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The article under discussion considers algorithms for performing inference on
large or unwieldy datasets by partitioning the data, analyzing each piece sep-
arately, and then putting the inferences together. This is an active area of re-
search in computational statistics (see, for example, Tresp, 2000, Ahn, Korattikara
and Welling, 2012, Gershman, Hoffman and Blei, 2012, Hoffman et al., 2013,
Wang and Blei, 2013, Scott et al., 2013, Wang and Dunson, 2013, and Neiswanger,
Wang and Xing, 2013).

Before getting to our own ideas in this area, we would like to review the need
for such divide-and-conquer algorithms.

“Big data” is sometimes defined as more than can fit into memory at once, or as
any dataset that is too large for us to do what we would like with it. For example,
from Wikipedia, “Big data is a term for data sets that are so large or complex that
traditional data processing applications are inadequate to deal with them.”

Steve Scott works at Google and sees really really big data. The problems on
which we work are much smaller but the concerns he raises in the paper under
discussion are relevant in our work too: for us, a survey with 100,000 respondents
counts as “big data” in that the models we’d like to fit can run uncomfortably
slowly. For example, it might take a couple hours to run a hierarchical regression
predicting survey responses given several factors such as age, sex, ethnicity, edu-
cation, and state. A few hours doesn’t sound so bad, but this inhibits our ability to
explore data by trying out and perturbing lots of models.

Why do we need to fit so many models to a single dataset? Because survey ad-
justment is complicated. As you may have heard, the 2016 U.S. presidential elec-
tion polls were not far off in aggregate—Hillary Clinton had a small but consistent
lead in the polls for months, and she won by three million votes—but they failed
in several key states, with the key problem being differential nonresponse: some
proportion of Republican voters who were not being reached in surveys (Gelman,
2016). To get the correct inferences from a survey, it is necessary to adjust for as
many variables as possible so as to be able to reasonably extrapolate from sample
to population. The basic idea is to model the survey response y given some large
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number of predictors X, then use the model to make inferences about the distribu-
tion of y given X in the population, and finally to average this over the joint distri-
bution of X among voters. This process involves two challenging tasks: “multilevel
regression” of y on X, and “poststratification,” which requires inference about that
distribution of X, that is, assumptions about voter turnout. On one hand, both these
steps will be most effective when conditioning on more variables; that is, throwing
more factors into X: adjusting not just for age, sex, etc., but also for additional de-
mographics such as marital status and income and political variables such as party
identification and previous votes. On the other hand, adding complexity makes
both modeling steps more difficult: more interactions to consider in the regression
and more assumptions to make in the postratification. Hence, in practice the need
to fit and explore many different models, to assess which factors are essential to
include and which can be set aside for present purposes.

All these steps become increasingly important in the real world of nonrepresen-
tative samples, where survey response rates are typically less than 10% (Wang et
al., 2015a, 2015b). And adding variables to the right hand side of the regression
leads to more complicated models—the more predictors we have for any given
dataset, the more serious we must be about regularization. When increasing the
width of the data and the complexity of the model, we run into computational
constraints, even with data sets of only 105 observations.

The above is all background, motivating our interest in methods that allow us
to fit big models to big data. As Scott discusses, when you can’t work with your
whole dataset at once, breaking it into pieces is a natural way to go. He writes of
“consensus Monte Carlo” but we prefer the term “divide and conquer algorithms”
(see, for example, Wang et al., 2015a, 2015b) because we don’t see the Monte
Carlo aspect as being crucial to the problem. If, for example, each of the sepa-
rate analyses were being performed using a deterministic algorithm leading to a
Laplace or variational approximation, the same issues would arise, of getting good
inferences for the separate problems and of combining them into a single inference
capturing as much information as possible from the entire dataset.

We have been thinking about divide-and-conquer, or consensus Monte Carlo,
for a long time. And, like Steve Scott, we have found the idea both tantalizing
and frustrating. Huang and Gelman (2005) describes our first effort in this area, an
adaptation of Gibbs sampling for hierarchical regression, splitting the data into K

pieces using cluster sampling so that each separate dataset was smaller in width as
well as length by approximately a factor of K . The idea was that time required for
each separate computation would be reduced by roughly a factor of K2 so that even
in a purely serial implementation the total computation time, putting together the
K separate nodes, would be of order 1/K compared to the original computation.
In practice, however, the algorithm did not work nearly so well. We got reasonable
results in our motivating application, but computation time was reduced by only a
factor of 1.1, not the factor of 2 or 8 or 32 that we had hoped. The challenge comes
in the implementation.
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So we agree with Steve Scott about the importance of these ideas and are also
with him on their difficulty. In our discussion we would like elaborate on two
points that Scott treats only briefly.

