft = 1]−∞,t] and f
(0)
t = ft − P (ft) ,

and the the random variables

b�(k) = sup
t∈R

∣∣PYk|F�
(ft)− P (ft)

∣∣ ,
b�(i, j) = sup

(s,t)∈R2

∣∣∣P(Yi,Yj)|F�

(
f
(0)
t ⊗ f (0)

s

)
− P(Yi,Yj)

(
f
(0)
t ⊗ f (0)

s

)∣∣∣ .
Define now the coefficients

β̃1,Y (k) = E(b0(k)) and β̃2,Y (k) = max

{
β̃1,Y (k), sup

i>j≥k
E((b0(i, j)))

}
.

These coefficients are weaker than the usual β-mixing coefficients of (Yi)i∈Z.
Many examples of non-mixing process for which β̃2,Y (k) can be computed are
given in [9]. Some of these examples will be studied in Sections 5 and 6.

Let us now give the main probabilistic tool of the paper. It is a Rosenthal-
type inequality for partial sums of BV functions of Yi (as usual, BV means
“of bounded variation”). We shall use it to control the random part of the L

p

integrated risk of the estimators of the density of Yi when p > 2. The proof of
this inequality is given in Subsection 8.2. It is quite delicate, and relies on two
intermediate results (see Subsection 8.1).

In all the paper, we shall use the notation an � bn, which means that there
exists a positive constant C not depending on n such that an ≤ Cbn, for all
positive integers n.

Proposition 2.1. Let (Yi)i∈Z be a strictly stationary sequence of real-valued
random variables. For any p > 2 and any positive integer n, there exists a
non-negative F0-measurable random variable A0(n, p) satisfying E(A0(n, p)) ≤∑n

k=1 k
p−2β̃2,Y (k) and such that: for any BV function h from R to R, letting

Xi = h(Yi)− E(h(Yi)) and Sn =
∑n

k=1 Xk, we have

E

(
max

1≤k≤n
|Sk|p

)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

+ n‖dh‖p−1
E (|h(Y0)|A0(n, p))

+ n‖dh‖p−1
E (|h(Y0)|)

n∑
k=0

(k + 1)p−2β̃2,Y (k) , (2.1)

where ‖dh‖ is the total variation norm of the measure dh.
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Remark 2.1. For p = 2, using Proposition 1 in [10], the inequality can be
simplified as follows. There exists a non-negative F0-measurable random vari-
able A0(n, 2) satisfying E(A0(n, 2)) ≤

∑n
k=1 β̃1,Y (k) and such that: for any BV

function h from R to R, letting Xi = h(Yi)− E(h(Yi)) and Sn =
∑n

k=1 Xk, we
have

E

(
max

1≤k≤n
S2
k

)
� n‖dh‖E (|h(Y0)|(1 +A0(n, 2))) . (2.2)

3. L
p-integrated risk for kernel estimators

Let (Yi)i∈Z be a stationary sequence with unknown marginal density f . In this
section, we study the kernel estimators of f based on the variables Y1, . . . , Yn.

Let K be a bounded-variation function in L
1(R, λ), where λ is the Lebesgue

measure. Let ‖dK‖ be the variation norm of the measure dK, and ‖K‖1,λ be
the L

1-norm of K with respect to λ.
Define then

Xk,n(x) = K(h−1
n (x− Yk)) and fn(x) =

1

nhn

n∑
k=1

Xk,n(x) ,

where (hn)n≥1 is a sequence of positive real numbers.
The following proposition gives an upper bound of the term

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

(3.1)

when p > 2 and f ∈ L
p(R, λ).

Proposition 3.1. Let p > 2, and assume that f belongs to L
p(R, λ). Let

V1,p,Y (n) =

n∑
k=0

(k + 1)p−2β̃1,Y (k) and V2,p,Y (n) =

n∑
k=0

(k + 1)p−2β̃2,Y (k) .

(3.2)
The following upper bounds holds

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

�

⎛
⎜⎝‖dK‖‖K‖1,λ‖f‖

(p−2)
(p−1)

p,λ (V1,p,Y (n))
1

(p−1)

nhn

⎞
⎟⎠

p
2

+
1

(nhn)p−1
‖dK‖p−1‖K‖1,λV2,p,Y (n) . (3.3)

Remark 3.1. If nhn → ∞ as n → ∞ and
∑∞

k=0(k + 1)p−2β̃2,Y (k) < ∞, then
it follows from Proposition 3.1 that

lim sup
n→∞

(nhn)
p/2

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

≤ C‖dK‖
p
2 ‖K‖

p
2

1,λ‖f‖
p(p−2)
2(p−1)

p,λ ,

(3.4)
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for some positive constant C. Note that (3.4) is comparable to the upper bound
obtained by Viennet [19], with two differences: firstly our condition is written
in terms of the coefficients β̃2,Y (n) (while Viennet used the usual β-mixing co-
efficients), and secondly we only require that f belongs to L

p(R, λ) (while Vi-
ennet assumed that f is bounded). When p ≥ 4, an upper bound similar to
(3.4) is given in [14], Proposition 33 Item (2), under the stronger condition
β̃2,Y (n) = O(n−(p−1+ε)) for some ε > 0.

Remark 3.2. The first term in the upper bound of Proposition 3.1 has been
obtained by assuming only that f belongs to L

p(R, λ). In fact, the proof reveals
that a better upper bound can be obtained by assuming that f ∈ L

q(R, λ) for
q > p. For instance, if f is bounded, the first term of the upper bound can be
replaced by

‖f‖
p
2−1
∞

(
‖dK‖‖K‖1,λ

nhn

) p
2

n∑
k=0

(k + 1)
p
2−1β̃1,Y (k) .

This can lead to a substantial improvement of the upper bound of (3.1), for
instance when

∑∞
k=0(k+1)p−2β̃2,Y (k) = ∞ but

∑∞
k=0(k+1)p/2−1β̃1,Y (k) < ∞.

We now give an upper bound of the same quantity when 1 ≤ p ≤ 2. Note that
the case p = 1 is of special interest, since it enables to get the rate of convergence
to the unknow probability μ (with density f) for the total variation distance.

Proposition 3.2. As in (3.2), let V1,2,Y (n) =
∑n

k=0 β̃1,Y (k). The following
upper bounds hold

1. For p = 2, E

(∫
R

|fn(x)− E(fn(x))|2dx
)

� 1

nhn
‖dK‖‖K‖1,λV1,2,Y (n) .

2. Let 1 ≤ p < 2, α > 1 and q > 1. If

Mαq,p(f) :=

∫
|x|

αq(2−p)
p f(x)dx < ∞

and

Mα,p(K) :=

∫
|x|

α(2−p)
p |K(x)|dx < ∞ ,

then the following upper bound holds:

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

�
(
‖dK‖‖K‖1,λ(Mαq,p(f))

1
q (U1,q,Y (n))

q−1
q

nhn

) p
2

+

⎛
⎜⎜⎝
‖dK‖

(
‖K‖1,λ + h

α(2−p)
p

n Mα,p(K)

)
V1,2,Y (n)

nhn

⎞
⎟⎟⎠

p
2

,

where U1,q,Y (n) =
∑n

k=0(k + 1)
1

q−1 β̃1,Y (k).
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Remark 3.3. Note first that Item 1 of Proposition 3.2 is due to Dedecker and
Prieur [8]. For p ∈ [1, 2), It follows from Item 2 that if E(|Y0|αq(2−p)/p) < ∞
for α > 1, q > 1 and if

∑∞
k=0(k + 1)1/(q−1)β̃1,Y (k) < ∞, then

lim sup
n→∞

(nhn)
p
2E

(∫
R

|fn(x)− E(fn(x))|pdx
)

≤ C‖dK‖
p
2 ‖K‖

p
2

1,λ

(
1 + (Mαq,p(f))

p
2q

)
for some positive constant C, provided nhn → ∞ and hn → 0 as n → ∞. As
will be clear from the proof, this upper bound remains true when q = ∞, that is
when ‖Y0‖∞ < ∞ and

∑∞
k=0 β̃1,Y (k) < ∞.

With these two propositions, one can get the rates of convergence of fn to
f , when f belongs to the generalized Lipschitz spaces Lip∗(s,Lp(R, λ)) with
s > 0, as defined in [11], Chapter 2, Paragraph 9. Recall that Lip∗(s,Lp(R, λ))
is a particular case of Besov spaces (precisely Lip∗(s,Lp(R, λ)) = Bs,p,∞(R)).
Moreover, if s is a positive integer, Lip∗(s,Lp(R, λ)) contains the Sobolev space
W s(Lp(R, λ)) if p > 1 and W s−1(BV ) if p = 1 (see again [11], Chapter 2,
paragraph 9). Recall that, if s is a positive integer the space W s(Lp(R, λ)) (resp.
W s(BV )) is the space of functions for which f (s−1) is absolutely continuous,
with almost everywhere derivative f (s) belonging to L

p(R, λ) (resp. f (s) has
bounded variation).

