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Abstract

We derive Stein approximation bounds for functionals of uniform random variables,
using chaos expansions and the Clark-Ocone representation formula combined with
derivation and finite difference operators. This approach covers sums and functionals
of both continuous and discrete independent random variables. For random variables
admitting a continuous density, it recovers classical distance bounds based on absolute
third moments, with better and explicit constants. We also apply this method to
multiple stochastic integrals that can be used to represent U-statistics, and include
linear and quadratic functionals as particular cases.
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1 Introduction

The Stein and Chen-Stein methods have been developed together with the Malliavin
calculus to derive bounds on the distances between probability laws on the Wiener and
Poisson spaces, cf. [9], [12], [13] and for discrete Bernoulli sequences, cf. [10], [4], [5].
The results of these works rely on covariance representations based on the number (or
Ornstein-Uhlenbeck) operator L on multiple Wiener-Poisson stochastic integrals and its
inverse L~!. Other covariance representations based on the Clark-Ocone representation
formula have been used in [18] on the Wiener and Poisson spaces, and in [19] for
Bernoulli processes.

This paper focuses on functionals of a countable number of uniformly distributed
random variables, and uses the framework of [14], cf. also [15], [16], to derive covariance
representations from chaos expansions in multiple stochastic integrals, based on a
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version of the Clark-Ocone formula with finite difference or derivation operators. We
obtain general bounds on the distance of a random functional to the Gaussian and gamma
distributions using Stein kernels, see Propositions 3.1-3.3, and we also derive specific
bounds for multiple stochastic integrals, see Corollary 5.2. Other recent approaches to
the Stein method for arbitrary univariate distributions using Stein kernels include [7].
When restricted to single stochastic integrals, our framework applies to sums

1 n
= — X >1
\/ﬁ; k> n =1,

of independent centered random variables (X});>1 with variance one. This includes
the case of discrete random variables and, e.g., sums and polynomials of Bernoulli
random variables with variable parameters, as a consequence of Proposition 3.4, see
Proposition 4.2. In addition, this approach yields the general bound

n

2
dw (Zn, N) < —75 > L Bl X, ), (1.1)
k=1

where dy denotes the Wasserstein distance, see (4.4) below, which recovers classical
results such as the bound of Theorem 1.1 in [2], however with an additional factor two.

On the other hand, for random variables which admit a continuous density, as a
consequence of Proposition 3.2 we find in Proposition 4.4 that

i o) < i3 ([ [t [ sorico

k=1

2
dFy(y) — 1), (1.2)

assuming that the cumulative distribution function Fj of X; admits a non-vanishing
density on the support of X;. This recovers in particular Proposition 3.3 of [18] in the
case n = 1. For several usual distributions the bound (1.2) improves on (1.1) which
is based on absolute third moments. For example in the Gaussian case, (1.2) yields
dw (Z,,N) = 0 as expected. For the Gamma and Beta distributions it also yields better
constants than (1.1). The bound (1.2) may however perform worse than (1.1), or can
become infinite if F’(x) becomes too close to 0 on an interval.

Multiple stochastic integrals with respect to a point process with uniform jump times
are particularly treated in Proposition 3.4 and 5.1 and Corollaries 5.2 and 5.3, with an
application to a combinatorial central limit theorem for general i.i.d. random sequences
in Theorem 5.4.

In Section 6 we consider U-statistics, or quadratic functionals of the form

Qn = Z a1 Xp Xy,

1<k, l<n

where (X )r>1 is a sequence of normalized independent identically distributed random
variables, such that Var[Q,] = 1. Corollary 6.2 shows that we have the bound

2
2 n
drv(Qn, N) < 4ynl? | O+ | E[X{] + T Z <Z ak:,lak,p> , (1.3)

" 1<l,p<n \k=1
where C = 3E[X{] + (E[X{])? and

:: max a
1<k<nz kils
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which provides a different bound from Theorem 1 in [3], with explicit constants. In case
ask2k—1 = 1/+/n, the bound (1.3) yields
4
drv(Qn,N) < 16E\/[§1]7
which recovers the known convergence rate in 1/y/n as on pages 1074-1075 of [3].
Corollary 6.4 provides another bound obtained from derivation operators.

More generally, our approach applies to functionals of uniformly distributed random
variables, see Propositions 3.2 and 3.3 which deal respectively with smooth random
functionals and with multiple stochastic integrals, cf. Proposition 3.4.

This paper is organized as follows. In Section 2 we recall the framework of [14] for
the construction of random functionals of uniform random variables, together with the
construction of derivation operators and the associated stochastic integral (Clark-Ocone)
decomposition formula. In Section 3 we derive Stein approximation bounds for the
distance of the laws of general functionals to the Gaussian and gamma distributions.
Section 4 deals with single stochastic integrals which can be used to represent sums of
independent random variables. Section 5 treats the general case of multiple stochastic
integrals, which can be viewed as U-statistics. Finally, in Section 6, double stochastic
integrals are discussed with theirs applications to quadratic functionals. In the appendix
Section 7 we prove a multiplication formula for multiple stochastic integrals.

2 Functionals of uniform random sequences
Stochastic integrals

Consider an i.i.d. sequence (Ug)gen of uniformly distributed random variables on the
interval [—1,1], where IN := {0, 1,2,...}, and let the jump process (Y;);cr, be defined as

Y, = Z Lokt140,,00) (), t € Ry
k=0

We also denote by (F;)icr, the filtration generated by (Y;):cr., and let
Fri=Fop,  2k<t<2k+2, kel
The compensated stochastic integral

| wdcti o2

with respect to the compensated point process (Y; —t/2),cr, can be defined for square-
integrable F;-adapted processes (u;):cr, by the isometry relation

E [/m wd(Y, — t/2) /Oo v d(Y; — t/Q)}
0 0
o > 2 dr\ dt
-)1 t r— | =, (2.1)
/0 Ut (vt Z (2k,2k+2]( )/% v 2 ) 21

k=0

= FE

see [14], where (u¢)¢cr, and (v;)ier, are square-integrable Fi-adapted processes. This

also implies the bound
oo 2 1 0o
(/ wpd(Y; — t/2)) <lp [/ |ut|2dt] ,
0 2 0
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for (u;)ier, a square-integrable F-adapted process.
Given f; € L*(R,) N L?(R,) we define the first order stochastic integral

e 1 00 o]
n(f) .—kz_ofl(zk+1+vk)—2/0 A= [ A1),

Next, given f, a function which is square integrable on R} and belongs to the space
L*(R7) of symmetric functions that vanish outside of

Ani= ] [2k1, 2k +2] x -+ x 2k, 2k, + 2,

ki#k;>0
1<i#j<n

we define the multiple stochastic integral
n

ni =Y S5 (7)

r=0

/ / fn 2k1+1+Uk1a~~ 2k +1+Ukruyl7~-~7yn r)dyl dyn r
ki A£ky >0

ot [T [ R0, f2) a0~ /),

see [16] for a construction using a Wick type product, and [22] for the Poisson point
process version. It is easy to notice, see (2.1) above and Propositions 4 and 6 of [14],
that (Z,,(f»))n>1 forms a family of mutually orthogonal centered random variables which
satisfy the bound

E[(L(f))*] < il lfallZeme aep . n2 1, (2.2)

which allows us to extend the definition of I,,(f,,) to all f,, € EQ(IR?F). If in addition we
have

2k+2
/ falt,x)dt =0, k€N, (2.3)
2k

i.e. the function f, is canonical [23], then the multiple stochastic integral I,,(f,) can be
written as the U-statistic of order n based on the function f,, i.e.

Lif)= Y.  fa@ki+ 140U, 2k, + 1+ Uy), (2.4)
k17 #kn >0

with the isometry and orthogonality relation
[ (fn) (fm)] = 1{n:m}n!<fnafm>L2(]R+,dz/2)°”7 (2.5)

see [14] page 589. Finally, every X € L?(Q2) admits the chaos decomposition
X+ In(fn), (2.6)
n=1
for some sequence of functions f, in ﬁz(]Ri), n > 1, cf. Proposition 7 of [14].

Finite difference operator

Consider the finite difference operator V defined on multiple stochastic integrals X =
In(fn) as
2(t/2]+2
ViX=XoV¥, — f/ X oW, ds, te Ry, (2.7)
21t/2]
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where

\I/t(w) = (Ul(w), . '7ULt/2J—1(w)7t — 2|_t/2J - 1,UU/2J+1((JJ), . ) 5 t e ]R+,

cf. Definition 5 and Proposition 10 of [14]. The operator V does not satisfy the chain
rule of derivation, however it possesses a simple form and it can be easily applied to
multiple stochastic integrals.

