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Abstract. Transformation based Markov Chain Monte Carlo (TMCMC) was
proposed by Dutta and Bhattacharya (Statistical Methodology 16 (2014) 100–
116) as an efficient alternative to the Metropolis–Hastings algorithm, espe-
cially in high dimensions. The main advantage of this algorithm is that it si-
multaneously updates all components of a high dimensional parameter using
appropriate move types defined by deterministic transformation of a single
random variable. This results in reduction in time complexity at each step of
the chain and enhances the acceptance rate.

In this paper, we first provide a brief review of the optimal scaling the-
ory for various existing MCMC approaches, comparing and contrasting them
with the corresponding TMCMC approaches.The optimal scaling of the sim-
plest form of TMCMC, namely additive TMCMC, has been studied exten-
sively for the Gaussian proposal density in Dey and Bhattacharya (2017a).
Here, we discuss diffusion-based optimal scaling behavior of additive TM-
CMC for non-Gaussian proposal densities—in particular, uniform, Student’s
t and Cauchy proposals. Although we could not formally prove our diffusion
result for the Cauchy proposal, simulation based results lead us to conjecture
that at least the recipe for obtaining general optimal scaling and optimal ac-
ceptance rate holds for the Cauchy case as well. We also consider diffusion
based optimal scaling of TMCMC when the target density is discontinuous.
Such non-regular situations have been studied in the case of Random Walk
Metropolis Hastings (RWMH) algorithm by Neal and Roberts (Methodology
and Computing in Applied Probability 13 (2011) 583–601) using expected
squared jumping distance (ESJD), but the diffusion theory based scaling has
not been considered.

We compare our diffusion based optimally scaled TMCMC approach with
the ESJD based optimally scaled RWM with simulation studies involving sev-
eral target distributions and proposal distributions including the challenging
Cauchy proposal case, showing that additive TMCMC outperforms RWMH
in almost all cases considered.
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1 Introduction

Markov Chain Monte Carlo (MCMC) techniques have revolutionized the statisti-
cal literature over the past two decades. It is extensively used today in Bayesian
computation, systems biology, statistical physics, among many other fields. The
simplest and the most popular MCMC technique in high dimensions is the Ran-
dom Walk Metropolis Hastings (RWMH) algorithm. In this algorithm, at each it-
eration of the chain, a move is suggested based on a proposal density centered at
the current position of the chain.

In the RWMH algorithm, the most popular choice of proposal density is the
Gaussian distribution. However the variance or the scaling factor of this Gaussian
proposal density is of utmost importance. If the variance is small, the magnitude
of jumps of the chain would be smaller and the chain converges slowly. If the vari-
ance is large, we end up rejecting too many proposed moves. Considering a diffu-
sion based approach, Roberts, Gelman and Gilks (1997) proposed optimal scaling
(variance) of the Gaussian proposal for target distributions with i.i.d. components.
Later, optimal scalings were derived for more general classes of target densities
(see Bedard (2007, 2009), Mattingly, Pillai and Stuart (2011), Bedard and Rosen-
thal (2008)). The optimal acceptance rate, corresponding to the optimal scaling,
for most set-ups considered, is 0.234.

In most high-dimensional and realistic scenarios, the RWM algorithm, as well
as other Metropolis Hastings (M-H) algorithms exhibit relatively poor acceptance
rates when all the variables are jointly updated at a time. Sequential updating can
maintain high acceptance rates, but can be computationally burdensome in the ex-
treme. Moreover, such algorithms usually have poor mixing properties due to high
posterior correlations between the parameters. In order to counter these problems
effectively, Dutta and Bhattacharya (2014) introduced the general Transformation
based Markov Chain Monte Carlo (TMCMC) algorithm. In a nutshell, TMCMC
constructs appropriate “move types”, within which simple deterministic transfor-
mations of a single random variable is used to simultaneously update all the pa-
rameters.

This strategy has been shown to dramatically improve the acceptance rate and
reduce computational burden. Properties like aperiodicity, Harris recurrence, irre-
ducibility and geometric ergodicity of the additive TMCMC algorithm have al-
ready been studied in great detail; see Dutta and Bhattacharya (2014), Dey and
Bhattacharya (2016). All these studies show TMCMC to be a competent alterna-
tive to RWM, specially when the dimensionality is very high.

We briefly describe TMCMC in the next section.

2 TMCMC and optimal scaling theory

Consider simulation from a d dimensional distribution and assume that we are cur-
rently at a point x = (x1, . . . , xd). Let us define the d-dimensional random vector
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b = (b1, . . . , bd), such that, for i = 1, . . . , d ,

bi =
⎧⎨
⎩

+1 with probability pi;
0 with probability 1 − pi − qi;
−1 with probability qi,

(2.1)

where, for each i, 0 < pi, qi < 1 such that pi + qi ≤ 1. Let ε ∼ �(ε) = �̃(ε)IS(ε),
where �̃(·) is any arbitrary density supported on some suitable space S; here IS(·)
denotes the indicator function of S.

TMCMC uses moves of the following type:

(x1, . . . , xd) → (
T b1(x1, ε), . . . , T

bd (xd, ε)
)
, (2.2)

where T +1(xi, ε), the forward transformation to coordinate xi , and T −1(xi, ε), the
backward transformation to xi , are bijective for fixed ε and injective for fixed xi ,
satisfying

T +1(
T −1(xi, ε), ε

) = T −1(
T +1(xi, ε), ε

) = xi. (2.3)

The transformation

T 0(xi, ε) ≡ xi, ∀ε ∈ S, (2.4)

indicates no change to the coordinate xi while updating the vector x = (x1, . . . , xd)

to x∗ = Tb(x, ε), where Tb(x, ε) denotes the updated vector (T b1(x1, ε), . . . ,

T bd (xd, ε)). Assuming for simplicity of illustration that pi = qi for i = 1, . . . , d ,
move (2.2) is to be accepted with probability

α = min
{

1,
π(x∗)
π(x)

J b(x, ε)

}
, (2.5)

where J b(x, ε) = | ∂(T b(x,ε),ε)
∂(x,ε)

| is the Jacobian of the transformation associated

with T b. For general (p1, . . . , pd) and (q1, . . . , qd), the acceptance ratio depends
upon these probabilities; see Dutta and Bhattacharya (2014).

For a wide range of target densities, Dey and Bhattacharya (2017) derived the
optimal scaling of the TMCMC algorithm with the additive transformation define
by:

T +1(xi, ε) = xi + ε; T −1(xi, ε) = xi − ε, i = 1,2, . . . , d. (2.6)

The optimal acceptance rate for the optimally scaled additive TMCMC algo-
rithm was found to be 0.439, in contrast with 0.234, the optimal acceptance rate
of the RWM algorithm. Also the diffusion speed for TMCMC was found to be
more robust to the choice of scaling, compared to RWM algorithm. Indeed, even if
the choice of the scale is suboptimal, the diffusion speed of TMCMC is not much
affected, while, on the other hand, that of RWM is significantly adversely affected
by sub-optimal scalings. Since in complex, realistic problems, determination of the
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exact optimal scaling can prove to be a difficult exercise, this robustness property
of TMCMC is a strong advantage.

In all the above considerations, it was inherently assumed that the proposal dis-
tribution was Gaussian. A common criticism of the Gaussian proposal is that it is
light-tailed and hence exploration of the state space would be slow. Starting from
an initial point x0, the chain would usually move to points close to x0, and in the
rare cases when it makes a jump of large magnitude to some point y, distant from
x0, the acceptance rate min{1,

π(y)
π(x0)

} would usually turn out to be very small, and
hence the probability of accepting such a jump would be very low. This is one of
the prime reasons why the RWM or the TMCMC chain with the Gaussian proposal
have slow convergence rate and also high autocorrelation time.

One way to resolve the aforementioned problem is to consider the uniform or
heavy tailed proposal distributions like the Cauchy distribution instead of the light
tailed Gaussian proposal. However, with the Cauchy proposal distribution, the mo-
ments are not defined and hence the Taylor’s series expansions necessary for prov-
ing diffusion based optimal scaling results are no longer valid. This is the case even
if the usual regularity conditions (see, for example, Theorem 4.1 of Dey and Bhat-
tacharya (2017) in the TMCMC context and Roberts, Gelman and Gilks (1997) in
the context of RWM) are satisfied.

Additionally, if some of the regularity conditions are violated, for example, if
the support of the target density is bounded (discontinuous target density on R

d ,
where R is the real line and d is the dimensionality of the target distribution), the
problem of optimal scaling poses further challenges.

To avoid these technical difficulties associated with the traditional diffusion
based approach, Neal and Roberts (2011) obtained optimal scaling for RWM cor-
responding to several non-Gaussian proposal densities by maximizing the expected
squared jumping distance (ESJD), defined by

ESJD = E

[
d∑

i=1

(X1i − X0i )
2

]
. (2.7)

In the Gaussian proposal case Neal and Roberts (2011) show that their ESJD based
approach coincides with the diffusion based approach.

In this article, we extend the diffusion based approach to optimal scaling of
additive TMCMC in situations where (a) all the regularity conditions of Theo-
rem 4.1 of Dey and Bhattacharya (2017) are satisfied but the proposal distribution
is non-Gaussian, and (b) the non-regular cases consisting of target densities with
bounded support, the proposal distribution being non-Gaussian. Before we for-
malize our approach, we first provide a brief review of optimal scaling theory for
various approaches of MCMC, including TMCMC, to acquaint the readers with
the basic concepts. Thus, our contribution in this article is two-fold: reviewing and
discussing the optimal scaling literature for varieties of MH and TMCMC based
methods, and developing a novel diffusion based approach to optimal scaling in
non-regular cases for additive TMCMC.
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3 An overview of optimal scaling theory for various existing MCMC
approaches

3.1 Optimal scaling for the RWM approach

Assume that π : Rd 	→ R+ is the target density, and xt = (xt,1, . . . , xt,d) is the
MCMC realization at the t th iteration, and that at the next iteration, the value
yt+1 = (yt,1, . . . , yt,d) is proposed from some density q(xt , ·), where, for any x, y,
q(x, y) is the conditional density of y given x. The Metropolis Hastings (MH)
approach either accepts xt+1 = yt+1 with probability

α(xt , yt+1) = min
{

1,
π(yt+1)q(yt+1, xt )

π(xt )q(xt , yt+1)

}
, (3.1)

or remains at the current value with xt+1 = xt . Note that if q(xt , yt+1) =
q(yt+1, xt ), that is, if q is symmetric, then the ratio q(yt+1, xt )/q(xt , yt+1) can-
cels in the acceptance ratio, thus simplifying the proceedings. The random walk
proposal of the form q(x, y) ≡ q(|y − x|), where q(·) is symmetric about zero, is
an example of such a symmetric proposal, and has become the default proposal
mechanism for MCMC simulation, and is known as the RWM algorithm. Thus,
in RWM, yt+1 is of the form yt+1 = xt + εt+1, where {εt : t = 1,2, . . .} are i.i.d.
with some symmetric distribution. The most popular choice of such symmetric
distribution is Nd(0, σ 2Id), the d-variate normal distribution with mean zero and
covariance matrix σ 2Id , where σ 2 > 0 and Id is the d-dimensional identity ma-
trix. The convergence properties of the resulting RWM crucially depend on the
chosen value of σ 2; too small values leads to large acceptance rates but very little
movement of the chain, and too large values lead to small acceptance rates and
only occasional movement of the chain, both of which slow down convergence,
and hence, must be avoided. This so-called “Goldilocks principle” is not a modern
day observation; indeed, this has been recognized even by Metropolis et al. (1953),
who assumed the U(−a, a) distribution of the εt ’s with a > 0, and noted that too
small or too large values of a must be avoided.