Let Kh(·) = h−1K(·/h), and r be a positive integer, and assume that, for
any g in W r(Lp(R, λ)),∫

R

|g(x)− g ∗Kh(x)|pdx ≤ C1h
pr‖g(r)‖pp,λ , (3.5)

for some constant C1 depending only on r. For instance, (3.5) is satisfied for
any Parzen kernel of order r (see Section 4 in [4]).

From (3.5) and Theorem 5.2 in [11], we infer that, for any g ∈ L
p(R, λ),∫

R

|g(x)− g ∗Kh(x)|pdx ≤ C2(ωr(g, h)p)
p ,

for some constant C2 depending only on r, where ωr(g, ·)p is the r-th modulus of
regularity of g in L

p(R, λ) as defined in [11], Chapter 2, Paragraph 7. This last
inequality implies that, if g belongs to Lip∗(s,Lp(R, λ)) for any s ∈ [r − 1, r),
then ∫

R

|g(x)− g ∗Kh(x)|pdx ≤ C2h
ps‖g‖pLip∗(s,Lp(R,λ)) . (3.6)

Combining Proposition 3.1 or 3.2 with the control of the bias given in (3.6),
we obtain the following upper bounds for the L

p-integrated risk of the kernel
estimator.

Let K be a bounded variation function in L
1(R, λ), and assume that K

satisfies (3.5) for some positive integer r.
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• Let p ≥ 2 and assume that
∑n

k=0(k+1)p−2β̃2,Y (k) = O(nδ(p−1)) for some
δ ∈ [0, 1). Assume that f belongs to Lip∗(s,Lp(R, λ)) for s ∈ [r − 1, r) or
to W s(Lp(R, λ)) for s = r. Then, taking hn = Cn−(1−δ)/(2s+1),

E

(∫
R

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k + 1)p−2β̃2,Y (k) < ∞ (case δ = 0), we obtain the same
rate as in the iid situation. This result generalizes the result of Viennet
[19], who obtained the same rates provided

∑∞
k=0(k + 1)p−2β(k) < ∞,

where the β(k)’s are the usual β-mixing coefficients.
• Let 1 ≤ p < 2. Assume that Y0 has a moment of order q(p− 2)/p+ ε for

some q > 1 and ε > 0, and that
∑n

k=0(k+1)1/(q−1)β̃1,Y (k) = O(nδq/(q−1))
for some δ ∈ [0, 1). Assume that f belongs to Lip∗(s,Lp(R, λ)) for s ∈
[r−1, r) or to W s(Lp(R, λ)) for s = r. Then, taking hn = Cn−(1−δ)/(2s+1),

E

(∫
R

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k+1)1/(q−1)β̃1,Y (k) < ∞ (case δ = 0), we obtain the same
rate as in the iid situation.
Let us consider the particular case where p = 1. Let μ be the probability
measure with density f , and let μ̂n be the random (signed) measure with
density fn. We have just proved that

E‖μ̂n − μ‖ = O
(
n

−s(1−δ)
2s+1

)
(recall that ‖ · ‖ is the variation norm). It is an easy exercice to modify
μ̂n in order to get a random probability measure μ∗

n that converges to μ
at the same rate (take the positive part of fn and renormalize).

4. L
p-integrated risk for estimators based on piecewise polynomials

Let (Yi)i∈Z be a stationary sequence with unknown marginal density f . In this
section, we wish to estimate f on a compact interval I with the help of the
variables Y1, . . . , Yn. Without loss of generality, we shall assume here that I =
[0, 1].

We shall consider the piecewise polynomial basis on a a regular partition
of [0, 1], defined as follows. Let (Qi)1≤i≤r+1 be an orthonormal basis of the
space of polynomials of order r on [0, 1], and define the function Ri on R by:
Ri(x) = Qi(x) if x belongs to ]0, 1] and 0 otherwise. Consider now the regu-
lar partition of ]0, 1] into mn intervals (](j − 1)/mn, j/mn])1≤j≤mn . Define the
functions ϕi,j(x) =

√
mnRi(mnx − (j − 1)). Clearly the family (ϕi,j)1≤i≤r+1

is an orthonormal basis of the space of polynomials of order r on the interval
[(j − 1)/mn, j/mn]. Since the supports of ϕi,j and ϕk,� are disjoints for � �= j,
the family (ϕi,j)1≤i≤r+1,1≤j≤m is then an orthonormal system of L2([0, 1], λ).
The case of regular Histograms corresponds to r = 0.
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Define then

Xi,j,n =
1

n

n∑
k=1

ϕi,j(Yk) and fn =

r+1∑
i=1

mn∑
j=1

Xi,j,nϕi,j .

The following proposition gives an upper bound of

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

when p > 2 and f1[0,1] ∈ L
p([0, 1], λ).

Proposition 4.1. Let p > 2, and assume that f1[0,1] belongs to L
p([0, 1], λ).

Let

C1,p =

r+1∑
i=1

‖Ri‖
3p
2∞ ‖dRi‖

p
2 and C2,p =

r+1∑
i=1

‖Ri‖p+1
∞ ‖dRi‖p−1 .

and recall that V1,p,Y (n) and V2,p,Y (n) have been defined in (3.2). The following
upper bound holds

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

�
(mn

n

) p
2

C1,p

(
‖f1[0,1]‖

(p−2)
(p−1)

p,λ (V1,p,Y (n))
1

(p−1)

) p
2

+
(mn

n

)p−1

C2,pV2,p,Y (n) .

Remark 4.1. If n/mn → ∞ as n → ∞ and
∑∞

k=0(k+1)p−2β̃2,Y (k) < ∞, then
it follows from Proposition 4.1 that

lim sup
n→∞

(
n

mn

) p
2

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

≤ C · C1,p‖f1[0,1]‖
p(p−2)
2(p−1)

p,λ ,

(4.1)
for some positive constant C. This bound is comparable to the upper bound ob-
tained by Viennet ([19], Theorem 3.2) for the usual β-mixing coefficients. Note
however that Viennet’s results is valid for a much broader class of projection es-
timators. As a comparison, it seems very difficult to deal with the trigonometric
basis in our setting.

We now give an upper bound of the same quantity when 1 ≤ p ≤ 2.

Proposition 4.2. Let 1 ≤ p ≤ 2. The following upper bounds holds

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

�
(mn

n

) p
2

C
p
2
1,2 (V1,2,Y (n))

p
2 .
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Remark 4.2. Note first that the upper bounf for p = 2 is due to Dedecker and
Prieur [8]. Note also that, if n/mn → ∞ as n → ∞ and

∑∞
k=0 β̃1,Y (k) < ∞,

then it follows from Proposition 4.2 that

lim sup
n→∞

(
n

mn

) p
2

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

≤ C · C
p
2
1,2 , (4.2)

for some positive constant C.

With the last two propositions, one can get the rates of convergence of fn to
f1[0,1] when f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) with s > 0.

Applying the Bramble-Hilbert lemma (see [3]), we know that, for any f such
that f1[0,1] belongs to W r+1(Lp([0, 1], λ))

∫ 1

0

|f(x)− E(fn(x))|pdx ≤ C1m
−p(r+1)
n

∥∥∥f (r)1[0,1]

∥∥∥
p,λ

,

for some constant C1 depending only on r. From [11], page 359, we know that, if
f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) and if the degree r is such that r > s− 1,

∫ 1

0

|f(x)− E(fn(x))|pdx ≤ C2m
−ps
n ‖f1[0,1]‖Lip∗(s,Lp([0,1],λ)) , (4.3)

for some constant C2 depending only on r. Combining Proposition 4.1 or 4.2
with the control of the bias given in (4.3), we obtain the following upper bounds
for the L

p-integrated risk.

• Let p > 2 and assume that
∑n

k=0(k+1)p−2β̃2,Y (k) = O(nδ(p−1)) for some
δ ∈ [0, 1). Assume that f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) for s < r+1

or to W s(Lp([0, 1])) for s = r + 1. Then, taking mn = [Cn(1−δ)/(2s+1)],

E

(∫ 1

0

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0(k + 1)p−2β̃2,Y (k) < ∞ (case δ = 0), we obtain the same
rate as in the iid situation. This result generalizes the result of Viennet
[19], who obtained the same rates provided

∑∞
k=0(k + 1)p−2β(k) < ∞,

where the β(k)’s are the usual β-mixing coefficients.
• Let 1 ≤ p ≤ 2 and assume that

∑n
k=0 β̃1,Y (k) = O(nδ) for some δ ∈ [0, 1).

Assume that f1[0,1] belongs to Lip∗(s,Lp([0, 1], λ)) for s < r + 1 or to

W s(Lp([0, 1], λ)) for s = r + 1. Then, taking mn = [Cn(1−δ)/(2s+1)],

E

(∫ 1

0

|fn(x)− f(x)|pdx
)

= O
(
n

−ps(1−δ)
2s+1

)
.

Hence, if
∑∞

k=0 β̃1,Y (k) < ∞ (case δ = 0), we obtain the same rate as in
the iid situation.
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Let us consider the particular case where p = 1 and f is supported on
[0, 1]. Let μ be the probability measure with density f , and let μ̂n be the
random measure with density fn. We have just proved that

E‖μ̂n − μ‖ = O
(
n

−s(1−δ)
2s+1

)
(recall that ‖ · ‖ is the variation norm).