Proposition 2.1. Given f, € L?(R"}), we have

2(t/2]+2

vt[n(fn) = nlﬂ—l(fn(t: *)) - n/th/QJ In—l(fn(S, *))d57 te ]R+. (2.8)

Proof. We observe that
In(fn) o \I/t - In(fn) + nIn—l(fn(t7 *)) - nIn—l(fn(Ua *))|v:2Lt/2j+1+ULt/2J . (29)

Consequently we have

1 r2le/2l+2
5/ L(fn) 0 Uyds

2(t/2]
2|t/2]4+2
= L(fa)+ n/L ) L1 (fn(s,%))ds — nlp—1(fn(v, *))\’u=2Lt/2J+1+ULt/2J’ te Ry,
2|t/2
and applying this to (2.7) we obtain the conclusion. O

In particular, under the condition (2.3) we have the equality
Vilo(frn) =nln—1 (fn(t,*)), te Ry,
as in Proposition 10 of [14]. The operator V also admits an adjoint operator V* given by
V* (In(gn+1)) = n+1(1An+1§n+1)7

where g, is the symmetrization of g, 11 € ﬁ2(R’}r) ® L?(Ry4) in n + 1 variables, and V
is closable with domain

Dom(V) = {X € L*(Q) : E[|VX |72, )] < o0},
and we have the duality relation
EKVX, u>L2(]R+,dx/2)] = E[XV*(U)], X e DOIH(V), (2.10)

for v in the domain Dom(V*) of V*, cf. Proposition 8 of [14]. The operator L defined on
linear combinations of multiple stochastic integrals as

LL,(fn) == =V"Vil,(fn) = —nlpn(fn), In € £2(Ri)a

is called the Ornstein-Uhlenbeck operator. By (2.6) the operator is well-defined, invertible
for centered X € L?(Q), and the inverse operator L~! is given by

L0 (f) =~ Tulf)s n> 1,

Recall that the operator V satisfies the Clark-Ocone formula
X:E[XH—/ E[V.X | F]d(Y: —t/2), (2.11)
0

for X € L?(Q), see [14], Theorem 2. This relation is reformulated using the operator ¥
in the next proposition.
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Proposition 2.2. For all X € L*(Q)) we have
X:E[X]+/ E[X oW, | F]d(Y; — t/2). (2.12)
0

Proof. Since the integral term in the right hand side of (2.7) is constant in ¢ on every
interval of the form [2k, 2k + 2), k € IN, we get

o B 0 1 2\t/2]+2 B
/ E[V,X | Bld(Y, —t/2) = / E|Xow, — 7/ Xo \Ilsds‘}} (Y, —t/2)
0 0 2(t/2]
= / E[X oW, | F]d(Y; —t/2),
0
and (2.11) ends the proof. O
In particular, it follows from the Clark-Ocone formula (2.11) that
> - 1
/ E[Ly_1(falt, %) | F]d(Y, —t/2) = Eln(fn), (2.13)
0

since the integral term in the right hand side of (2.8) is constant in ¢ on every interval of
the form [2k, 2k + 2), k € IN.
Derivation operator
Given X a random variable of the form
X:f(U07"'7UTL)7 fecg([ilal]n+1)7
we consider the gradient D, defined as
DX = Zﬁkf(Uo, L Un) (L= Ui) kbt 140 () — (1 + Uk)Loks140, 2642 (£)) 5
k=1

cf. Definition 3 of [14]. By Proposition 5 of [14] the gradient D is closable, and its
closed domain is denoted by Dom(D). For any X € Dom(D) and ¢ € C!(R) we have
¢(X) € Dom(D), and the operator D satisfies the chain rule of derivation

Dyp(X) = ¢'(X)D,X, X € Dom(D), (2.14)
for all ¢ € C}(R). The gradient operator
D :Dom(D) C L*(Q) — L*(Q2 x R,)

with domain Dom(D), defined by DX = (D;X),cr, satisfies the following Clark-Ocone
representation formula, see Theorem 2 of [14].

Proposition 2.3. For X € L?(2) we have
X:E[X]—i—/ E[D:X | F]d(Y: —t/2). (2.15)
0

Covariance identities

From (2.14) the gradient operator D satisfies the following covariance identity, see e.g.
Proposition 3.4.1 in [17], p. 121.

EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
Page 6/34


http://dx.doi.org/10.1214/17-EJP132
http://www.imstat.org/ejp/

Stein approximation for functionals of independent random sequences

Lemma 2.4. Let X, Y € Dom(D). We have
Cov(X,Y) = %E U E[D;X | 7] D;Y dt] .
0
Proof. By (2.1) and (2.15) we have
Cov(X,Y) = E[(X - E[X])(Y - E[Y])]
=F [/ E[D,X | F]d(Y; —t/2)/
0 0

—1E [/OOOE[DtY 7] (B[Dx | B] - 9,(x)) dt} ,

oo

B[DY | F]d(Y: - t/2>}

where
2k-+2

1 N
Dy(X) = 3 Z 1 (2k,2k42] (t)/ E[D,X | F.]dr, t€Ry.
o 2k
By the independence between Fo;, and (Uk,...,U,) we get

2k+2

1 n
Py (X) = 3 Z 1ok, 2k+2] (t)/2
k=0

E[o.f

k

—~

U, Un) (1= U)ok 2kr1404 (1) =1+ U) L2kt 1400 2642) (1)) ’}N—Qk] dr

1 n 2k+2
=3 Z 1(2k,2k+2](t)/ E[Okf(y1s-- Uk—1,Uks ..., Un)
— 2%
X (1= U)lzp2nt1400 () — A+ UL @pg 140, 2642 (7)) ] o) =l 1) 9T

Lok 2k4+2) (O E Ok f (Y15 Yk—1,Ugs -, Un)

Il
N |
[

b
I
o

x ((1 - Uk)(l + Uk) N (1 N Uk)(l + Uk))] [(Y1seeyk—1)=U1,..,Uk—1)

= 0.
We conclude that
Cov(X,Y) =-E / E[DY | /] E[D:X | ]:'t]dt]

LJO

=-F /OOOE[E[DtX | 72| DyY | ]:"t]dt]

=_FE / E[Dtxf-t]DtYdt] D
L/o
As a consequence of Lemma 2.4 we have the inequality
1 -
SEUD.X, EID.X | F])paqu)] = Var(X] < | X [ (q. (2.16)

Using the operator V and the Clark-Ocone formula (2.11)-(2.12) we can also obtain the
covariance identity

1 > ~
Cov(X,Y) = 5E U E|[V X | B V.Y dt
0
from (2.1) and (2.7) as in the proof of Lemma 2.4.
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Stein kernel

The next proposition shows that the Stein kernel ¢ x defined in (2.17) is a Stein kernel
in the sense of Definition (2.1) in [6].

Proposition 2.5. Let X € Dom(D) be such that E[X] = 0. The Stein kernel
1 o0 ~
0

satisfies
Cov(X, ¢(X)) = E[¢'(X)px (X)), (2.18)

for any ¢ € C}(R).

Proof. We note that by Lemma 2.4 and Jensen’s inequality we have

> dt
lox (X)) < lex (X)|r2) < E[X?) = \/E [/ |DtX|22] < 00,
0

and, for any ¢ € C}(R),

Con(X,0(X)) = 3| [ EIDX | 7 Dio(x)t
_ % B :¢’(X) /0 " DX EDX | ft}dt}
- %E & [qb’(X) /OOO DtXE[DtX]-}]dt’XH
= E[¢'(X)px (X)) (2.19)
O

In particular, (2.19) shows that we have
Elpx(X)] = Var[X], X € Dom(D).

In the sequel we will also use the identity

1 Yy
ox,(y) = _w/_ rdFy(x), (2.20)

see Relation (3.17) in [11]. Next, we review some examples of Stein kernels.

Gaussian case. The Stein kernel of X; ~ N(0,02) with the Gaussian cumulative
distribution function F'(x) is given by
1

wxl(y)Z—F,(y)/_y zdF(z) =0%  y€ER.

Gamma case. When X; has the centered gamma distribution with shape parameter
s > 0 and density function

s—1
Fl(x) = M(37(""/’+5) x € [—$,00), kE>1

S F(S) ) )
we have F[|X; — s|] = 2s°e~ %, hence the Stein kernel of X, is
W)= [ 2dB@)
vx y:fi/ zdFs(x) =y + s, y € R.
' Fily) )"
EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
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Beta case. When X; has the centered Beta(«, 1) distribution, @ > 0, we have

«@ « le’ 1
Foc = ) NN
(z) (a+1+m) xe[ a+1 a+1]

and the Stein kernel of X is

()—fL/y 2dFa(z) = — (O‘+>(1> eR
e ==y | o @ =g arr ) (G y) veR
(2.21)

Single stochastic integrals. Such integrals can be used to represent the sum Z,, of
independent centered random variables (X)>1 as

In = ZX%@ =1 (f11)0,20)) (2.22)
k=1
where
=t
fl(t) = kZ_OFk 1 (2 — k‘) 1[2k,2k+2)(t>7 (2.23)
satisfies f22:+2 f1(t)dt =0, k € N, and

E '(t):=inf{s € Ry : Fx(s)>1t}, te]0,1],
is the right-continuous inverse of the cumulative distribution function F} of X, k£ > 1.

