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Abstract

In this work, we consider a finite-state inhomogeneous-time Markov chain whose
probabilities of transition from one state to another tend to decrease over time. This
can be seen as a cooling of the dynamics of an underlying Markov chain. We are
interested in the long time behavior of the empirical measure of this freezing Markov
chain. Some recent papers provide almost sure convergence and convergence in
distribution in the case of the freezing speed n−θ, with different limits depending on
θ < 1, θ = 1 or θ > 1. Using stochastic approximation techniques, we generalize these
results for any freezing speed, and we obtain a better characterization of the limit
distribution as well as rates of convergence and functional convergence.
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1 Introduction

Let (in)n≥1 be an inhomogeneous-time Markov chain with state space {1, . . . , D} with
the following transitions when i 6= j:

P (in+1 = j|in = i) = qn(i, j), qn(i, j) = pn(q(i, j) + rn(i, j)),

where (pn)n≥1 is a decreasing sequence converging toward some p ∈ [0, 1], the remain-
ders rn(i, j) tend to 0 (fast enough) and q is the discrete generator of some {1, . . . , D}-
valued ergodic Markov chain. This model is related to the simulated annealing algorithm,
and the sequence (pn)n≥1 can be interpreted as the cooling scheme of an underlying
Markov chain generated by q. If p < 1, since limn→+∞ qn(i, j) = pq(i, j), the probability
of (in)n≥1 to move decreases over time, from which the appellation freezing Markov

*Inria Nancy – Grand Est, BIGS, IECL. E-mail: florian.bouguet@ens-rennes.fr
†MISTEA, INRA, Montpellier SupAgro, Univ. Montpellier. E-mail: bertrand.cloez@inra.fr

http://www.imstat.org/ejp/
https://doi.org/10.1214/17-EJP130
http://arXiv.org/abs/1705.02121
http://hal.archives-ouvertes.fr/hal-01519611
mailto:florian.bouguet@ens-rennes.fr
mailto:bertrand.cloez@inra.fr


Fluctuations of the empirical measure of freezing Markov chains

chain. As pointed out in [14, Section 1] or in [17, Section 2], this type of inhomogeneous
Markov chain is naturally related to MCMC algorithms, Bernoulli trials (like the GEM
model) or urn models.

The behavior of (in)n≥1 is simple enough to understand, and depends on the summa-
bility of the sequence (pn)n≥1. The chain (in)n≥1 converges in distribution to the unique
invariant probability ν> associated to q if

∑∞
n=1 pn = +∞ (see Theorem 2.4 below). On

the other hand, if
∑∞
n=1 pn < +∞, the Markov chain freezes along the way, as a conse-

quence of the Borel-Cantelli Lemma. Then, we shall assume that
∑∞
n=1 pn = +∞, so that

we can investigate the convergence of the empirical distribution x>n = 1
n

∑n
k=1 δik .

The problem of the convergence of this empirical measure can be traced back to
the thesis of Dobrušin [15], and several questions are still open, as pointed out in the
recent article [17]. Some results can be obtained from the general theory developed in
[31, 29], and [14, 17] study the present model. In particular, convergence results are
only obtained for a freezing rate of the form pn = a/nθ (and rn(i, j) = 0). More precisely,

• if θ < 1 then (xn)n≥1 converges to ν in probability; see [14, Theorem 1.2].

• if θ < 1/2, then (xn)n≥1 converges to ν a.s. This can be extended to 1/2 ≤ θ < 1

when the state space contains only two points; see [14, Theorem 1.2] and [17,
Corollary 2].

• if θ < 1 and D = 2, then, up to an appropriate scaling, the empirical measure
(xn)n≥1 converges in distribution to a Gaussian distribution; see [17, Theorem 2].

• if θ = 1 then (xn)n≥1 converges in distribution, and the moments of the limit
probability are explicit. If q corresponds to the complete graph (see Section 4)
then this limit probability is the Dirichlet distribution. When D = 2, this covers
classic distributions such as Beta, uniform, Arcsine or Wigner distributions; see
[14, Theorems 1.3 and 1.4] and [17, Theorem 1].

• when D = 2, some convergence results are established for (xn)n≥1 for general se-
quences (pn)n≥1, under technical conditions that we find hard to check in practice;
see [17, Theorem 3].

We shall refer to the case θ < 1 as standard, since it is related to classic laws of
large numbers and central limit theorems. This case was called subcritical in [17],
in comparison with the critical case θ = 1. Since we can slightly generalize this
critical case here, the term non-standard will be preferred from now on. In the present
article, we generalize the aforementioned results by proving that, in the standard case,
if
∑∞
n=1(pnn

2)−1 < +∞ then (xn)n≥1 converges to ν a.s., and we also give weaker
conditions for convergence in probability; this is the purpose of Theorem 2.10. Under
slightly stronger assumptions and up to a rescaling, we obtain convergence of (xn)n≥1

to a Gaussian distribution with explicit variance in Theorem 2.11. Finally, if pn ∼ a/n,
then (xn)n≥1 converges in distribution exponentially fast to a limit probability (see
Theorem 2.8). This distribution is characterized as the stationary measure of a piecewise-
deterministic Markov process (PDMP), possesses a density with respect to the Lebesgue
measure and satisfies a system of transport equations; see Propositions 3.1 and 3.4.
Furthermore, Corollary 3.9 links the standard and non-standard setting by providing a
convergence of the rescaled stationary measure of the PDMP to a Gaussian distribution
as the switching accelerates. We also investigate the complete graph dynamics in
Section 4 and are able to derive explicit results in Propositions 4.1 and 4.2. Most
of our convergence results are also provided with quantitative speeds and functional
convergences.

In contrast with the Pólya Urns model (see for instance [22]), where the random
sequence converges almost surely to a random variable (thus converges in distribution),
Theorems 2.8 and 2.11 provide convergences in distribution which are not a consequence
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of an almost sure convergence. However, note that, by letting pn = 1 for all n ≥ 1, we
can recover classic limit theorems for homogeneous-time Markov chains (see [24]).
Furthermore, the remainder term rn(i, j) enables us to deal with different freezing
schemes (see Remark 2.3). In particular, the proofs in [14] and [17] are mainly based
on the method of moments, which is why more stringent assumptions are considered
there. Our approach is completely different, and is based on the theory of asymptotic
pseudotrajectories detailed in [3] and revisited in [4].

Briefly, a sequence is an asymptotic pseudotrajectory of a flow if, for any given
time window, the sequence and the flow starting from the same point evolve close to
each other (see for instance [6, 3]). This definition can be formalized for dynamical
systems and be extended to discrete sequences of probabilities and continuous Markov
semi-groups. This theory allows us to derive the behavior of the sequence of empirical
measures (xn)n≥1 from the one of auxiliary continuous-time Markov processes. The
interested reader may find illustrations of this phenomenon in [4, Figures 3.1, 3.2 and
3.3], see also Figure 4. In the present paper, depending on whether we work in a
standard or non-standard setting, these processes are either a diffusive process or a
switching PDMP. The careful study of these limit processes is of interest per se, and is
done in Section 3. More precisely, Gaussian distributions appear naturally since we deal
with an Ornstein-Uhlenbeck process generated by

LOf(y) = −y · ∇f(y) +∇f(y)>Σ(p,Υ)∇f(y), (1.1)

where Σ(p,Υ) is the D ×D real-valued matrix equal to

Σ
(p,Υ)
k,l =

1

1 + Υ

D∑
i,j=1

νi
[
q(i, j)(hl,j − hl,i)(hk,j − hk,i))− p (νk − 1i=k) (νl − 1i=l)

]
, (1.2)

with p and h respectively defined in Assumption 2.1, and in (2.6). On the contrary, we
shall see that, in a non-standard framework, the empirical measure is linked to a PDMP,
called exponential zig-zag process, generated by

LZf(x, i) = (ei − x) · ∇xf(x, i) +
∑
j 6=i

aq(i, j)[f(x, j)− f(x, i)]. (1.3)

These Markov processes shall be defined and studied more rigorously in Section 3. In
particular, besides some classic long-time properties (regularity, invariant measure, rate
of convergence. . . ), we prove in Theorem 3.3 the convergence of the exponential zig-zag
process to the Ornstein-Uhlenbeck process when the frequency of jumps accelerates, i.e.
when a→ +∞.

The rest of this paper is organized as follows. In Section 2, we specifiy the notation
and assumptions mentioned earlier, that will be used in the whole paper. We also state
convergence results for (xn)n≥1, which are Theorems 2.8, 2.10 and 2.11. We study the
long-time behavior of the two auxiliary Markov processes in Section 3 and investigate the
case of the complete graph in Section 4, for which it is possible to get explicit formulas.
The paper is then concluded with the proofs of the main theorems in Section 5.

2 Freezing Markov chains

2.1 Notation

We shall use the following notation throughout the paper:

• If d is a positive integer, a multi-index is a d-tuple N = (N1, . . . , Nd) ∈ ({0, 1, . . . } ∪
{+∞})d; the set of multi-indices is endowed with the order N ≤ Ñ if, for all
1 ≤ i ≤ d,Ni ≤ Ñi. We define |N | =

∑d
i=1Ni and and we identify an integer N with

the multi-index (N, . . . , N). Likewise, for any x ∈ Rd, let |x| =
∑d
i=1 |xi|.
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• For some multi-index N and an open set U ⊆ Rd,CN (U) is the set of functions
f : U → R which are Ni times continuously differentiable in the direction i. For
any f ∈ CN (U), we define

f (N) = ∂N1
1 . . . ∂Nd

d f, ‖f (N)‖∞ = sup
x∈Rd

|f (N)(x)|.

When there is no ambiguity, we write CN instead of CN (U), and denote by CN
b and

CN
c the respective sets of bounded CN functions and of compactly supported CN

functions.

• Let 4 be the simplex of RD defined by

4 =

{
(x1, . . . , xD) ∈ RD : xi ∈ [0, 1],

D∑
i=1

xi = 1

}
,

and E = 4× {1, . . . , D}.

• We denote by L (X) the probability distribution of a random vector X, and we
identify the measures over {1, . . . , D} with the 1×D real-valued matrices. Let L
be the Lebesgue measure over RD.

• If µ, ν are probability measures and f is a function, we write µ(f) =
∫
f(x)µ(dx).

For a class of functions F , we define

dF (µ, ν) = sup
f∈F
|µ(f)− ν(f)|.