5. Application to density estimation of expanding maps

5.1. Uniformly expanding maps

Several classes of uniformly expanding maps of the interval are considered in the
literature. We recall here the definition given in [7] (see the references therein
for more informations).

Definition 5.1. A map T : [0, 1] → [0, 1] is uniformly expanding, mixing and
with density bounded from below if it satisfies the following properties:

1. There is a (finite or countable) partition of [0, 1] into subintervals In on
which T is strictly monotonic, with a C2 extension to its closure In, sat-
isfying Adler’s condition |T ′′|/|T ′|2 ≤ C, and with |T ′| ≥ λ (where C > 0
and λ > 1 do not depend on In).

2. The length of T (In) is bounded from below.
3. In this case, T has finitely many absolutely continuous invariant measures,

and each of them is mixing up to a finite cycle. We assume that T has a
single absolutely continuous invariant probability measure ν, and that it is
mixing.

4. Finally, we require that the density h of ν is bounded from below on its
support.

From this point on, we will simply refer to such maps as uniformly expanding.
It is well known, that, for such classes, the density h has bounded variation.

We wish to estimate h with the help of the first iterates T, T 2, . . . , Tn.
Since the bias term of a density having bounded variation is well controlled
in L

1([0, 1], λ), we shall give the rates in terms of the L
1-integrated risk. We

shall use an Histogram, as defined in Section 4. More precisely, our estimator
hn of h is given by

hn(x, y) =

mn∑
i=1

αi,n(y)ϕi(x) , (5.1)

where

ϕi =
√
mn1](i−1)/mn,i/mn] and αi,n(y) =

1

n

n∑
k=1

ϕi

(
T k(y)

)
.

As usual, the bias term is of order∫ 1

0

|h(x)− ν(hn(x, ·))| dx = O

(
1

mn

)
. (5.2)
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On another hand, one can apply Proposition 4.2 to get

∫ 1

0

∫ 1

0

|hn(x, y)− ν(hn(x, ·))|ν(dy) dx = O

(√
mn

n

)
. (5.3)

Choosing mn = [Cn1/3] for some C > 0, it follows from (5.2) and (5.3) that

∫ 1

0

∫ 1

0

|hn(x, y)− h(x)|ν(dy) dx = O
(
n−1/3

)
.

Now, if νn(y) is the probability measure with density hn(·, y), we have just
proved that ∫ 1

0

‖νn(y)− ν‖ ν(dy) = O
(
n−1/3

)
.

Let us briefly explain how to derive (5.3) from Proposition 4.2. To do this,
we go back to the Markov chain associated with T , as we describe now. Let first
K be the Perron-Frobenius operator of T with respect to ν, defined as follows:
for any functions u, v in L

2([0, 1], ν)

ν(u · v ◦ T ) = ν(K(u) · v) . (5.4)

The relation (5.4) states that K is the adjoint operator of the isometry U : u �→
u ◦ T acting on L

2([0, 1], ν). It is easy to see that the operator K is a transition
kernel, and that ν is invariant by K. Let now (Yi)i≥0 be a stationary Markov
chain with invariant measure ν and transition kernel K. It is well known that on
the probability space ([0, 1], ν), the random vector (T, T 2, . . . , Tn) is distributed
as (Yn, Yn−1, . . . , Y1). Hence (5.3) is equivalent to

E

(∫ 1

0

∣∣∣h̃n(x)− E

(
h̃n(x)

)∣∣∣ dx) = O

(√
mn

n

)
(5.5)

where

h̃n(x) =

mn∑
i=1

Xi,nϕi(x) , with Xi,n =
1

n

n∑
k=1

ϕi (Yk) .

Now (5.5) follows easily from Proposition 4.2 and the fact that β̃1,Y (n) = O(an)
for some a ∈ (0, 1) (see Section 6.3 in [9]).

5.2. Intermittent maps

For γ in (0, 1), we consider the intermittent map Tγ (or simply T ) from [0, 1] to
[0, 1], introduced by Liverani, Saussol and Vaienti [13]:

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1].
(5.6)
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It follows from [17] that there exists a unique absolutely continuous Tγ-invariant
probability measure νγ (or simply ν), with density hγ (or simply h). From [17],
Theorem 1, we infer that the function x �→ xγhγ(x) is bounded from above
and below. From Lemma 2.3 in [13], we know that h is non-increasing with
hγ(1) > 0, and that it is Lipshitz on any interval [a, 1] with a > 0.

We wish to estimate h with the help of the first iterates T, T 2, . . . , Tn. To do
this, we shall use the Histogram hn defined in (5.1).

Using the properties of h, it is easy to see that∫ 1

0

|h(x)− ν(hn(x, ·))| dx = O

(
1

m1−γ
n

)
. (5.7)

On another hand, one can apply Proposition 4.2 to get

∫ 1

0

∫ 1

0

|hn(x, y)−ν(hn(x, ·))|ν(dy) dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O
(√

mn/n
)

if γ < 1/2

O
(√

mn log(n)/n
)

if γ = 1/2

O
(√

mn/n(1−γ)/γ
)

if γ > 1/2 .

(5.8)
Starting from (5.7) and (5.8), the appropriate choices of mn lead to the rates

∫ 1

0

∫ 1

0

|hn(x, y)− h(x)|ν(dy) dx =

⎧⎪⎪⎨
⎪⎪⎩
O
(
n−(1−γ)/(3−2γ)

)
if γ < 1/2

O
(
(n/ log(n))−1/4

)
if γ = 1/2

O
(
n−(1−γ)2/γ(3−2γ)

)
if γ > 1/2 .

(5.9)
Keeping the same notations as in Section 5.1, the bound (5.8) follows from

Proposition 4.2 by noting that the coefficients β̃1,Y (n) of the chain (Yi)i≥0 as-

sociated with T satisfy β̃1,Y (n) = O(n−(1−γ)/γ) (see [6]). We do not know if the
rates given in (5.9) are optimal in some sense.

6. Simulations

6.1. Functions of an AR(1) process

In this subsection, we first simulate the simple AR(1) process, according to the
recursion equation given in (1.2), that is

Xn+1 =
1

2
(Xn + εn+1) ,

where X0 is uniformly distributed over [0, 1], and (εi)i≥1 is a sequence of iid
random variables with distribution B(1/2), independent of X0.

It is well known that this chain is not α-mixing in the sense of Rosenblatt
[16] (see for instance [2]). In fact, the kernel K is the Perron-Frobenius operator
of the uniformly expanding map T0 defined in (5.6), which is another way to
see that this non-irreducible chain cannot be mixing in the sense of Rosenblatt.
However, one can prove that the coefficients β̃2,X of the chain (Xi)i≥0 are such
that
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β̃2,X(k) ≤ 2−k

(see for instance Section 6.1 in [9]).
Let now Qμ,σ2 be the inverse of the cumulative distribution function of the

law N (μ, σ2). Let then

Yi = Qμ,σ2(Xi) .

The sequence (Yi)i≥0 is also a stationary Markov chain (as an invertible function

of a stationary Markov chain), and one can easily check that β̃2,Y (k) = β̃2,X(k).
By construction, Yi is N (μ, σ2)-distributed, but the sequence (Yi)i≥0 is not a
Gaussian process (otherwise it would be mixing in the sense of Rosenblatt).

Figure 1 shows two graphs of the kernel estimator of the density of Yi, for
μ = 10 and σ2 = 2, based on the simulated sample Y1, . . . , Yn. The kernel K
is the Epanechnikov kernel (which is a Parzen kernel of order 2, thus providing
theoretically a good estimation when the density belongs to the the Sobolev
space of order 2). Here we do not interfere, and let the software R choose an
appropriate bandwidth, to see that the default procedure delivers a correct
estimation of the density, even in this non-mixing framework.

Fig 1. Estimation of the density of Yi (μ = 10 and σ2 = 2) via the Epanechnikov kernel:
n = 1000 (left) and n = 5000 (right)

We continue with another example. Let Q : [0, 1] �→ [0, 1] be the inverse of the
cumulative distribution function of the density f over [0, 1] defined by: f ≡ 1/2
on [0, 1/4] ∪ [3/4, 1] and f ≡ 3/2 on (1/4, 3/4). Let then

Yi = Q(Xi) .

The same reasoning as before shows that (Yi)i≥0 is a stationary Markov chain

satisfying β̃2,Y (k) = β̃2,X(k). By construction, the density of the distribution
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of the Xi’s is the density f . Since f belongs to the class of bounded varia-
tion functions over [0, 1], the bias of the Histogram will be well controlled in
L
1([0, 1], λ), and the computations of Section 4 show that a reasonable choice

for mn is mn = [n1/3].