In the sequel we let CL (R ) denote the set of functions which are C' on every interval
of the form (2k, 2k + 2), k € IN. The next lemma can be useful when computing the Stein
kernel of single stochastic integrals according to (2.17), see Propositions 4.3 and 4.4
below.

Lemma 2.6. Assume that Z, = I (filj2,)) = ZXk belongs to Dom(D), n > 1. We

k=1
have

<D'Z7M E[DZW | ‘/—:"]>L2(]R+) = 72[1(‘10X1+[‘/2] (fl())) + E[Z??L]
Proof. We note that for f; € C4(R;) N L?(R, ), we have

oo

Dili(f1) = Y (1= UL apansr40,] () = (1+ Ui Laps140, 2042 (D) 1 (2% + 1+ Uy).
k=0

Next, by Proposition 10 and Lemma 1 in [14] we get
E[DL(fi) | Fi] = E[Vili(h) | Fi] = f1(1),  tE€Ry,

hence by (2.3) we have
(D.Ii (1), E[D.Ii (1) | F])12(ro)

= / Z (1= U)o ohg140,)(8) = (1 + Ue) L appr4u, 26421 (5)) f1(2k + 1+ Uk) f1(s)ds
0 k=0

= / > (Lkars140,0(8) = Laksiv, 2k42)(5)) 12k + 1+ Up) fi(s)ds
0 k=0

- 2/ > (Lerarri40, () f1(2k + 1+ Uk) fi(s)) ds
0 k=0

EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
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e’} 2k+1+4-Uyg
:ZZf{(QkJrlJrUk)/ fi(s)ds
0

k=0

9 / R / ' fu(s)dsd(¥; — 1/2) + / ) / syt
SRcy fu()dsd(Y; — 1/2) + [ inwp

On the other hand, by (2.1) and (2.20), see (3.17) in [11], we have

x

/ ¢ _ 100 1 —1 E,
50 [} 50 = 33 e (54 w0
FH(2—2k)/2)

1
= > 1[2k,2k+2)(a:)Flé(Fk_1((x o1 /2)) [m tdFy(t)

= - Z ex, (F ' ((m — 2k)/2) 1o 2042) ()
k=0

= =) ox (A@)praery (@)
k=0

= TPXiijay (f1 (x))1[2k2k+2) (z),

where we used the identity (2.20). O

Density representation and bounds

Working along the lines of the proof of Theorem 3.1 in [11] by replacing (3.15) therein
with (2.19) above we can derive the following result, where Supp(f) denotes the support
of the function f.

Proposition 2.7. Let X € Dom(D) be such that E[X] = 0. The law of X has a density
px with respect to the Lebesgue measure if and only if the Stein kernel ¢ x defined in
(2.17) satisfies ¢x(X) > 0 a.s. In this case Supp(px) is a closed interval of R containing
0 and we have

px(2) = 2}:3;')()?2]) exp <— /OZ pri(u) du> , a.e. z € Supp(px)-

As a consequence of Proposition 2.7 we get the following result on density bounds as
in Corollary 3.5 of [11].

Proposition 2.8. Let X € Dom(D) be a centered random variable such that

0<c< / D.XE[D,X|FJds < C a.s.,
0

where C, ¢ > 0 are positive constants. Then the density px satisfies

C exp c Px (Z) c exp C B a.e. z € ]R,

and the tail probabilities satisfy

2

2
P(X >z) <exp (;C> and P(X < —z) <exp <2xC> , x> 0.

EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
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3 Stein approximation bounds

The total variation distance between two real-valued random variables X and Y is
defined by
dry(X,Y) = sup |[P(X € A)—TP(Y € A),
AeB(R)
where B(R) denotes the Borel subsets of R. The Wasserstein distance between the laws
of X and Y is defined by

dw (X,Y) := o [E[(X)] = E[R(Y)]],

where Lip(1) is the class of real-valued Lipschitz functions with Lipschitz constant less
than or equal to 1.

In the following propositions we derive bounds for the Wasserstein and total variation
distances between the normal distribution and the distribution of a given random variable
X € Dom(D). Recall that by Stein’s lemma, cf. [21], [8], for any continuous function
h:R — [0, 1] the Stein equation

h(z) = E[W(X)] = fi(2) = 2 fn(2),

where X ~ N, admits a solution f,(x) that satisfies the bound | f,; (z)| < 2. In the sequel
we denote by
T:={heCR) : [[N|sx <1, [|h] <2}

the space of twice differentiable functions whose first derivative is bounded by 1 and
whose second derivative is bounded by 2. For the gamma approximation we will use the
distance

dn(X,Y) == sup |ETh(X)] = E[MY)]],

where
H = {heCi(R) : max{[|hlloo, [IN[loc, [I"[loc} < 1}.
Derivation operator bounds

In the next Proposition 3.1 we derive a Stein bound using the Stein kernel ¢ x (z) defined
in (2.17), see also Proposition 3.3 of [18] for a bound using a different probabilistic rep-
resentation of the Stein kernel. Here we denote by I'(v/2) a random variable distributed
according to the gamma law with parameters (v/2,1), v > 0. We also let (-, -) denote the
usual inner product (-, ) r2(r,) on L*(Ry).

Proposition 3.1. For any X € Dom(D) such that E[X] = 0, we have

dw (X,N) < E[[1 - ¢x (X)) < 1 = BIX?]| + llox (X) = Blex (X)]llz2(),
where the Stein kernel px is defined in (2.17), and
dry (X, N) < 2E[]1 — ox (X)|] < 2[1 - BIX?] + 2]lox (X) — Elpx (X)]][l22(0)-
If moreover X is a.s. (—v,00)-valued then we have
dn (X, Tw) < E[2(X+v)—ox (X)]] < [12(X +v) = E[X?]| 2 () + ]l x (X) = Elpx (X)][| 22 )-
Proof. We focus on the first inequalities, as the second inequalities follow from the

triangle inequality and Jensen’s inequality, and the identity F[px(X)] = E[X?] that
follows from Lemma 2.4.
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(i) By Lemma 2.4 we have

ER(x)] = 5| [ BDX | F)DuC0
1

= E {f;L(X)/OOE[DtXﬁt]Dtht]. (3.1)
0

Hence, using the bound (2.33) in [12] and (3.1), we get

dw (X, N) < ZIEJI;IEW(X) — Xo(X)]| (3.2)
/ 1 T
= zg};‘E [(b (X) (1 - 5<D.X,E[D,X | f]% ’
= sup |E[¢'(X) (1 — ox (X))]|
oeT

S E1—ex(X)]].

(#4) By the covariance identity (3.1) we have

B0 - B0 = | |00 (1- ox e (px 1 7))
~ 1B LX) (1— ex ()]
< 2B (|1 - px ()],

and this bound can be extended to h = 1¢ for any C' € B,(R) by the same approximation
argument as in the proof of e.g. Theorem 2.1 of [18].
(7i) Given h € H a twice differentiable function bounded above by 1 we choose ¢ > 0
and a < 1/2 such that
|h(x)] < ce®, x> —v.

By e.g. Lemma 1.3-(i7) of [9], letting I, := 2I'(v/2) — v, the functional equation
2(x +v)f'(z) = zf(z) + h(z) — E[R(T,)], x> —v,
has a solution f;, which is bounded and differentiable on (—v, ), and such that

[falloe < 2[[h e and || frllee < 12" ]loo-
By the covariance identity (3.1) on Cg(IR) for the centered random variable X we have
[E[R(X)] = E[RT)]| = [E[2(X + v) fr(X) — X fu(X))]|
= [E[#x) (20X +v) - (DX E[D.X | 7]))]|

= [E[fi(X) 2(X +v) — ex(X))]|
< P lBl2(X +v) — ox (X)]].

The claim follows by taking the supremum over all functions h € H. O

As a consequence of Proposition 3.1, for any X € Dom(D) such that E[X] = 0, we
have

dw(X,N) < [1-E[X?)|+ VEl(px(X) — E[X?])?]
11— B[X?)| + VEl(px (X))? — 20x(X) E[X?] + (E[X?])?]
= |1-BIX?| + VE[(¢x(X))?] - (BIX?)?, (3.3)
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and

dry (X, N) < 201 - E[X?)| + 2V E[(¢x (X))?] - (E[X?))2.