Note that, for every class of functions F considered in this paper, convergence
in dF implies (and is often equivalent to) convergence in distribution (see [4,
Lemma A.1]). In particular, let

W (µ, ν) = sup
|f(x)−f(y)|≤|x−y|

|µ(f)− ν(f)|, dTV(µ, ν) = sup
‖f‖∞≤1

|µ(f)− ν(f)|

be respectively the Wasserstein distance and the total variation distance.

• For θ ∈ (0,+∞)D, let D(θ) be Dirichlet distribution over RD, i.e. the probability
distribution with probability density function

x 7→
Γ
(∑D

k=1 θk

)
∏D
k=1 Γ(θk)

D∏
k=1

xθk−1
k 1{x∈4}.

For θ1, θ2 > 0, let β(θ1, θ2) be the Beta distribution over R, i.e. the probability
distribution with probability density function

x 7→ Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
xθ1(1− x)θ210<x<1.

• Let x ∧ y := min(x, y) and x ∨ y := max(x, y) for any x, y ∈ R.

• We write, for n ≥ 1, un = O(vn) if there exists some bounded sequence (hn)n≥1

such that un = hnvn. Moreover, if limn→+∞ hn = 0, we write un = o(vn), and if
limn→+∞ hn = 1, we write un ∼ vn.
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2.2 Assumptions and main results

Let D be a positive integer and (in)n≥1 be a {1, . . . , D}-valued inhomogeneous-time
Markov chain such that, ∀i 6= j,

P (in+1 = j|in = i) = qn(i, j).

The following assumption, which will be in force in the rest of the paper, describes the
behavior of the transitions qn as time goes by.

Assumption 2.1 (Freezing speed). Assume that that the matrix Id +q is irreducible and,
for n ≥ 1 and i 6= j,

qn(i, j) = pn (q(i, j) + rn(i, j)) , (2.1)

where (pn) is a sequence decreasing to p ∈ [0, 1] such that
∑∞
n=1 pn = +∞, and

limn→+∞ rn(i, j) = 0. For i 6= j, assume q(i, j) ≥ 0, qn(i, j) ≥ 0 and

q(i, i) = −
∑
j 6=i

q(i, j), qn(i, i) = −
∑
j 6=i

qn(i, j).

Note that we do not require (pn)n≥1 to converge to 0. Of course, if p > 0, then the
series

∑
n pn trivially diverges; as pointed out in the introduction, if this series converge

then the problem is trivial. In fact, if pn = 1 and rn(i, j) = 0 for any integers i, j, n, then
the freezing Markov chain (in)n≥1 is a classic Markov chain. When p = 0, the dynamics
of Assumption 2.1 corresponds to the lazier and lazier random walk introduced in [4].

Remark 2.2 (Irreducibility or indecomposability). The irreducibility of the transition
matrix Id +q associated to q is a classic hypothesis when it comes to Markov chains,
since otherwise we can split their state space into different recurrent classes. However,
the result of the present article can be extended to indecomposable1 Markov chains,
which is a weaker concept. For instance, the transition matrix 0 1 0

1 0 0

1/3 1/3 1/3


is indecomposable but not irreducible. Namely, Id +q is irreducible if it cannot be written
as

P>(Id +q)P =

[
A 0

B A′

]
,

where A,A′ are square matrices and P is a permutation matrix. Indecomposability
allows such a decomposition, as long as B has a nonzero entry.

In any case, Id +q possesses a unique absorbing class of states on which it is irre-
ducible. Using Perron-Frobenius Theorem (see [21, Theorem 2p.53]), the matrix Id +q

possesses a unique invariant measure ν>, and the associated chain converges toward it
under aperiodicity assumptions (see also Remark 3.3). Note that aperiodicity hypotheses
are not relevant for the freezing Markov chain whenever p < 1, since the freezing scheme
automatically provides aperiodicity to the Markov chain.

Under Assumption 2.1, Id +q possesses a unique invariant distribution ν>, which
writes ν>q = 0; let ν ∈ 4 be its associated vector.

1The algebric term indecomposable also exists for matrices, and is sometimes mistaken for irreducibility.
Throughout this paper, a Markov chain (or its associated transistion matrix) is said indecomposable if it admits
a unique recurrent class.
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Remark 2.3 (Interpretation of the term rn(i, j)). The remainder rn(i, j) in (2.1) can either
model small perturbations of the main freezing speed pnq(i, j), or a multiscale freezing
scheme with pn being the slowest freezing speed. For instance, the case

qn =

[
−n−θ n−θ

n−(θ+θ̃) −n−(θ+θ̃)

]
, θ, θ̃ > 0

is covered by Assumption 2.1, with

q =

[
−1 1

0 0

]
, pn = n−θ.

The following result characterizes the long-time behavior of the inhomogeneous
Markov chain (in)n≥1.

Theorem 2.4 (Convergence of the freezing Markov chain). Under Assumption 2.1, if
either p < 1, or p = 1 and Id +q is aperiodic,

lim
n→+∞

in = ν> in distribution.

Now, let us define (e1, . . . , eD) the natural basis of RD and introduce two different
scaling rates

γn =
1

n
, αn =

√
pn
γn
, (2.2)

and the associated rescaled vectors

xn = γn

n∑
k=1

eik , yn = αn(xn − ν). (2.3)

It is clear that (2.3) writes

xn+1 =
γn+1

γn
xn + γn+1ein+1

, (2.4)

that the vector xn belongs to the simplex 4 and that (xn, in) ∈ E = 4× {1, . . . , D}. We
highlight the fact that, in general, the sequence (xn)n≥1 is not a Markov chain by itself,
but (xn, in)n≥1 is.

Remark 2.5 (Interpretation of 4). The transpose x 7→ x> is a natural bijection between
4 and the set of probability measures over {1, . . . , D}. Then, the sequence (x>n )n≥1 can
be viewed as the sequence of empirical measures of the Markov chain (in)n≥1. From
that viewpoint, we highlight the fact that the L1 norm over 4 can be interpreted (up to a
multiplicative constant) as the total variation distance: indeed, for any x, x̃ ∈ 4,

|x− x̃| = 1

2
dTV

(
x>, x̃>

)
=

1

2
dTV

(
D∑
i=1

xiδi,

D∑
i=1

x̃iδi

)
.

Following [3, 4], and given sequences (γn)n≥1, (εn)n≥1, we define the following pa-
rameter which rules the speed of convergence in the context of standard fluctuations:

λ(γ, ε) = − lim sup
n→+∞

log(γn ∨ εn)∑n
k=1 γk

. (2.5)

Finally, we need to introduce a fundamental tool in the study of the standard fluctua-
tions: the matrix h, which is solution of the multidimensional Poisson equation∑

j 6=i

q(i, j)(hj − hi) = ν − ei, or equivalently
∑
j 6=i

q(i, j)(hk,j − hk,i) = νk − 1i=k (2.6)
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for all 1 ≤ i, k ≤ D, where we denoted by hi the i-th column vector of the matrix h. This
solution is classically defined by

hi = −
∫ +∞

0

(
e>i et(Id +q)−ν>

)
dt.

With the help of Perron-Frobenius Theorem (see [21, Theorem 2p.53]), it is easy to see
that h is well-defined.

Throughout the paper, we shall treat two different cases, which entail different limit
behaviors for the fluctuations of (xn)n≥1 or (yn)n≥1. Each of these cases corresponds to
one of the two following assumptions.

Assumption 2.6 (Non-standard behavior). Assume that

pn ∼
n→+∞

a

n
.

Note that, under Assumption 2.6, the sequences (γn)n≥1 and (pn)n≥1 are equivalent
up to a multiplicative constant and the scaling (αn)n≥1 is trivial, hence we are not
interested in the behavior of (yn)n≥1.

Assumption 2.7 (Standard behavior). i) Assume that

lim sup
n→+∞

γn
pn

= 0.

ii) Assume that
pn+1

pn
= 1 +

Υ

n
+ o

(
1

n

)
, lim

n→+∞

Rn√
pnγn

= 0,

with Rn = supi
∑
j 6=i |rn(i, j)|.

Now, we have all the tools needed to study the behavior of the empirical measure
(xn)n≥1.

Theorem 2.8 (Non-standard fluctuations). Under Assumptions 2.1 and 2.6,

lim
n→+∞

(xn, in) = π in distribution,

where π is characterized in Propositions 3.1 and 3.4.
Moreover, if there exist positive constants A ≥ 1, θ ≤ 1 such that

max
j 6=i

(|rn(i, j)|) ≤ A

nθ
,

then, denoting by ρ the spectral gap of Id +q, for any

v <
θ

A+ θ
(

1 + 1
aρ

) ,
there exist a class of functions F defined in (5.4) and a positive constant C such that

dF (L (xn, in), π) ≤ Cn−v.

It should be noted that our approach for the study of the long-time behavior of
(xn, in)n≥0 also provides functional convergence for some interpolated process (Xt, It)t≥0

defined in (5.3) (see Lemma 5.1, from which Theorem 2.8 is a straightforward conse-
quence). Moreover, note that the speed of convergence provided by Theorem 2.8 writes,
for any function f : 4× {1, . . . , D} → R, two times differentiable in the first variable,
there exists a constant Cf such that

|E[f(xn, in)]− π(f)| ≤ Cfn−v.

EJP 23 (2018), paper 2.
Page 7/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP130
http://www.imstat.org/ejp/


Fluctuations of the empirical measure of freezing Markov chains

Remark 2.9 (Is it possible to generalize Assumption 2.6?). This remarks leans heavily
on the proof of Theorem 2.8 and may be omitted at first reading. It is interesting to
wonder whether it is possible to obtain non-standard fluctuations for a more general
freezing speed (pn)n≥1. To that end, let us try to mimic the computations of the proof of
Lemma 5.1 with (x̃n, in)n≥1 with

x̃n = γ̃n

n∑
k=1

eik ,

for any vanishing sequences (γn)n≥1 and (γ̃n)n≥1. Our method being based on asymptotic
pseudotrajectories, the limit of the rescaled process of (xn, in)n≥1 belongs to a certain
class of PDMPs which can be attained if, and only if,

lim
n→+∞

pn
γn

= C1, lim
n→+∞

γ̃n
γn

= C2, lim
n→+∞

1

γn

(
γ̃n+1

γ̃n
− 1

)
= −C3, (2.7)

with C1, C2, C3 > 0. Without loss of generality, one can choose γn = γ̃n and C2 = C3 = 1.
Then, the third term of (2.7) entails γn = (n+ o(1))−1 as n→ +∞, which in turn implies
pn = C1n

−1 + o(n−1) when injected in the first term of (2.7).
Also, note that assuming A < 1 or θ > 1 in Theorem 2.8 would not provide better

speeds of convergence, since one would obtain a speed of the form

u <
θ ∧ 1

A ∨ 1 + θ ∧ 1
(

1 + 1
aρ

) .
Theorem 2.10 (Standard convergence of the empirical measure). Under Assumptions 2.1
and 2.7.i),

lim
n→+∞

xn = ν in probability,

or equivalently in L1.
Moreover, if

∑∞
n=1 γ

2
np
−1
n < +∞, then limn→+∞ xn = ν a.s.