Fig 2. Estimation of the density f by an Histogram: n = 1000 (left) and n = 5000 (right)

Figure 2 shows two Histograms based on the simulated sample Y1, . . . , Yn,
with mn = [n1/3] and two different values of n. We shall now study this example
from a numerical point of view, by giving an estimation of the L1-integrated risk
of the Histogram. To see the asymptotic behavior, we let n run from 5000 to
110000, with an increment of size 5000. The L

1-integrated risk is estimated via
a classical Monte-Carlo procedure, by averaging the variation distance between
the true density and the estimated density over N = 300 independent trials.
The results are given in the table below:

n L
1-integ. risk n L

1-integ. risk
5000 0.0477 60000 0.0227
10000 0.0381 65000 0.0177
15000 0.0265 70000 0.0217
20000 0.0316 75000 0.0231
25000 0.0293 80000 0.0209
30000 0.0292 85000 0.0202
35000 0.0207 90000 0.0156
40000 0.0277 95000 0.0197
45000 0.0245 100000 0.0209
50000 0.0191 105000 0.0193
55000 0.0251 110000 0.0189
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Fig 3. Left: Graph of the L
1-integrated risk as a function of n. The red curve is the theoretical

rate for estimating BV functions: n → n−1/3. Right: Estimation of the density f by an
Histogram: n = 15000

Figure 3 (left) shows the value of the L
1-integrated risk as n increases. One

can see that the L1-integrated risk is smaller for some particular sizes of n. This
is due to the fact that for such n, two of the breaks of the Histogram are located
precisely at 1/4 and 3/4, that is at the two discontinuity points of the density.
In that case the variation distance between the Histogram and the true density
is particularly small, as illustrated by Figure 3 (right). But of course, we are not
supposed to know where the discontinuity are located.

6.2. Intermittent maps

In this section, our goal is to visualize the invariant density hγ of the intermittent
maps Tγ defined in (5.6). Hence, we shall consider very large n in order to get
a good picture. As indicated in Subsection 5.2, we choose mn = [n1/(3−2γ)] if
γ ∈ (0, 1/2], and mn = [n(1−γ)/(γ(3−2γ))] if γ ∈ (1/2, 1). We shall consider three
cases: γ = 1/4, γ = 1/2 and γ = 3/4. Recall that γ < 1/2 corresponds to
the short-range dependent case, γ > 1/2 to the long-range dependent case, and
γ = 1/2 is the boundary case (see for instance [6]).

As one can see from Figure 4, due to the behavior of Tγ around zero, the
process (T i

γ)i≥0 spends much more time in the neighborhood of 0 when γ = 3/4
than when γ = 1/4.

We do not have an explicit expression of the invariant density hγ , but, as
already mentioned in Subsection 5.2, we know the qualitative behavior of hγ in
the neighborhood of 0. More precisely, one can introduce an equivalent density
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Fig 4. Graphs of 500 iterations of the map Tγ for γ = 1/4 (left) and γ = 3/4 (right)

fγ such that fγ(x) = (1 − γ)x−γ if x ∈ (0, 1] and fγ(x) = 0 elsewhere. By
equivalent, we mean that there exists two positive constants a, b, such that, on
(0, 1],

0 < a ≤ hγ/fγ ≤ b < ∞ . (6.1)

Figure 5 below shows three Histograms based on (T γ
i )1≤i≤n for γ = 1/4,

γ = 1/2, γ = 3/4, and very large values of n. Since the rates are very slow if γ
is much larger than 1/2 (see (5.9)), we have chosen n = 107 for the estimation
of h3/4. In each cases, we plotted the equivalent density on the same graph, to
see that the behavior of hγ around 0 is as expected.

7. Proof of the results of Sections 3 and 4

7.1. Proof of Proposition 3.1

Setting Yi,n(x) = K((x − Yi)/hn) and Xi,n(x) = Yi,n(x) − E(Yi,n(x)), we have
that

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

≤ (nhn)
−p

∫
R

E

(∣∣∣∣∣
n∑

i=1

Xi,n(x)

∣∣∣∣∣
p)

dx . (7.1)

Starting from (7.1) and applying Proposition 2.1, we get

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

� (nh2
n)

−p/2

∫ (
n−1∑
i=0

|Cov(X0,n(x), Xi,n(x))|
)p/2

dx
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Fig 5. Topleft: Estimation of the density h1/4, n = 60000. Topright: Estimation of the density

h1/2, n = 40000. Bottom: Estimation of the density h3/4, n = 107. The equivalent density is
plotted in red

+ n(nhn)
−p‖dK‖p−1

∫
E (|Y0,n(x)|A0(n, p)) dx

+ n(nhn)
−p‖dK‖p−1

(∫
E (|Y0,n(x)|) dx

) n∑
k=0

(k + 1)p−2β̃2,Y (k) . (7.2)

Since ∫
|Y0,n(x)|dx ≤ hn‖K‖1,λ and E(A0(n, p)) ≤

n∑
k=1

kp−2β̃2,Y (k) ,

the two last terms on the right hand side of (7.2) are bounded by the second
term on the right hand side of (3.3).
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To complete the proof, it remains to handle the first term on the right hand
side of (7.2). By Item 1 of Lemma 8.1 (see Subsection 8.2) applied to Z =
X0,n(x) and F0 = σ(Y0),

∫ (
n−1∑
i=0

|Cov(X0,n(x), Xi,n(x))|
)p/2

dx

≤ ‖dK‖p/2
∫ (∫

B(y, n)|K((x− y)/hn)|f(y)dy
)p/2

dx , (7.3)

where we have used the following notations: B(y, n) = b(y, 0) + · · ·+ b(y, n− 1)
and b(Y0, n) = supt∈R

|PYn|Y0
(ft) − P (ft)| (keeping the same notations as in

Definition 2.1 for the conditional probabilities). By Jensen’s inequality

(∫
B(y, n)|K((x− y)/hn)|f(y)dy

)p/2

≤ hp/2
n ‖K‖p/2−1

1,λ

∫
B(y, n)p/2f(y)p/2h−1

n |K((x− y)/hn)|dy .

Integrating with respect to x, we get

∫ (∫
B(y, n)|K((x− y)/hn)|f(y)dy

)p/2

dx

≤ hp/2
n ‖K‖p/21,λ

∫
B(y, n)p/2f(y)p/2dy .

Together with (7.3), this gives

(nh2
n)

−p/2

∫ (
n−1∑
i=0

|Cov(X0,n(x), Xi,n(x))|
)p/2

dx

≤ (nhn)
−p/2‖dK‖p/2‖K‖p/21,λ

∫
B(y, n)p/2f(y)p/2dy . (7.4)

Applying Hölder’s inequality,

∫
B(y, n)p/2f(y)p/2dy ≤ ‖f‖p(p−2)/2(p−1)

p,λ

(∫
B(y, n)p−1f(y)dy

)p/2(p−1)

.

(7.5)
Now(∫

B(y, n)p−1f(y)dy

) 1
p−1

=
(
E
(
B(Y0, n)

p−1
)) 1

p−1 = E (Zn(Y0)B(Y0, n)) ,

where

Zn(Y0) =
B(Y0, n)

p−2

(E (B(Y0, n)p−1))
(p−2)/(p−1)

.



Density estimation for β̃-dependent sequences 1001

Note that ‖Zn(Y0)‖(p−1)/(p−2) = 1. Arguing as in [15] (applying Remark 1.6
with g2(x) = Zn(x) and Inequality C.5), we infer that

(∫
B(y, n)p−1f(y)dy

)p/2(p−1)

� (V1,p,Y (n))
p/2(p−1) . (7.6)

Combining (7.4), (7.5) and (7.6), the proof of Proposition 3.1 is complete.

7.2. Proof of Proposition 3.2

We keep the same notations as in Subsection 7.1. The case p = 2 (Item 1 of
Proposition 3.2) has been treated in [8].

For p ∈ [1, 2), we start from the elementary inequality

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

≤
∫ (

E
(
|fn(x)− E(fn(x))|2

))p/2
dx .

Let α > 1. Applying Hölder’s inequality,

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

�
(∫ (

|x|α(2−p)/p + 1
)
E
(
|fn(x)− E(fn(x))|2

)
dx

)p/2

.

As in (7.3), we infer that

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

� ‖dK‖ p
2

(nhn)
p
2

(∫
E

((
|x|α(2−p)/p + 1

)
B(Y0, n)h

−1
n |K((x− Y0)/hn)|

)
dx

) p
2

.

(7.7)

Now |x|α(2−p)/p ≤ Ch
α(2−p)/p
n |(x − Y0)/hn|α(2−p)/p + C|Y0|α(2−p)/p for some

positive constant C. Plugging this upper bound in (7.7) and integrating with
respect to x we get

E

(∫
R

|fn(x)− E(fn(x))|pdx
)

� (nhn)
−p/2‖dK‖p/2‖K‖p/21,λ

(
E

(
|Y0|α(2−p)/pB(Y0, n)

))p/2

+ (nhn)
−p/2‖dK‖p/2

((
hα(2−p)/p
n Mα,p(K) + ‖K‖1,λ

)
V1,2,Y (n)

)p/2

. (7.8)

To complete the proof, it remains to handle the first term in the right hand side
of (7.8). We use once more Hölder’s inequality: for any q > 1,
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E

(
|Y0|α(2−p)/pB(Y0, n)

)
≤ (Mαq,p(f))

1/q
(
E

(
B(Y0, n)

q/(q−1)
))(q−1)/q

� (Mαq,p(f))
1/q

(U1,q,Y (n))
(q−1)/q

, (7.9)

where the last upper bound is proved as in (7.6). Combining (7.8) and (7.9),
the proof of Proposition 3.2 is complete.

