ELECTRONIC COMMUNICATIONS in PROBABILITY

The set of connective constants of Cayley graphs contains a Cantor space

Sébastien Martineau*

Abstract

The connective constant of a transitive graph is the exponential growth rate of its number of self-avoiding walks. We prove that the set of connective constants of the so-called Cayley graphs contains a Cantor set. In particular, this set has the cardinality of the continuum.

Keywords: Cayley graph; transitive graph; connective constant; uncountability. AMS MSC 2010: 82B20; 20F65. Submitted to ECP on August 26, 2016, final version accepted on January 13, 2017. Supersedes arXiv:1608.03478.

In this paper, graphs are implicitly taken to be simple, unoriented, non-empty, connected and locally finite. Besides, we denote by \mathbb{N} the set consisting of the non-negative integers and by \mathbb{N}^* that of all positive integers.

A graph is said to be **transitive** if it admits an action by graph automorphisms that is transitive on its set of vertices. Given a transitive graph \mathcal{G} and a vertex o of \mathcal{G} , denote by c_n the number of paths starting at o, going through n edges and not visiting any vertex more than once. By Fekete's Subadditive Lemma, the sequence $c_n^{1/n}$ converges to some real number $\mu(\mathcal{G})$. This number does not depend on the choice of o and is called the **connective constant** of \mathcal{G} .

Let us now define Cayley graphs. Given a group G and a finite generating subset S of G, the **Cayley graph** associated with (G, S) is the graph with vertex-set G and such that two *distinct* elements g and h of G are connected by an edge if and only if $g^{-1}h \in S \cup S^{-1}$. This defines a transitive graph Cay(G, S) which satisfies the implicit assumptions of this paper.

Our purpose is to prove the following theorem.

Theorem. The set $\{x \in \mathbb{R} : \exists (G,S), x = \mu(Cay(G,S))\}$ contains a Cantor space. In particular, this subset of \mathbb{R} has cardinality 2^{\aleph_0} .

This theorem implies the following result of Leader and Markström: the set of isomorphism classes of Cayley graphs has cardinality 2^{\aleph_0} . See [8].

An unpublished argument of Kozma [7] shows that the set of p_c 's of Cayley graphs contains a Cantor space, where p_c denotes the critical parameter for bond Bernoulli percolation. The strategy of proof used in the present paper is inspired by [7].

^{*}The Weizmann Institute of Science, Israel.

E-mail: sebastien.martineau @ weizmann.ac.il

Continuously many connective constants

Proof. Let Conn denote $\{x : \exists (G,S), x = \mu(\operatorname{Cay}(G,S))\}$. Let Ω_{∞} stand for $\{0,1\}^{\mathbb{N}}$, which is endowed with the product topology. It is enough to show that there is a continuous injection f from Ω_{∞} to Conn. Indeed, as Ω_{∞} is compact and \mathbb{R} is Hausdorff, if there is such an f, then f induces a homeomorphism from the Cantor space Ω_{∞} to $f(\Omega_{\infty})$. Besides, as Conn is a subset of \mathbb{R} and both \mathbb{R} and Ω_{∞} have cardinality 2^{\aleph_0} , the Cantor-Schröder-Bernstein Theorem implies that if there is an injection from Ω_{∞} to Conn, then Conn has cardinality 2^{\aleph_0} .

To prove the existence of a function f as above, we will rely on several facts, which are listed below. Fact G is about "Groups". For it, the reader is referred to the *proof* of Lemma III.40 in [3]. Facts L and SI, respectively on "Locality" and "Strict Inequalities", are due to Grimmett and Li: see respectively [5] and [6]. Facts I and C are easy and classical. They provide an "Inequality" and a "Convergence". The image of a set/element X by a quotient map which is clear from the context is denoted by \overline{X} .

- G There are a finitely generated group H and a subgroup C_H of H such that C_H is isomorphic to $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}$ and central in H.
- Let $(\mathcal{G}_n)_{n\leq\infty}$ be a sequence of Cayley graphs such that \mathcal{G}_n converges locally ⁽¹⁾ to \mathcal{G}_∞ . Denote by \mathcal{Z} the graph $\operatorname{Cay}(\mathbb{Z}, \{1\})$ and by $\mathcal{G}_n \times \mathcal{Z}$ the Cartesian product of the graphs \mathcal{G}_n and \mathcal{Z} .

Then, $\mu(\mathcal{G}_n \times \mathcal{Z})$ converges to $\mu(\mathcal{G}_\infty \times \mathcal{Z})$. ⁽²⁾

SI Let G be a group generated by a finite subset S, and let N be a normal subgroup of G. Assume that $N \neq \{1\}$ and that the ball of centre 1 and radius 2 of Cay(G, S) intersects N only at 1.

Then, $\mu(\mathsf{Cay}(G/N, \overline{S})) < \mu(\mathsf{Cay}(G, S)).$

Let G be a group generated by a finite subset S, and let N be a normal subgroup of G.