Moreover, if ` = λ(γ, γ/p) ∧ λ(γ,R) > 0, then, for any v < ` there exists a constant2

C > 0 such that

|xn − ν| ≤
C

nv
a.s.

Theorem 2.11 (Standard fluctuations). Under Assumptions 2.1 and 2.7, (yn)n≥1 con-
verges in distribution to the Gaussian distribution N

(
0,Σ(p,Υ)

)
The precise proofs of the main results are deferred to Section 5. As pointed out in

the introduction, our proofs of Theorems 2.8 and 2.11 rely on comparing (xn)n≥1 and
(yn)n≥1 with auxiliary continuous-time Markov processes, using the theory of asymptotic
pseudotrajectories (in Lemma 5.1) and the SDE method (in Section 5.2). Then, these
discrete Markov chains will inherit some properties of the Markov processes that we
investigate in Section 3. In particular, the results we use provide functional conver-
gence of the rescaled interpolating processes to the auxiliary Markov processes (see [4,
Theorem 2.12] and [16, Théorème 4.II.4]).

Remark 2.12 (Weighted means). Note that one could consider weighted means of the
form

xn =
1∑n

k=1 ωk

n∑
k=1

ωkeik ,

for any sequence of positive weights (ωn)n≥1, as in [5, Remark 1.1] or [4, Section 3.1].
Then, we define γn =

∑n
k=1 ωk, and Theorem 2.10 still holds with the bound

2The constant C is random but finite a.s.
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|xn − ν| ≤ C exp

(
−v

n∑
k=1

γk

)
.

Remark 2.13 (Examples of freezing rates). For the sake of simplicity, consider rn(i, j) =

0 for all i, j, n. Assumption 2.7 covers sequences (pn)n≥1 of the form pn = n−θ for any
0 < θ < 1, since γ2

np
−1
n = nθ−2. In this case, ` = λ(n−1, nθ−1) = 1− θ > 0.

But we can also consider more exotic freezing rates, for instance pn = log(n)ζn−1, for
some ζ ≥ 1. Then, γ2

np
−1
n = n−1 log(n)−ζ . If ζ > 1, then the series converges and ` = 1.

Our results do not provide almost sure convergence in the case ζ = 1, however, but only
convergence in probability.

It should be noted that assuming that (pn)n≥1 is decreasing, limn→+∞ pn = 0 and∑∞
n=1 pn = +∞ do not imply in general that pn+1 ∼ pn. A slight modification of the proof

shows that, if pn+1 is not equivalent to pn, we have to assume the existence of a sequence
(βn)n≥1 such that

lim
n→+∞

pn
γ2
nβ

2
n

(
βn
βn−1

(1− γn)− 1

)
= −1,

∞∑
n=1

γ2
nβ

2
n

pn
= +∞, lim

n→+∞
βnγn = −1

and such that the sequences (γ2
nβ

2
np
−1
n )n≥1 and (βnγn)n≥1 are decreasing; then the

conclusion of Theorem 2.11 holds.

3 The auxiliary Markov processes

In this section, we study the ergodicity of the processes arising as limits of the
freezing Markov from Section 2. We also study their invariant measure, and provide
explicit formulas when it is possible.

3.1 The exponential zig-zag process

In this section, we investigate the asymptotic properties of the exponential zig-zag
process, which arise from the non-standard scaling of the Markov chain (in)n≥1. To this
end, let (Xt, It)t≥0 be the strong solution of the following SDE (see [23]), with values in
E:

(Xt, It) = (X0, I0) +

∫ t

0

(
A(Xs− , Is−) + eIs−

)
ds+

D∑
j=1

∫ t

0

BIs− ,j
(Xs− , Is−)NIs− ,j

(ds),

(3.1)
where the Ni,j are independent Poisson processes of intensity aq(i, j)1{i6=j} and

A =


−1 0 · · · 0

0
. . .

. . .
...

...
. . . −1 0

0 · · · 0 0

 , Bi,j


0

(0)
...
0

0 · · · 0 i− j

 . (3.2)

Thus, the infinitesimal generator of this process is LZ defined in (1.3) (see e.g. [18,
13, 25]). Actually, the exponential zig-zag process is a PDMP; the interested reader
can consult [13, 8] for a detailed construction of the process (X, I). Let us describe
briefly its dynamics: setting I0 = i, the process possesses a continuous component X
which is exponentially attracted to the vector ei. The discrete component It is piecewise-
constant, and jumps from i to j following the epochs of the processes Ni,j , which in turn
leads the continuous component to be attracted to ej (see Figure 1 for sample paths
of the exponential zig-zag process, and Figure 3 for a typical path in the framework of
Section 4.2).
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The following result might be seen as a direct consequence of [7, Theorem 1.10] or
[11, Theorem 1.4], although these articles do not provide explicit rates of convergence,
which are useful for instance in the proof of Corollary 3.9.

Figure 1: Sample paths on [0, 5] of the exponential zig-zag process for
X0 = (1/3, 1/3, 1/3), q(i, j) = 1 and a = 0.5, a = 2, a = 20 (from left to right).

Proposition 3.1 (Ergodicity). The exponential zig-zag process (Xt, It)t≥0 admits a unique
stationary distribution π. If ρ is the spectral gap of q, then for any for any v < aρ(1+aρ)−1,
there exists a constant C > 0 such that

∀t ≥ 0, W ((Xt, It), π) ≤ C e−vt .

Moreover, if L (I0) = ν>, then

∀t ≥ 0, W ((Xt, It), π) ≤W ((X0, I0), π) e−t .

Note that the speed of convergence provided in Proposition 3.1 can be improved
when D = 2, since we are able to use more refined couplings (see Proposition 4.5).

Proof of Proposition 3.1. The pattern of this proof follows [7]. Let (Xt, It, X̃t, Ĩt)t≥0 be
the coupling for which the discrete components I and Ĩ are equal forever once they are
equal once. Let t > 0 and α ∈ (0, 1). Firstly, note that, if Iαt = Ĩαt , then the processes
always have common jumps and

|Xt − X̃t| = |Xαt
− X̃αt

| e−t ≤ 2 e−t . (3.3)

From the Perron-Frobenius theorem (see [21, 30]), for any ε > 0, there exists C̃ > 0 such
that

dTV(It, Ĩt) ≤ C̃ e−(aρ−ε)t .

Then there exists a coupling of the random variables Iαt and Ĩαt such that

P(Iαt 6= Ĩαt) ≤ C̃ e−(aρ−ε)αt . (3.4)

Now, combining (3.3) and (3.4),

E
[
|(Xt, It)− (X̃t, Ĩt)|

]
≤ E

[
|(Xt, It)− (X̃t, Ĩt)|

∣∣∣ Iαt 6= Ĩαt

]
P(Iαt 6= Ĩαt)

+ E
[
|(Xt, It)− (X̃t, Ĩt)|

∣∣∣ Iαt 6= Ĩαt

]
P(Iαt 6= Ĩαt)

≤ 2P(Iαt 6= Ĩαt) + 2 e−(1−α)t

≤ 2C̃ e−(aρ−ε)αt +2 e−(1−α)t .

One can optimize this speed of convergence by taking α = (1 + aρ− ε)−1, and get

W
(

(Xt, It), (X̃t, Ĩt)
)
≤ C e−vt (3.5)
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with C = 2C̃ + 2 and v = (aρ− ε)(1 + aρ− ε)−1. Then, (L ((Xt, It)) is a Cauchy sequence
and converges to a (stationary) distribution π. Letting L (X̃0, Ĩ0) = π in (3.5), achieves
the proof in the general case.

Now, if L (I0) = ν>, then L (I0) = L (Ĩ0); we can let I0 = Ĩ0, and then it suffices to
use (3.3) with α = 0.

If Assumption 2.1 is in force, there exists a unique invariant measure π, which
satisfies ∫

E

LZf(x, i)π(dx, di) = 0,

for any function f smooth enough. Now, let us establish the absolute continuity of this
invariant distribution with respect to the Lebesgue measure L.

Lemma 3.2 (Absolute continuity of the exponential zig-zag process). Let K ⊂ 4̊ be a
compact set. There exist constants t0, c0 > 0 and a neighborhood V of K such that, for
any (x, i) ∈ E and for all t ≥ t0,

P(Xt ∈ ·, It = j|X0 = x, I0 = i) ≥ c0L(· ∩ V ). (3.6)

Remark 3.3 (When Id +q is only indecomposable). This remark echoes Remark 2.2
and describes the behavior of the Markov chain (xn, in)n≥1 when Id +q is reducible but
indecomposable. In that case, Proposition 3.1 holds as well. However, Id +q possesses a
unique recurrent class which is strictly contained in {1, . . . , D}, the vector ν possesses
at least one zero and belongs to the frontier of the simplex 4, and π(4̊) = 0. It is
then impossible to obtain an equivalent to Proposition 3.1 with a convergence in total
variation; when Id +q is irreducible, this is possible using techniques inspired from [10,
Proposition 2.5].

If Id +q is indecomposable, one can obtain equivalents of Lemma 3.2 and Proposi-
tion 3.4 below by replacing the Lebesgue measure L on RD by the Lebesgue measure
on the linear subspace spanned by the recurrent class of Id +q.

Proof of Lemma 3.2. The proof is mainly based on Hörmander-type conditions for switch-
ing dynamical systems obtained in [1, 8]. Using the notation of [8], let F i : x 7→ ei − x
and then, if D ≥ 3,

∀x ∈ 4, G0(x) = Vect{F i(x)− F j(x) : i 6= j} = Vect{ei − ej : i 6= j} = RD,

where VectA denotes the vector space spanned by A ⊆ RD. If D = 2, then G1(x) = R2.
As a consequence, the strong bracket condition of [8, Definition 4.3] is satisfied. In
particular, using [8, Theorems 4.2 and 4.4], we have that, for every x ∈ 4, there
exist t0(x), c0(x) > 0 and open sets U0(x), V (x), such that for all x0 ∈ U0(x), i, j ∈
{1, . . . , D}, A ⊆ 4 and t > t0(x),

P(Xt ∈ A, It = j|X0 = x0, I0 = i) ≥ c0(x)L(A ∩ V (x)).