7.3. Proof of Proposition 4.1

We shall use the following notation

νn(g) =
1

n

n∑
k=1

(g(Yk)− E(g(Y0))) .

With this notation, we have

∫ 1

0

|fn(x)− E(fn(x))|pdx =

∫ 1

0

mn∑
j=1

∣∣∣∣∣
r+1∑
i=1

νn(ϕi,j)ϕi,j(x)

∣∣∣∣∣
p

dx

≤ (r + 1)p−1
mn∑
j=1

r+1∑
i=1

(∫ 1

0

|ϕi,j(x)|pdx
)
|νn(ϕi,j)|p . (7.10)

Now, by definition of ϕi,j ,∫ 1

0

|ϕi,j(x)|pdx ≤ ‖Ri‖p∞mp/2−1
n .

Consequently

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

� mp/2−1
n

r+1∑
i=1

‖Ri‖p∞
mn∑
j=1

E (|νn(ϕi,j)|p) .

(7.11)
Applying Proposition 2.1, we get

E (|νn(ϕi,j)|p) �
1

np/2

(
n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|
)p/2

+
1

np−1
‖dϕi,j‖p−1

E(ϕi,j(Y0)A0(n, p))

+
1

np−1
‖dϕi,j‖p−1

E(ϕi,j(Y0))

n∑
k=0

(k + 1)p−2β̃2,Y (k) . (7.12)

Since

‖dϕi,j‖ =
√
mn‖dRi‖ ,

mn∑
j=1

|ϕi,j | ≤
√
mn‖Ri‖∞

and

E(A0(n, p)) ≤
n∑

k=1

kp−2β̃2,Y (k) ,
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the two last terms in the right hand side of (7.12) can be easily bounded, and
we obtain

mn∑
j=1

E (|νn(ϕi,j)|p) �
1

np/2

mn∑
j=1

(
n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|
)p/2

+
mn

p/2

np−1
‖dRi‖p−1‖Ri‖∞

n∑
k=0

(k + 1)p−2β̃2,Y (k) . (7.13)

It remains to control the first term on the right hand side of (7.13). Applying
Lemma 8.1 as in (7.3), we get(

n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))|
)p/2

≤ mp/4
n ‖dRi‖p/2 (E (B(Y0, n)ϕi,j(Y0)))

p/2
,

(7.14)
where B(y, n) has been defined right after (7.3). Now, by Jensen’s inequality,

(E (B(Y0, n)ϕi,j(Y0)))
p/2

≤
(∫ 1

0

|ϕi,j(x)|dx
)p/2−1 ∫ 1

0

B(x, n)p/2f(x)p/2|ϕi,j(x)|dx ,

and consequently, since ‖ϕi,j‖∞ ≤ √
mn‖Ri‖∞,

mp/4
n

mn∑
j=1

(E (B(Y0, n)ϕi,j(Y0)))
p/2 ≤ ‖Ri‖p/2∞ mn

∫ 1

0

B(x, n)p/2f(x)p/2dx .

(7.15)
From (7.13), (7.14), (7.15) and arguing as in (7.5)–(7.6), we get

mn∑
j=1

E (|νn(ϕi,j)|p)

� mn

np/2
‖dRi‖p/2‖Ri‖p/2∞ ‖f1[0,1]‖p(p−2)/2(p−1)

p,λ (V1,p,Y (n))
p/2(p−1)

+
mn

p/2

np−1
‖dRi‖p−1‖Ri‖∞

n∑
k=0

(k + 1)p−2β̃2,Y (k) . (7.16)

Combining (7.11) and (7.16), the result follows.

7.4. Proof of Proposition 4.2

If p ∈ [1, 2], the following inequality holds:

E

(∫ 1

0

|fn(x)− E(fn(x))|pdx
)

≤
(
E

(∫ 1

0

|fn(x)− E(fn(x))|2dx
))p/2

.

(7.17)
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To control the right hand term of (7.17), we apply (7.11) with p = 2. For p = 2,
the upper bound (7.12) becomes simply

E
(
|νn(ϕi,j)|2

)
� 1

n

n−1∑
k=0

|Cov(ϕi,j(Y0), ϕi,j(Yk))| ,

and, following the computations of Subsection 7.3, we get

mn∑
j=1

E
(
|νn(ϕi,j)|2

)
� mn

n
‖dRi‖‖Ri‖∞V1,2,Y (n) . (7.18)

The result follows from (7.17), (7.11) with p = 2, and (7.18).

8. Deviation and Rosenthal bounds for partial sums of bounded
random variables

Before proving Proposition 2.1 in Subsection 8.2, we shall state and prove two
intermediate results in Subsection 8.1: a deviation inequality for stationary se-
quences of bounded random variables (see Proposition 8.1) and a Rosenthal-type
inequality in the same context (see Corollary 8.1).

8.1. A deviation inequality and a Rosenthal inequality

In this subsection, (Xi)i∈Z is a strictly stationary sequence of real-valued random
variables such that |X0| ≤ M almost surely and E(X0) = 0. We denote by Fi

the σ-algebra Fi = σ(Xk, k ≤ i), and by Ei(·) the conditional expectation with
respect to Fi.

Proposition 8.1. Let Sn =
∑n

k=1 Xk. For any x ≥ M , r > 2, β ∈]r−2, r[ and
any integer q ∈ [1, n] such that qM ≤ x, one has for any x ≥ M ,

P

(
max

1≤k≤n
|Sk| ≥ 5x

)
� nr/2

xr

(
q−1∑
i=0

|Cov(X0, Xi)|
)r/2

+
n

xr
‖X1‖rr

+
n

x2q

2q∑
k=q+1

n+q∑
�=q+1

‖E0(Xk)E0(X�)‖1

+
n

xr
qr/2−1

q∑
i=1

ir/2−2

⎧⎨
⎩i‖X0E0(Xi)‖r/2r/2 +

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

⎫⎬
⎭

+
n

xr
qr−2−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2 . (8.1)

As a consequence we obtain the following Rosenthal-type inequality:
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Corollary 8.1. Let Sn =
∑n

k=1 Xk. For any p > 2, any r ∈]2p−2, 2p[ and any
β ∈]r − 2, 2p− 2[, one has

E

(
max

1≤k≤n
|Sk|p

)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

+ nMp−2
n∑

�=0

�∑
k=0

(k + 1)p−3 ‖E0(Xk)E0(X�)‖1

+ nMp−2
n∑

k=1

kp−2 ‖E0(Xk)‖22 + nMp−r
n∑

i=1

ip−2‖X0E0(Xi)‖r/2r/2

+ nMp−r
n∑

j=1

jβ/2−1

j−1∑
�=0

(�+ 1)p−2−β/2 ‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2 . (8.2)

Remark 8.1. Note that the constants that are implicitely involved in Proposi-
tion 8.1 and Corollary 8.1 depend only on r and β.

Proof of Proposition 8.1. Let q ∈ [1, n] be an integer such that qM ≤ x.
For any integer i, define the random variables

Ui =

iq∑
k=(i−1)q+1

Xk .

Consider now the σ-algebras Gi = Fiq and define the variables Ũi as follows:

Ũ2i−1 = U2i−1−E(U2i−1|G2(i−1)−1) and Ũ2i = U2i−E(U2i|G2(i−1)). The follow-
ing inequality is then valid

max
1≤k≤n

|Sk| ≤ 2qM + max
2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣+ max
1≤2j−1≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i−1

∣∣∣∣∣
+ max

1≤j≤[n/q]

∣∣∣∣∣
j∑

i=1

(Ui − Ũi)

∣∣∣∣∣ .
It follows that

P

(
max

1≤k≤n
|Sk| ≥ 5x

)
≤ P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ ≥ x

)

+ P

(
max

1≤2j−1≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i−1

∣∣∣∣∣ ≥ x

)
+ P

(
max

1≤j≤[n/q]

∣∣∣ j∑
i=1

(Ui − Ũi)
∣∣∣ ≥ x

)
.

(8.3)

Note that the two first terms on the right hand side of (8.3) can be treated
similarly, so that we shall only prove an upper bound for the first one.
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Let us first deal with the last term on the right hand side of (8.3). By Markov’s
inequality followed by Proposition 1 in [10], we have

P

(
max

1≤j≤[n/q]

∣∣∣∣∣
j∑

i=1

(Ui − Ũi)

∣∣∣∣∣ ≥ x

)
≤ 4

x2

[n/q]∑
i=1

‖E(Ui|Gi−2)‖22

+
8

x2

[n/q]−1∑
i=1

∥∥∥∥∥∥E(Ui|Gi−2)E

⎛
⎝ [n/q]∑

j=i+1

Uj |Gi−2

⎞
⎠
∥∥∥∥∥∥
1

.