Similarly, Proposition 3.1 implies the following corollary which applies in particular to
smooth functionals X € Dom(D).

Proposition 3.2. For any X € Dom(D) such that E[X]| = 0, we have
dw(X,N) < %||2 —(D.X,E[D.X | F])|lr2(0)
< 1—-E[XY|+ %H(D.X, E[D.X | F]) - E(D.X,E[D.X | F)llr2(0).
and
dry(X,N) < |2—=(D.X,E[D.X | F])llr2

< 21 -E[X’|+|(D.X,E[D.X | F]) - E(D.X,E[D.X | F])]|l12(2)-

For any a.s. (—v, 00)-valued X € Dom(D) such that E[X] = 0, we have

du(X,T,) < [2(X +v) = (DX, E[D.X | )|l 20
< 2(X +v) = X720 lz2@) + (DX, E[D.X | F]) = E(D.X, E[D.X | F])]l|2(0)-

Finite difference operator bound

Using the finite difference operator V we obtain the following bound which applies in
particular to multiple stochastic integrals, see Proposition 3.4 below.

Proposition 3.3. Let X € Dom(V) be such that E[X] = 0. We have

dw(X,N) < E H1 - %(v.x, V.L1X>H (3.4)

o 2|t/2]+2
/ VL' X]| |V X|?dsdt| .
0

1 o ) 1
+-E VL X||V X ?dt| + -E
2 0 4 2(t/2]

Proof. By (2.7), for every function f € Cz(]R), the finite difference operator V satisfies

1 p2le2l+?
V0 =3 [ (e w) — f(x 0w yis
2(t/2]
1 pele2l+?
= 5/ (f'(XoU)(XoW,—XoW,)+Ry(XoW, — XoW,))ds
2(t/2]
1 rele2l+e 2(t/2]+2
= ,/ f/(Xo\Ils)(Xo\I/t—Xo\IJS)ds—i—f/ Ri(X oWy — X 0 V,)ds,
2 Ja1t/2) 2(t/2)

t € Ry, where the function Ry is such that |R(y)| < y?| f”|l«/2, vy € R. Hence for any
f € T, by the duality relation (2.10) we have

BIf'(X) - Xf(X)] = E[f(X) = XLL™" f(X)]

Bl <Vf<X>,—VL-1X>]

1
2

- E -f’(X) - ;/Ooo th(X)(—VtL_lX)dt]

L¢/2]

i 1 [ r2lt/2)+2
=F f’(X) — Z/o /2 f’(X oP)(Xo¥;—Xo \I'S)ds(—VtL_lX)dt

EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
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Su!

2Lt/2j+2

[t/2]

f(XoW, —Xo \Ils)ds(—VtLlX)dt] : (3.5)

Regarding the first term, we note that for any two square-integrable random variables F'
and G, by (2.7) we have the relations

and

Bl

1 2k+2
(FoW)G] = 3B (Fo\I/t)/ GoW,ds (3.6)
2k
1 2k+2
E(VeF)G] = 5 [V,F GoW,ds|, 3.7)
2k

€ [2k,2k + 2], k € IN, hence

<

2Lf/2J+2
_ ,/ / "(XoW,)(X oW, —Xo\I/S)ds(—VtL_lX)dt]
2

Lt/2)
_ ,/ F(X)(X oW, — X)(—VtLlX)dt] ‘

f1(X) (1 — §/0 (XoW, — X)(—vtL*X)dtﬂ ’

f(X) (1 - ;/Ooo VtX(—VtL_lX)dt)] ‘

1- %/ VtX(VtLlX)dtH ,
0

because ||f’|lcoc < 1. Next, given that || f”||o < 2, the term (3.5) can be bounded as

1
4

2Lt/2j+2
/ /2@/2]

F(X oW, — Xo\I/S)ds(—VtLlX)dt]

2(t/2]+2
< 7E/ V. L1 X| |X 0¥, — X o U, |2dsdt
0

21t/2]

oo 2(t/2]+2
- fE/ VL X| V. X — VX 2dsdt
0

2(t/2]

oo 2|t/2]+2
= -E / VL1 X| (|VtX|2—s—|VSX|2—2VSXVtX)dsdt]
0

21t/2]

21t/2]

1 0o 20t/2]+2
_ ZE/ VL X (VX2 + |V, X ) dsdt
0

R N ) 1
- _F VL X||V X [2dt| + ~E
27 | o 4

2[t/2]

S 2|t/2]+2
/ VL ' X]| |V X|?dsdt| ,
0

where we used the relations

E

2k+2
(FO \Iff)/ VsGds
2

2k+2
V. F VsGds
2k

=0 and F

3

k

t € [2k,2k + 2], k € IN, that hold similarly to (3.6)-(3.7). We conclude to (3.4) by the
inequality (3.2), which is the bound (2.33) in [12]. O
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The second term in (3.4) can also be written as

1
“E
4 21t/2)

0 2|t/2]+2
/ |V, L' X]| | X oW, — X oW, |?dsdt
0

0 2[t/2]

1 00 2(t/2]4+2
= 4 / |V,L'X]| |X oW, — X|? o U dsdt

1 o 2(t/2)+2
= -FE / V. L1 X| |X o W, — X|?dsdt
4 0 20t/2)

1 oo
— 53/ |VtL1X||Xo\Ilt—X|2dt]
0

Taking X = I,,(f,) in Proposition 3.3, we get the following result.
Proposition 3.4. Let f, € IAJQ(]R’JF). The following estimate holds:

1 2 i
(1 — o ||V1n(fn)> ||L2(R+,dz/2)>

1

+2n

o 21t/2]+2
l/ WJA&N/ VoL (f) Pdsdt |
0 2

oo 1
E / Vil (fn 3dt}+E
[ 0 [Veln(fu) an [t/2]

4 Single stochastic integrals

For single stochastic integrals, Proposition 3.4 shows the following.

Proposition 4.1. For f, € L2(Ry) such that [, f,(t)dt = 0, k € IN, we have

1

o0 1 o0
avn(i W) < 1= [Tlaopa 3 [0

1 2lt/2]+2
g AT AT
0 2t/2]

1 o0 o0 .
< ‘1—2/0 |f1(t)2dt‘+/0 |f1(t)dt. (4.1)

Consider now a sum Z,, of independent centered random variables (X})x>1 written,
as in (2.22), as

Zn =T (filpon) = Y X, (4.2)
k=1

with f; € CL(Ry) N L?(R.y) given by (2.23) from the respective cumulative distribution
functions (F%)x>1. In this case, Proposition 4.1 can be rewritten as follows.

Proposition 4.2. Given (Z,,),>1 written as in (4.2) we have

n

A (ZuuN) < |1 = BIZ2) + 32 BIX] + 3 BIX X P (4.3)
k=1 k=0

Proof. We note that f(2k+1+Uy,) = F, '((Ux +1)/2) has same distribution as Xy, k > 1,
hence (4.1) can be rewritten as

2k+2

B ) 1 2n 5 100 2k+2 )
(20, N) < 1= B2+ 5 [0 g3 [ R [ R

k
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=1-E[Z}]|+ = Z/ \FL(t/2)Pdt + = Z/ |7t t/2|dt/ |FL(t/2)]2ds

k=0

=1 - E[Z3]| + [P dFy(x) + |2|dF}(x) ly[*dFy(y)
kz_;/oo k kz_o/oo k / Y k\Y

= 1-E[Z)|+ Y BlIXulP) + ) EIXe|E[ Xkl .
k=1 k=0

Using Holder’s inequality, Proposition 4.2 shows that

B 2 n
w(Zn,N) < W};EHXHBL n =1, (4.4)

for the normalized sum Zn = (E[(Zn)2])_l/2 Z X1, which recovers the bound (1.1) of
k=1
[2], with however a worse constant.

Bernoulli random variables

Given (pi)r>1 a sequence in (0, 1), letting
te Ry,

the single integral I (f11(9 2,]) becomes a weighted sum

Li(f11j0,2n]) Z%Xk

of centered and normalized Bernoulli random variables (X} )x>1 with parameters (p)r>1,
and (4.3) shows that

w(l (£1), N +22| 2pk—1pk)7

1_2‘0"“' o —pr)

which provides a simple distance bound for the sum of non-symmetric Bernoulli random
variables, cf. Corollary 3.3 of [10], Corollary 4.1 of [19] and Theorem 4.1 of [4] for other
versions.

By Proposition 3.2 we have the following result that uses the derivation operator D.