Since 4 = ∪x∈4U0(x) is compact, there exist x1, . . . , xn such that 4 = ∪nk=1U0(xk). In
particular, setting V = ∪nk=1V (xk), c0 = min1≤k≤n c0(xk), t0 = max1≤k≤n t0(xk), we have,
for all x0 ∈ 4, i, j ∈ {1, . . . , D}, A ⊆ 4 and t > t0,

P(Xt ∈ A, It = j|X0 = x0, I0 = i) ≥ c0L(A ∩ V )/

Using the Markov property, this holds for every t ≥ t0, which entails (3.6).
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Proposition 3.4 (System of transport equations for π). The distribution π introduced in
Proposition 3.1 admits the following decomposition:

π =

D∑
i=1

νiπi ⊗ δi, πi(dx) = ϕ(x, i)dx, (3.7)

where the function ϕ satisfies, for any (x, i) ∈ E,

(D − 1)ϕ(x, i) +

D∑
k=1

xk∂kϕ(x, i)− ∂iϕ(x, i) +

D∑
j=1

νj
νi
aq(j, i)ϕ(x, j) = 0. (3.8)

Once we will have proved that π admits the decomposition (3.7), the next step is the
characterization of ϕ in (3.8). Indeed, since it satisfies

D∑
i=1

νi

∫
4
LZf(x, i)ϕ(x, i)dx = 0, (3.9)

for every smooth enough function f , all we have to do is compute the adjoint operator of
LZ. For general switching model, it would not possible to characterize ϕ as a solution of
a simple system of PDEs like (3.8). However, the present form of the flow enables us to
derive a simple expression for the adjoint operator of LZ. Before turning to the proof
of Proposition 3.4, let us present the following formula of integration by parts over the
simplex 4.

Lemma 3.5 (Integration by parts over 4). For all f, g ∈ C 1
c

(
4̊
)

, and k, l ∈ {1, . . . , D},
we have ∫

4
g(x)(∂k − ∂l)f(x)dx = −

∫
4

(∂k − ∂l)g(x)f(x)dx.

Proof of Lemma 3.5. Fix l = 1 and let 41 =
{
x2, . . . , xD ∈ [0, 1] :

∑D
i=2 xi ≤ 1

}
. Then,

∫
4
g(x)∂kf(x)dx1 . . . dxD =

∫
41

g

(
1−

D∑
i=2

xi, x2, ...

)
∂kf

(
1−

D∑
i=2

xi, x2, ...

)
dx

=

∫
41

[
∂k

(
g

(
1−

D∑
i=2

xi, x2, ...

)
f

(
1−

D∑
i=2

xi, x2, ...

))

+ ∂1g

(
1−

D∑
i=2

xi, x2, ...

)
f

(
1−

D∑
i=2

xi, x2, ...

)

+ g

(
1−

D∑
i=2

xi, x2, ...

)
∂1f

(
1−

D∑
i=2

xi, x2, ...

)

−∂kg

(
1−

D∑
i=2

xi, x2, ...

)
f

(
1−

D∑
i=2

xi, x2, ...

)]
dx1 . . . dxD.

Now, as g(0, x2, . . . ) = f(0, x2, . . . ) = 0 and ∂k1 = 0, use a (classic) multidimensional
integration by parts to establish that∫

41

∂k

(
g

(
1−

D∑
i=2

xi, x2, ...

)
f

(
1−

D∑
i=2

xi, x2, ...

))
dx1 . . . dxD = 0,

which entails Lemma 3.5.
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Proof of Proposition 3.4. Integrating (3.6) with respect to the unique invariant measure
π, we obtain that π admits an absolutely continuous part (note that uniqueness comes
from Proposition 3.1). Since π cannot have an absolutely continuous part and a singular
one (see [1, Theorem 6]), π admits a density with respect to the Lebesgue measure,
which entails (3.7).

Now, let us characterize the function ϕ. We have

D∑
i,k=1

νi

∫
4

(−xk + 1i=k)ϕ(x, i)∂kf(x, i)dx

=

D∑
i=1

(
−

D∑
k=1

νi

∫
4
xkϕ(x, i)∂kf(x, i)dx+ νi

∫
4
ϕ(x, i)∂if(x, i)dx

)
and, using Lemma 3.5, for any 1 ≤ i ≤ D,

−
D∑
k=1

∫
4
xkϕ(x, i)∂kf(x, i)dx+

∫
4
ϕ(x, i)∂if(x, i)dx

= −
∑
k 6=i

∫
4
xkϕ(x, i)∂kf(x, i)dx−

∫
4
xiϕ(x, i)∂if(x, i)dx+

∫
4
ϕ(x, i)∂if(x, i)dx

=
∑
k 6=i

[∫
4
∂k (xkϕ(x, i)] f(x, i)dx−

∫
4
xkϕ(x, i)∂if(x, i)dx−

∫
4
∂i (xkϕ(x, i)) f(x, i)dx

)
−
∫
4
xiϕ(x, i)∂if(x, i)dx+

∫
4
ϕ(x, i)∂if(x, i)dx.

As a consequence,

D∑
i,k=1

νi

∫
4

(−xk + 1i=k)ϕ(x, i)∂kf(x, i)dx

=

D∑
i=1

∑
k 6=i

[∫
4
∂k (xkϕ(x, i)) f(x, i)dx−

∫
4
∂i (xkϕ(x, i)) f(x, i)dx

]
=

D∑
i=1

∑
k 6=i

∫
4
∂k (xkϕ(x, i)) f(x, i)dx− (1− xi)

∫
4
∂iϕ(x, i)f(x, i)dx

 .

Hence, (3.9) writes

0 =

D∑
i=1

∫
4
νif(x, i)×∑

k 6=i

∂k (xkϕ(x, i))− (1− xi)∂iϕ(x, i) +

D∑
j=1

νj
νi
q(j, i)ϕ(x, j)−

D∑
j=1

q(i, j)ϕ(x, i)

 dx.
It follows that ϕ is the solution of (3.8).

3.2 The Ornstein-Uhlenbeck process

In this short section, we recall a classic property of multidimensional Ornstein-
Uhlenbeck processes, which is useful to characterize the behavior of (yn)n≥1 in a stan-
dard setting. Thus, we define (Yt)t≥0 as the strong solution of the following SDE, with
values in RD:

Yt = Y0 −
∫ t

0

Ys−ds+
√

2

∫ t

0

(Σ(p,Υ))1/2dWs, (3.10)

EJP 23 (2018), paper 2.
Page 13/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP130
http://www.imstat.org/ejp/


Fluctuations of the empirical measure of freezing Markov chains

where W is a standard D-dimensional Brownian motion and (Σ(p,Υ))1/2 is the square root
of the positive-definite symmetric matrix Σ(p,Υ), i.e. (Σ(p,Υ))1/2((Σ(p,Υ))1/2)> = Σ(p,Υ).
The process Y is a classic Ornstein-Uhlenbeck process with infinitesimal generator LO

defined in (1.1). Such processes have already been thoroughly studied, so we present
only the following proposition, which quantifies the speed of convergence of Y to its
equilibrium.

Proposition 3.6 (Ergodicity of the Ornstein-Uhlenbeck process). The Markov process
(Yt)t≥0 generated by LO in (1.1), with values inR, admits a unique stationary distribution
N
(
0,Σ(p,Υ)

)
.

Moreover,

W
(
Yt,N

(
0,Σ(p,Υ)

))
= W (Y0, π) e−t .

Proof of Proposition 3.6. First, since

N
(

0,Σ(p,Υ)
)

(dx) = C exp

(
x>(Σ(p,Υ))−1x

2

)
dx,

a straightforward integration by parts shows that, for any f ∈ C 2
c , N

(
0,Σ(p,Υ)

)
(LOf) = 0

so that N
(
0,Σ(p,Υ)

)
is an invariant measure for the Ornstein-Uhlenbeck process Y.

It is well-known and easy to check that (Yt)t≥0 writes

Yt = Y0 e−t +
√

2(Σ(p,Υ))1/2

∫ t

0

e−(t−s) dWs,

where W is a standard Brownian motion. Consequently, if we consider Ỹ another
Ornstein-Uhlenbeck process generated by LO and driven by the (same) Brownian motion
W ,

E
[
|Yt − Ỹt|

]
= E

[
|Y0 − Ỹ0|

]
e−t . (3.11)

Taking the infimum over all the couplings gives a contraction in Wasserstein distance.
Now, if L (Ỹ0) = N

(
0,Σ(p,Υ)

)
and (Y0, Ỹ0) is the optimal coupling between L (Y0) and

N
(
0,Σ(p,Υ)

)
with respect to W , then (3.11) writes

W
(
Yt,N

(
0,Σ(p,Υ)

))
= W

(
Y0,N

(
0,Σ(p,Υ)

))
e−t,

which entails the uniqueness of the invariant probability distribution as well as the
exponential ergodicity of the process.

3.3 Acceleration of the jumps

The current section links the Sections 3.1 and 3.2 in the following sense:

Markov chain
(in)n≥1

Exponential zig-zag process
(Xt, It)t≥0

Ornstein-Uhlenbeck process
(Yt)t≥0

Slow freezing

Fast freezing

Acceleration of the jumps
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Indeed, we prove in Theorem 3.7 the convergence of the (rescaled) exponential
zig-zag process to a diffusive process as the jump rates go to infinity. Such results are
fairly standard and are already known in the cases of (linear) zig-zag processes (see
[19, 9]) or of particle transport processes (see [12]). Heuristically, since there are more
frequent jumps, the process tends to concentrate around its mean ν, and the effect of
the discrete component fades away. This phenomenon can be seen on Figure 1. We shall
end this section with Corollary 3.9, which provides the convergence of the stationary
distribution of the exponential zig-zag process toward a Gaussian distribution.

To this end, let (an)n≥1 be a sequence of positive numbers such that an → +∞ as

n→ +∞ and, for any integer n, let (X
(n)
t , I

(n)
t )t≥0 be a Markov process with values in E

generated by

L(n)f(x, i) = (ei − x) · ∇xf(x, i) + an
∑
j 6=i

q(i, j)[f(x, j)− f(x, i)].

We define Y
(n)
t =

√
an(X(n) − ν) and denote by Y

(n)
t (k) and X

(n)
t (k) the respective kth

component of Y(n)
t and X

(n)
t .

Theorem 3.7 (Convergence of the processes). If (Y
(n)
0 )n≥1 converges in distribution

to a probability distribution µ, then the sequence of processes (Y(n))n≥1 converges in
distribution to the diffusive Markov process generated by

LOf(y) = −y · ∇f(y) +∇f(y)>Σ(0,1)∇f(y)

with initial condition µ.