Then, $\mu(\operatorname{Cay}(G/N, \overline{S})) \leq \mu(\operatorname{Cay}(G, S)).$

C Let G be a group generated by a finite subset S. Let $(N_n)_{n \le \infty}$ be a sequence of normal subgroups of G such that for every finite subset F of G, for n large enough, $N_n \cap F = N_\infty \cap F$.

Then, $Cay(G/N_n, \overline{S})$ converges locally to $Cay(G/N_\infty, \overline{S})$.

The proof may now begin. Let us fix (H, C_H) satisfying G. Let S_H be a finite generating subset of H. Let $\langle a \rangle$ denote the free group with one generator, with multiplicative notation (1 denotes the identity element). Let $G := H \times \langle a \rangle$ and $S := (S_H \times \{1\}) \cup \{(1, a)\}$. The finite subset S of G generates the group G. The subgroup $C := C_H \times \{1\}$ of G is central and isomorphic to $\bigoplus_{n \in \mathbb{N}} \langle a \rangle$. Fix a basis (g_n) of the free abelian group C.

Let Ω denote the set of the (finite and infinite) words on the alphabet $\{0,1\}$. If \mathcal{P} denotes a property which may be satisfied or not by elements of $\mathbb{N} \cup \{\infty\}$, denote by $\Omega_{\mathcal{P}}$ the set of the elements of Ω whose length satisfies \mathcal{P} . In this context, we may use the subscript "k" as an abbreviation for "= k". The Ω_{∞} introduced at the beginning of the proof agrees with this notation.

For every $\omega \in \Omega_{<\infty}$, we will define a group G_{ω} , which will be a quotient of G. Before stating our conditions, let us point out that we set $G_{\text{empty word}}$ to be G. As a result, G with no subscript or with an empty subscript are both defined, and refer to the same object.

⁽¹⁾This means the following. Denote by ρ_n the vertex corresponding to the identity element of G_n , where $\mathcal{G}_n = \mathsf{Cay}(G_n, S_n)$. For $n \leq \infty$ and $r \in \mathbb{N}$, let $B_n(r)$ be the ball of centre ρ_n and radius r in \mathcal{G}_n , considered as a rooted graph, rooted at ρ_n . We say that \mathcal{G}_n converges locally to \mathcal{G}_∞ if $\forall r, \exists n_0, \forall n \geq n_0, B_n(r) \simeq B_\infty(r)$. See [1, 2, 4].

⁽²⁾This results from [5] as, for every \mathcal{G}_n , the projection on the \mathcal{Z} -factor induces a "height function" with d = 1 and r = 0.

We will proceed by induction on $n \in \mathbb{N}$, with the following Induction Hypothesis. See the figure below. Given a subset/element X of a group, $\langle X \rangle$ stands for the *subgroup* it generates. Notice that as C is central in G, every subgroup of C is central hence normal in G.

IH For every $\omega \in \Omega_{\leq n}$, we have built a group G_{ω} which is G or a quotient of G by a subgroup of $\langle \{g_i : i < n\} \rangle$. We denote by \mathcal{G}_{ω} the Cayley graph of G_{ω} with respect to \overline{S} .

For every $\omega \in \Omega_{< n}$, we have constructed a real number denoted by $b_{\omega\star}$, and we have $G_{\omega 0} = G_{\omega}$.

Setting "no letter" $<0<\star<1$ and ordering lexicographically the words on the alphabet $\{0,\star,1\},$ the set

$$\mathcal{S}_n := \{ (\mu(\mathcal{G}_\omega), \omega) : \omega \in \Omega_n \} \cup \{ (b_{\omega\star}, \omega\star) : \omega \in \Omega_{< n} \}$$

satisfies $\forall (x,\eta), (x',\eta') \in \mathcal{S}_n, \ \eta < \eta' \iff x > x'.$

Notice that IH holds for n = 0.

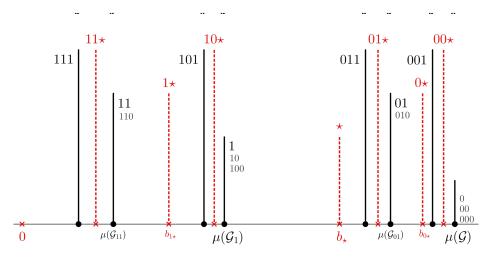


Illustration of IH at rank 3. Above the vertical lines is "represented" the Cantor subset of Conn that we will build.

Let $n \in \mathbb{N}$ be such that IH holds at rank n, and let us prove that it holds at rank n + 1. For $\omega \in \Omega_n$ and $k \in \mathbb{N}^*$, let N_k^{ω} denote the subgroup of G_{ω} generated by $\overline{g_n}^k$, which is central hence normal in G_{ω} . Let F be a finite subset of G_{ω} . By IH at rank n, the map $k \mapsto \overline{g_n}^k$ is injective from \mathbb{Z} to G_{ω} . The set $Z_F^{\omega} := \{j \in \mathbb{Z} : \overline{g_n}^j \in F\}$ is thus finite. For every $k > \max_{j \in Z_F^{\omega}} |j|$, we have $k\mathbb{Z} \cap Z_F^{\omega} \subset \{0\}$. As a result, for k large enough $N_k^{\omega} \cap F = \{1\} \cap F$. It follows from c that $\operatorname{Cay}(G_{\omega}/\langle k\overline{g_n} \rangle, \overline{S})$ converges locally to \mathcal{G}_{ω} when k goes to infinity.