3.1.1 The i.i.d. target density set-up. Modern day research has of course at-
tempted to make precise statements regarding the optimal value of σ 2, when d

is large enough. This study was initiated by Roberts and Rosenthal (1997) who
considered a simple i.i.d. product target density of the form π(x) = ∏d

i=1 f (xi)

and a normal random proposal with σ 2 of the form �2

d
. In this situation, letting

Ud
t = X[dt],1 (where [·] denotes the integer part) be the sped up first component

of the d-dimensional Markov chain, which proposes d jumps in every time unit,
it can be shown that under appropriate sufficient conditions, Ud

t eventually be-
comes a continuous time diffusion process as d → ∞, which has stationary dis-
tribution f and speed measure g(�) = 2�2	(−√

I�/2), where I = Ef (
f ′(X)
f (X)

)2 =
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∫ ∞
−∞(

f ′(x)
f (x)

)2f (x) dx. The speed measure is related to the autocorrelation of the un-
derlying Markov chain; in fact, high speed is equivalent to low autocorrelation (see
Roberts and Rosenthal (2001)). Thus, it makes sense to maximize the speed mea-
sure with respect to �. As such, the optimal value of � is given by �opt = 2.381/

√
I

and the optimal acceptance rate is given by 2	(−√
I�opt/2) ≈ 0.234. This optimal

acceptance rate need not be strictly enforced, however, as Roberts and Rosenthal
(2001) demonstrate, using a measure of efficiency which is the reciprocal of in-
tegrated autocorrelation time, that the RWM proposal may be tuned to achieve an
acceptance rate between 0.15 to 0.5, which would make the algorithm around 80%
efficient.

3.1.2 The set-up where target density is the product of independent but non-
identical densities. Although the aforementioned optimal scaling theory is built
on the assumption of the simple (and unrealistic) assumption of the product of i.i.d.
densities as the target, this has been extended to more realistic set-ups, such as
product of independent but non-identical densities with special forms. Roberts and
Rosenthal (2001) considered the form π(x) = ∏d

i=1 Cif (Cixi), where C1, . . . ,Cd

are i.i.d. realizations from some distribution. In this case, the optimal scaling re-
sult for the i.i.d. set-up continues to hold, albeit the diffusion speed is reduced due
to division by an “inhomogeneity factor” given by c = E(C2

1)/E[(C1)]2, which
is greater than or equal to one. This factor is responsible for slowing down the
algorithm as the variability among C1, . . . ,Cd increases.

Bedard (2007, 2008), Bedard and Rosenthal (2008) considered a similar frame-
work, but different powers of d for the coordinate wise target densities. Their main
result is that if the individual components are dominated by the sum of all the com-
ponents, then the optimal acceptance rate remains 0.234, but on the other hand, if
any component is comparable to the sum, then the optimal acceptance is reduced.

3.1.3 The dependent set-up. Although the aforementioned optimal scaling the-
ories assume the target to be at most inhomogeneous product of d densities, as
shown in Rosenthal (2011) (see also Roberts and Rosenthal (2001)), the theory
of Roberts and Rosenthal (2001) for independent but non-identical target density
can be adapted to the case of d-variate normal target distributions. Indeed, follow-
ing Rosenthal (2011), let us assume that the target is N(0,
), where 
 is a d-
dimensional covariance matrix, and the proposal is of the form yt+1 = xt + εt+1,

where εt
i.i.d.∼ N(0, 
̃), where 
̃ is the appropriate covariance matrix to be de-

termined by the optimal scaling theory. It can be seen that the problem can be
equivalently formulated as considering the target to be N(0,

̃−1) and the nor-
mal random walk covariance to be the d-dimensional identity matrix. Then, in the
form π(x) = ∏d

i=1 Cif (Cixi), Ci = √
λi , where λ1, . . . , λd are the eigenvalues

of 

̃−1. As d → ∞, this corresponds to the case where C1, . . . ,Cd are ran-
dom with E(C1) = 1

d

∑d
i=1

√
λi and E(C2

1) = 1
d

∑d
i=1 λi . In this case, the inho-

mogeneity factor is approximately given by c = d(
∑d

i=1 λi)/(
∑d

i=1
√

λi)
2. It is



228 K. K. Dey and S. Bhattacharya

thus clear that the diffusion speed is maximized when the above eigenvalues are
all equal, which implies that one must set 
̃ ∝ 
. Applying the optimal scaling
theory for the i.i.d. case one then obtains the value of the proportionality constant
to be (2.38)2/d .

Mattingly, Pillai and Stuart (2011) consider a more realistic and general depen-
dent set-up where the joint target density is absolutely continuous with respect to
a Gaussian measure, and even in their case, the optimal acceptance rate turned out
to be 0.234 for normal RWM proposals.

3.2 Optimal scaling for Metropolis within Gibbs

Neal and Roberts (2006) investigated optimal scaling in the Metropolis within
Gibbs context, where in any given iteration, only a fixed proportion cd of the d co-
ordinates are updated using RWM, leaving the remaining co-ordinates unchanged.
Here cd is a function of d and it is assumed that as d → ∞, cd → c, for some
0 < c ≤ 1. To analytically represent the transitions, first let for i = 1, . . . , d ,

χi = 1 if transition takes place in the ith coordinate

= 0 if no transition takes place in the ith coordinate.
(3.2)

Then,

P(χi = 1) = cd; i = 1, . . . , d, (3.3)

and the transition is given by

(x1, . . . , xd) → (x1 + χ1ε1, . . . , xd + χdεd), (3.4)

where, for i = 1, . . . , d , εi
i.i.d.∼ N(0, �

d
). Assuming the target density to be a prod-

uct of i.i.d. densities, Neal and Roberts (2006) obtained, in the RWM within Gibbs
set-up, the optimal acceptance rate 0.234. It can be verified that the same opti-
mal acceptance rate is achieved even for the target densities that are products of
independent but non-identical, and for dependent target densities discussed above.

Dey and Bhattacharya (2017) consider a similar set-up under the additive TM-
CMC within Gibbs premise. In their case, the transition can be represented as

(x1, . . . , xd) → (x1 + χ1b1ε, . . . , xd + χdbdε), (3.5)

where ε ≡ �√
d
ε∗, with ε∗ ∼ N(0,1)I{ε∗>0}. Dey and Bhattacharya (2017) show

that in this case, the optimal acceptance rate is 0.439 for all the aforemen-
tioned forms of the target densities. In the simulation studies reported in Dey
and Bhattacharya (2017), optimally scaled additive TMCMC considerably out-
performed optimally scaled RWM when all the variables are updated in every it-
eration in terms of various measures of convergence and mixing, in particular, the
Kolmogorov–Smirnov distance of the Markov chains from the target distributions.
Hence, one can expect far superior performance of TMCMC even if a proportion
of the variables is updated in every iteration.
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3.3 Optimal scaling for the Metropolis-adjusted Langevin algorithm
(MALA)

One way to simulate from the target density π without resorting to the traditional
MH method is to simulate from the discretized version of some appropriate dif-
fusion equation having stationary distribution f . Such an idea owes its origin
in Grenander and Miller (1994) and Philips and Smith (1996). In particular, the
Langevin diffusion dxt = dBt + 1

2∇ logπ(xt ) dt , where Bt is the standard Brow-
nian motion. Roberts and Rosenthal (1998) note that the Langevin equation is the
only non-explosive diffusion which is reversible with respect to f . Implementation

of the Langevin equation proceed by discretization: xt+1 = xt + σ 2

2 ∇ logπ(xt ) +
σεt , where εt is generated from the d-dimensional normal with mean zero and
identity covariance matrix. In the above, σ 2 is associated with the size of dis-
cretization, which is to be appropriately chosen.

However, the discretized version does not necessarily mimic the behaviour
of the original diffusion equation. Roberts and Tweedie (1996) note that the
discretized chain may even be transient if limx→−∞ σ 2∇ logf (x)|x|−1 and
limx→∞ σ 2∇ logf (x)|x|−1 exist and larger than 1 and smaller than −1, respec-
tively. A way to rectify this is to consider the discretized version as a proposal
distribution for the MH method in the usual way; this has been suggested by Besag
(1994). The MALA based MH algorithm is given as follows.

Algorithm 3.1 (MALA).

• Assume that the current state is x = (x1, . . . , xd).

• Propose y ∼ N(x + σ 2

2 ∇ logπ(x), σ 2Id) as the proposed value.
• Accept y with probability

α = min
{

1,
π(y)

π(x)
× exp{− 1

2σ 2 (y − x − σ 2

2 ∇ logπ(x))2}
exp{− 1

2σ 2 (x − y − σ 2

2 ∇ logπ(y))2}
}
. (3.6)

• Accept x with the remaining probability.

Robert and Casella (2004) show that the discretized proposal can be naturally
derived by considering a Laplace approximation perspective.

The optimal scaling of σ has been derived by Roberts and Rosenthal (1998)
by considering σ 2 = �2/d1/3. This scaling order originated in physics (Kennedy
and Pendleton (1991)) and turned out to be relevant for the optimal scaling inves-
tigation. The optimal acceptance obtained by Roberts and Rosenthal (1998) in the
i.i.d. set-up is 0.574, which is much higher than that for RWM. Even for the inde-
pendent but the non-identical set-up considered by Roberts and Rosenthal (2001),
the optimal acceptance rate turned out to be 0.574. Perhaps not surprisingly, the
acceptance rate remains the same in the general dependent set-up where the joint



230 K. K. Dey and S. Bhattacharya

target density is absolutely continuous with respect to a Gaussian measure; see
Pillai, Stuart and Thiéry (2012).

Thus, in all the cases considered so far, the MALA significantly outperforms
in terms of acceptance rate. However, MALA is not geometrically ergodic when
∇f (x) → 0 as ‖x‖ → ∞ (Roberts and Tweedie (1996)), although in this situation
the MALA resembles the RWM, which is geometrically ergodic under relevant
sufficient conditions (see, for example, Jarner and Hansen (2000)). Thus, MALA
need not always be superior to RWM in terms of performance.

It is useful to note that a TMCMC version of the Langevin diffusion can also be
considered as follows. Suppose that we are simulating from a d dimensional space
(usually R

d ). Let us define d random variables b1, . . . , bd in the same way as (2.1).
Then TMCMC based on the discretized Langevin proposal, which we refer to as
TMCMC-adjusted Langevin algorithm (TALA) is given as follows:

Algorithm 3.2 (TALA).

• Assume that the current state is x = (x1, . . . , xd) and let
b1 and ε1 ∼ q(·)I{ε1>0} be associated with the current
proposed value, where q(·) is any arbitrary univariate
density.

• Propose b2 and ε2 ∼ q(·)I{ε2>0}. Set y = x + σ 2

2 ∇ logπ(x) + σb2ε2
as the proposed value.

• Accept y with probability

α = min
{

1,
P (b1)

P (b2)
× π(y)

π(x)
× q(ε1)

q(ε2)

}
, (3.7)

where for any b of the form (2.1), P(b) denotes the
probability of b.

• Accept x with the remaining probability.

Observe that unlike the original TMCMC principle, the acceptance ratio is not
free of the proposal density. In fact, the ratio q(ε1)/q(ε2) is an adjustment for the
issue that for TALA we do not use the inverse of the forward transformation to
move backward using the same ε used in the forward direction, unlike the original
TMCMC principle. The reason for not using inversion (and the same ε) is that
bijection associated with the transformation in this case is not assured for general
target densities. However, unlike MALA, the acceptance ratio of TALA provided
in (3.7) does not require evaluation of the gradient, resulting in computational sim-
plicity. Note that in practice the gradient is usually approximated numerically, and
indeed for simulation purpose a small margin of error is permissible, but it is desir-
able to evaluate the acceptance rate without any error. Thus, from this perspective,
eliminating the gradient based calculations is important, which TALA achieves.
Also note that if pi = 1/2 for all i in (2.1), then the ratio P(b1)/P (b2) cancels in
the acceptance ratio, resulting in further simplification.
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Optimal scaling for TALA is an interesting challenge which we shall handle.
We anticipate that the optimal acceptance rate of TALA will be much higher than
that of MALA because of the drastic dimension reduction achieved by updating
all the variables using a single random variable.