Proof of Theorem 3.7. We shall use a diffusion approximation and follow the proof of
[19, Proposition 1.1]. For now, we drop the superscript (n), and let, for any 1 ≤ k, l ≤ D,

ϕk(x, i) =
√
an(xk − νk) +

1
√
an
hk,i, ψk,l(x, i) = ϕk(x, i)ϕl(x, i).

Then,

Lϕk(x, i) =
√
an(νk − xk),

Lψk,l(x, i) =
√
an ((1i=k − xk)ϕl(x, i) + (1i=l − xl)ϕk(x, i))

+ an ((xk − νk)(νl − 1i=l) + (xl − νl)(νk − 1i=k))

+
∑
j 6=i

q(i, j) (hk,jhl,j − hk,ihl,i) .

Then, by Dynkin’s formula, for fixed n, the processes (Mt(k))t≥0 and (Nt(k, l))t≥0 are
local martingales with respect to the filtration generated by (X(n), I(n)), where

Mt(k) = Yt(k)−
√
an

∫ t

0

(νk −Xs(k))ds+
1
√
an
hk,It ,

Nt(k, l) = Yt(k)Yt(l) + Yt(k)hl,It + Yt(l)hk,It +
1

an
hk,Ithl,It

−
∫ t

0

[
− 2Ys(l)Ys(k) + hk,Is(1{Is=l} −Xs(l)) + hl,Is(1{Is=k} −Xs(k))

+
∑
j 6=Is

q(Is, j) (hk,jhl,j − hk,Ishl,Is)
]
ds.
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Remark that, for any 1 ≤ i ≤ D, if σk,l(i) =
∑D
j=1 q(i, j)(hl,j − hl,i)(hk,j − hk,i)),

D∑
j=1

q(i, j) (hk,jhl,j − hk,ihl,i) =

D∑
j=1

q(i, j) (hl,j − hl,i) (hk,j − hk,i)

+ hl,i (νk − 1i=k) + hk,i (νl − 1i=l)
= σk,l(i) + hl,i (νk − 1i=k) + hk,i (νl − 1i=l) .

Then, denoting by Zs(k) =
∫ t

0
Ys(k)ds,

Nt(k, l) = Yt(k)Yt(l) + 2

∫ t

0

Ys(k)Ys(l)ds−
∫ t

0

σk,l(Is)ds+
1

an
hk,Ithl,It

+
1
√
an
hk,It (Yt(l) + Zt(l)) +

1
√
an
hl,It (Yt(k) + Zt(k)) ,

and

Mt(k)Mt(l) = Nt(k, l) + Yt(k)Zt(l) + Yt(l)Zt(k) + Zt(k)Zt(l)

− 2

∫ t

0

Ys(k)Ys(l)ds+

∫ t

0

σk,l(Is)ds

+
1
√
an

(
hk,ItZt(l) + hl,ItZt(k)−

∫ t

0

hk,IsYs(l)ds−
∫ t

0

hl,IsYs(k)ds

)
.

By integration by parts,

Yt(k)Zt(l) =

∫ t

0

Zs(l)dMs(k)−
∫ t

0

Zs(l)Ys(k)ds+

∫ t

0

Ys(k)Ys(l)ds

+
1
√
an

(∫ t

0

hk,IsYs(l)ds− hk,ItZs(l)
)
,

hence

Mt(k)Mt(l) = Nt(k, l) +

∫ t

0

Zs(k)dMs(l) +

∫ t

0

Zs(l)dMs(k) +

∫ t

0

σk,l(Is)ds.

Finally, for any 1 ≤ k, l ≤ D, the processes M (n)(k) − B(n)(k) and M (n)(k)M (n)(l) −
A(n)(k, l) are local martingales, with

A
(n)
t (k, l) =

∫ t

0

σk,l(I
(n)
s )ds, B

(n)
t (k) = −

∫ t

0

Y(n)
s ds+

1
√
an
h
k,I

(n)
t
.

Note that I(n) is a Markov process on its own, generated by

L(n)
I f(i) = an

∑
j 6=i

q(i, j)[f(j)− f(i)].

In other words, for any t > 0, we can write I
(n)
t = Iant a.s., for some pure-jump Markov

process (It)t≥0 generated by

LIf(i) =
∑
j 6=i

q(i, j)[f(j)− f(i)].

Using the ergodicity of (It)t≥0 together with limn→+∞ an = +∞, we have

lim
n→+∞

A
(n)
t (k, l) = lim

n→+∞

∫ t

0

σk,l(Ians)ds = lim
n→+∞

1

an

∫ ant

0

σk,l(Iu)du

= t

D∑
i=1

νiσk,l(i) = tν(σk,l).

Thus, the processes Y(n)(k), B(n)(k), A(n)(k, l) satisfy the assumptions of [18, Chapter 7,
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Theorem 4.1], which entails Theorem 3.7.

Remark 3.8 (Heuristics for a direct Taylor expansion of the generator). As for many
limit theorems for Markov processes, one would like to predict the convergence of the
exponential zig-zag process to the Ornstein-Uhlenbeck diffusion from a Taylor expansion
of the generator. Let us describe here a quick heuristic argument based on [12], which
justifies the particular choice of functions ϕk in the proof of Theorem 3.7. For the sake
of simplicitylet us work in the setting of Section 4.2, that is the generator of (Xt, It)t≥0

is of the form
LZf(x, i) = gi(x)∂xf(x, i) + aθ3−i[f(x, 3− i)− f(x, i)]

where gi : x 7→ (1{i=1} − x). For some smooth function f : RD → R, we have LZf(x, i) =

gi(x) · ∇xf(x) which cannot be rescaled to converge to some diffusive operator. We need
an approximation fa of f in a sense that lima→+∞ fa = f and LZfa has the form of a
second order operator. Then, let

fa : (x, i) 7→ f(x) + a−1h(x, i) · ∇xf(x)

where h(x, i) is the solution of the multidimensional Poisson equation associated to the
transitions of the flows∑
j 6=i

q(i, j)[h(x, j)− h(x, i)] = θ3−i[h(x, 3− i)− h(x, i)] =
∑
j

νjgj(x)− gi(x) = ν1 − 1{i=1}.

Then,

LZfa(x, i) =
1

a
gi(x) · ∇x(h · ∇xf)(x, i) +∇xf(x)

∑
j

νjgj(x).

Here,
∑
j νjgj(x)− gi(x) = ν1 − 1{i=1} does not depend on x, neither does the function

h, which is thus defined by (2.6). Furthermore, h(x, i) = (θ1 + θ2)−11i=1. Moreover
lima→+∞ gi(ν + y/

√
a) = ei − ν, so lima→+∞ LZfa(x, i) = LOf(x) up to renormalization.

From Proposition 3.1, for any fixed n ≥ 1, the process (X
(n)
t , I

(n)
t )t≥0 admits and

converges to a unique invariant distribution π(n), characterized in (3.7) as

π(n) =

D∑
i=1

νiπ
(n)
i ⊗ δi, π

(n)
i (dx) = ϕ(n)(x, i)dx.

Let π̄(n) be the first margin of the invariant measure of the Markov process (Y
(n)
t , I

(n)
t )t≥0,

i.e. the probability distribution over RD defined by

π̄(n)(dy) =

D∑
i=1

νi√
an
ϕ(n)

(
y
√
an

+ ν, i

)
dy.

Corollary 3.9 (Convergence of the stationary distributions). The sequence of probability
measures (π̄(n))n≥1 converges to N

(
0,Σ(0,1)

)
.

Proof of Corollary 3.9. Let n ≥ 1, t ≥ 0 and

F =
{
f ∈ C 2

c (RD) : ‖f‖∞ ≤ 1, |f(x)− f(y)| ≤ |x− y|
}
.

Up to a constant, dF is the Fortet-Mourier distance and metrizes the weak convergence.
Fix t ≥ 0 and let X(n)

0 = ν and L (I
(n)
0 ) = ν>. From Theorem 3.7,

lim
n→+∞

dF

(
Y

(n)
t ,Yt

)
= 0,
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where Y is an Ornstein-Uhlenbeck process with generator LO and initial condition 0.
Using the definition of dF and Proposition 3.1,

dF

(
Y

(n)
t , π̄(n)

)
≤W

(
(Y

(n)
t , I

(n)
t ), π(n)

)
≤W

(
δ0 ⊗ ν, π(n)

)
e−t = W

(
δ0, π̄

(n)
)
e−t.

Let us check that the term W
(
δ0, π̄

(n)
)

is uniformly bounded. To that end, let

f (n)(x, i) = x2
k +

2

an
hk,ixk + 2νkxk,

so that

L(n)f (n)(x, i) = −2x2
k +

2

an

(
1{i=k} − xk

)
hk,i + 2νk1{i=k}.

Since π(n)
(
L(n)f (n)

)
= 0,∫

E

x2
kπ

(n)(dx, di)− ν2
k =

1

an

(
hk,kνk −

∫
E

xkhk,iπ
(n)(dx, di)

)
.

Hence, with C =
∑D
k=1 hk,kνk −mini,j hi,j , and since

∫
E
xkπ

(n)(dx, di) = νk,

∫
E

‖x− ν‖22π(n)(dx, di) =

D∑
k=1

∫
E

(xk − νk)2π(n)(dx, di)

=

D∑
k=1

∫
E

(
x2
k − 2νkxk + ν2

k

)
π(n)(dx, di)

=

D∑
k=1

∫
E

x2
kπ

(n)(dx, di)− ν2
k

=
1

an

(
D∑
k=1

hk,kνk −
∫
E

xkhk,iπ
(n)(dx, di)

)

≤ 1

an

(
D∑
k=1

hk,kνk −min
i,j

hi,j

)
≤ C

an
.

By Hölder’s inequality,

W
(
δ0, π̄

(n)
)

=

∫
R

|y|π̄(n)(dy) =

∫
E

√
an|x− ν|π(n)(dx, di) ≤

√
C.

Consequently to Proposition 3.6,

dF

(
π̄(n),N

(
0,Σ(0,1)

))
≤ dF

(
π̄(n),Y

(n)
t

)
+ dF

(
Y

(n)
t ,Yt

)
+ dF

(
Yt,N

(
0,Σ(0,1)

))
≤ 2
√
Ce−t + dF

(
Y

(n)
t ,Yt

)
.

Then,

lim sup
t→+∞

dF

(
π̄(n),N

(
0,Σ(0,1)

))
≤ 2
√
Ce−t,

which goes to 0 as t→ +∞.

