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Abstract. We discuss Bayesian analysis of multivariate time series with dy-
namic factor models that exploit time-adaptive sparsity in model parametriza-
tions via the latent threshold approach. One central focus is on the transfer
responses of multiple interrelated series to underlying, dynamic latent factor
processes. Structured priors on model hyper-parameters are key to the effi-
cacy of dynamic latent thresholding, and MCMC-based computation enables
model fitting and analysis. A detailed case study of electroencephalographic
(EEG) data from experimental psychiatry highlights the use of latent thresh-
old extensions of time-varying vector autoregressive and factor models. This
study explores a class of dynamic transfer response factor models, extending
prior Bayesian modeling of multiple EEG series and highlighting the prac-
tical utility of the latent thresholding concept in multivariate, non-stationary
time series analysis.

1 Introduction

In high-dimensional time series analysis, the need to define time-varying patterns
of sparsity in model parameters has proven challenging. Dynamic latent threshold-
ing, introduced in Nakajima and West (2013a), provides a general approach that
induces parsimony into time series model structures with potential to reduce effec-
tive parameter dimension and improve model interpretations as well as forecasting
performance. The utility of various classes of latent threshold models (LTMs) has
been demonstrated in recent applied studies in macroeconomics (Nakajima and
West (2013a), Kimura and Nakajima (2016)) and financial forecasting and portfo-
lio decisions (Nakajima and West (2013b), Zhou, Nakajima and West (2014)). The
scope of the approach includes dynamic regressions, dynamic latent factor models,
time-varying vector autoregressions, and dynamic graphical models of multivariate
stochastic volatility, and also opens a path to new approaches to dynamic network
modeling (Nakajima and West (2015)).

This paper adapts the latent thresholding approach to different classes of multi-
variate factor models with a one main interest in dynamic transfer response analy-
sis. Our detailed case-study concerns time-varying lag/lead relationships among
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multiple time series in electroencephalographic (EEG) studies. Here the latent
threshold analysis of such models induces relevant, time-varying patterns of spar-
sity in otherwise time-varying factor loadings matrices, among other model fea-
tures. We evaluate and compare two different classes of models in the EEG study,
and explore a number of posterior summaries in relation to this main interest.

Time series factor modeling has been an area of growth for Bayesian analy-
sis in recent years. Two key themes are: (i) dynamic factor models, where latent
factors are time series processes underlying patterns of relationships among mul-
tiple time series (e.g., Aguilar et al. (1999), Pitt and Shephard (1999), Aguilar
and West (2000), Koop and Potter (2004), Bernanke, Boivin and Eliasz (2005),
Lopes and Carvalho (2007), Del Negro and Otrok (2008), Koop and Korobilis
(2010)); and (ii) sparse factor models, where the bipartite graphs representing con-
ditional dependencies of observed variables on factors are not completely con-
nected (e.g., West (2003), Lucas et al. (2006), Carvalho et al. (2008), Lucas, Car-
valho and West (2009), Yoshida and West (2010), Carvalho, Lopes and Aguilar
(2011), Bhattacharya and Dunson (2011)), increasingly applied in problems of
classification and prediction.

Here we combine dynamics with sparsity. Some of the practical relevance of
models with time-varying factor loadings is evident in recent studies (e.g., Lopes
and Carvalho (2007), Del Negro and Otrok (2008), Carvalho, Lopes and Aguilar
(2011)). As the number of variables and factors increase, so does the need to in-
duce sparsity in loadings matrices to reflect the view that variables will typically be
conditionally dependent on only a subset of factors. In a time series setting, how-
ever, the patterns of occurrence of zeros in otherwise time-varying factor loadings
matrices may also be time-varying. One factor may relate to one particular vari-
able with a time-varying loading over a period of time, but be insignificant for that
variable in other time periods. Thus, the need to develop models of time-varying
sparsity of loadings matrices in dynamic factor models.