3.4 Optimal scaling in hybrid Monte Carlo

The hybrid Monte Carlo (HMC) methods, introduced by Duane et al. (1987), is a
method of MCMC simulation from the target distribution π that considers as pro-
posal a discretized version of the solution of the deterministic Hamiltonian equa-
tions from physics and uses the MH acceptance probability to accept the proposed
value. Briefly, one may imagine a dynamical system where x(t) ∈ R

d is likened
to the d-dimensional position vector of a body of particles at time t . Also, let
v(t) = ẋ(t) = dx

dt
be the speed vector of the particles, v̇(t) = dv

dt
be the accelera-

tion vector, and �F be the force exerted on the particles. Thanks to Newton’s law of
motion, �F = mv̇(t) = (m1v̇1, . . . ,mdv̇d)(t), where m ∈ R

d is a mass vector. From
the simulation perspective, the momentum vector, p = mv may be interpreted as a
set of auxiliary variables that facilitates simulation from π(x).

The kinetic energy of the system is defined as W(p) = p′M−1p, where M is
the mass matrix. In general, M is usually chosen to be a diagonal matrix. The
potential energy field of the system is defined as U(x) = − logπ(x), which now
connects our target density of interest to the dynamical system. The total energy
(Hamiltonian function) is given by H(x,p) = U(x) + W(p), which is used to
build a joint distribution over the phase-space (x,p). The joint distribution is of
the form

f (x,p) ∝ exp
{−H(x,p)

} = π(x) exp
(−p′M−1p/2

)
, (3.8)

so that simulating jointly from f (x,p) by some appropriate MCMC mechanism
and discarding the corresponding simulations of p yields samples from π .

The essence of HMC lies in the construction of a novel proposal strategy that
hinges upon Newton’s law of motion, derived from the law of conservation of
energy. These admit representation in the form of the Hamiltonian equations, given
by

ẋ(t) = ∂H(x,p)

∂p
= M−1p,

ṗ(t) = −∂H(x,p)

∂x
= −∇U(x),

where ∇U(x) = ∂U(x)
∂x

. The above equations form the crux for an efficient pro-
posal mechanism, but for being usable, discretization is required. Indeed, these
can be approximated by the so-called leap-frog algorithm (Hockney (1970)), given
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by

x(t + δt) = x(t) + δtM−1
{
p(t) − δt

2
∇U

(
x(t)

)}
, (3.9)

p(t + δt) = p(t) − δt

2

{∇U
(
x(t)

) + ∇U
(
x(t + δt)

)}
. (3.10)

As such, given choices of M , δt , and L, the HMC is then the following algo-
rithm:

Algorithm 3.3 (HMC).

• Initialise x and draw p ∼ N(0,M).
• Assuming the current state to be (x,p), do the follow-
ing:

1. Generate p1 ∼ N(0,M).
2. Letting (x(0),p(0)) = (x,p1), run the leap-frog algo-

rithm for L time steps, to yield (x2,p2) = (x(t + Lδt),

p(t + Lδt)).
3. Accept (x2,p2) with probability

min
{
1, exp

{−H(x2,p2) + H(x,p1)
}}

, (3.11)

and accept (x,p1) with the remaining probability.

In the above algorithm, it is not required to store simulations of p. Detailed
balance can be easily seen to hold by observing that the leapfrog algorithm is
volume preserving (“sympletic”) and time reversible. The other ergodic properties
also easily follow.

The non-local behaviour of the leap-frog algorithm allows the algorithm to ex-
plore the state space more efficiently compared to RWM. However, the tuning
parameters of HMC, namely, L, M and δt must be chosen carefully. For each
dynamic evolution, Cheung and Beck (2009) suggest selecting L from a discrete
uniform distribution on {1, . . . ,Lmax}, for some pre-chosen Lmax. This strategy
bypasses the issue of getting into a somewhat rare, but undesirable resonance con-
dition (Mackenzie (1989)). Cheung and Beck (2009) also suggest selecting M to
be the identity matrix if the components of x are of comparable scale, which can
be ensured by appropriate normalization at the initial stage.

The most challenging issue seems to be properly tuning the step size δt of
the leap-frog algorithm, which affects the acceptance rate and convergence of
the HMC algorithm in ways similar to that of the scale parameters of RWM and
MALA, and optimal choice of this parameter is of much importance. Cheung and
Beck (2009) suggest choosing δt such that the empirical acceptance rate is at least
0.1. Using heuristic arguments and calculations Neal (2011) obtained the optimal
acceptance rate 0.65 for HMC for δt = O(d−4), so that δt can be tuned to achieve
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the acceptance rate. The results obtained by Neal (2011) are further validated by
Beskos et al. (2013) who establish, in the case of i.i.d. product density as the target,
a formal theory of optimal scaling for HMC, considering δt = � × d−4.

Dutta and Bhattacharya (2014) show that HMC is a special case of TMCMC,
where the momentum vector plays the role of the random variables using which the
relevant forward and inverse transformations are taken; in the Appendix we briefly
touch upon the issue. However, since the main essence of TMCMC is to update
all the variables using transformations of a scalar random variable, it is worth up-
dating the momentum vector p using a single random variable. In this regard, we
provide the TMCMC based version of HMC in Algorithm 3.4, where, for simplic-
ity we consider additive TMCMC, noting that any valid transformation satisfying
the conditions stated in Dutta and Bhattacharya (2014) may be considered.

Algorithm 3.4 (TMCMC based HMC).

• Let (x1,p1) be the current value. Also, let b1 with
probability P(b1) and ε1 ∼ q(·)I{ε1>0} be associated with
the current value p1.

• Do the following:

1. Propose b2 with probability P(b2) and ε2 ∼ q(·)I{ε2>0}.
Set p̃1 = p1 + σb2ε2 as the proposed value.

2. Letting (x(0),p(0)) = (x1, p̃1), run the leap-frog algo-
rithm for L time steps, to yield (x2,p2) = (x(t + Lδt),

p(t + Lδt)).
3. Accept x2 with probability

min
{

1,
P (b1)

P (b2)
× exp

{−H(x2,p2) + H(x1,p1)
} × q(ε1)

q(ε2)

}
, (3.12)

and store p̃1 as the current value for the next it-
eration.

4. Else accept x1 with the remaining probability and
store p1 as the current value for the next it-
eration.

Given fixed scalings of the additive TMCMC above, due to drastic dimension
reduction of the momentum vector p, one may expect higher optimal acceptance
rate for the TMCMC based HMC algorithm compared to the original HMC al-
gorithm with respect to optimal scaling of δt . Because of dimension reduction,
the TMCMC-fed HMC method is also expected to have diffusion speed that is far
more robust compared to that of the original HMC procedure, as in the case of
optimal scaling of additive TMCMC relative to RWM. If optimal scaling of both
δt and σ is desired, then new issues open up, and merits detailed investigation.
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3.5 Multiple-try MCMC

By multiple-try MCMC we mean the MCMC algorithm that selects the next pro-
posal from a set of available, perhaps dependent, proposals. For MH-adapted ver-
sions of such an idea, see, for example, Liu and Sabatti (2000), Liang, Liu and
Caroll (2010), Martino and Read (2013). To briefly describe the main idea based
on MH, we consider w(x, y) = π(x)q(x, y)λ(x, y), where π is the target density,
q(x, y) is an arbitrary proposal satisfying q(x, y) > 0 if and only if q(y, x) > 0
and λ(x, y) is an arbitrary symmetric non-negative function such that λ(x, y) > 0
whenever q(x, y) > 0. If the current state is x(t) = x, then the basic multiple-try
MH for the (t + 1)th iteration is given as follows:

Algorithm 3.5 (Multiple-try MH).

• Draw k realizations, y1, . . . , yk, from q(x, ·).
• Select y from the set {y1, . . . , yk} with probability pro-
portional to w(yj , x) = π(x)q(x, yj )λ(x, yj ); j = 1, . . . , k.

• Obtain the (k − 1) auxiliary variables x̃1, . . . , x̃k−1 from
q(y, ·), and let x̃k = x.

• Accept y with probability

α = min
{

1,
w(y1, x) + · · · + w(yk, x)

w(x̃1, y) + · · · + w(x̃k, y)

}
.

When λ(x, y) = 1/q(x, y), w(x, y) = π(x), and in this case, the above al-
gorithm boils down to oriental bias Monte Carlo (Frenkel and Smit (2002)) for
molecular simulation. For various other versions of multiple try MCMC, see, for
example, Liu and Sabatti (2000) and Bédard, Douc and Moulines (2012). In fact,
Bédard, Douc and Moulines (2012) investigated scaling analysis of many varia-
tions of the above multiple-try MH method when the target π is the product of
i.i.d. densities, w(x, y) = π(x), and when the proposals are generated from multi-
variate normal random walk proposals. As to be expected, the scaling constant, the
diffusion speed, and the acceptance rate are increasing with k, the number of trial
proposals. As we primarily investigated, the same issue holds in the corresponding
TMCMC case, and the optimal acceptance rate tends to 1 as k → ∞, indepen-
dently of the scale of the random walk proposal. Thus, when k is very large, it
seems that one can achieve virtually any desired diffusion speed simply by choos-
ing the scaling constant large enough. Indeed, since the algorithm is convergent,
the close to one acceptance rate implies that one can achieve almost i.i.d. sam-
ples from the target π with large enough k, where k must increase at a rate faster
than the scaling constant. But this of course comes at a very high computational
cost, and it is debatable whether such a multiple-try strategy is worth in practice.
Bédard, Douc and Moulines (2012) also investigated optimal scaling with alterna-
tive choices of w(x, y), but the weights proportional to the target density yielded
the best results.
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3.6 Delayed rejection MCMC

The delayed rejection MCMC, which has been introduced by Tierney and Mira
(1999), attempts, at any given iteration of the algorithm, to successively improve
the proposal by generating a sequence of trial values from possibly different pro-
posal distributions till ultimate acceptance of a trial value or till a given number,
k, of trial values are generated. Further development of the method was provided
by Mira (2001) for fixed-dimensional problems and by Green and Mira (2001)
for variable-dimensional problems. Applications of delayed rejection MH can be
found in Harkness and Green (2000), Umstätter et al. (2004), Raggi (2005), Haario
et al. (2006), Trias, Vecchio and Veitch (2009), etc. and optimal scaling of this
method for random walk proposals when k = 2 and the target is the product of
i.i.d. densities, has been undertaken by Bédard, Douc and Moulines (2014). The
two-step delayed rejection MH is given by the following algorithm when x is the
current state of the chain:

Algorithm 3.6 (Delayed rejection MH).

• Draw y1, from proposal distribution q1(x; ·).
• Accept y1 with probability

α1(x;y1) = min
{

1,
π(y1)q1(y1;x)

π(x)q1(x;y1)

}
.

• If y1 is rejected, generate another trial value y2
from possibly another proposal q2(x, y1; ·).

• Accept y2 with probability

α2(x, y1;y2) = min
{

1,
π(y2)q1(y2;y1)[1 − α1(y2;y1)]q2(y2, y1;x)

π(x)q1(x;y1)[1 − α1(x;y1)]q2(x, y1;y2)

}
.

When the proposals are random walks, Bédard, Douc and Moulines (2012) sug-
gest two different scalings: relatively large scale for the first attempt, and a smaller
scale for the second attempt if the first attempt leads to rejection. They also con-
sider two set-ups for the two proposal distributions; in one set-up they assume that
y2 is generated independently of y1 and in the other they consider generating y2
conditionally on y1 using a deterministic transformation such that y2 is generated
from q2(x, ·). The optimal scaling results obtained by Bédard, Douc and Moulines
(2014) are, however, not encouraging. In the first set-up where y1 and y2 are gener-
ated independently, they obtained 0.234 as the optimal acceptance rate for the first
acceptance rate, namely α1, while the second acceptance rate α2 converges to zero,
showing that given the first proposal, the second move is useless. For the second,
dependent proposal set-up, the optimal acceptance rates for both the stages turned
out to be 0.234, showing that there is no improvement of the acceptance rate in
the second attempt, perhaps signifying inadequate learning from the first attempt.
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Since delayed rejection methods necessarily involves much computational burden
compared to the traditional RWM, the discouraging results of Bédard, Douc and
Moulines (2012) seem to put a question mark on the usefulness of such methods.
As can be anticipated, for additive TMCMC adaptation of delayed rejection, the
corresponding acceptance rates in the two proposal set ups of Bédard, Douc and
Moulines (2014) would be 0.439, and would not amount to any improvement over
the usual additive TMCMC.