Therefore, by stationarity,

P

(
max

1≤j≤[n/q]

∣∣∣ j∑
i=1

(Ui − Ũi)
∣∣∣ ≥ x

)

≤ 8

x2

[n/q]∑
i=1

iq∑
k=(i−1)q+1

[n/q]∑
j=i

jq∑
�=(j−1)q+1

∥∥E(i−2)q(Xk)E(i−2)q(X�)
∥∥
1

≤ 8

x2

[n/q]∑
i=1

2q∑
k=q+1

[n/q]∑
j=i

(j−i+2)q∑
�=(j−i)q+q+1

‖E0(Xk)E0(X�)‖1

≤ 8

x2

[n/q]−1∑
i=0

2q∑
k=q+1

i∑
j=0

(j+2)q∑
�=(j+1)q+1

‖E0(Xk)E0(X�)‖1 .

So, overall,

P

(
max

1≤j≤[n/q]

∣∣∣∣∣
j∑

i=1

(Ui − Ũi)

∣∣∣∣∣ ≥ x

)
≤ 8n

qx2

2q∑
k=q+1

n+q∑
�=q+1

‖E0(Xk)E0(X�)‖1 . (8.4)

Now, we handle the first term on the right hand side of (8.3). Using Markov’s
inequality, we obtain

P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ ≥ x

)
≤ x−r

∥∥∥∥∥ max
2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

. (8.5)

Note that (Ũ2i)i∈Z (resp. (Ũ2i−1)i∈Z) is a stationary sequence of martingale
differences with respect to the filtration (G2i)i∈Z (resp. (G2i−1)i∈Z). Applying
Theorem 6 in [14], we get∥∥∥∥∥ max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

� (n/q)1/r‖Ũ2‖r+(n/q)1/r

⎛
⎜⎝[n/(2q)]∑

k=1

1

k1+2δ/r

∥∥∥∥∥∥E0

⎛
⎝(

k∑
i=1

Ũ2i

)2
⎞
⎠
∥∥∥∥∥∥
δ

r/2

⎞
⎟⎠

1/(2δ)

,

(8.6)
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where δ = min(1, 1/(r−2)). Since (Ũ2i)i∈Z is a stationary sequence of martingale
differences with respect to the filtration (G2i)i∈Z,

E0

⎛
⎝(

k∑
i=1

Ũ2i

)2
⎞
⎠ =

k∑
i=1

E0

(
Ũ2
2i

)
.

Moreover, E0(Ũ
2
2i) ≤ E0(U

2
2i). Therefore∥∥∥∥∥∥E0

⎛
⎝(

k∑
i=1

Ũ2i

)2
⎞
⎠
∥∥∥∥∥∥
r/2

≤
k∑

i=1

∥∥E0

(
U2
2i

)
− E

(
U2
2i

)∥∥
r/2

+

k∑
i=1

E
(
U2
2i

)
.

By stationarity
k∑

i=1

E
(
U2
2i

)
= k‖Sq‖22 .

Moreover ‖Ũ2‖r ≤ 2‖Sq‖r. From (8.6) and the computations we have made, it
follows that∥∥∥∥∥ max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

� n

q
‖Sq‖rr +

(
n

q

)r/2

‖Sq‖r2 +
n

q

⎛
⎝[n/(2q)]∑

k=1

1

k1+2δ/r
Dδ

k,q

⎞
⎠

r/(2δ)

,

where

Dk,q =

k∑
i=1

∥∥E0

(
U2
2i

)
− E

(
U2
2i

)∥∥
r/2

.

Hence,

∥∥∥∥∥ max
2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣
∥∥∥∥∥
r

r

� n

q
‖Sq‖rr + nr/2

(
q−1∑
i=0

|Cov(X0, Xi)|
)r/2

+
n

q

⎛
⎝[n/(2q)]∑

k=1

1

k1+2δ/r
Dδ

k,q

⎞
⎠

r/(2δ)

. (8.7)

Notice that

Dk,q ≤
k∑

i=1

2iq∑
j,k=(2i−1)q+1

‖E0(XjXk)− E(XjXk)‖r/2

≤ 2

k∑
i=1

2iq∑
j=(2i−1)q+1

2iq−j∑
�=0

‖E0(XjXj+�)− E(XjXj+�)‖r/2 .
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Let η = (β − 2)/r and recall that r > 2 and r− 2 < β < r. Since η < (r− 2)/r,
applying Hölder’s inequality, we then get that

k∑
i=1

2iq∑
j=(2i−1)q+1

2iq−j∑
�=0

‖E0(XjXj+�)− E(XjXj+�)‖r/2

� k−η+ r−2
r

⎛
⎜⎝ k∑

i=1

i
β
2 −1

⎛
⎝ 2iq∑

j=(2i−1)q+1

q−1∑
�=0

‖E0(XjXj+�)− E(XjXj+�)‖r/2

⎞
⎠

r
2

⎞
⎟⎠

2
r

�q2−4/rk−η+ r−2
r

⎛
⎝ k∑

i=1

i
β
2 −1

2iq∑
j=(2i−1)q+1

q−1∑
�=0

‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2

⎞
⎠

2
r

.

Since 2δ/r > −δη+δ(r−2)/r (indeed −η+(r−2)/r = (r−β)/r and r−β < 2),
it follows that

⎛
⎝[n/(2q)]∑

k=1

1

k1+2δ/r
Dδ

k,q

⎞
⎠

r/(2δ)

� qr−2

q−1∑
�=0

[n/(2q)]∑
i=1

iβ/2−1

2iq∑
j=(2i−1)q+1

‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2

� qr−β/2−1

q−1∑
�=0

[n/(2q)]∑
i=1

2iq∑
j=(2i−1)q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2 .

So, overall,

n

q

⎛
⎝[n/(2q)]∑

k=1

1

k1+2δ/r
Dδ

k,q

⎞
⎠

r/(2δ)

� nqr−β/2−2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2 . (8.8)

Combining (8.3), (8.4), (8.7) and (8.8), Proposition 8.1 will be proved if we
show that

n

q
‖Sq‖rr � n‖X1‖rr + nqr/2−1

(
q−1∑
i=0

|E(X0Xi)|
)r/2

+nqr/2−1

q∑
i=1

ir/2−2

⎧⎨
⎩i‖X0E0(Xi)‖r/2r/2 +

i−1∑
j=0

‖E0(XiXi+j)−E(XiXi+j)‖r/2r/2

⎫⎬
⎭.

(8.9)
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By Theorem 6 in [14] again, and taking into account their Comment 7 (Item 4)

together with the fact that ‖E0(Sk)‖r ≤ ‖E0(S
2
k)‖

1/2
r/2, we have

‖Sq‖rr � q‖X1‖rr + q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)‖δr/2

)r/(2δ)

,

where δ = min(1/2, 1/(p− 2)). Now,

E(S2
k) ≤ 2k

k−1∑
i=0

|E(X0Xi)| .

Hence, since r > 2,

‖Sq‖rr � q‖X1‖rr + qr/2

(
q−1∑
i=0

|E(X0Xi)|
)r/2

+ q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)− E(S2

k)‖δr/2

)r/(2δ)

. (8.10)

Now

‖E0(S
2
k)− E(S2

k)‖r/2 ≤ 2

k∑
i=1

k−i∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

≤ 2

k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

+ 2
k∑

i=1

k∑
j=i

‖E0(XiXi+j)− E(XiXi+j)‖r/2 .

Note that, by stationarity,

‖E0(XiXi+j)− E(XiXi+j)‖r/2 ≤ 2‖XiEi(Xi+j)‖r/2 = 2‖X0E0(Xj)‖r/2 .

Therefore

∥∥E0(S
2
k)− E(S2

k)
∥∥
r/2

≤ 2

k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

+ 4

k∑
j=1

j‖X0E0(Xj)‖r/2 .

Applying Hölder’s inequality,

k∑
j=1

j‖X0E0(Xj)‖r/2 ≤ k

⎛
⎝ k∑

j=1

jr/2−1‖X0E0(Xj)‖r/2r/2

⎞
⎠

2/r

,
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and

k∑
i=1

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

≤ k1−2/r

⎛
⎜⎝ k∑

i=1

⎛
⎝i−1∑

j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2

⎞
⎠

r/2
⎞
⎟⎠

2/r

≤ k1−2/r

⎛
⎝ k∑

i=1

ir/2−1
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

⎞
⎠

2/r

≤ k

⎛
⎝ k∑

i=1

ir/2−2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

⎞
⎠

2/r

.

So, overall,

q

(
q∑

k=1

1

k1+2δ/r
‖E0(S

2
k)− E(S2

k)‖δr/2

)r/(2δ)

� qr/2
q∑

j=1

jr/2−1‖X0E0(Xj)‖r/2r/2

+ qr/2
q∑

i=1

ir/2−2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 .

Taking into account this last upper bound in (8.10), we obtain (8.9). The proof
of Proposition 8.1 is complete.

Proof of Corollary 8.1. Setting

s2n = max

(
n

n−1∑
i=0

|Cov(X0, Xi)|,M2

)
, (8.11)

we have

E

(
max

1≤k≤n
|Sk|p

)
= p

∫ nM

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ x

)
dx

= 5pp

∫ nM/5

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx

≤ 5pp

∫ sn

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx

+ 5pp

∫ nM

sn

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx . (8.12)

To handle the first term on the right hand side of (8.12), we first note that
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5pp

∫ sn

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx

≤ 5pp

∫ M

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx+ 5pnp/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

.

