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Abstract

The connective constant of a transitive graph is the exponential growth rate of its
number of self-avoiding walks. We prove that the set of connective constants of the
so-called Cayley graphs contains a Cantor set. In particular, this set has the cardinality
of the continuum.
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In this paper, graphs are implicitly taken to be simple, unoriented, non-empty, con-
nected and locally finite. Besides, we denote by N the set consisting of the non-negative
integers and by N? that of all positive integers.

A graph is said to be transitive if it admits an action by graph automorphisms that is
transitive on its set of vertices. Given a transitive graph G and a vertex o of G, denote by
cn the number of paths starting at o, going through n edges and not visiting any vertex
more than once. By Fekete’s Subadditive Lemma, the sequence c1/nn converges to some
real number µ(G). This number does not depend on the choice of o and is called the
connective constant of G.

Let us now define Cayley graphs. Given a group G and a finite generating subset S of
G, the Cayley graph associated with (G,S) is the graph with vertex-set G and such that
two distinct elements g and h of G are connected by an edge if and only if g−1h ∈ S∪S−1.
This defines a transitive graph Cay(G,S) which satisfies the implicit assumptions of this
paper.

Our purpose is to prove the following theorem.

Theorem. The set {x ∈ R : ∃(G,S), x = µ(Cay(G,S))} contains a Cantor space. In
particular, this subset of R has cardinality 2ℵ0 .

This theorem implies the following result of Leader and Markström: the set of
isomorphism classes of Cayley graphs has cardinality 2ℵ0 . See [8].

An unpublished argument of Kozma [7] shows that the set of pc’s of Cayley graphs
contains a Cantor space, where pc denotes the critical parameter for bond Bernoulli
percolation. The strategy of proof used in the present paper is inspired by [7].
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Continuously many connective constants

Proof. Let Conn denote {x : ∃(G,S), x = µ(Cay(G,S))}. Let Ω∞ stand for {0, 1}N, which
is endowed with the product topology. It is enough to show that there is a continuous
injection f from Ω∞ to Conn. Indeed, as Ω∞ is compact and R is Hausdorff, if there
is such an f , then f induces a homeomorphism from the Cantor space Ω∞ to f(Ω∞).
Besides, as Conn is a subset of R and both R and Ω∞ have cardinality 2ℵ0 , the Cantor-
Schröder-Bernstein Theorem implies that if there is an injection from Ω∞ to Conn, then
Conn has cardinality 2ℵ0 .

To prove the existence of a function f as above, we will rely on several facts, which
are listed below. Fact G is about “Groups”. For it, the reader is referred to the proof of
Lemma III.40 in [3]. Facts L and SI, respectively on “Locality” and “Strict Inequalities”,
are due to Grimmett and Li: see respectively [5] and [6]. Facts I and C are easy and
classical. They provide an “Inequality” and a “Convergence”. The image of a set/element
X by a quotient map which is clear from the context is denoted by X.

G There are a finitely generated group H and a subgroup CH of H such that CH is
isomorphic to

⊕
n∈NZ and central in H.

L Let (Gn)n≤∞ be a sequence of Cayley graphs such that Gn converges locally (1) to
G∞. Denote by Z the graph Cay(Z, {1}) and by Gn ×Z the Cartesian product of the
graphs Gn and Z.

Then, µ(Gn ×Z) converges to µ(G∞ ×Z). (2)

SI Let G be a group generated by a finite subset S, and let N be a normal subgroup
of G. Assume that N 6= {1} and that the ball of centre 1 and radius 2 of Cay(G,S)

intersects N only at 1.

Then, µ(Cay(G/N,S)) < µ(Cay(G,S)).

I Let G be a group generated by a finite subset S, and let N be a normal subgroup
of G.

Then, µ(Cay(G/N,S)) ≤ µ(Cay(G,S)).

C Let G be a group generated by a finite subset S. Let (Nn)n≤∞ be a sequence of
normal subgroups of G such that for every finite subset F of G, for n large enough,
Nn ∩ F = N∞ ∩ F .

Then, Cay(G/Nn, S) converges locally to Cay(G/N∞, S).

The proof may now begin. Let us fix (H,CH) satisfying G. Let SH be a finite generating
subset of H. Let 〈a〉 denote the free group with one generator, with multiplicative
notation (1 denotes the identity element). Let G := H×〈a〉 and S := (SH ×{1})∪{(1, a)}.
The finite subset S of G generates the group G. The subgroup C := CH × {1} of G is
central and isomorphic to

⊕
n∈N〈a〉. Fix a basis (gn) of the free abelian group C.

Let Ω denote the set of the (finite and infinite) words on the alphabet {0, 1}. If P
denotes a property which may be satisfied or not by elements of N ∪ {∞}, denote by ΩP
the set of the elements of Ω whose length satisfies P. In this context, we may use the
subscript “k” as an abbreviation for “= k”. The Ω∞ introduced at the beginning of the
proof agrees with this notation.