3.7 Optimal scaling in adaptive MCMC methods

The adaptive MCMC methods are concerned with proposal distributions that are
updated in every iteration based on progressive learning with the iterations. Thus,
the chain is not Markov but is so designed that asymptotically it becomes Markov
and converges to the target distribution. Thus, adaptive MCMC is about a family
of Markov kernels {Pσ }λ∈�, each having the same stationary distribution π , where
� is an appropriate set of possible tuning parameters associated with the possible
Markov kernels. Letting λt be associated with the Markov kernel at the t th iteration
and A be any relevant Borel set, we have

P(Xt+1 ∈ A|Xt = x,λt = λ,Xt−1, . . . ,X0, λt−1, . . . , λ0) = Pλ(x,A).

The choice of λt is allowed to depend upon Xt−1, . . . ,X0, λt−1, . . . , λ0, although
in practice, {(Xt , λt )}∞t=0 is usually designed to be a Markov chain. Roberts and
Rosenthal (2007) prove convergence and ergodicity of the adaptive chain assuming
the diminishing adaptation condition

lim
t→∞ sup

x

∥∥Pλt+1(x, ·) − Pλt (x, ·)∥∥ = 0 in probability; (3.13)

and the bounded convergence condition{
Mη(Xt , λt )

}∞
t=0 is bounded in probability, (3.14)

with Mη(Xt , λt ) = inf{t ≥ 1 : ‖P t
λ(x, ·) − π(·)‖ ≤ η} being essentially the conver-

gence time of Pλ when started with the initial value x. As argued in Rosenthal
(2011), (3.14) is satisfied quite generally, except perhaps some pathological exam-
ples, and thus the diminishing adaptation condition (3.13) is more important and
requires careful designing of the adaptive scheme.

A valid adaptive method that is very popular is to set λt to be the empiri-
cal average of λ0, λ1, . . . , λt−1. Such a scheme has been used, for example, by
Haario, Saksman and Tamminen (2001) for adaptive optimal scaling with normal
random walk, where at the (t + 1)th iteration the proposal y is generated from

N(xt ,
�2

opt
d


t+1), where �opt = 2.38 is the optimal scale borrowed from the RWM
based optimal scaling theory and 
t+1 is an estimate of the target covariance ma-
trix, set as the empirical covariance matrix of X0, . . . ,Xt . To prevent singularity
of 
t+1, Haario, Saksman and Tamminen (2001) added a small positive quantity
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to its diagonal, for all the iterations. Alternative ideas, such as a mixture distribu-
tion, may also be considered (see Roberts and Rosenthal (2009)). Such optimal
scaling based adaptive rules are expected to have an ultimate acceptance rate close
to 0.234. There exist various modifications of the basic approach of Haario, Saks-
man and Tamminen (2001); see, for example, Haario, Saksman and Tamminen
(2005), Andrieu and Thoms (2008), Craiu, Rosenthal and Yang (2009), Roberts
and Rosenthal (2009).

Dey (2013) has constructed various adaptive versions of TMCMC, focussing
particularly on additive TMCMC, and aiming for the ultimate optimal acceptance
rate 0.439. Comparisons of adaptive additive TMCMC with various RWM based
adaptive algorithms in simulation studies led to the very interesting observation
that even for dimension as small as d = 10, some of the RWM based adaptive
algorithms failed to converge to the desired acceptance rate 0.234 even after 105

iterations, while adaptive TMCMC reached its optimal acceptance rate 0.439 much
faster, for all the adaptive versions considered. For dimensions as high as d = 100,
the drop in efficiencies of the RWM based algorithms in comparison to TM-
CMC became all the more pronounced. Among all the existing adaptive methods,
the method of Atchade and Rosenthal (2005) based on stochastic approximation
(Robbins and Monro (1951)) performed the best, for both adaptive MH and adap-
tive TMCMC.

3.8 Optimal scaling in Metropolis coupled MCMC (MC3)

When the target distribution is multimodal, then the usual MCMC methods gen-
erally fail to adequately explore all the modal regions. To combat this problem,
Geyer proposed the following idea. Instead of generating a single MCMC from the
multimodal target density π , it is worth generating parallel chains with tempered
target density πβj ; j = 0,1, . . . ,m, where 0 ≤ βn < βn−1 < · · · < β1 < β0 = 1 are
suitable inverse temperatures such that πβj becomes progressively smoother and
tends to unimodality as j increases. MC3 proceeds by running one chain at each
of the m + 1 values of β . The current scenario with m + 1 target densities can be
thought of as the product target density

∏m
j=0 πβj (xj ), where xj denotes the chain

at a fixed inverse temperature βj with stationary density πβj . The MC3 idea then
suggest generating parallel MCMC from the densities πβj and occasionally swap-
ping the values of the parallel chains. The swapping of the states help exchange
information between different modal regions of the original target and hence helps
explore the target more efficiently compared to the usual MCMC algorithms. The
algorithm is given as follows.

Algorithm 3.7 (The MC3 algorithm).

• Update in parallel the Markov chains for each of the
tempered densities using any convergent MCMC algo-
rithm up to a certain number of iterations, say t0.
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• Then for each iteration t (t > t0),

1. Attempt within temperature move by updating each
xj using the usual RWMH MCMC algorithm with sta-
tionary density πβj.

2. Attempt a temperature swap by randomly choosing
two different inverse temperatures, say βj and βk,
and then proposing to swap their respective state
values with probability

α = min
{

1,
πβj (xk)π

βk (xj )

πβj (xj )πβk (xk)

}
.

If the swap is rejected, the values of the states
remain unchanged.

The spacing of the inverse temperatures βj has important consequences of the
mixing of the algorithm. For instance, if two close values of β are swapped, then
not much information is exchanged and so mixing is not expected to improve,
while the proposal to swap too far away values of β would usually lead to re-
jection of the swap proposal. Thus, optimal scaling of the spacings between the
inverse temperatures is necessary. Atchade, Roberts and Rosenthal (2010) propose
the spacings to be of length η = �

d
, for a d-dimensional target density, where �

must be chosen optimally chosen in some sense. Under the assumption that the
original target density is a product of i.i.d. densities, Atchade, Roberts and Rosen-
thal (2010) maximize the stationary ESJD with respect to � to obtain the optimal
spacing. For the optimal spacing, the corresponding swap acceptance rate turns out
to be 0.234.

Dey (2017) proposed to randomize the spacings such that η = �√
d
ε, where

ε ∼ q(·)I{ε>0}, where q is any arbitrary density. He referred to the corresponding
randomized algorithm as randomized Metropolis Coupled Markov Chain Monte
Carlo (RMC3). When q is the left truncated N(0,1) density, Dey (2017) proved
that the optimal swap acceptance rate of RMC3, obtained via maximization of
stationary ESJD, is 0.439. In keeping with the much improved swap acceptance
rate, we observed much improved mixing of RMC3 in comparison with MC3 in
simulation studies. We also propose to simulate the parallel Markov chains using
TMCMC, rather than the traditional MCMC methods, for much greater efficiency.
The resulting methodology can be termed as randomized transformation-based
Metropolis Coupled Markov Chain Monte Carlo (RTMC3).

Recently Khamaru (2016) created an appropriate randomized variable dimen-
sional swap based methodology for variable dimensional target distributions,
where given some (perhaps, all) dimensions, the target is multimodal. The par-
allel, variable-dimensional chains are simulated using Transdimensional Trans-
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formation based Markov Chain Monte Carlo (TTMCMC) (Das and Bhattacharya
(2017)). The authors refer to this novel methodology as randomized transdi-
mensional transformation-based Metropolis Coupled Markov Chain Monte Carlo
(RTTMC3). Even for RTTMC3, the optimal swap acceptance rate turned out to be
0.439!

The rest of our paper is structured as follows. In Section 4 we discuss our dif-
fusion based approach to optimal scaling of additive TMCMC with non-Gaussian,
thick-tailed proposals, assuming that the regularity conditions of Theorem 4.1 of
Dey and Bhattacharya (2017) are satisfied. Even though the proof of our result
does not go through with the Cauchy proposal (since the moments do not exist),
our simulation studies indicate that at least the recipe for obtaining optimal scaling
and optimal acceptance rate remains valid even for the Cauchy proposal, which
is what we conjecture. We follow up our theoretical investigations with simula-
tion studies and compare additive TMCMC and RWM for Gaussian and Cauchy
proposals, considering the target distributions to be a t density with 5 degrees
of freedom, a density with exponential tails. As expected, TMCMC emerges the
winner in all the cases; our simulation studies also demonstrate that the Gaussian
proposal is perhaps more efficient than the Cauchy proposal. We consider another
more realistic simulation study involving simulation from the posterior distribution
associated with a mixture of Weibull distributions, and again TMCMC is seen to
outperform RWM. In Section 5, we consider target densities with bounded support,
so that they are no longer continuous on R. The indicator function associated with
the bounded support condition makes direct derivation of diffusion results diffi-
cult. To avoid such difficulty, we consider the logistic transformation, mapping the
bounded random variables to R, and obtain our diffusion result on the transformed
space. We then make use of the Itô formula to obtain the diffusion result associ-
ated with the original bounded random variables, for Gaussian/non-Gaussian pro-
posal distributions. We show that the notion and interpretation of diffusion speed
remains intact even in the latter diffusion equation, so that obtaining optimal scal-
ing by maximizing the diffusion speed remains a valid approach. Explicit forms
and values of the optimal scales and optimal acceptance rates for various proposal
distributions are provided and discussed in Section 6. We compare our diffusion
based optimal scaling of additive TMCMC with the ESJD based optimal scaling
of RWM (Neal and Roberts (2011)) in Section 7, focussing particularly on the
Cauchy proposal. We show that our approach emphatically outperforms the ESJD
method for the Cauchy based RWM agorithm. In Section 8, we compare additive
TMCMC and RWM with the popular and usually effective slice sampling method
in the case of a d-dimensional target density with positive support, demonstrat-
ing that additive TMCMC significantly outperforms both the competing methods
for all the values of d considered. Finally, we summarize our contributions and
provide concluding remarks in Section 9.
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4 Diffusion based approach for additive TMCMC with non-Gaussian,
thick-tailed proposals

The diffusion based approach for additive TMCMC, as considered by Dey and
Bhattacharya (2017) remains valid in spite of non-Gaussian proposals. To under-
stand why this is the case, we first provide a brief overview of additive TMCMC.

4.1 Additive TMCMC

As before, assume that we are simulating from a d dimensional space (usually
R

d ), and that we are currently at a point x = (x1, . . . , xd). Further, let us define d

random variables b1, . . . , bd as in (2.1). The additive TMCMC uses moves of the
following type:

(x1, . . . , xd) → (x1 + b1ε, . . . , xd + bdε),

where ε > 0 has any arbitrary distribution with support R+, the positive part of
the real line. In this work, we shall assume that pi = 1/2 for i = 1, . . . , d and that
ε = �√

d
ε∗, where ε∗ ∼ q(·)I{ε∗>0}, where q(·) is an arbitrary density with support

R+. Here for any set A, IA denotes the indicator function of A.
Thus, a single ε is simulated from a distribution supported on R+, which is then

either added to, or subtracted from each of the d co-ordinates of x with probability
1/2. Assuming that the target distribution is proportional to π , the new move x∗ =
(x1 + b1ε, . . . , xd + bdε) is accepted with probability

α = min
{

1,
π(x∗)
π(x)

}
. (4.1)

The main difference of additive TMCMC with the RWM algorithm is that,
instead of simulating and utilizing a single ε, the latter proceeds by simulating
ε1, . . . , εd independently from some density supported on the entire real line, and
then adding εi to the coordinate xi , to form x∗

i , for each i. The new move is
accepted with probability having the same form as (4.1). The default, optimally

scaled RWM proposal corresponds to εi = �√
d
ε∗
i , where ε∗

i

i.i.d.∼ N(0,1), for appro-
priate (optimal) choice of �.