Conventions and notation

All vectors are column vectors. We use y ∼ N(a,A), d ∼ U(a, b), p ∼ B(a, b),
v ∼ G(a,b), U ∼ W(c,D), for the normal, uniform, beta, gamma, and Wishart
distributions, respectively. Succinct notation for ranges uses s : t to denote s, s +
1, . . . , t when s < t ; for example, y1:T denotes {y1, . . . ,yT }. The indicator func-
tion is I (·) and diag(·) is the diagonal matrix with diagonal elements in the
argument and hence dimension implicit. Elements of any c-vector time series
vt are vjt , (j = 1 : c), and those of any c × d matrix time series V t are vij t

(i = 1 : c, j = 1 : d).
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2 Dynamic factor models

In a general setting, the m-vector time series yt = (y1t , . . . , ymt )
′ (t = 1,2, . . .) is

modeled as

yt = Atzt + B tf t + νt , νt ∼ N(0,�t ), (1)

where

• zt is a q-vector of predictor variables known at time t ;
• At is the m × q matrix of regression coefficients at time t ;
• f t is the r ×1 vector of latent factors, arising from some underlying latent factor

process over time;
• B t is the m × r matrix of factor loadings at time t ;
• νt is the residual term, assumed zero-mean normal with diagonal variance ma-

trix �t = diag(σ 2
1:m,t ) of volatilities σjt at time t .

Complete specification requires models for f t , At , B t and σjt over time. Typ-
ically, m � r , and models are identified via constraints on B t , such as fix-
ing B t to have zeros above a unit upper diagonal: biit = 1 and bikt = 0 for
i = 1 : r, k = i + 1 : r . In Section 3, there is interpretable structure to f t and alter-
native assumptions are natural. Special cases and assumptions now follow.

Constant and sparse factor models

Much past work uses constant coefficients At = A and loadings B t = B . The
pure factor model, with Atzt = 0 and B t = B , typically assumes the factors f t

are zero-mean and independent, yielding a linear factor representation of the con-
ditional variance matrix of yt . Sparsity in B then begins development of more
parsimonious models for larger m,r (e.g., West (2003)).

FAVAR models

When zt concatenates past values yt−j (j = 1 : d) to lag d , and At = A,B t = B
are constant, the model is a factor-augmented vector autoregression (FAVAR).
Variants based on differing models for f t are becoming of increasing interest
in macroeconomics (Bernanke, Boivin and Eliasz (2005), Koop and Korobilis
(2010)).

Factor stochastic volatility models

Traditional Bayesian multivariate volatility models have At = 0, B t = B , and
f t ∼ N(0,�t ) where �t = diag(γ 2

1:r,t ). Model completion involves stochastic
volatility model for the γjt and σjt , based on either log-AR(1) models or Bayesian
discounting (e.g., Aguilar et al. (1999), Pitt and Shephard (1999), Aguilar and West
(2000), Prado and West (2010)).
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Time-varying regression and factor loadings models

Variants of models with time-varying At ,B t are well-used (e.g., West and Harri-
son (1997), Prado and West (2010), West (2013)). Typically, the elements aijt , bij t

are AR(1) processes. Within this class, random walk models have flexibility to
adapt to change over time, while stationary AR(1) models can have longer-term
predictive value and interpretation (Lopes and Carvalho (2007), Del Negro and
Otrok (2008), Nakajima and West (2013a, 2013b)).

Process models for factors

Models of factor processes f t typically involve either conditionally independent
factors over time, with or without time-varying conditional variances, or stationary
vector autoregressive (VAR) models.

3 Dynamic factor models and transfer responses

3.1 Introductory comments

We highlight example models that incorporate elements noted in Section 2, while
being customized to the EEG study: a response variable is hierarchically linked
to current and lagged values of an underlying latent process of scientific interest.
A first latent factor model is discussed, then extended with a time-varying vector
autoregressive component; these two models are customized examples of time-
varying FAVAR processes.

3.2 Model M: A dynamic transfer response factor model

A dynamic transfer response factor model (DTRFM) relates the outcome vari-
ables to a foundational, scalar latent process xt by specifying f t to be a vector
of recent values of this underlying scalar process. Each outcome variable relates
to potentially several recent and lagged values of xt through time-varying loadings
coefficients; at any instant in time, these coefficients define the transfer response of
the variable to the history of the underlying process. As the loadings vary in time,
the form of this response then naturally varies. The basic structure of the model is
described here.

In equation (1), set Atzt = 0 for all t . Suppose also that

f t = (xt , xt−1, . . . , xt−r+1)
′,

for some r > 0, where the scalar series xt is modeled as a time-varying autoregres-
sive (TVAR) process of order p. That is,

xt = ∑
j=1:p

δjtxt−j + εt , εt ∼ N(0,wt ), (2)

δt = δt−1 + ξ t , ξ t ∼ N(0,�), (3)
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where δt = (δ1t , . . . , δpt )
′ is the vector of AR coefficients at time t . Conditional on

the variance elements w1:T and � , the stochastic sequences νt (of equation (1)),
εt and ξ t are assumedly independent over time and mutually independent. Equa-
tion (3) indicates that the δt coefficients follow a vector random walk over time,
permitting time variation but not anticipating its direction or form. Coupled with
equation (2) we have the traditional specification of a Bayesian TVAR(p) model
for the latent xt process.