Proposition 4.3. For f; € C} (R, )N L?(R, ) such that f2k+2 fi(t)dt =0, k € N, we have

w (I (f1),N) (4.5)

1 1 0 2%+2 2
< ’1—2/0 |fi(t |dt’ 3 2/0 filz /fl t)dt dl‘ Z(/ |f1(t)|2dt>-

0
Proof. We note that by (2.1) and Lemma 2.6 we have

E [((D.Zn,E[D.Zn | £]) = E[(D.Z,, E[D.Z, | ﬁ]>)2}

1 [2n , T 2 1M 2k 2
25/0 f1($)/0 fr(t)dt d$—4z</2k2|f1(t)|2dt> ; O

k=1
EJP 23 (2018), paper 4. http://www.imstat.org/ejp/
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Proposition 4.3 can be rewritten as follows using sums Z, of random variables
(Xk)k>1-
Proposition 4.4. Assume that (X )i>1 is a sequence of independent centered random
variables having non-vanishing continuous densities. Then the sum

Zn ::iXk, TLZ].,
k=1

satisfies the bound

n

dw(Zo N) < [1 = E1Z2] + | (Bllpx, (X0)?] - (E[(X0)?)?).  (4.6)
k=1

Proof. By Lemma 2.6, (2.1) and (2.20), see (3.17) in [11], we have

[ de—i§</2::|f1<t>2dt>2
> </ T ), o
- (/Z i o 2

=D (Bl(ex, (Xi)’] = (B[(Xk)*])?), O
k=1

fi(x) / o

2

da — (E[(Xk)21)2>

dFy(y) — (E[(Xk)21)2>

Next, we consider some particular cases.

Gaussian case. The Stein kernel of X, centered Gaussian is given by

1 Yy
exil0) =~ | wdFl@) = BIXE). yeR k=1,
k — 00

and the bound (4.6) recovers dy (Z,,N) < |1 — E[Z2]| as expected.

Gamma case. The Stein kernel of X}, a centered gamma random variable is ¢z, (y) =
y+ E[Z2], y € R, hence

Bl(¢2,(Zn))’] = E(Zn + E[Z;))%] = E[Z;])(1 + E[Z3)),
and the bound (4.6) shows that the sum ~Z,, satisfies
dw (Zn, N) <1 = B[Z})| + VE[Z2], n>1.
By the scaling relation
vaz,(y) = a*pz,(y/a) = ay + ’E[Z7],  y€ER,
we find that the normalized sum Z, := Z,, / m satisfies

S 1
dw (Zp,N) < —— n>1.

T VEZ
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In particular, in the i.i.d. case we have
1

d Z’n7N < B e 2 ]-7
Wi N <
which systematically improves on (4.4) and on the bound (1.1) of [2], i.e.
E[ X1 )]

Zn, N) < n——55
w(on N) < gz
_ 2 (2XE+EX}EXD) + 2ABXP)H PN PNy BIXD)

nE[X7] (3 + E[XT]) ’

where I'(3 + s, s) denotes the upper incomplete gamma function. Indeed, the ratio
5 21°(3 + s,8) + 252 T%e75(1 + ) )
I'(3+s) ’
of the two bounds tends to infinity as s tends to infinity, and has smallest value 2 as s
tends to 0.

Beta case. When X}, has the centered Beta(a, 1) distribution, a > 0, k¥ > 1, we have

«@ o « 1
F = - =
(ac) (a+l+x) ’ xe{ oqul’onrJ7

and E[X?] = o/((a + 1)*(a + 2)), hence by (2.21) we have

« 2 1 2
) ()] e
2«

(a+4)(a+3)(a+2)(a+1)%’
and by Proposition 4.4, the normalized sum

1

Bllox (X0 = o

Dy = iXQ ZXk, n>1,
satisfies
44+ a(a?+a—2)
Z
w(ZnN) < \/ (a+3)(a+4)’

which systematically improves on (4.4) and on the bound (1.1) of [2], i.e.

2 |a+2 <6a(a/(a+ 1))t +1 —a> 7

o (Zn, N) < —— (| X, [?) = ;0 g

NG

as can be checked from Figure 1.

For example in the uniform case with « = 1 we have X}, = U, k € IN, and F(x) =
(x+1)/2, z € [-1,1], and

t) = V3> (t— 2k — 1)Lk 2p42) (1),
k=0

hence (4.1) shows that the sequence Z,, := /3/n Z U,., satisfies
k=1
33/2 3 \/5
Zn, < —=FE[X =7\
Wz, N) < TBlIXP) = 3/
whereas (4.5) yields dw (Z,,N) < 1/v/5n.
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differential operator
3.5 difference operator
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Figure 1: Comparison of bounds.

5 Multiple stochastic integrals

In this section we apply the multiplication formula given in the appendix Section 7 in
order to obtain bounds on the distance between multiple stochastic integrals and the
normal distribution A. In the sequel for 0 < ¢ < k < n A m we define

fn *;lc gm(’Yh e >’Yk7i>t1> e 7tn7k781; .. -7Sm7k) (51)
1
=5 falz1, - zioms o Ye—in by s tak)
2" J10,00):
Xgm(zlv ey Ziy Y1y oy Vk—iy S1 - - wsmfk)dzl o ~dZ7;,

and we denote by f, 1291% the symmetrisation of f,, xi g,,, i.e.

fn ;lligm(xlv R Im+n—k—i)
1 i
= (mLmn—k_! Z f" *k gm(xa(l)v s 7$0(m+n—k—i))7
(m tn—k l). 0ESmin—k—i
where S, ,—k—; stands for the group of all permutations of the set {1,...,m+n—k—i}.

Note that f,, *% g,, may not satisfy (2.3), even if f,, and g,, satisfy (2.3). The multiplication
formula of Theorem 7.1 below can be given in many different forms, one of which is
presented in the next Proposition 5.1.

Proposition 5.1. Let f,, g, satisty (2.3) and f,, xi g, € L>(R7T"*~7) for every 0 <i <
k <m An. We have

2(mAn)
Ly(fr)Im(gm) = Z I (hu),
k=0
where R
n m r ~
hk = Z Z 1{2n7r7l:k} r! (T’) (7’) (l)fn *lrgm

r=0 [=0

Bounds obtained from the finite difference operator V

To obtain a more explicit bound than in Proposition 3.4 we have to employ the m;llti—
plication formula. Precisely, by virtue of Proposition 5.1 we may express (I,(f,))" as

follows:
2n

2 n
(In(f0))" = I(Gi fn), (5.2)
k=0
where
n T 2
n n r ~1
) =033 1 (1) (5
r=0 =0
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Corollary 5.2. Let f,, € LQ(]RSLF) be a symmetric function satisfying (2.3). Assume that

. 1 [®
Gitu)i=5 [ Gl oy

belongs to € L*(R%) forall 1 < k < 2n — 2. We have

2n—2

A (L (PN < | (L0t falZag gy )+ 02 Z w|Ges|

L2(Ry ,da/2)ok

2n—2

n*V2(n =D foll 2y j2)en Z k'/ [[eHm A HL2(1R+ dzj2)en U

Proof. We are going to estimate both components appearing in Proposition 3.4. The
formula (5.2) lets us write

2n—2

(Velu(f))” = | Fults Y2, inoyonss + 12 S (G Fult,)).

k=1
Hence we have

2n2

TG ey = 0 U e+ 5 2 [ (G Sl )
Since multiple integrals of different orders are orthogonal, we get

E

1 2
(1= 209 L) Bt o ]
2n—2

— (1—n! ||an%2(1R+,dm/2)°") +n’ ZE

(/ I (G falt, ))dt/2)2].

Finally, by (2.5), we obtain

2
E

/Ooo Ik (Gz_lfn(ta ))dt/2

~E [(Ik (@m))z] < k|Gt

L2(Ry,dz/2)°%

which implies

E

2 2 2
] < ‘1—n!IIfn||L2(1R+,dm/2)°"

2n—2
I Hé;;f
k=1

a .
L2(Ry do/2)°F

1
= IV T D e e

To get the second component of the estimates in the thesis we use Cauchy-Schwarz
inequality in the following way:

7/ (VL (Fu)[*] dt < 2 ¢/ (Loer (fo(t, %)) dt\// BV (£ dt

(n — 1)! > 4
< 0| full b2, e j2yon \/2/0 E[(Infl(fn(t,*))) }dt.
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Since

2n—2

(In-a(fa(t, ) = S L(GE fult, ),

k=0
and by orthogonality of multiple integrals, we have

00 2n—2 0o
/0 E[(Ln-1 (fa(t; ) ]t < >~ k! /0 ([l A1 ——
k=0
which ends the proof. O

As noted above, I,(f,) can be used to represent various U-statistics, including
polynomials of Bernoulli random variables, in which case Corollary 5.2 provides an
alternative to the results of [10], [5], [19] for Bernoulli processes.