As discussed in Dutta and Bhattacharya (2014), in d dimensions the number
of εi allowed by TMCMC ranges from 1 to d , so that RWM is a special case of
additive TMCMC. In what follows, however, we confine ourselves to a single ε for
additive TMCMC.

4.1.1 Computational gain of TMCMC over RWM. Although TMCMC requires
simulation of d +1 random variables in every iteration as opposed to simulation of
d random variates required by RWM, the computational complexity of the former
algorithm is much less because simulation of Bernoulli random variables is com-
putationally a much simpler exercise compared to simulation of normal deviates.
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The issue on computational gain of TMCMC is illustrated in Dey and Bhattacharya
(2017); here we further remark that RWM took about 43 minutes for completion
of 106 iterations for a 100-dimensional target distribution composed of products
of standard normal densities truncated on (−1,1) (see Section 7), while additive
TMCMC took just about 28 minutes for the same number of iterations and the
same target distribution, the codes been written in R and implemented on a single
node desktop machine.

4.2 Diffusion approach to additive TMCMC avoids technical difficulties
associated with non-Gaussian proposals using Lyapunov’s central limit
theorem conditional on ε and b1

In order to prove diffusion based optimal scaling results for additive TMCMC,
Dey and Bhattacharya (2017) had to apply Lyapunov’s central limit theorem on
sums associated with the discrete random variables {bi; i = 2, . . . , d}, conditional
on ε (and b1), and hence did not have to rely on any Gaussian assumption. Indeed,
as shown in Dey and Bhattacharya (2017), even if q(·)I{ε∗>0} ≡ N(0, σ 2)I{ε∗>0},
so that for each i, biε

∗ ∼ N(0, σ 2), we still do not have joint normality of
(b1ε

∗, . . . , bdε∗). In fact, biε
∗ + bj ε

∗ = 0 with probability 1/2 for i �= j , showing
that the linear combinations of biε

∗ need not be normal. That is, the joint distri-
bution of (b1ε

∗, . . . , bdε∗) is not normal, even though the marginal distributions
are normal and the components are pairwise uncorrelated (E(biε

∗ × bj ε
∗) = 0

for i �= j ). This also shows that biε
∗ are not independent, because independence

would imply joint normality of the components. Note that biε
∗ are dependent on

the same ε∗, hence they are not independent anyway.

4.3 Formal diffusion result for non-Gaussian proposals for i.i.d. product
target densities

Let us consider target densities of the form

πX(x) =
d∏

i=1

fX(xi); −∞ < xi < ∞,∀i = 1, . . . , d. (4.2)

Let Xd
t = (Xt,1, . . . ,Xt,d). As in Dey and Bhattacharya (2017) (see also the ref-

erences therein), we define Ut
d = X[dt],1 ([·] denotes the integer part), the sped up

first component of the actual additive TMCMC-induced Markov chain. Thus, this
process proposes a jump every 1

d
time units. As d → ∞, that is, as the dimension

grows to ∞, the process essentially becomes a continuous time diffusion process.
Following Dey and Bhattacharya (2017), let us assume that

EfX

(
f ′

X(X)

fX(X)

)4
< ∞, (4.3)

EfX

(
f ′′

X(X)

fX(X)

)4
< ∞, (4.4)
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EfX

(
f ′′′

X (X)

fX(X)

)4
< ∞, (4.5)

EfX

∣∣∣∣f
′′′′
X (X)

fX(X)

∣∣∣∣ < ∞. (4.6)

Following Roberts, Gelman and Gilks (1997), let us denote weak convergence
of processes in the Skorohod topology by “⇒”; see also Dey and Bhattacharya
(2017). Then, the following theorem, which is essentially Theorem 4.1 of Dey and
Bhattacharya (2017), holds:

Theorem 1. Assume that fX is positive with at least three continuous derivatives
and that the fourth derivative exists almost everywhere. Also assume that (logfX)′
is Lipschitz continuous, and that (4.3)–(4.6) hold. Let Xd

0 ∼ πX , that is, the d-
dimensional additive TMCMC chain is started at stationarity, and let the transi-
tion be given by (x1, . . . , xd) → (x1 + b1ε, . . . , xd + bdε), where for i = 1, . . . , d ,
bi = ±1 with equal probability and ε ≡ �√

d
ε∗, where ε∗ ∼ q(·)I{ε∗>0}. We then

have

{
Ud

t ; t ≥ 0
} ⇒ {Ut ; t ≥ 0},

where U0 ∼ fX and {Ut ; t ≥ 0} satisfies the Langevin stochastic differential equa-
tion (SDE)

dUt = g(�)1/2 dBt + 1

2
g(�)

(
logfX(Ut)

)′
dt, (4.7)

with Bt denoting standard Brownian motion at time t ,

g(�) = 4�2
∫ ∞

0
u2	

(
−u�

√
IX

2

)
q(u)du; (4.8)

	(·) being the standard normal cumulative distribution function (c.d.f.), and

IX = EfX

(
f ′

X(X)

fX(X)

)2
. (4.9)

The main difference of this theorem with Theorem 4.1 of Dey and Bhat-
tacharya (2017) is that here we allow ε∗ in ε ≡ �√

d
ε∗ to have arbitrary distribu-

tion q(·)I{ε∗>0}, supported on the positive part of the real line, whereas Dey and
Bhattacharya (2017) considered q(·) to be N(0,1). The proof of the theorem only
requires biε

∗ to have finite moments, and with this assumption, exactly the same
proof of Dey and Bhattacharya (2017) goes through for non-Gaussian choices of
q(·).
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4.4 Conjecture for proposals where the moments of biε
∗ do not exist

As indicated above, the proof of Theorem 1, analogous to the proof of Theorem 4.1
of Dey and Bhattacharya (2017), does not carry over for proposal distributions
for which the moments of biε

∗ do not exist, which happens when biε
∗ is dis-

tributed as Cauchy, for instance. The reason is that some requisite Taylor’s series
expansions associated with b1ε

∗ will not be valid as the higher order terms do not
converge in probability to zero as d → ∞. However, all our simulation studies
demonstrated that our additive TMCMC algorithms with the Cauchy proposal and
the scale �/

√
d , have empirical acceptance rate extremely close to that associated

with the theoretical acceptance rate associated with (4.8), even for d as small as
10, and results of simulations with high dimensions d = 50 and d = 100 lend fur-
ther support to this observation (see Sections 4.5 and 7). We thus conjecture that
at least the method of obtaining optimal scaling and optimal acceptance rate, as
discussed in Section 6, remains valid even for the Cauchy proposal. We use the
result as a “rule of thumb” even in situations where valid proofs are yet pending.

4.5 Simulation experiments to compare performances of optimal TMCMC
and RWM with respect to Gaussian and Cauchy proposals

In this section, we consider two target densities of the following forms, also con-
sidered by Neal and Roberts (2011):

fX(x) = 8

3
√

5π

(
1 + x2

5

)−3
; x ∈ R, (4.10)

which is the t-distribution with 5 degrees of freedom, and

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

4
if |x| < 1;

1

4
exp

(
1 − |x|) if |x| ≥ 1,

(4.11)

which is a distribution with exponential tails.
We use both Gaussian and Cauchy proposals for the competing additive TM-

CMC and RWM algorithms to simulate from the above target distributions con-
sidering dimensions d = 10, 50 and 100, and compare the performances of the
algorithms, with respect to both the proposal distributions, for both the target dis-
tributions. For the purpose of comparison, we use the Kolmogorov–Smirnov (KS)
distance between the empirical distribution function associated with the MCMC
simulations and the true, target distribution functions, both associated with the
first co-ordinate of the d-dimensional distributions. We also consider the autocor-
relations of the underlying Markov chains.

Using equations (4.8) and (4.9), we find that for both the target distributions
(4.10) and (4.11), the optimal acceptance rate of additive TMCMC is 0.439 for
the Gaussian proposal and 0.380 for the Cauchy proposal. As shown in Table 2,
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even for target densities with bounded support, the optimal acceptance rate for
additive TMCMC with the Cauchy proposal is 0.380; indeed, as argued in Sec-
tion 6, the optimal acceptance rate depends only on the choice of the proposal
distribution. When the target density is (4.10), the optimal scales for the Gaussian
and Cauchy proposals are given by �opt,Gaussian = 2.802 and �opt,Cauchy = 2.239,
respectively, and for target density (4.11), these are given by �opt,Gaussian = 3.431
and �opt,Cauchy = 2.741. It is worth recalling that for both the target distributions
and for both the proposal distributions we consider the scale of the form �/

√
d .

On the other hand, although for both the target densities the Gaussian proposal
based RWM has scale of the form �/

√
d , the ESJD-based approach of Neal and

Roberts (2011) requires the scale to be of the form �/d for the RWM based Cauchy
proposal. It is worth noting that for target distributions with bounded supports Neal
and Roberts (2011) consider the scale �/(d logd) for the RWM based Cauchy
proposal, and obtained the optimal acceptance rate 0.368.

In the current context, using their ESJD approach, Neal and Roberts (2011) ob-
tained the optimal acceptance rate for either of the target distribution to be 0.234,
for both the proposal distributions. For our simulations, we choose the scales ap-
propriately in each case such that for RWM the empirical acceptance rate obtained
from the MCMC simulations is as close to 0.234 as possible. In all our simulations,
the optimal scales of TMCMC led to empirical acceptance rates that are very close
to the actual optimal acceptance rates.

With the above set-up, we simulated 105 MCMC realizations from each tar-
get distribution, with both Gaussian and Cauchy proposals with respect to both
additive TMCMC and RWM, for dimensions d = 10,50,100. The KS distances
for each such simulation, are provided in Table 1. As is observed from the ta-
ble, in all the cases considered, TMCMC outperforms RWM significantly in terms
of the KS distance, even though in most cases the RWM based autocorrelations
decrease somewhat faster than the TMCMC based autocorrelations (figures not
shown for brevity). Since the maximum diffusion speed is higher for RWM when
the Gaussian proposal is considered (see Dey and Bhattacharya (2017)), and since
the optimal scale for the RWM based Cauchy proposal is chosen by maximizing
ESJD, both of which are directly related to autocorrelations, it is not unexpected
that the autocorrelations of RWM would generally decrease faster; the same phe-
nomenon has been observed in Dey and Bhattacharya (2017). However, neither
the maximum diffusion speed nor ESJD guarantees that the KS distance would be
smaller for RWM, and as such, our results concur with those obtained in Dey and
Bhattacharya (2017), that the TMCMC significantly outperforms RWM in terms
of the KS distance. Since smaller KS distance is far more desirable than smaller
autocorrelations, it is reasonable to conclude, as in our previous works related to
TMCMC, that additive TMCMC is a much superior methodology compared to
RWM. The reason for the superior performance of TMCMC in terms of the KS
distance can perhaps be attributed to its much higher acceptance rate in compar-
ison to the somewhat slow rate of decrease of the autocorrelations. To elaborate,
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Table 1 KS distances between MCMC-based and target distribution functions under TMCMC and
RWM with Gaussian and Cauchy proposals

Target

fX(x) = 8
3
√

5π
(1 + x2

5 )−3;x ∈ R fX(x) =
⎧⎨
⎩

1
4 if |x| < 1;
1
4 exp(1 − |x|) if |x| ≥ 1

Proposal d = 10 d = 50 d = 100 d = 10 d = 50 d = 100

TMCMC (Gaussian) 0.006 0.011 0.029 0.009 0.011 0.016
RWM (Gaussian) 0.013 0.018 0.043 0.017 0.021 0.021

TMCMC (Cauchy) 0.007 0.017 0.016 0.009 0.014 0.016
RWM (Cauchy) 0.013 0.028 0.026 0.022 0.026 0.021

while the mixing peroperties of TMCMC and RWM in terms of their respective au-
tocorrelations do not differ drastically, the acceptance rate of TMCMC is of course
emphatically larger than that of RWM. The latter cancels the slight advantage of
RWM in terms of autocorrelations, and tilts the comparison in favor of TMCMC
in terms of the KS distance.