Our first concern is the role of the prior distribution. If data are subdivided,
each piece of the likelihood contains less information, which will make priors and
regularization even more necessary. We do not think it is a good general solu-
tion to divide the prior into K parts, as p(θ)1/K just won’t do the job in many
cases. Scott refers the problem of improper posteriors but that’s really just the
least of our worries. Even if the posterior is proper, two problems can arise if it is
too weakly regularized: (1) the separate models, being too loosely constrained by
prior information, will be more computationally difficult to fit, and (2) even setting
aside computational challenges, each of these inferences will be noisy and can be
so far apart that it will be more difficult to combine them. For example, a weak
prior combined with complete separation in logistic regression will lead to com-
putational problems. With weak priors the separate posteriors may have thick tails,
iterative estimation algorithms can be slow to converge, and the resulting estimates
become noisy.

Regularization is an increasingly important aspect of model fitting and we can’t
ignore it here. But if we were to simply keep the full prior p(θ) for the analysis
of each of the data subsets, then it would be counted K times when these pieces
are put together, and we would then need to correct for this overcounting of prior
information. This is not just a problem with Bayesian inference; it will arise with
any regularization procedure.

The second challenge we wish to address is the problem, within each subset
analysis, of how to use the information from the other K − 1 subsets of the data.
Scott’s example of “non-overlapping beta posteriors” illustrates the problem well.
When information is not shared between subsets, it is possible that all the com-
putational resources are used far away from the combined posterior, and then the
combination of the posteriors can be difficult. Once we follow Scott and accept
the use of approximations to the separate inferences, we can make use of the other
K − 1 approximations to regularize each local inference without need to fit all the
data into memory at same time. The idea is to set up an algorithm using K + 1
processors: one for each of the K subset analyses and one “consensus” processor
which passes the K separate approximations back and forth.

As we discuss in yet another unpublished paper (Gelman et al., 2014), this sort
of message-passing algorithm can be framed as an expectation propagation algo-
rithm (Minka, 2001, Heskes et al., 2005). The steps go as follows:

First, with any data-splitting Bayesian algorithm, split the model into K +1 pieces correspond-
ing to the prior distribution and K factors of the likelihood: p(θ |y) ∝ p(θ)

∏K
k=1 p(yk |θ). Here,

each yk is not a single data point but rather one of the K “shards” of data, in Scott’s terminology.
We then aim to construct an approximate posterior, g(θ) = p(θ)

∏K
k=1 gk(θ), where the fac-

tors g(θ) come from some parametric family such as a multivariate normal distribution in θ .
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At this point, the usual divide-and-conquer algorithm would separately fit each factor in the
likelihood, p(yk |θ), to a corresponding approximation, gk(θ). For example, one might run Hamil-
tonian Monte Carlo on θ , then fit a parametric approximation (such as a mixture of multivariate
normals) to these simulation draws to obtain gk .

As noted above, though, this sort of direct approximation can be problematic, as the 1/K part
of the likelihood can contain too little information to effectively constrain the parameters. Indeed,
the whole point of “big data” is, presumably, that a subset would not be enough. So here is where
we borrow an idea from expectation propagation and compute the cavity distribution, g−k(θ) =
g(θ)/gk(θ), which represents an approximation of all the information except that from the kth
shard of data. We combine the cavity distribution with the corresponding factor of the likelihood
to obtain the tilted distribution, g\k(θ) = p(yk |θ)g−k(θ), on which we then perform inference
to obtain an updated site approximation gnew

k (θ) such that gnew
k (θ)g−k(θ) approximates g\k(θ).

This computation should be no problem: as far as this node is concerned, all difficulty comes from
the likelihood shard, p(yk |θ), with the cavity distribution serving as a prior.

The algorithm then proceeds iteratively, with the K separate nodes performing the inference
steps to obtain updates of gk(θ) and passing these to the consensus node, which then in turn
updates the cavity distributions and sends them back out. The resulting process performs con-
sensus inference (or consensus Monte Carlo if the updates at the K nodes are performed using
a simulation algorithm such as Hamiltonian Monte Carlo implemented in Stan, with the cavity
distributions from expectation propagation providing regularization and stability.

Message-passing algorithms do pay a computational price for the scheduling
and communication time between processors, but we have found in big data cases
that a relatively small number of communication iterations is sufficient. It is not
necessary to assume that the tilted distributions are close to normal, but to make
the propagation of the information easier, we have used use multivariate normal
approximations for the combined posterior of the shared parameters. (In a hierar-
chical model, the local parameters depend only on the local data and there is no
need to combine inferences for them.) Assuming the number of shared parameters
is not increasing with sample size, the combined posterior of the shared parame-
ters should be asymptotically approximately normal from the Bernstein–von Mises
theorem.

As with any other consensus algorithm, practical implementation can still be a
challenge. For example, we agree with Scott that it can make sense to use normal
mixtures to approximate the cavity distributions, but in that case a combinatorial
explosion arises; for example, if each gk is a mixture of 3 components, then g will
have 3K components, and some sort of further approximation or trimming will
be needed. More generally, we echo Scott’s interest in continuing research in this
area.
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