4 Complete graph

In this section, we consider a particular case of freezing Markov chain, where all
the states are connected, and the jump rate to a state does not depend on the position
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of the chain. This example of Markov chain has already been studied in the literature,
for instance in [14]. Section 4.1 deals with the general D-dimensional case, for which
most of the results of Section 3 can be written explicitly, notably the invariant measure
of the exponential zig-zag process, which is a mixture of Dirichlet distributions (see
Figure 2). Section 4.2 studies more deeply the case D = 2, where we can refine the
speed of convergence provided in Proposition 3.1.

4.1 General case

Throughout this section, following [14], we assume that there exists a positive vector
θ ∈ (0,+∞)D such that, for any 1 ≤ i, j ≤ D,

q(i, j) = θj − |θ|1i=j , |θ| =
D∑
j=1

θj , (4.1)

and we will recover [14, Theorem 1.4]. If D = 2, let us highlight that an irreducible
matrix Id +q automatically satisfies (4.1) (if Id +q is indecomposable then this is true as
soon as q(1, 2)q(2, 1) 6= 0).

Figure 2: Probability density functions of π1 = D(2, 2, 5), π2 = D(1, 3, 5), π3 = D(1, 2, 6),
for θ1 = 1, θ2 = 2, θ3 = 5 (from left to right).

Proposition 4.1 (Limit distribution for the complete graph in the non-standard setting).
Under Assumptions 2.1 and 2.6, and if q satisfies (4.1), then νi = θi|θ|−1 and

lim
n→+∞

(xn, in) =

D∑
i=1

νiD(aθ + ei)⊗ δi in distribution.

In particular,

lim
n→+∞

xn = D(aθ) in distribution, lim
n→+∞

in = ν> in distribution.

Proof of Proposition 4.1. If q satisfies (4.1), it is straightforward that its invariant distri-
bution ν> is given by νi = θi|θ|−1 for any 1 ≤ i ≤ D. The convergence of (in)n≥1 to ν>

and of (xn, in)n≥1 to some distribution π are direct corollaries of Theorems 2.4 and 2.8.
Moreover, Proposition 3.4 holds, hence π satisfies (3.7) and it is clear that

ϕ(x, i) =
Γ(|θ|+ 1)

Γ(θi + 1)
∏
j 6=i Γ(θj)

xθii
∏
j 6=i

x
aθj−1
j = νi

Γ(|θ|)∏D
j=1 Γ(θj)

xθii
∏
j 6=i

x
aθj−1
j

is the unique (up to a multiplicative constant) solution of (3.8), which entails that

π =

D∑
i=1

νiD(aθ + ei)⊗ δi.
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Finally, if L (X, I) = π, it is clear that L (I) = ν> and that

L (X)(dx) =

D∑
i=1

νiϕ(x, i)dx =
Γ(|θ|)∏D
j=1 Γ(θj)

∏
j 6=i

x
aθj−1
j dx = D(θ)(dx).

In the framework of (4.1), it is also possible to obtain explicitly the solution of the
Poisson equation related to q as well as the covariance matrix of the limit distribution
in the standard setting. This is the purpose of the following result, whose proof is
straightforward using Theorem 2.11 together with the expressions (1.2) and (2.6).

Proposition 4.2 (Limit distribution for the complete graph in the standard setting). Under
Assumptions 2.1 and 2.7, and if q satisfies (4.1), then ν = |θ|−1θ and hi = |θ|−1ei and

lim
n→+∞

yn = N
(

0,Σ(p,Υ)
)

in distribution, with Σ
(p,Υ)
k,l =

{
− 2−p

1+Υνkνl if k 6= l
2−p
1+Υνk(1− νk) if k = l

.

Finally, let us emphasize the fact that Corollary 3.9 provides an interesting conver-
gence of rescaled Dirichlet distributions, when considered in the particular case of the
complete graph.

Corollary 4.3 (Convergence of the rescaled Dirichlet distribution to a Gaussian distri-
bution). For any vector θ ∈ (0,+∞)D, if (Xn)n≥1 is a sequence of independent random
variables such that L (Xn) = D(anθ), then

lim
n→+∞

√
an (Xn − ν) = N

(
0,diag(ν)− νν>

)
in distribution.

4.2 The turnover algorithm

In this subsection, we consider the turnover algorithm introduced in [17]. This
algorithm studies empirical frequency of heads when a coin is turned over with a certain
probability, instead of being tossed as usual. The authors provide various convergences
in distribution for this proportion, depending on the asymptotic behavior of the turnover
probability, which corresponds to (pn)n≥1 in the present paper. However, this turnover
algorithm can be seen as a particular case of freezing Markov chain, and can then be
written as the stochastic algorithm defined in (2.4), in the special case D = 2. Since
xn(1) = 1− xn(2), there is only one relevant variable in this section, which belongs to
[0, 1]:

xn = xn(1) = γn

n∑
k=1

1{ik=1}. (4.2)

Note that we are in the framework of Section 4.1, with θ1 = q(2, 1) and θ2 = q(1, 2),
and that Propositions 4.1 and 4.2 hold. In particular, we have νi = θi(θ1 + θ2)−1. Then,
for any y ∈ R and (x, i) ∈ [0, 1]× {1, 2}, the infinitesimal generators defined in (1.1) and
(1.3) write

LOf(y) = −yf ′(y) +
2− p
1 + Υ

ν1(1− ν1)f ′′(y) (4.3)

and
LZf(x, i) = (1{i=1} − x)∂xf(x, i) + aθ3−i[f(x, 3− i)− f(x, i)]. (4.4)

Remark 4.4 (Comparison with [17]). In the present paper, we recover [17, Theorems 1
and 2] as direct consequences of Theorems 2.8 and 2.11. The aforementioned results
are extended by allowing q(1, 2) 6= q(2, 1), but mostly by obtaining results for general
sequences (pn)n≥1 while [17] deals only with pn = an−θ for positive constants a and θ. It
should be noted that, in order to perfectly mimic the algorithm of the aforementioned
article, one should consider the chain x?n = γn

∑n
k=1

(
1{ik=1} − 1{ik=2}

)
, which evolves
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in [−1, 1]. The behavior of this sequence being completely similar to the one we are
studying, we chose to work with (4.2) for the sake of consistence.

However, the reader should notice that the invariant measure of the process gen-
erated by (4.3) is a Gaussian distribution with variance Σ

(p,Υ)
1,1 . In the particular case

where p = 0 and θ1 = θ2, this variance writes

Σ
(0,Υ)
1,1 =

1

2(1 + Υ)
,

which is, at first glance, different from the variance provided in [17], which is (under our
notation)

σ2 =
1

a2(1 + Υ)
.

The factor a2 comes from the fact that [17] studies the behavior of a−1yn. The factor
2 comes from the choice of normalization mentioned earlier, since xn ∈ [0, 1] and
x?n ∈ [−1, 1].

Whenever D = 2, it is easier to visualize the dynamics of (X, I) (see Figure 3), and
we can improve the results of Proposition 3.1 concerning the speed of convergence of
the exponential zig-zag process to its stationary measure π.

0
t

1

X0

It = 2

T1

It = 1

T2

It = 2

T3

Xt

Figure 3: Typical path of the exponential zig-zag process when D = 2.

Proposition 4.5 (Ergodicity when D = 2). The Markov process (Xt, It)t≥0 generated by
LZ in (4.4), with values in [0, 1]× {1, 2}, admits a unique stationary distribution

π =
θ1

θ1 + θ2
β(aθ1 + 1, aθ2)⊗ δ1 +

θ2

θ1 + θ2
β(aθ1, aθ2 + 1)⊗ δ2.

Moreover, let v = a(θ1 ∨ θ2), then

W ((Xt, It), π) ≤


(

2 + 2v
|1−v|

)
e−(1∧v)t if v 6= 1

(2 + t) e−t if v = 1

W ((X0, I0), π) e−t if L (I0) = θ1
θ1+θ2

δ1 + θ2
θ1+θ2

δ2

.

Since the inter-jump times of the exponential zig-zag process are spread-out, it
is also possible to show convergence in total variation with a method similar to [10,
Proposition 2.5]. Note that, following Proposition 4.1, the limit distribution of (Xt)t≥0 is
the first margin of π, namely β(aθ1, aθ2).

Proof of Proposition 4.5. Without loss of generality, let us assume that θ1 ≥ θ2, that is
v = aθ1. Using Proposition 4.1, it is clear that π is the limit distribution of (X, I). Let us
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turn to the quantification of the ergodicity of the process. Since the flow is exponentially
contracting at rate 1, one can expect the Wasserstein distance of the spatial component
X to decrease exponentially. The only issue is to bring I to its stationary measure

first. So, consider the Markov coupling
(

(X, I), (X̃, Ĩ)
)

of LZ on E × E, which evolves

independently if I 6= Ĩ, and else follows the same flow with common jumps. We set T0 = 0

and denote by Tn the epoch of its nth jump. If I0 6= Ĩ0, the first jump is not common a.s.,
but in any case, since D = 2, IT1 = ĨT1 a.s. and L (T1) = E (v). Consequently,

E
[
|(Xt, It)− (X̃t, Ĩt)|

]
= E

[
|Xt − X̃t|

]
+ P(It 6= Ĩt)

≤
∫ t

0

E
[
|Xt − X̃t|

∣∣∣T1 = s
]
v e−vs ds

+
(
E
[
|Xt − X̃t|

∣∣∣T1 > t
]

+ 1
)
P(T1 > t)

≤ 2 e−vt +

∫ t

0

E
[
|Xs − X̃s|

]
e−(t−s) v e−vs ds

≤ 2 e−vt +v e−t
∫ t

0

e(1−v)s ds

≤
[(

2 +
v

1− v

)
e−vt− v

1− v
e−t
]
1{v 6=1} + (2 + vt) e−vt 1{v=1}

≤
(

2 +
2v

|1− v|

)
e−(1∧v)t 1{v 6=1} + (2 + t) e−t 1{λ=1}.

Note that if L (I0) = L (Ĩ0), let I0 = Ĩ0, so that the coupling
(

(X, I), (X̃, Ĩ)
)

always has

common jumps and
|Xt − X̃t| = |X0 − X̃0| e−t a.s.

Letting (X0, X̃0) be the optimal Wasserstein coupling entails Wasserstein contraction.
The results above hold for any initial conditions (X̃0, Ĩ0). Then, let L (X̃0, Ĩ0) = π to
achieve the proof; in particular, L (Ĩ0) = ν> = θ1

θ1+θ2
δ1 + θ2

θ1+θ2
δ2.