For the ith scalar response variable, the above model implies

yit = ∑
k=0:r−1

biktxt−k + νit , νit ∼ N
(
0, σ 2

it

)
, (4)

showing the transfer of responses from past values of xt via the—possibly
quite widely time-varying—loadings bikt , the latter specific to series i, for each
i = 1 : m.

Model identification is straightforward. From equation (4), it is clear that an
identification problem exists with respect to the lag/lead structure, that is, the time
origin for the latent xt process, as well as the scale of xt relative to the bikt . Fixing
elements of one row of B t to specified values obviates this. Here we do this on
the first row: for one factor (lag) index s ∈ {1 : r}, we set b1st = 1 and b1kt = 0 for
k = 1 : r, k �= s. This way, y1t is a direct, unbiased measurement of xt−s+1, subject
to residual noise, so that we have formal identification and a quantitative anchor
for prior specification.

Beyond the need for priors for model hyper-parameters, we need structures
for the error volatility processes σit in equations (1), (4) and the TVAR innova-
tions variance process wt in equation (2). For routine analysis that is not inher-
ently focused on volatility prediction, standard Bayesian variance discount learn-
ing models—effective random walks whose variability is controlled by a single
discount factor—are defaults. Specified to describe typically slowly, randomly
changing variances, the inverse gamma/beta Bayesian model has the ability to
track time-varying variances over time, and to deliver full posterior samples from
relevant conditional posteriors for volatility sequences in MCMC analyses. We use
variance discount models here, based on standard theory in, for example, Chap-
ter 10 of West and Harrison (1997) and Chapter 4 of Prado and West (2010); these
are simply specified via two discount factor hyper-parameters: λσ , for each of the
set of observation volatilities, and λw for the TVAR innovations volatility.

3.3 Latent components and dynamic transfer responses

Substantive interpretation is aided by investigating the more detailed structure that
theoretically underlies the latent TVAR process xt . Specifically, well-known (and
well-exploited) time series decomposition theory (e.g., West (1997, 2013), West
and Harrison (1997), Prado and West (2010)) shows that, given the model param-
eters, the xt series has the decomposition

xt = ∑

g=1:p̃t

x̃gt + ∑

h=1:p̂t

x̂ht , (5)
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where the x̃gt , x̂ht are “simpler” component time series processes and p̃t , p̂t are
non-negative integers such that 2p̃t + p̂t = p. The values of these integers and the
nature of the component processes depend on the model parameters δt . Typically,
slow variation over time in these yields stable numbers p̃t , p̂t and the resulting
processes are computable directly from (posterior samples or estimates of) the
xt and δt . The component processes x̃gt have the (approximate) forms of time-
varying autoregressive moving averages—TVARMA(2,1) processes—exhibiting
quasi-periodic behavior: each x̃gt is a stochastic sine wave whose amplitude, phase
and frequency varies in time; the time variation in frequency is directly related
to that in δt , while the amplitude and phase variation is inherent and driven by
the levels of variation controlled by wt . Further, posterior inferences for the time-
varying frequencies, amplitude and phase are directly available from posterior sim-
ulations that generate samples of the xt and δt at each time. In parallel, each x̂ht

is a TVAR(1) process, with time variation in short-term autocorrelations driven
by that in δt . As with the x̃j t , we have direct access to posterior inferences on
the TVAR(1) parameters of these component processes from simulations of the
posterior for xt , δt at each time. This decomposition therefore gives inferences
on underlying time-frequency and short-term dependency structures underlying xt

and its dynamic behavior.
From equations (4), (5), it follows that

yit = ∑

g=1:p̃t

ỹigt + ∑

h=1:p̂t

ŷiht + νit ,

where, for each g,h in the ranges displayed,

ỹigt = ∑
k=1:r−1

βikt x̃gt and ỹiht = ∑
k=1:r−1

βikt x̃ht .