Bounds obtained from the derivation operator D
Here we let C} (R?) denote the set of functions which are C ! on every set of the form
(2]{;1,2]&‘1—{-2))(X(an,Zk‘n—i-Q), kl,...,knEIN.

Given f, € C5(R") N L?(R7), we define

Hk(S, B2y ey Zk-‘rl) =
n—1 r 2 s
n—1 r ~1
ZZ]-{anZfrfl:k} T'( r ) (Z) (81fn(3a *) *r/ fn(ta*)l{*<s}dt) (Z2>---7Zk+1)7
r=0 1=0 0
and
Jk’(57 Rlyeeey Zk)
n—1 r n—1 2 r
= Z Z 1{2n72f’r7l:k} T'< r > <l> (fn(sa *):;ifn(sa *)1{*<s}) (zlv SRR Zk’)v
r=0 =0

1 <k <2n—2, where
r<uy={zeR"? oy <u,i=1,...,n—1},
and assume that Hy, J;, € L>(R%™). Additionally, we denote

~ 1

Ji(z1, .0y 28) = 5/ Ji(s, 21, .., 2k )ds.
0

Next is a consequence of Proposition 3.2.
Corollary 5.3. Let f, € CL(R"}) N L?(R"}) and satisfy (2.3). We have

A (Tn(£)N) < 1= 1l e joyen

2 (3 > / "B [(He(s. ) s+ Y E[1(T)[]
k=0 70 k=1

2i+2 1/2
Iy, </ Jk(s,*)ds) )
2
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2
|1 =1l s o 2yon

2n—2
( Z k'/ 1H(s: >k)||L2(1R+ dz/2)°k ds + Z k! H ‘L2(1R+7d:v/2)°k

2>1/2

The bounds for drv (I,,(f),N) are equal to those for dw (I, (f),N') multiplied by 2.

oo

+H(n=1H)*)

=0

2042 )
/27: Hf"(s’*)1{*<5}HL2(]R+,dm/2)°("*1) ds

Proof. By Lemma 2.4 and formula (2.5) we get

E[(D.L(f2), BIDLu(fu) | F)] = 2B [(L(f))?] = 200 [l 2, ctnoyon

Next, we are going to provide an explicit form for the expression (D.1,(f,), E[D.I,(f) |
F.]). We have

—n Y

0< 1k 2k 1
((1 = Ulep2)L21t/2) 21t/2) 4140120 () = (L4 Uley2) L2t/2) 414042 21 /2142] (ﬂ)
X O1fu(2t/2] + 14 Ujyy2),2k1 +1+Upyy oo, 2k 1 + 1+ Uy, )

=n ((1 = Uly2)alt/2) 21t/204140 120 (8) = (L U2 )L 21t/2) 1140, 2 210/2) 42) (t))
x I,_1 (81fn(2Lt/2j +1+ UU/QJ’*D .
By Proposition 10 and Lemma 1 in [14] we get
E[DiIy(fn) | Fe) = E[VIn(fn) | Fe] = nluot (fat, %)L gacoiyz)y) -

Consequently, using the assumption (2.3) twice, we arrive at

(D.I,(fn), E[D.I(fy) | F]) = n2/0 ((1 = Uliy2))L(2(t/2) 21t/2] 4140, 1,1 (E)

—(L 4+ Uley2))1@t/20414U 2 218/2)42) (t)>
$ et (91 fu211/2) + 1+ Ulggag, ) ot (Fult*) gucatesany) dt
= n2/0 (1(2Lt/2J»2\_75/2J+1+UU/2J](t) - 1<2W2J+1+UW2J72Lt/2j+2](t)>
X In-1 (O1fn(214/2) + 1+ Utejap ) Inr (Falt, ¥)Lgecolsyayy ) dt
= 2n2/0 (1(2\_t/2j,2\_t/2j+1+ULt/2J (®)
xIn—1 (O1fn(21t/2] + 1+ Uyeyay, ) In (fa(t; %)L (acziej2)y)) dt

2k+1+Uy
- 2n2ZIn 1 alfn(2k+1+Uk7 )) n—1 </ fn(tv*)l{*<2k}dt>
0

k=0

= o2 [ h(s)d(Ys — 5/2) + 02 / " h(s)ds

0

where

h(s) := In—1 (01 fn(s,%)) In—1 </0 fn(t’*)l{*<s}dt> ) s € Ry,
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is a random process when n > 2. Note that by integration by parts we have
[ s = [ Bcs (o) T (s 901 ) .
0 0

By the Fubini theorem we may express [~ h(s)d(Ys — s/2) and [, h(s)ds as 2n — 1 and
2n — 2 integrals with respect to d(Y; — s/2), respectively. Then, applying (2.1) 2n — 2
times together with (2.3), we obtain

E UOOO h(s)d(Ys — s/2) /Ooo h(s)ds] _

/ ] E [/ 81fn(u,x1,...,xn,1)/ fn(tamn7-~-ax2n72)dt1{(a:n ..... zgn,2)<u}d(Yu_ 7)
R3 ! 0 0 2

X fn(sa L1y 7xn—1)fn(s7 Tns -y x?n—?)1{(zn,.“,x2n,2)<s}dxl e dIQn—QdS

IS

and consequently

E [(D.1n(fa), E[DLa(fa) | F])?]

T (s)d(Ys — 5/2) " h(s)ds |
0 0

Using the orthogonality of multiple integrals of different orders and the relation

2

= 4n'FE +n*E

2n—2

In—l(fn(sv*))ln—l(fn(sv *))1{*<5} = Z I, (Jk(57*))a

k=0
we rewrite the latter component as follows:

(/ mh(s)ds)Q —4p (:Zsfk(fk))?

E

n—1 . 2 ) 2
= 4ZE |:(Ik(Jk)) ] + ((n— 1)!/0 [ £ (s *)1{*<S}Hi?(m,d.ﬁ/z)o(nfw ds)
k=1
n—1 =N 2 4
= 4) E {(Ik(‘]k)> ] + n2 an||iQ(R+,dac/2)°"'
k=1

Furthermore, by Proposition 5.1 we have

2n—2

Lo (01 (5 9)) I ( / fn<t,*>1{*<s}dt) = S 1 (Hi(s, ),
k=0

hence (2.1) gives us

B ([ nea.- s/2>)2 =38 | [ neas] - iiE ([ noas) ]
_ %E /OOO (2:2_;)2 Ik(Hk(s,*))>2ds - iE <§_§) I (/:42 Jk(s,*)ds/2>>2
_ ;2,22/000 B [(Te(Hi(s, )?] ds ig E <Ik (/:+2 (s, *)ds/2>)21
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We apply this to Proposition 3.2 and get the first inequality in the assertion of the
theorem. In order to derive the other one we use (2.2) and the estimate

n-l 2i+2 2 2i42 2
Y E (Ik (/2 Jk(s,*)ds/2>> >E (IO </2 Jo(s,*)ds/2>>]
k=0 g i
2142 2
(=00 ([ 15wt a5 5

A combinatorial central limit theorem

In this section, we show that the bounds of [4] for the Rademacher combinatorial central
limit theorem of [1] can be extended to our setting of random sequences.

Given K a symmetric subset of A, := {a € IN? : a; # aj if i # j}, (bx)k>0 @ sequence
of real numbers, and (X})r>o an i.i.d. sequence of random variables such that E[X;] =0
and E[X?] < oo, define

1
S(b) K) = bl .. bz le "'Xi .
o (gl (K (B[X?2])0)1/2 (il,%;)e;( s '

Following § 6.3 of [4], we let K denote the collection of all (41,...,iq) € K such
that i, = j for some k € {1,...,q}, and we define K# C K x K by stating that a
pair (i, ...,4,), (ji,- .-, j,) belongs to K# if {iy,...,i,} N {j1,...,jq} = ¢ and there are
(k1,...,kg), (la,...,1ly) € K such that {k1,...,kq,l1,..., 0} = {i1,...,%q,51,...,Jq} and
(k1,...,kq) does not coincide with (i1, ...,%4) Or (j1,...,7q)-

Theorem 5.4. There exists a constant C = C(q) such that

1/2

®(29) # ®q * 1/4
®) q (”b (K )) su My, (K])
dw /v (S b (K),N> < C (E[X})) 1K) + J>Il) 1EU(K)

Proof. Let F be the distribution function of X; with generalised inverse function F~!.
Then we have SO (K) £ I,(f,), where

foltr, ... tg)

(/22D (e 2h/20N e (t2lt/2)
™ g T By /2 T P ( 2 ) ! ( 2 )