5 Proofs

In this section, we provide the proofs of the main results of this paper that were
stated throughout Section 2.

Proof of Theorem 2.4. Under Assumption 2.1, let us first assume that p > 0. The matrix
(Id +q) is irreducible, and so is (Id +pq). Moreover, ν> is also the invariant measure of
pq, and Perron-Frobenius Theorem entails that there exist C > 0 and ρ ∈ (0, 1) such that
for every n ≥ 1 and i ∈ {1, . . . , D},

dTV

(
δi(Id +pq)n, ν>

)
≤ Cρn.

Now, let us prove that (in)n≥1 is an asymptotic pseudotrajectory of the dynamical system
induced by Id +pq. The limit set of such a system being contained in every global
attractor (see [3, Theorems 6.9 and 6.10]), we have

dTV (δin(Id +pq), in+1) = dTV (δin(Id +pq), δin(Id +qn))

≤ |pn − p|+
∑
j 6=in

|rn(in, j)| ≤ |pn − p|+
D∑

i,j=1

|rn(i, j)|, (5.1)

and the right-hand side of (5.1) converges to 0, which ends the proof.
The case p = 0 is a mere application of [4, Proposition 3.13].
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5.1 Asymptotic pseudotrajectories in the non-standard setting

In this section, we prove Theorem 2.8 using results from [4], based on the theory of
asymptotic pseudotrajectories for inhomogeneous-time Markov chains. Indeed, with the
convention

∑0
k=1 = 0, let

τn =

n∑
k=1

γk, m(t) = sup{k ≥ 0 : τk ≤ t}, (5.2)

and define the piecewise-constant processes

Xt =

∞∑
n=1

xn1τn≤t<τn+1
, It =

∞∑
n=1

in1τn≤t<τn+1
. (5.3)

We shall show that, as t → +∞, the process (Xt, It)t≥0 converges in a way (see
Figure 4) to the exponential zig-zag process (Xt, It)t≥0 solution of (3.1), that we already
studied in Section 3.1. To that end, let (Pt)t≥0 be the Markov semigroup of (X, I),
N1 = (2, . . . , 2, 0) and

F =

f ∈ D(LZ) ∩ CN1

b : LZf ∈ D(LZ), ‖LZf‖∞ + ‖LZLZf‖∞ +

N1∑
j=0

‖f (j)‖∞ ≤ 1

 .

(5.4)
Note that convergence with respect to dF implies convergence in distribution (see [4,
Lemma A.1]).

Figure 4: Sample path of the process (Xt)t≥0 in the setting of Section 4.2 for a = 1,
q(1, 2) = 1

3 and q(2, 1) = 2
3 .

Lemma 5.1 (Asymptotic pseudotrajectory for non-standard fluctuations). Under the
assumptions of Theorem 2.8, the sequence of probability distributions (µt)t≥0 is an
asymptotic pseudotrajectory of (Ptf)t≥0 with respect to dF .

Moreover, if there exist positive constants A ≥ 1, θ ≤ 1 such that

max
j 6=i

(|rn(i, j)|) ≤ A

nθ
,

then, for any v < aρ(1 + aρ)−1, there exists a positive constant C such that

dF∩G (L (Xt, It), π) ≤ C e−vt . (5.5)

Moreover, the sequence of processes ((Xn+t, In+t)t≥0)n≥1 converges in distribution,
as t → +∞, toward (Xπ

t , I
π
t )t≥0 in the Skorokhod space, where (Xπ, Iπ) is a process

generated by LZ with initial condition π.
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The proof of Lemma 5.1 consists in checking [4, Assumptions 2.1, 2.2, 2.3 and 2.7.ii)]
and relies on three ingredients:

• Convergence of a kind of discrete infinitesimal generator Ln , which characterizes
the dynamics of (X, I), to LZ defined in (1.3).

• Smoothness of the limit semigroup (Pt)t≥0 and control of its derivatives with
respect to the initial condition of the process.

• Uniform boundedness of the moments of (xn, in)n≥1 up to some order, which is
trivially satisfied here since E is compact.

Proof of Lemma 5.1. In what follows, the notation O (as n→ +∞) is uniform over x, i, f .
We define Lnf(x, i) = γ−1

n+1E[f(xn+1, in+1|xn = x, in = i], and we study the convergence

of Ln to LZ in the sense of [4]. Let (x, i) ∈ E and χN1
(x, i) =

∏D
k=1 x

2
k. We recall that

qn(i, i) = 1 +O(pn) as n→ +∞. With

εn =
1

n
∨max

j 6=i
(|rn(i, j)|),

we have

Lnf(x, i) =
∑
j 6=i

qn+1(i, j)

γn+1

[
f

(
γn+1

γn
x+ γn+1ej , j

)
− f(x, i)

]

+
1−

∑
j 6=i qn+1(i, j)

γn+1

[
f

(
γn+1

γn
x+ γn+1ei, i

)
− f(x, i)

]
=
∑
j 6=i

pn+1

γn+1
(q(i, j) + rn+1(i, j))×

[
f(x, j)− f(x, i) + χ(1,...,1,0)(x, i)‖f (1,...,1,0)‖∞O (γn+1)

]
+

1 +O(pn+1)

γn+1
×[((

γn+1

γn
− 1

)
+ γn+1ei

)
· ∇xf(x) + χN1

(x, i)‖f (N1)‖∞O
(
γ2
n+1

)]
= LZf(x, i) + χN1(x, i)‖f (N1)‖∞O (εn+1) .

We turn to the study of the regularity of the limit semigroup, following [26]. Let t > 0

and note that ‖Ptf‖∞ ≤ ‖f‖∞. Moreover, the process (X, I) is solution of the following
SDE (we emphasize below the dependence on the initial condition):

(Xx,i
t , Ix,it ) = (x, i) +

∫ t

0

(
A(Xx,i

s− , I
x,i
s−) + eIx,i

s−

)
ds+

D∑
j=1

∫ t

0

BIx,i

s−
,j(X

x,i
s− , I

x,i
s−)NIx,i

s−
,j(ds),

(5.6)
where Ni,j is a Poisson process of intensity aq(i, j)1{i6=j} and the matrices A and Bi,j are

defined in (3.2). Then, if we denote by ηx,i,k,ht = h−1
[
(Xx+hek,i

t , Ix+hek,i
t )− (Xx,i

t , Ix,it )
]
,

we recover from (5.6) that the process ηx,i,k,h satisfies the ODE

ηx,i,k,ht = (ek, 0) +

∫ t

0

Aηx,i,k,hs− ds,

so that ηx,i,k,ht = (e−t ek, 0). Thus, ηx,i,k,h admits a continuous modification (notably at h =

0) and ∂k(Xx,i, Ix,i) = (e−t ek, 0) is continuous. Using similar arguments, ∂k∂l(Xx,i, Ix,i) =
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0. Gathering those expressions, and since fN is bounded for every multi-index N ≤ N1,
it is clear that Ptf ∈ CN1 , with, for any j, k ≤ D,

∂j(Ptf)(x, i) = E
[
∂jf(Xx,i

t , Ix,it )
]

e−t,

∂j∂k(Ptf)(x, i) = E
[
∂j∂kf(Xx,i

t , Ix,it )
]

e−2t .

Hence, for any j ≤ N1, ‖(Ptf)(j)‖∞ ≤ ‖f (j)‖∞. Finally, for any n ≥ 1, |xn| ≤ 1, so that

sup
n≥1

χN1
(xn, in) = sup

n≥1

2∑
k=0

|xn|k ≤ 3.

Hence, we can apply [4, Theorems 2.6 and 2.8.ii)] with N1 = N2 = d1 = d = (2, . . . , 2, 0),

CT = 1,M2 = 3, to obtain the existence and the announced properties of π as well as

lim
n→+∞

dF (L (xn, in), π) = 0.

Moreover, following [4, Remark 2.5],

λ(γ, ε) = − lim sup
n→+∞

log(γ ∨ εn)∑n
k=1 γk

≤ θ

A
.

Finally, using Proposition 3.1 together with [4, Theorem 2.8.ii)] entails (5.5). Recall
the compactness of E, then we can apply [4, Theorem 2.12] and achieve the proof of
Lemma 5.1, which also entails Theorem 2.8.

5.2 ODE and SDE methods in the standard setting

In the present section, we successively provide proofs for Theorems 2.10 and 2.11.
We shall prove the former with a method involving an asymptotic pseudotrajectory
for some interpolated process, similarly to Section 5.1 and [5]. On the contrary, the
fluctuations obtained for (xn)n≥1 in Theorem 2.11 are obtained through a more classic
result for stochastic algorithms, namely the SDE method developed in [16] (see also
[27]).

Proof of Theorem 2.10. In the following, we mimic the proof of [5, Lemma 2.4] (see also
[28, 2]). Indeed, for any n ≥ 1, (2.4) writes

xn+1 = xn + γn+1(ν − xn) + γn+1(ein+1
− ν).

Let the sequence (τn)n≥0 and the function m be as in (5.2), and define the interpolated
process

X̂τn+s0 = xn + s
xn+1 − xn
τn+1 − τn

,

for all s ∈ [0, γn+1) and n ≥ 0. We will show that X̂ is an asymptotic pseudotrajectory
(and a `−pseudotrajectory) for the flow Φ(x, t) = ν + e−t(x− ν) associated to the ODE
∂tΦ(x, t) = ν − Φ(x, t). From [3, Proposition 4.1] it suffices to show that, for all T > 0,

lim
t→+∞

∆(t, T ) = 0, with ∆(t, T ) = sup
0≤h≤T

∣∣∣∣∣∣
m(t+h)∑
k=m(t)

γk(eik+1
− ν)

∣∣∣∣∣∣ , (5.7)

and

lim
t→+∞

log(∆(t, T ))

t
≤ −`. (5.8)
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Consider h defined in (2.6). Then,

γn+1

(
ein+1

− ν
)

= γn+1

D∑
j=1

q(in+1, j)
(
hin+1

− hj
)

=
γn+1

pn

D∑
j=1

(pnq(in, j)− qn(in, j))hin+1
+
γn+1

pn

(
hin+1

− E
[
hin+1

|in
])

+
γn+1

pn

D∑
j=1

(qn(in, j)− pnq(in, j))hj

+

γn+1

D∑
j=1

q(in, j)hj − γn
D∑
j=1

q(in, j)hj


+

γn D∑
j=1

q(in, j)hj − γn+1

D∑
j=1

q(in+1, j)hj

 . (5.9)

We shall bound each term of the sum (5.9) separately. We easily have∣∣∣∣∣∣γn+1

D∑
j=1

(qn(in, j)− pnq(in, j))
hj
pn

∣∣∣∣∣∣ =

∣∣∣∣∣∣γn+1

D∑
j=1

rn(in, j)hj

∣∣∣∣∣∣ ≤ ‖h‖1Rnγn+1

and∣∣∣∣∣∣γn+1

D∑
j=1

(pnq(in, j)− qn(in, j))hin+1

∣∣∣∣∣∣ =

∣∣∣∣∣∣γn+1hin+1

D∑
j=1

rn(in+1, j)

∣∣∣∣∣∣ ≤ ‖h‖1Rnγn+1,

where ‖h‖1 = supj
∑
i |hi,j | and Rn = supi

∑
j |rn(i, j)|. Also, for some constant C > 0,∣∣∣∣∣∣γn+1

D∑
j=1

q(in, j)hj − γn
D∑
j=1

q(in, j)hj

∣∣∣∣∣∣ ≤ C(γn − γn+1).