Thus the transfer response pattern defined by the time-varying factor loadings
translates the nature of the inherent, underlying components of the “driving” xt

process to each of the output/response variables.
The above shows that this class of models provides broad scope for capturing

multiple time-varying patterns of component structure—including several or many
components with dynamically varying time-frequency characteristics—via a sin-
gle latent process filtered to construct the latent factor vector process f t in the gen-
eral framework. The flexibility of these models for increasingly high-dimensional
response series yt is then further enhanced through the ability of models with
series-specific and time-varying loadings bikt to differentiate both instantaneous
and time-varying patterns in the transfer responses.

3.4 Model M+: DTRFM with a time-varying VAR component

A direct model extension adds back a non-zero dynamic regression term to pro-
vide an example of time-varying FAVAR models. That is, with the dynamic factor
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component as specified via Model M, suppose yt now follows equation (1) where
q = m, the m × m matrix At contains time-varying autoregressive parameters and
zt = yt−1. That is, yt is dynamically regressed on the immediate past value yt−1
as well as the underlying components of a driving latent process through the dy-
namic transfer response mechanism: we denote this as a TV-VAR(1) component
of the model.

This extension of Model M allows for the transfer response effects of the funda-
mental, driving xt process to be overlaid with spill-over effects between individual
response series from one time point to the next, modeled by a basic TV-VAR(1)

component. This can be regarded as a model extension to assess whether the empir-
ical TV-VAR component is able to explain structure in the response data not ade-
quately captured by the structure dynamic factor component. For increasingly large
m, the TV-VAR(1) model component alone (i.e., setting B t = 0), implies what can
be quite flexible marginal processes for the individual yit ; in contrast, the dynamic
transfer response factor component—while also quite flexible—represents struc-
turally related processes. There is thus opportunity to for evaluation of the latter in
the extended Model M+.

4 Dynamic sparsity and latent thresholding

4.1 Thresholding of dynamic parameter processes

As the dimension m of response variables and the number r of effective latent fac-
tors increases, it becomes increasingly untenable to entertain models in which all
loadings in B t are non-zero. Further, depending on context, it is also scientifically
reasonable to entertain models in which one or more variables may relate—in a
time-varying manner—to a particular element of the latent factor vector for some
periods of time, but that the relationships may be practically negligible at other
epochs. This is the concept of dynamic sparsity: a particular bikt may be non-
zero over multiple, disjoint time periods, and adequately modeled by a specified
stochastic process model when non-zero, but effectively zero in terms of the ef-
fect of fkt on yit , in other periods. The same idea applies to dynamic regression
and/or autoregressive parameters in At . Analysis that permits this will allow for
adaptation over time to zero/non-zero periods as well as to inference on actual val-
ues when non-zero. This includes extreme cases when a bikt may be inferred as
effectively zero (or non-zero) over the full time period of interest.

Dynamic latent thresholding (Nakajima and West (2013a, 2013b)) addresses
this question of time-varying sparsity in some generality; this approach is now de-
veloped in our context of dynamic transfer response factor models. We anchor the
development on basic AR(1) process models for the free elements of the dynamic
factor loadings matrix B t , recalling that the first row of elements is constrained
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to fixed (0/1) values as noted in Section 3.2. For i = 2 : m,k = 1 : r , the bikt are
modeled via what we denote by the LT-AR(1) processes defined as follows:

bikt = βikt sikt with sikt = I
(|βikt | ≥ dik

)
, (6)

where the latent process βikt is AR(1) with

βikt = μik + φik(βik,t−1 − μik) + ηikt , ηikt ∼ N
(
0, v2

ik

)
, (7)

and where |φik| < 1. The processes are assumed independent over i, k. The latent
threshold structure allows each time-varying factor loading to be shrunk fully to
zero when its absolute value falls below a threshold dik . This way, a factor loads in
explaining a response only when the corresponding βikt is “large enough”. Infer-
ence on the latent βikt processes and threshold parameters make this data-adaptive,
neatly embodying and yielding data-informed time-varying sparsity/shrinkage and
parameter reduction.

The same approach applies to the time-varying autoregressive parameters in the
extension to Model M+. That is, the effective model parameters At = (aij t )i,j=1:m
are modeled as thresholded values of AR(1) processes αijt in precisely the same
way as for the bikt . Details are left to the reader as they follow the development
for B t with simple notational changes.