For every ω ∈ Ω<∞, we will define a group Gω, which will be a quotient of G. Before
stating our conditions, let us point out that we set Gempty word to be G. As a result, G with
no subscript or with an empty subscript are both defined, and refer to the same object.

(1)This means the following. Denote by ρn the vertex corresponding to the identity element of Gn, where
Gn = Cay(Gn, Sn). For n ≤ ∞ and r ∈ N, let Bn(r) be the ball of centre ρn and radius r in Gn, considered as
a rooted graph, rooted at ρn. We say that Gn converges locally to G∞ if ∀r, ∃n0, ∀n ≥ n0, Bn(r) ' B∞(r).
See [1, 2, 4].

(2)This results from [5] as, for every Gn, the projection on the Z-factor induces a “height function” with d = 1
and r = 0.

ECP 22 (2017), paper 12.
Page 2/4

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP43
http://www.imstat.org/ecp/


Continuously many connective constants

We will proceed by induction on n ∈ N, with the following Induction Hypothesis. See
the figure below. Given a subset/element X of a group, 〈X〉 stands for the subgroup it
generates. Notice that as C is central in G, every subgroup of C is central hence normal
in G.

IH For every ω ∈ Ω≤n, we have built a group Gω which is G or a quotient of G by a
subgroup of 〈{gi : i < n}〉. We denote by Gω the Cayley graph of Gω with respect to
S.

For every ω ∈ Ω<n, we have constructed a real number denoted by bω?, and we
have Gω0 = Gω.

Setting “no letter” < 0 < ? < 1 and ordering lexicographically the words on the
alphabet {0, ?, 1}, the set

Sn := {(µ(Gω), ω) : ω ∈ Ωn} ∪ {(bω?, ω?) : ω ∈ Ω<n}

satisfies ∀(x, η), (x′, η′) ∈ Sn, η < η′ ⇐⇒ x > x′.

Notice that IH holds for n = 0.

Illustration of IH at rank 3. Above the vertical lines is “represented” the Cantor subset of
Conn that we will build.

Let n ∈ N be such that IH holds at rank n, and let us prove that it holds at rank
n + 1. For ω ∈ Ωn and k ∈ N?, let Nω

k denote the subgroup of Gω generated by gn
k,

which is central hence normal in Gω. Let F be a finite subset of Gω. By IH at rank n,
the map k 7→ gn

k is injective from Z to Gω. The set ZωF := {j ∈ Z : gn
j ∈ F} is thus

finite. For every k > maxj∈Zω
F
|j|, we have kZ ∩ZωF ⊂ {0}. As a result, for k large enough

Nω
k ∩ F = {1} ∩ F . It follows from C that Cay(Gω/〈kgn〉, S) converges locally to Gω when

k goes to infinity.
Thus, by taking mn ∈ N? large enough, L and SI guarantee that for every ω ∈ Ωn, the

connective constant x := µ(Cay(Gω/〈mngn〉, S)) satisfies x < µ(Gω) and, for every strict
prefix α of ω, bα? < x. Taking mn to be minimal such that the above holds and letting
Gω0 := Gω, Gω1 := Gω/〈mngn〉 and bω? := (µ(Gω0) + µ(Gω1))/2, we get IH at rank n + 1.
By induction, the Gω’s are constructed with the desired properties, together with the
“byproduct” sequence (mn).

Now, for ω ∈ Ω∞, let Gω := G/〈{migi : i such that ω(i) = 1}〉 and let Gω := Cay(Gω, S).
To conclude the proof, it is enough to show that f : ω 7→ µ(Gω) is injective and continuous
as a function from Ω∞ to R.
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Let (ωn) be a converging sequence of elements of Ω∞, and let ω∞ denote its limit.
For n ∈ N ∪ {∞}, define Nn to be 〈{migi : i such that ωn(i) = 1}〉. For every element
g =

∏
i≤i0 g

ai
i of the free abelian group C, we have

g ∈ Nn ⇐⇒ “{i : ai 6= 0} ⊂ {i : ωn(i) = 1} and ∀i ≤ i0, mi|ai”.

Consequently, (Nn)n≤∞ satisfies the hypotheses of C. By C and L, f(ωn) converges to
f(ω∞), so that f is continuous.

It remains to establish the injectivity of f . Let ω and ω′ be two distinct elements of
Ω∞. Let i ∈ N be minimal such that ω(i) 6= ω′(i). Without loss of generality, we may
assume that ω(i) = 0 and ω′(i) = 1. For n ∈ N, denote by ωn the prefix of ω of length n.
Note that ωi = ω′i. By I and the construction, we have

∀n > i, µ(Gω′) ≤ µ(Gωi
) < bωi? < µ(Gωn

).

By C and L, µ(Gωn) converges to µ(Gω). Therefore,

µ(Gω′) ≤ µ(Gωi
) < bωi? ≤ µ(Gω).

In particular, µ(Gω′) 6= µ(Gω). The function f is thus injective, and the theorem is
proved.
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