In this context, let us note that for the RWM based Cauchy proposal, the scale
being of the order O(d−1), even though smaller compared to the TMCMC scale of
the order O(d−1/2), has a slight edge over TMCMC in terms of autocorrelaion de-
cay. However, for target distributions with bounded supports, the RWM scale is of
the order O((d logd)−1), while that of TMCMC remains of the order O(d−1/2).
The simulation experiments detailed in Section 7 demonstrate that the further in-
corporation of the logd factor in the RWM scale washes out the autocorrelation-
related advantage of RWM over TMCMC for bounded target distributions, and in
those cases, TMCMC emphatically outperforms RWM in terms of KS distance, as
well as in terms of autocorrelation decay.

Finally, Table 1 demonstrates that the Gaussian proposal seems to have a slight
edge over the Cauchy proposal, for both TMCMC and RWM. This is consistent
with the more emphatic conclusion of Neal and Roberts (2011) that the Gaussian
proposal always outperforms the Cauchy proposal, at least in terms of ESJD. Even
our autocorrelation plots revealed that for the Gaussian proposal the autocorrela-
tions decays faster than that of the Cauchy proposal, for both TMCMC and RWM,
for both the target densities, and for d = 10,50,100. In this sense, our results are
consistent with those of Neal and Roberts (2011).

4.6 Simulation study for comparing TMCMC and RWM in a more realistic
setting

We now consider a simulation study in the context of the following hierarchical
Bayesian model based on a mixture of two Weibull distributions, as suggested by
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a referee:

y1, . . . , yn
i.i.d.∼ 1

2
Weibull(α1, β1) + 1

2
Weibull(α2, β1),

where α1, α2 are shape parameters and β1, β2 are scale parameters. We assume
that a priori, for j = 1,2, αj ∼ Gamma(aj , bj ), where aj and bj are shape and
rate parameters respectively, so that the mean and the variance of αj are aj/bj and
aj/b

2
j , respectively. Specifically, we set a1 = a2 = b1 = b2 = 0.1. We assume for

simplicity that β1 = β2 = 1.
The goal of this study is to evaluate the performances of additive TMCMC and

RWM in generating MCMC samples from the posterior π(α1, α2|y1, . . . , yn), for
various choices of n. Observe that this posterior does not satisfy the conditions
necessary for the optimal scaling theories. For instance, the target posterior is only
two-dimensional, and neither are the two co-ordinates i.i.d. with respect to the
posterior. But here we wish to verify the importance of the optimal scaling theory
in more realistic problems; we also wish to compare the performances of additive
TMCMC and RWM in this set-up, and the performances of non-Gaussian and
Gaussian proposals with respect to both the algorithms.

Table 1 demonstrates that the Gaussian proposal has an edge over the Cauchy
proposal. Thus, in order to outperform the Gaussian proposal it is of importance
to consider non-Gaussian proposals that are somewhat close to the Gaussian pro-
posal. The t distribution with a reasonable degree of freedom may thus be appro-
priate. Table 2 shows that the t distribution with 5 degrees of freedom provides
an optimal acceptance rate that is quite close to the Gaussian proposal. Note that
although the table considers target distributions with bounded supports, it has been
argued in Section 6 that the optimal acceptance rate is independent of the target
distribution or its support, and depends only on the proposal distribution. Hence, it
is appropriate in our current situation to consider the t distribution with 5 degrees
of freedom as a suitable non-Gaussian proposal.

To set the scales of α1 and α2, we first note that, since both have the same
priors and since the likelihood gives equal weight to both, their posteriors are likely
to be similar. Hence, we use the same scaling form �/

√
d for both α1 and α2,

with respect to both additive TMCMC and RWM. In particular, with the Gaussian
proposal based additive TMCMC, we tune � so that the empirical acceptance rate
is close to 0.439 and for the t distribution with 5 degrees of freedom, we tune �

so that additive TMCMC has an empirical acceptance rate is close to 0.431. For
RWM, we tune � such that the empirical acceptance rate for both Gaussian and t

proposals is close to 0.234.
We simulate 10 data sets from our hierarchical Bayesian of sizes n = 10, 20, 30,

40, 50, 60, 70, 80, 90, 100, each consisting of i.i.d. observations. For each value of
n, we then draw from the posterior distribution π(α1, α2|y1, . . . , yn) using Gaus-
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Figure 1 Plots of the KS distances of α1 and α2 associated with TMCMC and RWM for 10 data
sets when the proposal distribution is t with 5 degrees of freedom.

sian and t based additive TMCMC and RWM, with the aforementioned scalings.
We discard the first 15,000 iterations as burn-in and store the next 105 iterations
for evaluation of the methods. Since the true marginal distribution functions of α1
and α2 are not analytically tractable for computation of the KS distances, we di-
vide the 105 iterations after the burn-in period into two parts; one part consists of
the first 50,000 realizations (after the burn-in) and the other part contains the next
50,000 iterations. We then consider the empirical KS distance between these two
parts; smaller values would indicate better convergence. Ideally, one should con-
sider the joint empirical distribution function associated with the samples drawn
from the joint posterior of (α1, α2), but certainly the marginal empirical distribu-
tion functions are much easier to deal with, which is why we do not consider the
joint empirical distribution functions.

Panel (a) of Figure 1 shows the KS distances for α1 associated with TMCMC
and RWM, for all the 10 data sets of sizes n = 10, 20, 30, 40, 50, 60, 70, 80, 90 and
100, when the proposal distribution is t with 5 degrees of freedom. Similarly, panel
(b) of Figure 1 shows the KS distances for α2 associated with TMCMC and RWM
for the t based proposal. Although for α1 TMCMC outperforms RWM only 50%
times in terms of KS distances, in the case of α2, TMCMC beats RWM 80% times.
With the Gaussian based proposals, as Figure 2 shows, TMCMC beats RWM in
50% cases with respect to α1 but outperforms RWM in 60% cases with respect to
α2. Thus, overall, TMCMC is clearly seen to have an edge over RWM even where
no optimal scaling theory holds.

Figures 3 and 4 compare the performances of the t and Gaussian proposals for
TMCMC and RWM respectively. Figure 3 shows that for both α1 and α2, TM-
CMC with the t proposal outperforms that with the Gaussian proposal 60% times,
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Figure 2 Plots of the KS distances of α1 and α2 associated with TMCMC and RWM for 10 data
sets when the proposal distribution is Gaussian.

Figure 3 Plots of the KS distances comparing t and Gaussian proposals associated with TMCMC.

demonstrating that for TMCMC, the t proposal with 5 degrees of freedom may
be more appropriate than Gaussian. On the other hand, Figure 4 shows that RWM
based on the t proposal beats that based on the Gaussian proposal 50% times, for
both α1 and α2, suggesting that both the proposals may be equally preferred for
RWM when the optimal scaling theory does not hold.
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Figure 4 Plots of the KS distances comparing t and Gaussian proposals associated with RWM.

5 Diffusion based optimal scaling for target densities with bounded
supports

Although the diffusion based approach of Dey and Bhattacharya (2017) remains
valid for additive TMCMC for any proposal distribution such that biε

∗ has fi-
nite moments, the approach needs to be slightly modified to accommodate tar-
get densities with bounded supports, so that they are discontinuous in R

d , say.
Otherwise the mathematics becomes unwieldy due to the presence of the indi-
cator functions indicating the bounded support of the target density. Moreover,
for target densities uniform on some bounded region, Fisher’s information, which
is an important ingredient in diffusion based optimal scaling theory, is not well-
defined.

In particular, let us consider target densities of the form

πX(x) =
d∏

i=1

fX(xi); a < xi < b,∀i = 1, . . . , d, (5.1)

for fixed real values a < b.
To handle such situations we provide a bijective (one-to-one and onto) trans-

formation to each xi so that the transformed random variables take values on the
entire real line. In this paper, we will consider the well-known logit transformation,
given by

yi = log
(

xi − a

b − xi

)
; ∀i = 1, . . . , d. (5.2)
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Clearly, for each i, yi takes values on R, and the resulting joint distribution of
y = (y1, . . . , yd) is given by

πY (y) =
d∏

i=1

fY (yi); −∞ < yi < ∞,∀i = 1, . . . , d, (5.3)

where

fY (yi) = (b − a) × eyi

(1 + eyi )2 × fX

(
a + beyi

1 + eyi

)
. (5.4)

If fX satisfies the regularity conditions on (a, b), then the transformed density
fY satisfies the corresponding regularity conditions on the real line R. Formally,
we have the following lemma:

Lemma 5.1. Regularity conditions on fX on (a, b) carry over to regularity con-
ditions on fY on R in the following ways:

(a) Assume that fX is positive with at least three continuous derivatives and that
the fourth derivative exists almost everywhere on (a, b). Then the same holds
for the transformed density fY on R.

(b) If fX satisfies the moment conditions (4.3)–(4.6), then the transformed density
fY satisfies the same moment conditions with Y replacing X.

(c) If (logfX)′ is Lipschitz continuous on (a, b), then (logfY )′ is Lipschitz con-
tinuous on R.

Proof. Part (a) is trivial. Part (b) is also straightforward to see by taking deriva-
tives and then making the transformation z = (a + bey)/(1 + ey) in the integration
associated with the expectation EfY

.
To establish part (c), we prove the equivalent condition of Lipschitz continuity

of (logfY (y))′, that is, the absolute value of the second derivative of

ψ(y) = logfY (y)

= log(b − a) + y − 2 log
(
1 + ey) + logf

(
a + bey

1 + ey

)

is bounded.
Note that

ψ ′′(y) = − 2ey

(1 + ey)2 + (
logfX(z)

)′′[(b − a)ey

(1 + ey)2

]2

+ (
logfX(z)

)′
(b − a)

ey(1 − ey)

(1 + ey)3 ,

(5.5)
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with z = (a + bey)/(1 + ey). Hence, noting that ey |(1−ey)|
(1+ey)3 ≤ ey(1+ey)

(1+ey)3 = ey

(1+ey)2 ,
we have

∣∣ψ ′′(y)
∣∣ ≤ 2ey

(1 + ey)2 + ∣∣(logfX(z)
)′′∣∣[(b − a)ey

(1 + ey)2

]2

+ ∣∣(logfX(z)
)′∣∣(b − a)

ey

(1 + ey)2

≤ 2 + (b − a)2∣∣(logfX(z)
)′′∣∣ + (b − a)

∣∣(logfX(z)
)′∣∣.

(5.6)

Since (logfX(z))′ is Lipschitz continuous on (a, b), this is clearly bounded on
(a, b), and by the equivalent characterization of Lipschitz continuity, (logfX(z))′′
is bounded on (a, b). Hence, the right hand side of (5.6) is bounded above, proving
that (logfY )′ is Lipschitz continuous on R. �

Using Lemma 5.1, we then have the following theorem, which is analogous to
Theorem 1, but deals with the transformed target density fY instead of the original
target fX , which is supported on (a, b).