Now by Markov inequality followed by Proposition 1 in [10], we have

5p
∫ M

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx

≤ 4× 5p−2(p− 2)−1Mp−2

⎧⎨
⎩

n∑
i=1

E(X2
i ) + 2

n−1∑
i=1

∥∥∥∥∥∥XiEi

⎛
⎝ n∑

j=i+1

Xj

⎞
⎠
∥∥∥∥∥∥
1

⎫⎬
⎭ .

Hence by stationarity

5p
∫ M

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ 5x

)
dx

≤ 8× 5p−2(p− 2)−1Mp−2n

n−1∑
j=0

‖X0E0(Xj)‖1 .

So, overall,

p5p
∫ sn

0

xp−1
P

(
max

1≤k≤n
|Sk| ≥ x

)
dx

≤ 8p× 5p−2n(p− 2)−1Mp−2
n−1∑
j=0

‖X0E0(Xj)‖1

+ 5pnp/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

. (8.13)

We handle now the last term on the right hand side of (8.12). With this aim,
we use Proposition 8.1 with q = [x/M ], r ∈]2p− 2, 2p[ and β ∈]r − 2, 2p− 2[.

For the first term on the right hand side of Proposition 8.1, we have

nr/2

∫ nM

sn

xp−1−r

(
q−1∑
i=0

|Cov(X0, Xi)|
)r/2

dx � np/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

,

(8.14)

since s2n ≥ n
∑n−1

i=0 |Cov(X0, Xi)| and r > p.

For the second term on the right hand side of Proposition 8.1, since r > p
and sn ≥ M ,

n‖X1‖rr
∫ nM

sn

xp−1−rdx � n‖X1‖rrsp−r
n � n‖X1‖ppMr−psp−r

n

� n‖X1‖pp � nMp−2‖X1‖22 . (8.15)
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For the third term on the right hand side of Proposition 8.1, we have to give
an upper bound for

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n+q∑
�=q+1

‖E0(Xk)E0(X�)‖1 dx .

Write

2q∑
k=q+1

n+q∑
�=q+1

‖E0(Xk)E0(X�)‖1 =

2q∑
k=q+1

n∑
�=q+1

‖E0(Xk)E0(X�)‖1

+

2q∑
k=q+1

n+q∑
�=n+1

‖E0(Xk)E0(X�)‖1 .

Here, note that

2q∑
k=q+1

n+q∑
�=n+1

‖E0(Xk)E0(X�)‖1 ≤ q

2

2q∑
k=q+1

‖E0(Xk)‖22 +
q

2

n+q∑
�=n+1

‖E0(X�)‖22 .

Therefore

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n+q∑
�=n+1

‖E0(Xk)E0(X�)‖1 dx

≤ n

2

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 dx+
n

2

∫ nM

sn

xp−3

n+q∑
�=n+1

‖E0(X�)‖22 dx .

Now

n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 dx = n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 1q≤[n/2]dx

+ n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 1q>[n/2]dx

≤ 2n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 1q≤[n/2]dx+n2

∫ nM

sn

xp−3
∥∥E0(X[n/2]+1)

∥∥2
2
dx ,

where we have used the fact that q ≤ n. Hence

n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 dx ≤ 2n

∫ nM

sn

xp−3
n∑

k=q+1

‖E0(Xk)‖22 1x≤kMdx

+ n2

∫ nM

sn

xp−3
∥∥E0(X[n/2]+1)

∥∥2
2
dx
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≤ 2n

p− 2
Mp−2

n∑
k=1

kp−2 ‖E0(Xk)‖22 +
np

p− 2
Mp−2

∥∥E0(X[n/2]+1)
∥∥2
2
.

Now

np−1 ≤ 2p−1([n/2] + 1)p−1 ≤ 2p−1(p− 1)

[n/2]+1∑
k=1

kp−2 ,

and therefore,

np
∥∥E0(X[n/2]+1)

∥∥2
2
≤ 2p−1(p− 1)n

n∑
k=1

kp−2 ‖E0(Xk)‖22 .

Consequently

n

∫ nM

sn

xp−3

2q∑
k=q+1

‖E0(Xk)‖22 dx � nMp−2
n∑

k=1

kp−2 ‖E0(Xk)‖22 .

On another hand, since q ≤ n,

n

∫ nM

sn

xp−3

n+q∑
�=n+1

‖E0(X�)‖22 dx ≤ npMp−2

p− 2
‖E0(Xn+1)‖22 .

Proceeding as before, we get

n

∫ nM

sn

xp−3

n+q∑
�=n+1

‖E0(X�)‖22 dx � nMp−2
n∑

k=1

kp−2 ‖E0(Xk)‖22 .

So, overall,

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n+q∑
�=n+1

∥∥E0(Xk)E0(X�)
∥∥
1
dx

� nMp−2
n∑

k=1

kp−2
∥∥E0(Xk)

∥∥2
2
.

We handle now the quantity

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n∑
�=q+1

‖E0(Xk)E0(X�)‖1 dx .

We note first that

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n∑
�=q+1

‖E0(Xk)E0(X�)‖1 dx

≤ 2n

∫ nM

sn

xp−3

2q∑
k=q+1

k−1
n∑

�=q+1

‖E0(Xk)E0(X�)‖1 dx .
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Now

2q∑
k=q+1

k−1
n∑

�=q+1

‖E0(Xk)E0(X�)‖1

=

2q∑
k=q+1

k−1
k∑

�=q+1

‖E0(Xk)E0(X�)‖1 +
2q∑

k=q+1

k−1
n∑

�=k+1

‖E0(Xk)E0(X�)‖1

≤
2q∑

k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 +
n∑

�=q+2

�−1∑
k=q+1

k−1 ‖E0(Xk)E0(X�)‖1 .

Note that

n

∫ nM

sn

xp−3
n∑

�=q+2

�−1∑
k=q+1

k−1 ‖E0(Xk)E0(X�)‖1 dx

≤ n

n∑
�=1

�∑
k=1

k−1 ‖E0(Xk)E0(X�)‖1
∫ nM

sn

xp−31x≤kMdx

� nMp−2

p− 2

n∑
�=1

�∑
k=1

kp−3 ‖E0(Xk)E0(X�)‖1 .

On the other hand

n

∫ nM

sn

xp−3

2q∑
k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 dx

= n

∫ nM

sn

xp−3

2q∑
k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1q≤[n/2]dx

+ n

∫ nM

sn

xp−3

2q∑
k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1q>[n/2]dx

≤ n

∫ nM

sn

xp−3
n∑

k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1x≤�Mdx

+ n

∫ nM

sn

xp−3

2q∑
k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1[n/2]<q≤ndx .

Proceeding as before

n

∫ nM

sn

xp−3
n∑

k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1x≤�Mdx

� nMp−2
n∑

�=1

�∑
k=1

kp−3 ‖E0(Xk)E0(X�)‖1
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and

n

∫ nM

sn

xp−3

2q∑
k=q+1

k∑
�=q+1

�−1 ‖E0(Xk)E0(X�)‖1 1[n/2]<q≤ndx

� npMp−2
∥∥E0(X[n/2]+1)

∥∥2
2
� nMp−2

n∑
k=1

kp−2 ‖E0(Xk)‖22 .

So, overall, we obtain the following upper bound

n

∫ nM

sn

xp−1 1

x2q

2q∑
k=q+1

n+q∑
�=q+1

∥∥E0(Xk)E0(X�)
∥∥
1
dx

� nMp−2
n∑

�=1

�∑
k=1

kp−3
∥∥E0(Xk)E0(X�)

∥∥
1
+ nMp−2

n∑
k=1

kp−2
∥∥E0(Xk)

∥∥2
2
.

(8.16)

For the fourth term on the right hand side of Proposition 8.1, setting

a(i) = i‖X0E0(Xi)‖r/2r/2 +

i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 ,

we have

n

∫ nM

sn

xp−1−rqr/2−1

q∑
i=1

ir/2−2a(i)dx

≤ nM1−r/2
n∑

i=1

ir/2−2a(i)

∫ nM

sn

xp−2−r/21x≥iMdx .

Since r > 2p− 2 and sn ≥ M , it follows that

n

∫ nM

sn

xp−1−rqr/2−1

q∑
i=1

ir/2−2a(i)dx � nMp−r
n∑

i=1

ip−3a(i) .

We note also that β/2 > r/2− 1 > p− 2. Therefore

n∑
i=1

ip−3
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

=
n∑

i=1

iβ/2−1+p−2−β/2
i−1∑
j=0

‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2

≤
n∑

i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 ,
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so that

n

∫ nM

sn

xp−1−rqr/2−1

q∑
i=1

ir/2−2a(i)dx � nMp−r
n∑

i=1

ip−2‖X0E0(Xi)‖r/2r/2

+ nMp−r
n∑

i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXi+j)− E(XiXi+j)‖r/2r/2 . (8.17)

Finally, for the fifth term on the right hand side of of Proposition 8.1,

n

∫ nM

sn

xp−1−rqr−2−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2dx

≤ nMp−1−r

∫ nM

sn

qp−3−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)−E(XjXj+�)‖r/2r/2dx ,

since r > p−1 and q < x/M . Now, since p−3−β/2 < −1 (indeed β/2 > r/2−1
and r/2 > p− 1), we get

n

∫ nM

sn

xp−1−rqr−2−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2dx

≤ n(2M)β/2+3−pMp−1−r

×
∫ nM

sn

xp−3−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2dx

≤ n(2M)β/2+3−pMp−1−r

×
n−1∑
�=0

n∑
j=�+1

jβ/2−1‖E0(XjXj+�)−E(XjXj+�)‖r/2r/2

∫ nM

sn

xp−3−β/21x≥(�+1)Mdx .