By Theorem 5.2, there exist constants C, C5 depending only on ¢, such that

W(LJ(fq)’N)
2q—2
q—1
<00 (10t e+ 22 1 0 )
q q k-1
Co (Z Z H(fq x5, fq) 1A2q—k77‘||L2(]R+)o(2q—k—r) + Z Z | .fq %k fq||L2(]R+)o<2qkr)) .

k=1r=1 k=1r=0
(5.4)

(5.3)

Note that for » < k£ we have

||(fq *Z fq) 1A2q7k;7r L2(Ry)o(2a—k—r)

= o ([ ) ) B ([ ' as)
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X Z Z Aoy ks (z,y,2)

y,2€INa—k xcINk—7
2

X § fq(’lU,J?,Q)fq(U),.’E,Z)
(W1 sy Wy Ty, T — s Y15y Yq—k ) EK
left(wi,. .., Wr, T1,ee Tl —rs21,-,2g—k) EK

< 20 (B[ (7 ) 15,

where, as in [4] or [10], the notation * is here the discrete version of the product defined
in (5.1), and

12(IN)o(2g—k—r) ’

~ . R lK(Zl,.,Zq)
Uy eeeylg) = biy -+ b, -
Flt ol = Gy ey
Furthermore, for fixed y, z € IN?~* we get
H (fq;’“f"> S 12(IN)o (2= k=)
= 2 2 s, @)
y,2ENa—F geINk—7
2
X Z fQ(w’x7y)fq(w7$7z)

(W1 5ee sy Wiy T1 s By Y 5oy Yq— k) EK
left(w,..., Wr, @10, Th—ry21,--0,2q—k)EK

< Z AQq 2k y’ )

y,z€Na—k

<| > > Falw,z,y) fo(w, . 2)

zeNk—T (W1 5y Wy T ey Tl — s Y15, Yg—k ) EK
left(wi, ., Wr T1,ee Tl s 21,002 —k ) EK

s
<[ (ki) 1.,

lz(]N)o(2q—2k-) ’

where the first inequality follows from the general inequality Y, ;a? < (3., ai)2,

a; > 0, and the fact that sgn(f,(w, z,y) fy(w, z, 2)) is constant for fixed y, 2 € N9~*. Thus,
we get

|| (fa %% fo) Lag, .

L2(Ry)o(2a—k—m) < 2% (E[Xﬂ)q

(fq%éfq) 1A2q_2k

12(IN)o(2a—2k)

Analogously, for r < k we obtain

1ok Fall oy < 22 (LX) || (F o)

l2(]N o(2q Qk)

Finally, applying this to (5.4), we may write

W(Iq(fq)
< C(B[X{])"

” <’“€{im7q 1}H(f";’“f") Azq-zn ‘(fq f") zz(moqum)’

for some C = C(g), and both maxima can be calculated as in Theorem 6.2 of [4]. O

+
P kella)
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Theorem 5.4 extends the standard Berry-Esseen bound of Corollary 6.2 in [4] to
general independent random sequences, in particular when K takes the form K =
{1,..., n}qﬁAq. Note also that the general result on random sequences in Proposition 6.8
of [10] does not apply to the total variation or Wasserstein distances.

6 Quadratic functionals

This section is devoted to double stochastic integrals, which are a special case of the
multiple integrals discussed in Section 5. We study them in a separate section because
of many applications i.e. to quadratic functionals. Taking n = 2 in Corollary 5.2 of
Section 5, we get the following result.

Corollary 6.1. Let f5 € L2(]R2+) be a symmetric function satisfying (2.3). Assume that
the functions

Gifal) =5 [ Ih@y)Pds and G =5 [ falwn)hle e

belong to L?(R.) and L*(R?2), respectively. Then we have

2

1 S A d
dw (Zn, N) < ((1—4||f2|%2(nﬁ)) +/0 </o |f2(x,y)|2dx) 7y
0o oo oo 2dy 1/2
T r,z)dr | —dz
[T e a) G )

1 00 ) 2
+ll 2l 2 mz) (2/0 (/0 Ifz(x,y)Ide) dy + | foll Lo w2

0o oo 0O s
+/0 /0 /0 f2($>y>f2($72’)|2dxdydz) ]

For example, when f, € C§(R2) N L?(R%) is given by

fa(s,t) := Z ar,1f1(8) f1 ()L (2r—2,2k) x (20—2,20) (5, 1), st € Ry, (6.1)
1<k,i<n

where A = (ak,)1<k,i<n IS @ Symmetric matrix with vanishing diagonal and such that
doi<ki<n ai,l =1, Corollary 6.1 yields the following result, when f; is given by (2.23).
Corollary 6.2. Given (X ),>1 a sequence of independent identically distributed random
variables such that E[X;] = 0 and E[X}?] = 1, k > 1, let Q,, denote the normalized
quadratic form

Qn = Z a1 Xp X1, (6.2)

1<k,l<n

with E[Q,] = 0 and E[Q?] = 1, n > 2. We have

n

2
ak7lak7p> (6.3)
1

dw (Qn,N) < 2 E[Xf]i(ic@) +2 ) (
k=1 k

=1 1<l,p<n

+4 (3E[Xﬂ+(E[Xi‘])2)Z< aﬁ,z) :
=1

k=1

The bound for drvy (Qn, N) is twice as large as (6.3).
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Proof. Writing @,, as

Qn = I2(f21(0.20)x[0,20)) = Z a1 (f1lzk—2,26) 11 (11l (20-2,21])
<ki<n

n > 2, we have

2

A (Qu ) < }(/2 ([ 1a@rar) a
2n p2n 2n 2 1/2
+/0 /0 ( ; falz,y) fa(z, 2) dx) dydz)
/

(
1 2n 2n 2 2n  p2n
w25 [N P dy+ [ [ G dody
0 0 0 0

2n 2n 2n 1/2
2dxdyd
[ [ et o sy
_ 1 2 2
- & | In@pd
2 n n 2 2 2 n 2

/|f1(y)|4dyz<zaz7l> +(/ |f1($)|2d9€> <Zak,zak,p>
0 =1 \k=1 0 1<l,p<n

k=1
n n 2 n
w2 | [ 1np as /m )ity ;Z<Zail) £ Y,
1
2 2
4d
#| [ 1n@a

1<l,p<n k=1
1/2

4
E Qg 1

1<ki<n
n n 2 n 2
= 2B[X]] Z(Z‘@,l) +2(E[X7])? ) (Zak,lak,p>
=1 \k=1 1<l,p<n \k=1

+4,|3(E[X2))2E[X}] Z (Z a’kl) (EX{N2Y (Z ai,z) ;

=1 \k=1

where we used the relation

/ (@) Hda =2 / [P ()| dy = 2B[X). o

Bounds of that type have been already studied in the literature, see e.g. [20] and [3].
They are usually presented by means of the expression

Following this convention we can apply the bound of Corollary 6.2 to obtain

dTV(anN)

< 4v/nL? E[X{] +

> (Zaklakp> +2\/3EX4 X2 |. (6.4)

n 1<l,p<n
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Note that the constants in the above bound are explicit. For example, when

2 n
n — T = Xog—1X2k,
Q \/ﬁ; ok—1X2k

we have L2 = 1/n and

2n 2
5 (z) L

1<l,p<2n

hence (6.4) recovers the known convergence rate

dre(@u ) <22 (U BN+ 2y BT+ (Bixe ) < 1N

cf. pages 1074-1075 of [3], with an explicit constant depending on E[X{] instead of
v/ E[|X1]3]. On the other hand, Corollary 5.3 applied with n = 2 gives the following
result.

Corollary 6.3. For any f> € C4(R%) N L*(R?2) satisfying (2.3), we have

" (2/000 ([ outato [ f2<t,y>dtdy)2dm
i [T (anen [ f2<t,y>dt)2dydx

[ (ot 10 s

ol [ i) [ ([

0 2i42 2\ 1/2
—4 </ / | fa(z,y)] dyda:) ) .
/=0

?