Theorem 2. Assume that fX is positive with at least three continuous deriva-
tives and that the fourth derivative exists almost everywhere on (a, b). Also as-
sume that (logfX)′ is Lipschitz continuous on (a, b), and that (4.3)–(4.6) hold.
Let Yd

t = (Yt,1, . . . , Yt,d), where Yt,i = log(
Xt,i−a

b−Xt,i
); i = 1, . . . , d . As before, we

define Ud
t = Y[dt],1 ([·] denotes the integer part), the sped up first component of

the actual additive TMCMC-induced Markov chain, associated with the logistic
transformation of the original random variable X[dt],1 supported on (a, b). Let
Yd

0 ∼ πY , that is, the d-dimensional additive TMCMC chain is started at station-
arity (equivalently, Xd

0 ∼ πX), and let the transition be given by (y1, . . . , yd) →
(y1 + b1ε, . . . , yd + bdε), where for i = 1, . . . , d , bi = ±1 with equal probability
and ε ≡ �√

d
ε∗, where ε∗ ∼ q(·)I{ε∗>0}. We then have

{
Ud

t ; t ≥ 0
} ⇒ {Ut ; t ≥ 0},

where U0 ∼ fY and {Ut ; t ≥ 0} satisfies the Langevin stochastic differential equa-
tion (SDE)

dUt = g(�)1/2 dBt + 1

2
g(�)

(
logfY (Ut)

)′
dt, (5.7)

with Bt denoting standard Brownian motion at time t ,

g(�) = 4�2
∫ ∞

0
u2	

(
−u�

√
IY

2

)
q(u)du; (5.8)
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	(·) being the standard normal cumulative distribution function (c.d.f.), and

IY = EfY

(
f ′

Y (Y )

fY (Y )

)2

= EfY

[
1 − 2eY

1 + eY
+ f ′

X(a+beY

1+eY )

fX(a+beY

1+eY )
× (b − a)eY

(1 + eY )2

]2

=
∫ ∞
−∞

[
1 − 2ey

1 + ey
+ f ′

X(a+bey

1+ey )

fX(a+bey

1+ey )
× (b − a)ey

(1 + ey)2

]2

× (b − a)ey

(1 + ey)2 fX

(
a + bey

1 + ey

)
dy.

(5.9)

5.1 SDE associated with the original bounded random variables X

Theorem 2 gives the SDE and the diffusion speed g(�) associated with Ud
t =

Y[dt],1. However, we are interested in the SDE and the diffusion speed associated
with

V d
t = X[dt],1 = a + beUd

t

1 + eUd
t

. (5.10)

In this regard, we have the following theorem.

Theorem 3. Under the assumptions of Theorem 2 it holds that{
V d

t ; t ≥ 0
} ⇒ {Vt ; t ≥ 0},

where V0 ∼ fX and {Vt ; t ≥ 0} satisfies the SDE

(b − a)dVt

(Vt − a)(b − Vt)

= g(�)1/2 dBt

+ 1

2
g(�)

{(
logfY

(
log

(
Vt − a

b − Vt

)))′
+

(
b + a − 2Vt

b − a

)}
dt.

(5.11)

Proof. Since {Ud
t ; t ≥ 0} ⇒ {Ut ; t ≥ 0}, it follows from (5.10) that {V d

t ; t ≥ 0} ⇒
{Vt ; t ≥ 0}. SDE (5.11) follows from (5.7) by using transformation (5.10) and ap-
plying the Itô formula. �

5.2 Notion of diffusion speed associated with the original bounded random
variables X

Since the SDE (5.11) is not of the same form as (5.7) where a measure of diffusion
speed, g(�), is well-defined, one may enquire if such notion of diffusion speed at
all exists in the case of (5.11). Intuitively, SDE (5.11) must have exactly the same
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diffusion speed as (5.7), because of the bijection (5.10). It follows from Theorem 4
below that this is indeed the case.

Theorem 4. Assume that {Zt ; t ≥ 0} satisfies the SDE

(b − a)dZt

(Zt − a)(b − Zt)

= dBt + 1

2

{(
logfY

(
log

(
Zt − a

b − Zt

)))′
+

(
b + a − 2Zt

b − a

)}
dt.

(5.12)

Then {Vt ; t ≥ 0} = {Zg(�)t ; t ≥ 0} satisfies SDE (5.11).

Proof. The proof is analogous to the arguments of Bedard (2006) who clarify the
notion of diffusion speed in the case of Langevin SDE.

Let s = g(�)t , so that ds = g(�) dt . Hence,

dZs = (Zs − a)(b − Zs)

(b − a)

×
{
dBs + 1

2

{(
logfY

(
log

(
Zs − a

b − Zs

)))′
+

(
b + a − 2Zs

b − a

)}
ds

}

= (Zg(�)t − a)(b − Zg(�)t )

(b − a)

×
{√

g(�) dt

+ 1

2

{(
logfY

(
log

(
Zg(�)t − a

b − Zg(�)t

)))′
+

(
b + a − 2Zg(�)t

b − a

)}
g(�) dt

}

= (Zg(�)t − a)(b − Zg(�)t )

(b − a)

×
{√

g(�) dBt

+ 1

2

{(
logfY

(
log

(
Zg(�)t − a

b − Zg(�)t

)))′
+

(
b + a − 2Zg(�)t

b − a

)}
g(�) dt

}

= (Vt − a)(b − Vt)

(b − a)

×
{√

g(�) dBt

+ 1

2

{(
logfY

(
log

(
Vt − a

b − Vt

)))′
+

(
b + a − 2Vt

b − a

)}
g(�) dt

}

= dVt . �
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Theorem 4 shows that if Zt is interpreted as a process with unit speed measure,
then the limiting process Vt is a “sped-up” version of Zt by the quantity g(�).
Hence, g(�) can be interpreted as a measure of the diffusion speed of SDE (5.11).
Thus, it makes sense to maximize g(�) with respect to � to obtain optimal scaling
even when the original random variables X are bounded.

It is clear that exactly the same ideas carry over to situations where the target is
a product of independent but non-identical densities (assuming that the individual
densities have the same support), and for TMCMC within Gibbs algorithms, as
considered in Dey and Bhattacharya (2017). We omit details for brevity.

6 Optimal scalings and acceptance rates with respect to different
proposal distributions and target densities in our SDE based
approach

From Theorem 2, the optimal scales and the optimal acceptance rates under dif-
ferent proposal distributions can be obtained as follows. Let �∗ be the maximizer
of

g∗(�) = 4�2
∫ ∞

0
u2	

(
−u�

2

)
q(u)du. (6.1)

Then the optimal scale is given by

�opt = �∗
√
IY

, (6.2)

and the corresponding optimal acceptance rate is given by

αopt = 4
∫ ∞

0
	

(
−u�opt

√
IY

2

)
q(u)du

= 4
∫ ∞

0
	

(
−u�∗

2

)
q(u)du.

(6.3)

Thus, �∗ depends only upon the proposal density q(·), the optimal scale �opt
depends upon q(·) as well as Fisher’s information IY , and the optimal acceptance
rate depends upon q(·) only. Note that the optimal scale depends upon the chosen
logit transformation yi = log(xi−a

b−xi
) only through IY . Since the optimal acceptance

rate is independent of IY , it is clearly independent of any bijective transformation
used for mapping xi to yi . As is also clear, the optimal acceptance rate does not
depend upon the target density or its support.

Table 2 displays the optimal scales and optimal acceptance rates with respect to
different choices of the proposal density q(·) and target densities associated with
truncated normal and uniform distributions. As the degrees of freedom of the Stu-
dent’s t proposal density increases from 1 to 5, that is, as the proposal distribution
approaches the N(0,1) density beginning with the Cauchy(0,1) density, it is seen
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Table 2 Optimal scales (�opt) and optimal acceptance rates (αopt) under different proposal distri-
butions when the target densities are i.i.d. products of N(0,1) truncated on (−1,1) and U(−1,1),
respectively

Target

fX(x) = N(x;0,1)I(−1,1)(x) fX(x) = U(x; (−1,1))

Proposal �opt αopt �opt αopt

q(·) = t1(0,1) (Cauchy(0,1)) 2.934 0.380 3.358 0.380
q(·) = t2(0,1) 3.196 0.413 3.658 0.413
q(·) = t3(0,1) 3.319 0.423 3.799 0.423
q(·) = t4(0,1) 3.391 0.428 3.882 0.428
q(·) = t5(0,1) 3.439 0.431 3.936 0.431
q(·) = U([0,1]) 5.572 0.420 6.377 0.420

that optimal scales and optimal acceptance rates increase and approach those as-
sociated with the N(0,1) proposal in the TMCMC case; recall, in particular, that
the optimal acceptance rate of additive TMCMC for the N(0,1) proposal is 0.439.

This increase in the optimal scales and the optimal acceptance rates are to be
expected since the successive proposal distributions for increasing degrees of free-
dom have progressively thinner tails resulting in greater acceptance rates—the op-
timal scales increase to compensate for the thin tails so that the acceptance rates
do not increase too fast.

Note that when the proposal distribution q(·) is U(0,1), the optimal scale is
much higher than those associated with the t-distributions. This is again to be
expected since unlike for t-distribution based proposals, here the proposed ε∗ ∼
U(0,1) must lie within (0,1) with probability one, so that the resultant proposed
values xi + bi

�√
d
ε∗ are quite close to xi , resulting in too high acceptance rate

unless the scale � is quite large. It is also noteworthy that in this example this
case of U(0,1) proposal corresponds to target distribution with bounded support
as well as proposal with bounded support.

7 Comparison with the ESJD approach associated with RWM

Neal and Roberts (2011) consider X = (X1,X2, . . . ,Xd) to be a random vector
with 0 < Xi < 1 for each i and that the density π for X has the following form:

π(x) =
d∏

i=1

fX(xi) =
d∏

i=1

exp
(
h(xi)

); 0 < xi < 1; ∀i = 1,2, . . . , d, (7.1)

where h is continuously differentiable on [0,1].
Theorem 4.1 of Neal and Roberts (2011) provides ESJD based optimal scaling

of RWM with the Cauchy(0,1) proposal when the target distribution is of the form
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(7.1). The scaling they consider is �
d logd

. In other words, Neal and Roberts (2011)

consider RWM of the form xi + �
d logd

ε∗
i , where ε∗

i

i.i.d.∼ Cauchy(0,1). The optimal
acceptance rate in this case, provided in Theorem 4.1 of Neal and Roberts (2011),
is given by 0.368.

Our result in this regard (which is actually a conjecture; see Section 4.4) is
quite significantly different from that of Theorem 4.1 of Neal and Roberts (2011).
Indeed, our optimal acceptance rate with Cauchy(0,1) proposal for ε∗ is 0.380
(see also the first row of Table 2), which is higher than that obtained by Neal
and Roberts (2011). But more significantly, while the scaling in the case of addi-
tive TMCMC is of the form �/

√
d , that of RWM based on ESJD is of the form

�/(d logd). Consequently, with Cauchy(0,1) proposal, the former is expected to
explore the target distribution in much less number of iterations compared to the
latter. This seems to be a very significant advantage of our TMCMC approach
compared with RWM.

In order to assess the performance of additive TMCMC and RWM for Cauchy
proposal, we conduct simulation studies, assuming the target density to be a prod-
uct of N(0,1) densities truncated on (−1,1). The additive TMCMC considers
moves of the type

(x1, . . . , xd) →
(
x1 + �TMCMC,opt√

d
b1ε

∗, . . . , xd + �TMCMC,opt√
d

bdε∗
)
,

where ε∗ ∼ Cauchy(0,1) such that ε∗ > 0, and bi = ±1 with probability each, for
i = 1, . . . , d . On the other hand, RWM considers moves of the type

(x1, . . . , xd) →
(
x1 + �RWM,opt

d logd
ε∗
d, . . . , xd + �RWM,opt

d logd
ε∗
d

)
,

with ε∗
i

i.i.d.∼ Cauchy(0,1), for i = 1, . . . , d .
We conduct three experiments, with d = 10,50,100, comparing the autocor-

relations of TMCMC and RWM chains in each case. In all the cases, we ran the
two algorithms for 106 iterations, starting with a draw from the target distribution.
For TMCMC, we set �TMCMC,opt = 2.934, as provided in Table 2. The empirical
acceptance rates, correct up to three decimal places, turned out to be 0.381, 0.379
and 0.380, respectively, for dimensions d = 10,50 and 100. Thus, the empirical
acceptance rates turned out to be very accurate, even for dimension as small as
d = 10. These empirical results also serve to strengthen our belief regarding the
conjecture made in Section 4.4.