Thus, by taking $m_n \in \mathbb{N}^*$ large enough, L and SI guarantee that for every $\omega \in \Omega_n$, the connective constant $x := \mu(\operatorname{Cay}(G_\omega/\langle m_n \overline{g_n} \rangle, \overline{S}))$ satisfies $x < \mu(\mathcal{G}_\omega)$ and, for every strict prefix α of ω , $b_{\alpha\star} < x$. Taking m_n to be minimal such that the above holds and letting $G_{\omega 0} := G_\omega$, $G_{\omega 1} := G_\omega/\langle m_n \overline{g_n} \rangle$ and $b_{\omega\star} := (\mu(\mathcal{G}_{\omega 0}) + \mu(\mathcal{G}_{\omega 1}))/2$, we get IH at rank n + 1. By induction, the G_ω 's are constructed with the desired properties, together with the "byproduct" sequence (m_n) .

Now, for $\omega \in \Omega_{\infty}$, let $G_{\omega} := G/\langle \{m_i g_i : i \text{ such that } \omega(i) = 1\} \rangle$ and let $\mathcal{G}_{\omega} := \operatorname{Cay}(G_{\omega}, \overline{S})$. To conclude the proof, it is enough to show that $f : \omega \mapsto \mu(\mathcal{G}_{\omega})$ is injective and continuous as a function from Ω_{∞} to \mathbb{R} .

ECP 22 (2017), paper 12.

Let (ω_n) be a converging sequence of elements of Ω_{∞} , and let ω_{∞} denote its limit. For $n \in \mathbb{N} \cup \{\infty\}$, define N_n to be $\langle \{m_i g_i : i \text{ such that } \omega_n(i) = 1\} \rangle$. For every element $g = \prod_{i \le i_0} g_i^{a_i}$ of the free abelian group C, we have

$$g \in N_n \iff$$
 " $\{i : a_i \neq 0\} \subset \{i : \omega_n(i) = 1\}$ and $\forall i \leq i_0, m_i | a_i$ ".

Consequently, $(N_n)_{n \leq \infty}$ satisfies the hypotheses of C. By C and L, $f(\omega_n)$ converges to $f(\omega_\infty)$, so that f is continuous.

It remains to establish the injectivity of f. Let ω and ω' be two distinct elements of Ω_{∞} . Let $i \in \mathbb{N}$ be minimal such that $\omega(i) \neq \omega'(i)$. Without loss of generality, we may assume that $\omega(i) = 0$ and $\omega'(i) = 1$. For $n \in \mathbb{N}$, denote by ω_n the prefix of ω of length n. Note that $\omega_i = \omega'_i$. By I and the construction, we have

$$\forall n > i, \ \mu(\mathcal{G}_{\omega'}) \le \mu(\mathcal{G}_{\omega_i}) < b_{\omega_i \star} < \mu(\mathcal{G}_{\omega_n}).$$

By C and L, $\mu(\mathcal{G}_{\omega_n})$ converges to $\mu(\mathcal{G}_{\omega})$. Therefore,

$$\mu(\mathcal{G}_{\omega'}) \le \mu(\mathcal{G}_{\omega_i}) < b_{\omega_i \star} \le \mu(\mathcal{G}_{\omega}).$$

In particular, $\mu(\mathcal{G}_{\omega'}) \neq \mu(\mathcal{G}_{\omega})$. The function f is thus injective, and the theorem is proved.

References

- [1] László Babai, Vertex-transitive graphs and vertex-transitive maps, Journal of graph theory 15 (1991), no. 6, 587–627. MR-1133814
- Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001), no. 23, 1–13. MR-1873300
- [3] Pierre de la Harpe, *Topics in geometric group theory*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR-1786869
- [4] Reinhard Diestel and Imre Leader, A conjecture concerning a limit of non-Cayley graphs, Journal of Algebraic Combinatorics 14 (2001), no. 1, 17–25. MR-1856226
- [5] Geoffrey Grimmett and Zhongyang Li, Locality of connective constants, arXiv:1412.0150.
- [6] Geoffrey Grimmett and Zhongyang Li, Strict inequalities for connective constants of transitive graphs, SIAM Journal on Discrete Mathematics 28 (2014), no. 3, 1306–1333. MR-3252803
- [7] Gady Kozma, Personal communication.
- [8] Imre Leader and Klas Markström, Uncountable families of vertex-transitive graphs of finite degree, Discrete mathematics 306 (2006), no. 7, 678–679. MR-2215593

Acknowledgments. I would like to thank the Weizmann Institute of Science and my postdoctoral hosts — Itai Benjamini and Gady Kozma — for the excellent working conditions they have provided to me. I am also grateful to my postdoctoral hosts for letting me know of [7].