1
dw (I2(f2),N) < ‘1 — 1 1f2ll g2

Proof. We apply Corollary 5.3 with

= %/0 81f2(1'>y)/0 f2(t7y)dtdyv

Hy(2,y) = 10y eny D1 fo(2,4) /0 falt, y)dt

1 ¢ 1 ¢
HQ(x7yaZ) = 1{Z<w}§alf2(xay)/ fg(t,Z)dt + 1{y<x}§81f2($72)/ f2(t7y)dt
0 0
xz,y,z € R4, and

Jl(‘sa y) - ‘fg(s, y)|21{y<s}a

Ta(5,9:2) = 5250 al5: 2L sy + 5 5,0 ol 2V
5 | s,

21

Ji(z1) =
jz(zl,ZQ / fg S, 21 fQ(S 2’2 d8+ / fg S, 21 fg(s 2’2) O

When f, € C4(R2) N L*(R2) is given by (6.1), Corollary 6.3 shows the following
bound on quadratic functionals.
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Corollary 6.4. Given (X;)i>1 a sequence of independent identically distributed random
variables such that E[X;] = 0 and E[X?] = 1, k > 1, the normalized quadratic form Q,,
defined in (6.2) satisfies

w(Qn, N) (6.5)

n 2 n k—1 2
< 4 |El(px, (Xe)?2+ EX{DLZ +2 ) (Zak,qam> - ( a z>~

1<q,l<n k=1 \Il=1

Proof. By Corollary 6.3, we have

w (I (f2),N) < \/2I1 + 4l + Al + 214 + 215 — 41,

where

/ / ar f1(2) f1(y) L 2r—2,26] x (202,20 (T, ¥)
0

1<k,l,p,q<n
2

xT
<[ ap,qfl<t>f1<y)1<2p_2,2p}X@q_m(uy)dtdy) da
0

:/ Zl(gk_zgk](m) Z aklapl/ |f1(y)? 1ia1—2,21)(y )dy f1(x)
0 k=1

1<p,i<k

2
X / fl (t)l(Qp,Q’Qp] (t)dt) dLIJ

:/0 Zl(2k 2,0k (T ( ak,l)Q/O | A1) L (21—2,20 (y)dy f1 ()

1<i<k

£ i )dt) dx

—(/02f1<y>|2dy> / (sita) [ coar) dZ(Z )

2

n k—1
< 8(EIXTN)Ellpx. (X)) (Z(ak,z)2> :
k=1 \l=1

-722/ / Z a1 f1(2) f1(y) L2k —2,26) x (202,201 (T, Y)
0 0

1<k,l<n

/ Z ap,q J1() f1 ()L (2p—2,2p] x (2q—2,2q) (£, ¥)dl | dydz
0

1<p,g<n

=/ / > arafi(@) W)L 220 21—2.20 (2, )
0 0

1<k,l<n
2

X/o ak,lfl(t)fl(y)l(zk—2,2k](t)dt> dydzx
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A oo , T 2
> aky ; 1iok—2,26) (%) | fi(2) ; J1(t)1(2—2,28) (t)dt

1<k,I<n

x / ()M 2 () e

<y akl/ (sita) [ e dt) dx/ ()l dy

1<k,l<n
< 4E[X{)E[(¢x, (X)) Z akla
1<k, l<n
13—/ / / > ki fl(@) AL r—2.28x (21220 (7, V)
1<ki<n
2
/ Z ap,qf1(t) f1(2) L (2p—2,2p) x (29—2,2¢) (£, 2)dt | dzdxdy
0 1<p,g<n

=/ / / Z ar f1(2) f1(y) 1 2k—2,26) x (202,20 (2, )
o Jo Jo

1<k,I<n
2

/ Z akaqfl(t)fl(Z>1(2k—2,2k]><(2q—272q] (t,2)dt | dzdxdy

0 1<qg<n
- Z / / /1(2k—272k]x(2l—2,21]($7y)l(zq—z,zq](z)|f1(y)|2|f1(z)|2aﬁ,l
<k,l,q<n 0 0
T 2
X <ak,qf{(x)/ fl(t)l(gp_g,gp](t)dt) dzdxdy
- 5 ([t ([ ) 3
1<k,l,g<n

<AUEXEllex, (Xp)?] > aiiai,
1<k, l,q<n

hence

oI, + 4l + 4l

n k—1 2
< 16E[(px,(Xk))’] Z(Z(ak,z)2> + E[X{] al,+ Y apai,

1<k, l<n 1<k,l,g<n

2

1 A oo . oo 2
—5 2 k[ teran@lAW ([ IA@P @) dy
1<k,i<n 0 Y
4
1 2 4
<3 X ok [ InePa) ssExnt ¥,
1<k,i<n 0 1<k,i<n
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I; = / / /Z Z ap1 f1(2) f1(y) 1 (2k—2,2k] x (21—2,211 (T, ¥)

1<k,l,p,q<n

2
Xap,qf1(2) f1(2) L (2k—2 2k x (21—2,20 (¥, 2)dx)” dydz

= /Ooo /OOO ‘fl(y)|2|f1(2)|2 Z 1(2172’2”(y)1(2q72’2q](2)

1<q,l<n

X (Zak,qak,z /OO |f1(x)|21(2k—2,2k]($)d90> dydz
k=1 z
2 4 n 2
< ( i Ifl(y)zdy> > (Zak,qak,l> <16(Ex)" Y (Zak,qakl>

1<q,i<n \k=1 1<q,l<n \k=1
and
2 2
n 27 x
Is = / / Z ar1f1(2) f1(Y) L 2k—2,20)x (212,20 (%, y) | dydx
i=1 2i=2J0 |1<ki<n
n n 2k x 2
=Y (et [ IA@F [ 1wP1e-sa s
k=1 \I=1 2k—2 0
n k—1 2k 21 2
- ( o[ Ih@P [ f1<y>|2dydx>
=\ 2k—2 20—2
4 n k—1 2
=16 (E[X%D Z (Z%l)
k=1 \i=1

Hence we have

2 n k—1 2
20, 4+ 215 — 415 < 32 CL Z <Z Qg qQF, l) _22 (Z ai,l)

1<k,I<n 1<q,i<n k=1 \i=1

2 n 2
<32 <Z Ak, q0k, z) - Z (Z ai,z) )
1<q,i<n k=1

and combining the above bounds gives us (6.5). O

When (X})r>1 is a sequence of independent gamma identically distributed normalized
random variables we have E[(px, (X1))?] = 2, and (6.5) yields

n 2 n k—1 2
w(QuN) <4 22+ BIX{))L2 +2 ) (Zak,qak,l> Z( aﬁ,z>~

1<q,l<n = = =1

A similar expression can be obtained from (4.7) in the beta case.

7 Appendix - multiplication formula

We now formulate and prove the multiplication formula which is used in the proof of
Corollary 5.2.
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Theorem 7.1. (Multiplication formula). Let f,, g,, satisfy (2.3) and
foxt gm € LARPT"F1) forall 0<i <k <mAn.

Then we have

1) I (gm) mZk'( ) )g(’;)fmm_k_i (4o Fhm)-

Proof. Without loss of generality we consider only n > m. We use mathematical induction
with respect to m, if m < n, and with respect to n, if m = n. The formula is clearly valid
for n > 0 and m = 0. Let us assume that the formula is valid for the following pairs of
indices: (n,m — 1), (n —1,m) and (n — 1,m — 1). By (2.9) we get

(In(fn)lm(gm)) ol = Sl(t) + 52(t) + 53(t)’
where

Si(t)
= mndy—1(fn(t, %) Im—1(gm(t, %)) + mIp(fo) Im—1(gm(t, %)) + nLpy—1 (fr(t, %)) I (Gm)s

Sa(t)
= —(nLn-1(fa(v, %)) I (gm) © O + mIp(fn) © Celm—1(gm (v, *)))\v:2lt/2J+1+ULt/2J’

S&(t) = In(fn)lm(gm) - mnInfl(fn(U7 *))Imfl(gm(z% *))|v:2tt/2j+1+ULt/2J .

We note that by (2.3) we have E[S,(t) | F;] = 0. Additionally, the function s — E[Sj(t) |
]:'S] is constant for s € [2[t/2],2[t/2] + 2) which, combined with (2.12), implies

| BN ) | B3 - 172
- /O B[ (f)In(gm) 0 Wi | )Y — 1/2)
= [ Bl | AJai - o2

Then, by the induction hypothesis and renumeration in the first sum below, we get

/OOO E[vt(ln(fn)lm(fm)) | ]:—t] d(ift - t/2)

° (mAn)—1 m—1\ (n—1\ <~ [k ;
= A FE |nm Z k'( k ) < k ) Z (i)lm+n2ki (fn(tv*) *}Lg gm(tv *))
k=0 =0
(m—1)An

a(" ) (Z)Z(’“)Im+ i (oA )
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Stein approximation for functionals of independent random sequences

n mjzn:) w0 () (7) i (5) tnroscs () ) |72 i = 02,

Thus, the formula (2.13) gives us for m # n

/OOO [Veln(fa) I (fin)) | Fed(Y: — 1/2)
B0 i

G Oh s S
<

0
mA(n—1)

i —k k 4
+ Z k'( ) Z>Zm+2kz(i)lmmki(fn*zgm).
=0

If m = n, then the term Iy (f, 1 g,) does not appear in the above sums. Nevertheless,
since Iy (fn %2 gn) = (fn, gn>L2(Ri)d1/2), the assertion of the theorem follows from (2.5)
and Clark-Ocone formula (2.11). O
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