For RWM we tuned �RWM,opt such that the empirical acceptance rate is
approximately 0.368. For dimension d = 10,50,100, we obtain �RWM,opt =
1.6,2.06,2.26, which yielded empirical acceptance rates 0.365, 0.374 and 0.368,
respectively, correct up to three decimal places.

As already mentioned in Section 4.1.1, RWM took around 43 minutes to per-
form 106 iterations for 100 dimensions, while TMCMC required only around 28
minutes to perform the same number of iterations.
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Figure 5 Panels (a), (b) and (c) compare the autocorrelations based on 106 iterations of additive
TMCMC and RWM when the true target density is the product of N(0,1) truncated on (−1,1), with
dimensions d = 10,50,100, respectively.

Figure 5 compares the autocorrelations associated with TMCMC (thick, green
vertical lines) and RWM (red vertical lines) chains for dimensions 10, 50 and 100.
In every case, the autocorrelations corresponding to TMCMC are uniformly lower
than those based on RWM. This clearly appears to be the consequence of lesser
complexity of additive TMCMC with scaling �/

√
d as opposed to that of RWM

with scaling �/(d logd).
Apart from the autocorrelations, we have also compared TMCMC with RWM

with respect to the KS distance. For d = 10, the TMCMC and RWM based KS
distances, up to three decimal places, are 0.006 and 0.008, respectively; for d = 50,
the respective distances are 0.013 and 0.035, and for d = 100, the TMCMC based
KS distance is 0.014, while that based on RWM is 0.041. In other words, TMCMC
significantly outperforms RWM with respect to the Cauchy(0,1) proposal in terms
of the KS distance.

Figure 6 magnifies the issue related to the speed of exploration of the target den-
sity by additive TMCMC and RWM, by comparing the two algorithms for the first
10,000 iterations when d = 10. As seen in the figure, in the first 10,000 iterations
TMCMC explored the target density more adequately than RWM, the traceplots
indicate faster mixing of TMCMC compared to RWM, and the autocorrelation of
TMCMC decayed much faster than that of RWM. In this case, the TMCMC based
KS distance is 0.046 while that based on RWM is 0.077, confirming the visual
insight offered by Figure 6.

8 Comparison of our optimal scaling theory with slice sampling

Slice sampling is a well-known methodology of introducing auxiliary variables
that aid in Gibbs sampling. The general algorithm is associated with the factoriza-
tion of the density f (x) as f (x) ∝ ∏m

i=1 fi(x), where fi(x) are positive functions
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Figure 6 The upper panels (a), (b) and (c) show the RWM based histogram and the true target
density N(0,1) truncated on (−1,1), traceplot and the autocorrelation functions respectively for
d = 10, with scale 1.6/(d logd), based on the first 10,000 samples. The lower panels (d), (e) and (f)
display the TMCMC based plots of the same for d = 10, with scale 2.934/

√
d .

that need not be densities. Since fi(x) = ∫
I{0≤zi≤fi(x)} dzi , it follows that one

may introduce the auxiliary variables z1, . . . , zm such that the joint distribution of
(x, z1, . . . , zm) is proportional to

∏m
i=1 I{0≤zi≤fi(x)}, so that the marginal distribu-

tion of x is f . For i = 1, . . . ,m, the full conditional distribution of zi given x is the
uniform distribution on [0, fi(x)] and that of x given z1, . . . , zm is the uniform dis-
tribution on the slice {y : fi(y) ≥ zi, i = 1, . . . ,m}. Thus, a Gibbs sampling strat-
egy can be envisaged for sampling from the joint distribution of (x, z1, . . . , zm),
and then discarding the samples of z1, . . . , zm to store the samples of x ∼ f . This is
the so-called slice sampling strategy, which often induces good mixing properties
for distributions with truncated support. For details, see Neal (2003), Robert and
Casella (2004) and the references therein. It is thus important to compare TMCMC
and RWM based methods with slice sampler.

It is however, to be borne in mind, that it is not in general straightforward to
sample from the full conditional of x given z1, . . . , zm, particularly when m is
large. Neal (2003) attempts to create proposals to deal with this problem but those
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are very specialized proposals and are not expected to handle general situations
(Robert and Casella (2004)). Furthermore, Roberts and Rosenthal (2002) (see also
Robert and Casella (2004)) provide an example of a distribution for which slice
sampling performs poorly. Indeed, letting π(z) ∝ exp(−‖z‖), where z ∈ R

d and

‖z‖ =
√∑d

i=1 z2
i , note that x = ‖z‖ is itself a Markov chain and in fact, a slice

sampler Markov chain for the distribution πd(x) ∝ xd−1 exp(−x); x > 0. Here the
factorization is given by f1(x) = xd−1 and f2(x) = exp(−x). This is an example
where the performance of the slice sampler deteriorates as d increases. Indeed, as
demonstrated in Robert and Casella (2004) by simulations, for d = 1 and 5, the
slice sampler mixes reasonably well with fast decreasing autocorrelatons but for
d = 10 and particularly for d = 50, the performance of the slice sampler sharply
deteriorates.

We compare the performances of Gaussian proposal based additive TMCMC
and RWM with slice sampler in the case of πd(x). For comparability with the
results reported in Robert and Casella (2004), in each case we consider a sam-
ple of size 1000 for TMCMC and RWM; we consider a burn-in of size 1000 in
each case. We tune additive TMCMC and RWM with scales of the form �/

√
d

such that the acceptance rates are approximately 0.439 and 0.234 respectively,
for d = 1,5,10,50. Figures 7 and 8 show the trace plots and the autocorrelation
plots associated with TMCMC and RWM. Observe that compared to Figure 8.5
of Robert and Casella (2004), the trace plots and the autocorrelation plots with re-
spect to both TMCMC and RWM indicate much superior performance compared
to slice sampler, for each dimension d = 1,5,10,50. Moreover, the plots shown in
Figures 7 and 8 show that, unlike the slice sampler, the performances of TMCMC
and RWM do not deteriorate with increasing dimensionality. We also take this
opportunity to compare additive TMCMC and RWM in this example. As shown
in Figure 8, the autocorrelations based on additive TMCMC decrease faster than
those of RWM, for all the values of d considered; this is in keeping with the vi-
sual information offered by the trace plots of Figure 7. We also consider the KS
distances between the empirical distribution functions associated with the first 500
and the last 500 iterations after the burn-in period for comparing additive TM-
CMC and RWM. Table 3 shows that the KS distances associated with TMCMC
are smaller than those of RWM for all the values of d considered. Thus, RWM is
again outperformed by TMCMC, while slice sampling performs the worst in this
example. The numerical results, in conjunction with the difficulty of implemen-
tation of slice samplers in complex problems, certainly leads us to recommend
TMCMC for superior performances in general situations.

9 Summary and conclusion

In this article, our contribution is two-fold. First, we have attempted to provide a
comprehensive review and discussion of the optimal scaling literature for various
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Figure 7 TMCMC and RWM based plots for πd(x) ∝ xd−1 exp(−x); x > 0, with scales of the
form �/

√
d , for d = 1,5,10,50.
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Figure 8 TMCMC and RWM based autocorrelation plots for πd(x) ∝ xd−1 exp(−x); x > 0, with
scales of the form �/

√
d , for d = 1,5,10,50.

Table 3 KS distances: additive TMCMC vs RWM

Target

πd(x) ∝ xd−1 exp(−x);x > 0

Proposal d = 1 d = 5 d = 10 d = 50

TMCMC (Gaussian) 0.102 0.078 0.142 0.086
RWM (Gaussian) 0.104 0.128 0.166 0.108

approaches of MCMC and contrasted them with the corresponding versions of
TMCMC. Second, and our main contribution, is a novel diffusion based approach
to optimal scaling of additive TMCMC in non-regular cases, in contrast with the
ESJD approach of Neal and Roberts (2011) developed for RWM.
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Among the non-regular examples, we have considered non-Gaussian proposal
distributions and discontinuous target densities with bounded support, and have
proposed simple extensions of the results of Dey and Bhattacharya (2017) for non-
Gaussian proposals in conjunction with the logistic transformation of the random
variables with bounded support to map them on the real line and apply our dif-
fusion results. We then used the Itô formula to revert back to SDE associated
with the original bounded random variables, showing subsequently that the op-
timal scaling approach based on maximizing diffusion speed remains valid. For
the Cauchy proposal, even though we are still unable to prove the results explic-
itly, our simulation results led us to conjecture that optimal scaling and optimal
acceptance rate with the Cauchy proposal can be obtained using the same recipe
discussed in Section 6. Comparison with the ESJD approach of Neal and Roberts
(2011) for RWM showed that the complexity of RWM with the Cauchy proposal
is much higher than that of additive TMCMC. The effect of much lesser complex-
ity of additive TMCMC is reflected in our simulation based comparison between
RWM and additive TMCMC with respect to the Cauchy proposal in the case of
truncated normal target, where TMCMC outperforms RWM. Our other simula-
tion studies with target distributions taken to be a t distribution with 5 degrees of
freedom, a distribution with exponential tails, the posterior distribution associated
with mixture of Weibull distributions, all demonstrate additive TMCMC to be a
far superior algorithm compared to RWM. Comparison of additive TMCMC and
RWM with a slice sampler in the case of a d-dimensional density not only demon-
strated that the former two are much more effective compared to the popular slice
sampling method, but also re-established the superiority of additive TMCMC over
RWM.

Although our results are with respect to target distributions that are products of
i.i.d. densities, we are hopeful that the ideas and the results will go through even
in the case of target densities that are products of independent but non-identical
densities, as considered in Dey and Bhattacharya (2017) and Bedard (2007), as
long as the individual densities have the same support. The same ideas are also
expected to carry over to TMCMC within Gibbs algorithms, as considered in Dey
and Bhattacharya (2017).

Appendix

HMC is a special case of TMCMC

Let us denote the L-step leap-frog transformation in the HMC algorithm (Algo-
rithm 3.3) associated with (x2,p2) be denoted by TL. Then (x2,p2) = TL(x,p1),
and in the TMCMC notion, is the forward transformation, given p1 ∼ N(0,M).
For convenience, we further consider the step (x2,p2) → (x2,−p2). Thus, slightly
abusing notation, we define TL to be the L-step leap-frog transformation applied to
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(x,p1) yielding (x2,p2); then negating p2 to finally yield (x2,−p2). In practice,
this negation is unnecessary due to symmetry of N(0,M) (see, for example, Neal
(2011)), which is why we did not mention this step in Algorithm 3.3. To reach
(x,p1) from (x2,−p2), we draw −p2 ∼ N(0,M), and then apply TL to (x2,−p2)

to first obtain (x,−p1) by running (x2,−p2) forward for L leap-frog steps (see
Liu (2001), Neal (2011)), and then negating the resulting momentum to get back
(x,p1). The Jacobian of the transformation is 1, thanks to its volume-preserving
property (see Liu (2001), Neal (2011)). It is easy to see that detailed balance holds
for this algorithm, and that irreducibility and aperiodicity also hold.

The above arguments show that only the forward move is necessary to move
back and forth in the state space. In fact, the forward move TL itself acts as the
backward move given −p2 ∼ N(0,M). Moreover, TL acts simultaneously on the
entire set of state variables, as both the forward and backward move. Recall that
TMCMC makes use of random indicator variables that associate the forward trans-
formation with +1 and the backward transformation with −1. However, since the
backward move is also the forward move here, such indicator is unnecessary for
HMC. Also note that the momentum variable acts as the vector εεε = (ε1, . . . , εd)′
associated with TMCMC. Note that the momentum variable can not be a single-
ton unlike general TMCMC algorithms and must be of the same dimensionality
as x, but this is certainly allowed by the general TMCMC theory; see Dutta and
Bhattacharya (2014).

Thus, the leap-frog based transformation TL simplifies several issues of the gen-
eral TMCMC methodology while subscribing to its basic philosophy. Hence HMC
can be viewed as a special case of TMCMC.
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