Note that (γn
∑D
j=1 q(in, j)hj − γn+1

∑D
j=1 q(in+1, j)hj) is the main term of a telescoping

series. It remains to bound the norm of the sum of γn+1p
−1
n

(
hin+1

− E[hin+1
|in+1]

)
. For

all m,n ≥ 1 and l = 1, ..., D, set

Mm,n(l) =

n∑
k=m

γk+1

pk

(
hl,ik+1

− E
[
hl,ik+1

|ik+1

])
.

The sequence (Mm,n(l))m≥n is a martingale and

E [Mm,n(l)Mm,n(c)] =

n∑
k=m

γ2
k+1

p2
k

E

 D∑
j=1

qk(ik, j)(hl,j − E[hl,ik+1
|ik])(hc,j − E[hc,ik+1

|ik])

 .
Moreover, as

E

 D∑
j=1

qk(ik, j)(hl,j − E[hl,ik+1
|ik])(hc,j − E[hc,ik+1

|ik])


=E

 D∑
j=1

qk(ik, j)(hl,jhc,j − E[hl,ik+1
|ik]E[hc,ik+1

|ik])


EJP 23 (2018), paper 2.

Page 26/31
http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP130
http://www.imstat.org/ejp/


Fluctuations of the empirical measure of freezing Markov chains

=pkE

∑
j 6=ik

q(ik, j)hl,jhc,j

+ E

1− pk
∑
j 6=ik

q(ik, j)

hl,ikhc,ik


− E

 D∑
j=1

qk(ik, j)hl,j

 D∑
j=1

qk(ik, j)hc,j

+ o(pk)

=pkE

∑
j 6=ik

q(ik, j)(hl,j − hl,ik)(hc,j − hc,ik))


+ E

p2
k

∑
j 6=ik

q(ik, j)(hl,ik − hl,j)

∑
j 6=ik

q(ik, j)(hc,j − hc,ik)

+ o(pk),

by Theorem 2.10, we obtain

E

 D∑
j=1

qk(ik, j)(hl,j − E[hl,ik+1
|ik])(hc,j − E[hc,ik+1

|ik])


= pk

D∑
i=1

νi

 D∑
j=1

q(i, j)(hl,j − hl,i)(hc,j − hc,i))


− p2

k

D∑
i=1

νi (νl − 1i=l) (νc − 1i=c) + o(pk). (5.10)

As a consequence of (5.10), there exists some constant C > 0 such that

D∑
l=1

E
[
Mm,n(l)2

]
≤ C

n∑
k=m

γ2
k+1

pk
.

By Doob’s inequality and Assumption 2.7, it follows that, for every k ≥ 0,

E

[
sup

0≤h≤T
|Mm(kT ),m(kT+h)|

]
≤ 2

D∑
l=1

E
[
|Mm(kT ),m((k+1)T )(l)|2

]
≤ 2C

m((k+1)T )∑
j=m(kT )

γj+1
γj+1

pj
≤ 2CT sup

j≥m(kT )

γj+1

pj
,

which implies that limk→+∞ sup0≤h≤T |Mm(kT ),m(kT+h)|=0 and then limk→+∞∆(kT, T )=

0 in probability. By the triangle inequality and [3, Proposition 4.1], (5.7) holds.
Under the assumption that

∑∞
n=1 γ

2
n+1p

−1
n < +∞,

E

∑
k≥0

sup
0≤h≤T

|Mm(kT ),m(kT+h)|

 ≤∑
k≥0

2

D∑
l=1

E
[
|Mm(kT ),m((k+1)T )(l)|2

]
≤ 2C

∑
k≥m(T )

γ2
k+1

pk
< +∞,

which implies limk→+∞ sup0≤h≤T |Mm(kT ),m(kT+h)| = 0 a.s. Then, limk→+∞∆(kT, T ) = 0

a.s. and limt→+∞∆(t, T ) = 0 since

∆(t, T ) ≤ 2∆(bt/T cT, T ) + ∆((bt/T c+ 1)T, T ).
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In order to obtain a `-pseudotrajectory, use Markov’s and Doob’s inequalities so that

P

(
sup

0≤h≤T
|Mm(kT ),m(kT+h)| ≥ e−kTα

)
≤ ekTα2C

m((k+1)T )∑
j=m(kT )

γj+1
γj+1

pj

≤ 2C(T + 1)ekTα sup
j≥m(kT )

γj+1

pj
.

Now, for all ε > 0 and k large enough,

sup
j≥m(kT )

γj+1

pj
≤ exp

(
−(λ(γ, γ/p))− ε)τm(kT )

)
≤ exp (−(λ(γ, γ/p))− ε)kT ) ,

where λ(γ, γ/p) is defined in (2.5). Hence,

P

(
sup

0≤h≤T
|Mm(kT ),m(kT+h)| ≥ e−kTα

)
≤ 2C(T + 1) exp (kT (α− λ(γ, γ/p) + ε)) ,

and by the Borel-Cantelli lemma, we have

lim sup
k→+∞

1

k
sup

0≤h≤T
|Mm(kT ),m(kT+h)| ≤ −λ(γ, γ/p) a.s.

Then, bounding all the other terms of (5.9), we find

lim
t→+∞

log(∆(t, T )

t
≤ −`

with
` = min

(
λ(γ, γ/p), λ(γ, γ), λ(γ,R)

)
= λ(γ, γ/p) ∧ λ(γ,R).

Since the flow Φ converges to ν exponentially fast at rate 1, use [3, Theorem 6.9 and
Lemma 8.7] to achieve the proof.

Proof of Theorem 2.11. We have

yn+1 = yn + yn

(
αn+1

αn
(1− γn+1)− 1

)
+ γn+1αn+1(ein+1 − ν).

Recall (5.9), so that

γn+1(ein+1 − ν) =
γn+1

pn
(hin+1 − E[hin+1 |in]) + bn,

with a remainder term bn converging to 0. Now, we want to use [16, Théorème 4.II.4].
In our setting, its notation reads

yn+1 = yn + γ̂n (h(yn) + r̂n+1) +
√
γ̂nεn+1,

with

εn+1 =

(
1 + Υ

2

)−1/2
1
√
pn

(hin+1
−E[hin+1

|in]), γ̂n+1 =

(
1 + Υ

2

)
γ2
n+1α

2
n+1

pn
, h : z 7→ −z,

and

r̂n+1 = yn
1

γ̂n+1

(
αn+1

αn
(1− γn+1)− 1 + γ̂n+1

(
1 + Υ

2

))
+
αn+1

γ̂n+1

γn+1

pn

D∑
j=1

rn(in, j)(hin+1
− hj)
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+
αn+1

γ̂n+1
γn+1

 D∑
j=1

q(in, j)hj −
D∑
j=1

q(in+1, j)hj

 .

Then, by (5.10) and similar computations,

E[εn|Fn] = 0 E[εnε
>
n |Fn] = Σ(p,Υ) + o(pn), sup

n≥1
E [|εn|q] < +∞, q > 2,

where Σ(p,Υ) is defined in (1.2). Classically, we should prove that limn→+∞ ‖r̂n‖ = 0,
in order to work in the framework of [16, Hypothèse H4-4], which is quite difficult.
Nevertheless, rather than checking that limn→+∞ ‖r̂n‖ = 0 it is sufficient3 to prove that

r̂n = r̂(1)
n + r̂2

n, lim
n→+∞

r̂(1)
n = 0, lim

n→+∞
E

 sup
0≤s≤T

∣∣∣∣∣∣
m(t+s)∑
n=m(t)

γ̂n+1r̂
(2)
n+1

∣∣∣∣∣∣
 = 0, (5.11)

for any T > 0, where m(t) is defined in (5.2). Then, let

r̂
(1)
n+1 = yn

1

γ̂n+1

(
αn+1

αn
(1− γn+1)− 1 + γ̂n+1

(
1 + Υ

2

))
+
αn+1

γ̂n+1

γn+1

pn

D∑
j=1

rn(in, j)(hin+1 − hj),

r̂
(2)
n+1 =

αn+1

γ̂n+1
γn+1

 D∑
j=1

q(in, j)hj −
D∑
j=1

q(in+1, j)hj

 .

The sequence (r̂
(1)
n )n≥1 goes to 0 a.s. and in L1 straightforwardly under our assumptions.

Furthermore

γ̂n+1r̂
(2)
n+1 = αn+1γn+1

D∑
j=1

q(in, j)hj − αn+2γn+2

D∑
j=1

q(in+1, j)hj

+ (αn+2γn+2 − αn+1γn+1)

D∑
j=1

q(in+1, j)hj . (5.12)

The first line of (5.12) is a telescoping series and is bounded by αnγn+1 which goes to 0.
The second line of (5.12) is bounded by,

C

m(t+T )∑
n=m(t)

|αn+2γn+1 − αn+1γn| , (5.13)

for some C > 0. Since (5.12) is a telescoping series as well, and goes to 0, we established
the announced decomposition (5.11). As a conclusion, the diffusive limit (Yt)t≥0 is the
solution of (3.10), which trivially admits V : z 7→ z as a Lyapunov function, as required
in [16, Hypothèse H4-3]. The only use of an assumption on the eigenelements of Σ(p,Υ)

would be to guaranty the existence, uniqueness of and convergence to an invariant
distribution for Y, which was already proved in Proposition 3.6.

3This assertion can be easily checked at the end of [16, p.156], whose proof is based on usual arguments on
diffusion approximation, such as [18]. The decomposition (5.11) is often assumed in more recent generaliza-
tions, see for instance [20]. Note that we cannot use directly [20], which besides does not provide functional
convergence.
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