4.2 Structured priors on thresholds

It will be evident that prior specification for threshold parameters dik are key in
defining practical models. We can do this by referencing the expected range of
variation of the corresponding βikt process. Under the AR(1) process model de-
tailed above, βikt has a stationary normal distribution with mean μik and vari-
ance u2

ik = v2
ik/(1 − φ2

ik). Given the hyper-parameters (μik, φik, vik), this allows
us to compute the probability that βikt exceeds the threshold—i.e., the probabil-
ity of a practically significant coefficient—across any range of possible thresholds.
Nakajima and West (2013a) follow this logic to specify informative, structured pri-
ors for dik that depend explicitly on (μik, φik, vik). We use this specification here;
in particular, take conditional uniform priors

dik|K,μik,φik, vik ∼ U
(
0, |μik| + Kui

)
,

for some K > 0. Direct evaluation then yields marginal (with respect to dik) spar-
sity probabilities

Pr(sikt = 1|K) ≡ Pr
(|βikt | > dik|K)

= 2 − 2�(K) − 2K−1φ(K) + K−121/2π−1/2,

where �(·) is the standard normal c.d.f. This is trivially evaluated. For large K ,
this is also very well approximated by K−121/2π−1/2 (this is extremely accurate
for K as low as 2 and practically relevant values of K exceeding that). The spar-
sity probability strictly decreases in K and decays to values of about 0.25, 0.20
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and 0.15, respectively, at about K = 3.2,4 and 5.3, respectively. This gives us as-
sessment of what a particular choice of K implies in terms of overall expected
levels of sparsity a priori. We find strong robustness in posterior inferences to
specified values of K above 3 or so, and use that value as a default. Note also
that there is flexibility to customize the prior to use different K values for each
threshold, to cater for contexts in which we aim to favor higher thresholds (and
hence higher probabilities of zero parameter process values) for some i, k than for
others.

4.3 MCMC-based computation

MCMC computations extend those developed for time-varying autoregressions
and multivariate stochastic volatility factor models in Nakajima and West (2013a,
2013b). The overall MCMC integrates a series of steps that use standard simu-
lation components from Bayesian state space models (e.g., West and Harrison
(1997), Prado and West (2010)) and from traditional (static loadings) latent fac-
tor models (Aguilar and West (2000), Lopes and West (2004)). Customization
here involves modifications to resample the latent TVAR factor process in our dy-
namic transfer responses factor context, and to include Metropolis Hastings steps
as in Nakajima and West (2013a) for latent threshold components. The Appendix
accompanying this paper describes key details, and notes how the MCMC directly
extends previously described strategies for dynamic latent threshold models.

5 Application: EEG time series analysis

5.1 Background, data and prior modeling approaches

Electroencephalographic (EEG) traces are time series of electrical potential fluc-
tuations at various scalp locations of a human subject, reflecting the complex dy-
namics of underlying neural communication. Analysis of multichannel EEG traces
is key to understanding the impact of electroconvulsive therapy (ECT), one of the
most effective treatments known for major depression with electrically induced
seizures in patients (Weiner and Krystal (1994)). The convulsive seizure activity
drives multichannel EEG traces and statistical interest is to model such multivari-
ate time series in order to reveal underlying characteristics and effects of ECT.
Various models have been studied to explore features of EEG time series (e.g.,
Kitagawa and Gersch (1996), West, Prado and Krystal (1999), Prado, West and
Krystal (2001), Prado (2010a, 2010b), Prado and West (2010)). Univariate TVAR
forms are proven as models of individual EEG channels (e.g., West, Prado and
Krystal (1999), Prado, West and Krystal (2001)); they can adequately represent
what can be considerable changes in the patterns of evolution of time-frequency
structure in series, as well as differences and changes in relationships across the
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EEG channels. Such studies highlight the need for multivariate models of the time-
varying commonalities across channels, with latent process structure reflecting the
inherent, underlying mechanisms of neural communication.

Our analysis adapts the earlier approach of Prado, West and Krystal (2001).
That work was the first Bayesian approach to multivariate time series analysis that
incorporated the key scientific feature of a single, focal latent process “driving”
the EEG signals across multiple channels. The authors used a novel dynamic dis-
tributed lag approach that captures time-varying lag-lead structures across series,
introducing a customized model specific to that context. Though effective, that
approach was very specific and empirical—the authors developed dynamic regres-
sions of m − 1 of the channels on the observed signal of one selected channel,
the latter chosen as an proxy for the underlying latent driving process xt . The de-
velopments of the current paper provide a general, flexible and—in terms of the
specific goals of the dynamic lag/lead study—almost perfectly suited context that
can be seen, in part, as an outgrowth from that prior work. Here the identification
of dynamically adaptive lag/lead structure is driven by combining time variation
in non-zero factor loadings with the latent threshold approach.