Hence, since sn ≥ M ,

n

∫ nM

sn

xp−1−rqr−2−β/2

q−1∑
�=0

n∑
j=q+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2dx

� nMp−r
n−1∑
�=0

(�+ 1)p−2−β/2
n∑

j=�+1

jβ/2−1‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2

� nMp−r
n∑

j=1

jβ/2−1

j−1∑
�=0

(�+ 1)p−2−β/2‖E0(XjXj+�)− E(XjXj+�)‖r/2r/2 .

(8.18)

Corollary 8.1 follows from (8.12), (8.13), and Proposition 8.1 combined with
the bounds (8.14), (8.15), (8.16), (8.17) and (8.18).
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8.2. Proof of Proposition 2.1

The next lemma gives covariance-type inequalities in terms of the variables b�(i)
and b�(i, j) of Definition 2.1. It is almost the same as Lemma 35 in [14], the only
difference is that in [14], the authors used a slightly different definition of the
variables b�(i, j). The proof of the version we give here can be done by following
the proof of Lemma 35 in [14], and is therefore omitted.

Lemma 8.1. Let Z be a F�-measurable real-valued random variable and let h
and g be two BV functions (recall that ‖dh‖ is the variation norm of the measure
dh). Let Z(0) = Z − E(Z), h(0)(Yi) = h(Yi) − E(h(Yi)) and g(0)(Yj) = g(Yj) −
E(g(Yj)). Define the random variables b�(i) and b�(i, j) as in Definition 2.1.
Then

1.
∣∣E (

Z(0)h(0)(Yi)
)∣∣ = |Cov(Z, h(Yi))| ≤ ‖dh‖E (|Z|b�(i)) .

2.
∣∣E (

Z(0)h(0)(Yi)g
(0)(Yj)

)∣∣ ≤ ‖dh‖‖dg‖E (|Z|b�(i, j)) .
We now begin the proof of Proposition 2.1. Note first that if Xi = h(Yi) −

E(h(Yi)) for some BV function h, then |Xi| ≤ ‖dh‖ almost surely. To prove
Proposition 2.1, we apply Corollary 8.1 with M = ‖dh‖, r ∈] max(2p− 2, 4), 2p[
and β ∈]r − 2, 2p− 2[. We have to bound up the second, third, fourth and fifth
terms on the right hand side of (8.2). Let us do this in that order.

To control the second term, we note that, by stationarity,

E |E0(Xk)E0(X�)| = E |E−k(X�−k)E−k(X0)|
= E (E−k(X�−k)E−k(X0) sign {E−k(X�−k)E−k(X0)})

= E (X�−kE−k(X0) sign {E−k(X�−k)E−k(X0)}) .

Hence, applying Lemma 8.1, we get that, for any � ≥ k ≥ 0,

E |E0(Xk)E0(X�)| ≤ ‖dh‖E (|E−k(X0)| b−k(�− k)) ≤ ‖dh‖E (|X0|b−k(�− k)) .

Let then

T0(n) =

n∑
�=1

�∑
k=0

(k + 1)p−3b−k(�− k) ,

and note that T0(n) is a positive random variable which is F0-measurable and
such that

E(T0(n)) ≤
n∑

�=1

�∑
k=0

(k + 1)p−3β̃1,Y (�) ≤ C

n∑
�=1

�p−2β̃1,Y (�) ,

for some positive constant C. Moreover

n‖dh‖p−2
n∑

�=0

�∑
k=0

(k+1)p−3 ‖E0(Xk)E0(X�)‖1 � n‖dh‖p−1
E (|X0| (1 + T0(n))) .

(8.19)
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To control the third term, we note that

‖E0(Xk)‖22 = E (E−k(X0)X0) .

Hence, applying Lemma 8.1, we get that

‖E0(Xk)‖22 ≤ ‖dh‖E (|X0|b−k(0)) .

Let then

U0(n) =

n∑
k=1

kp−2b−k(0) ,

and note that U0(n) is a positive random variable which is F0-measurable and
such that

E(U0(n)) ≤
n∑

k=1

kp−2β̃1,Y (k) .

Moreover

n‖dh‖p−2
n∑

k=1

kp−2 ‖E0(Xk)‖22 ≤ n‖dh‖p−1
E (|X0|U0(n)) . (8.20)

To control the fourth term, let first Z = |X0|r/2|E0(Xi)|r/2−1 sign{E0(Xi)}.
Then

‖X0E0(Xi)‖r/2r/2 = E (ZXi) = E ((Z − E(Z))Xi) .

Applying Lemma 8.1, it follows that

‖X0E0(Xi)‖r/2r/2 ≤ ‖dh‖E(|Z|b0(i)) ≤ ‖dh‖r−1
E(|X0|b0(i)) .

Let then

V0(n) =

n∑
i=1

ip−2b0(i) ,

and note that V0(n) is a positive random variable which is F0-measurable and
such that E(V0(n)) ≤

∑n
i=1 i

p−2β̃2,Y (i). Moreover

n‖dh‖p−r
n∑

i=1

ip−2‖X0E0(Xi)‖r/2r/2 ≤ n‖dh‖p−1
E (|X0|V0(n)) . (8.21)

To control the fifth term, note that, since r/2− 1 ≥ 1,

‖E0(XiXj+i)− E(XiXj+i)‖r/2r/2

= E

(
|E0(XiXj+i)− E(XiXj+i)|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
≤ 2r/2−2

E

(
|XiXj+i|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
+ 2r/2−2 |E(XiXj+i)|r/2−1

E (|E0(XiXj+i)− E(XiXj+i)|) .
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Now

E

(
|XiXj+i|r/2−1 |E0(XiXj+i)− E(XiXj+i)|

)
≤ E

(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
+ E

(
|Xj+i|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
.

Let Z = E−i(|X0|r−2) sign{E−i(X0Xj)− E(X0Xj)}. Notice that

E
(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
= E

(
|X0|r−2 |E−i(X0Xj)− E(X0Xj)|

)
= E

(
E−i(|X0|r−2) |E−i(X0Xj)− E(X0Xj)|

)
= E ((Z − E(Z))X0Xj)) .

Applying Lemma 8.1, it follows that

E
(
|Xi|r−2 |E0(XiXj+i)− E(XiXj+i)|

)
≤ ‖dh‖2E (|Z|b−i(0, j))

≤ ‖dh‖2E
(
|X0|r−2b−i(0, j)

)
≤ ‖dh‖r−1

E (|X0|b−i(0, j)) .

Similarly we get

E
(
|Xi+j |r−2 |E0(XiXj+i)− E(XiXj+i)|

)
≤ ‖dh‖r−1

E (|X0|b−i−j(−j, 0)) .

Let then

W0(n) =

n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2 (b−i(0, j) + b−i−j(−j, 0)) ,

and note that W0(n) is a positive random variable which is F0-measurable and
such that

E(W0(n)) =

n∑
i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2 (E(b−i(0, j)) + E(b−i−j(−j, 0)))

≤ 2

n∑
i=1

iβ/2−1β̃2,Y (i)

i−1∑
j=0

(j + 1)p−2−β/2 ≤ C

n∑
i=1

ip−2β̃2,Y (i) ,

for some positive constant C. Moreover

n‖dh‖p−r
n∑

i=1

iβ/2−1
i−1∑
j=0

(j + 1)p−2−β/2‖E0(XiXj+i)− E(XiXj+i)‖r/2r/2

� n‖dh‖p−1
E (|X0|W0(n)) + n‖dh‖p−1

E (|X0|)E (W0(n)) . (8.22)

To conclude the proof, let B0(n, p) = T0(n)+U0(n)+V0(n)+W0(n), and note
that W0(n) is a positive random variable which is F0-measurable and such that
E (B0(n, p)) ≤ κ

∑n
k=1 k

p−2β̃2,Y (k), for some positive constant κ. From (8.2),
(8.19), (8.20), (8.21) and (8.22), and since X0 = h(Y0)−E(h(Y0)), we infer that
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E

(
max

1≤k≤n
|Sk|p

)
� np/2

(
n−1∑
i=0

|Cov(X0, Xi)|
)p/2

+ n‖dh‖p−1
E (|h(Y0)|B0(n, p))

+ n‖dh‖p−1
E (|h(Y0)|)

n∑
k=0

(k + 1)p−2β̃2,Y (k) .

Let then A0(n, p) = κ−1B0(n, p), in such a way that the following upper bound
holds: E (A0(n, p)) ≤

∑n
k=1 k

p−2β̃2,Y (k). The random variable A0(n, p) satisfies
the statement of Proposition 2.1, and the proof is complete.
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