The study here explores m = 19-channel EEG times series recorded in one
seizure of one patient, as reported and earlier analyzed in West, Prado and Krys-
tal (1999) and Prado, West and Krystal (2001). The EEG channels are m = 19
electrodes located around and over the patient’s scalp; see Figure 1. The original
data set has sampling rate 256 Hz over a period of 1–2 minutes; following and
to compare directly with Prado, West and Krystal (2001), we analyze the series
subsampled every sixth observation after removing about 2000 observations from
the beginning (up to a higher amplitude portion of the seizure) yielding T = 3000
observations. Representative graphs of data on two of the channels over selected
epochs appear in Figure 2. Visual inspection of the substantial time-varying, quasi-
periodic trajectories of the data indicates that signals on some EEG channels are

Figure 1 Representation of the 19-electrodes placement over the scalp. The m = 19 series are
measurements of electrical potential fluctuations taken in parallel at each of these locations, defining
the EEG channels (International 10–20 EEG System).
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obviously “delayed” with respect to other channels, and the apparent delays (lags)
vary substantially through time. This is perfectly consistent with the dynamic pat-
terns of relationships of individual channels (the yit ) with an underlying seizure
process (the latent xt ) captured by our model structure (Section 3.3); the latent xt

process represents a range of dynamic quasi-periodicities characterizing multiple
brain wave components overlaid by, and modified by, the induced seizure, and the
time-varying lag/lead relationships among channels are represented by channel-

Figure 2 Sections of time series on two selected EEG channels, with standardization so that the
vertical scales of variation in EEG electrical potential are comparable across epochs and channels.
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specific and time-varying factor loadings, some of which may be negligible for all
time or for periods of time, and relevant elsewhere.

5.2 DTRFM Model M for multivariate EEG signals

Our analysis summaries are based on r = 5 effective lags, i.e., the model has a 5-
dimensional latent factor vector f ′

t = (xt , xt−1, . . . , xt−4)
′ and the first row of B t

set to (0,0,1,0,0) as the basis for model identification. This precisely parallels the
setup in the empirical model of Prado, West and Krystal (2001). As discussed in
Section 3.2, some constraints of this form are needed on elements of B t to formally
identify the single latent factor process model. There is no loss of generality nor
any superfluous structure imposed on the model here; we could choose any element
of the first row of B t to insert the 1, with different choices simply shifting the
implied time origin of the xt process. Under this structure, the first EEG channel
y1t loads only xt−2, while the other channels have loadings in the first (last) two
columns of B t related to the leading (lagged) values of the xt process.

Our analysis takes the so-called vertex channel Cz as series i = 1. See Fig-
ure 1. This parallels the use of the observed data on this specific channel as an
empirical factor process in Prado, West and Krystal (2001). The other channels are
ordered from the centre out. One further modeling detail relates to a modification
for a further, subtler “soft” identification question. The model so far implies that
y1t = xt−2 + ν1t , so the conditional variation expected in channel 1 is the sum
of time-varying contributions from the xt process plus σ 2

1t . As in all state-space
models with multiple components contributing to variability in observed data, dis-
tinguishing and partitioning the contributions requires care in prior specification;
the picture is complicated here as time variation in σ 2

1t “competes” with the intri-
cate dynamics of the δt and time variation in wt . A specification that controls this
more usefully in the current latent factor models is to fix as constant the measure-
ment error in series 1, that is, set σ1t = σ1, constant over time. This ensures the
interpretation of ν1t as pure measurement error (there being no reason to expect
time variation in pure measurement error variances, as opposed to the characteris-
tics of the underlying factor processes and transfer response/loadings parameters).
We do this, maintaining the stochastic variance discount model for the other σjt

(j = 2 : m); the latter combine pure measurement error and any other identified
changes in residual volatility across these channels. Then, posterior inferences in-
dicating substantial patterns of time variation in the latter then indicate the ability
of the discount models to account for relative variability not captured by the un-
derlying, identified latent factor process. The MCMC analysis of Section 4.3 is
trivially modified; a traditional inverse gamma prior on σ 2

1 leads to an inverse
gamma complete conditional posterior.

The analyses summarized are based on model order p = 6 for the latent xt pro-
cess. While formal order selection approaches could be entertained (e.g., Huerta
and West (1999), Prado and Huerta (2002)), our philosophy based on applied work
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with TVAR and related models in many areas is to fit successively larger models
and assess practical relevant of resulting inferences. Here we fit the DTRFM with
model orders up to p = 12, and for each analysis examine the posterior estimates
of components x̃j t , x̂j t as detailed in Section 3.3. With successively higher values
of model order p, we find robust estimation of p̃t = 3 quasi-periodic components
with estimated frequencies varying over time in ranges consistent with known
ranges of seizure and normal brain wave activity. Model order p = 6 is needed
to identify these three components, and they persist in models of higher order; in
addition to their substantive relevant, the estimated components are sustained over
time and vary at practically relevant levels in terms of their contributions to each
of the EEG series. However, moving beyond p = 6 leads to increasing numbers
of estimated components that are very ephemeral, of low amplitudes and higher
inferred frequencies beyond the range of substantive relevance. This signals over-
fitting as the model caters to finer aspects of what is really noise in the data. Disre-
garding such estimated noise components is certainly acceptable, and so we prefer
to cut-back to the model order p = 6 that identifies the main component structures
without these practically “spurious” elements.

Model specification is completed with priors for hyper-parameters. We take
σ−2

1 ∼ G(500,104), supporting a range of values for σ1 and with prior mean for
σ1 near 4.5. Seizure EEG data typically range over 300–600 units on the potential
scale, with sample standard deviations over selected epochs varying from 40–100
or more. Hence, an expectation of measurement error standard deviation around
4–5 is consistent with prior expectations that measurement error constitutes in
the range of 4–12% of the signal uncertainty in the traces. For the stochastic dis-
count variance models, we set values of the discount factors as λw = λσ = 0.99;
this is based in part on examination of analyses with various values, and con-
sistent with relatively modest levels of volatility in variance components. Priors
for the hyper-parameters of the latent AR(1) parameter processes are as follows:
1/v2

ik ∼ G(50,0.01), (φik +1)/2 ∼ B(20,1.5), and μik ∼ N(0,1), independently,
for i = 2 : m,k = 1 : r . This anticipates persistence in non-thresholded latent fac-
tor loadings, while allowing for some of the loadings to exhibit notable patterns of
change. Finally, we take �−1 ∼ W(100,10−3I ) and set K = 3 in the conditional
uniform priors for thresholds.

5.3 Some posterior summaries from analysis of DTRFM Model M

Summaries here come from J = 20,000 MCMC draws after a burn-in period of
5000. Computations were performed using custom code in Ox (Doornik (2006)).

Figure 3 displays time trajectories of the posterior means of the factor process
xt , and the volatility w

1/2
t of its driving innovations. The figure displays similar

trajectories for the time-varying characteristic frequency and modulus for each of
the three identified quasi-periodic components in xt , the x̃j t of Section 3.3. The x̃j t

component of lowest frequency has oscillations in the so-called “seizure” or “slow



714 J. Nakajima and M. West

Figure 3 Elements of inference on the latent factor process and its components in the EEG analy-
sis. The trajectories are posterior means of: (i) the factor process xt , and (ii) the innovation volatility

process w
1/2
t ; (iii) the characteristic frequencies, and (iv) moduli of the three quasi-periodic compo-

nents x̃j t , j = 1 : 3; and (v) the characteristic frequency, and (vi) modulus of the lowest-frequency
component (solid) with 95% credible intervals (dotted).

wave” band, considerably decaying toward the end of the seizure episode. Notably,
the other two inferred components have characteristic frequencies and moduli that
are rather stable over time though exhibit minor variation.

The frequency trajectories of the three quasi-periodic components show that
each lies in one of the expected neuropsychiatric categories: the so-called delta
band (roughly 0–4 Hz), theta band (4–8 Hz), and alpha band (8–13 Hz) (Dyro
(1989)). Each component process x̃j t is defined by the corresponding character-
istic frequency, while being broad-band in the spectral domain with time-varying
spectra that can be understood to peak at the characteristic frequencies themselves.
The lowest-frequency component stays in the delta range and gradually decreases
over time; its modulus is close to one (solid line in Figure 3(iv)), which indicates
a considerably persistent component; this so-called delta-slow wave dominates the
factor process during the course of the seizure, while its frequency content slides
towards lower values towards the end of the seizure episode. The other two quasi-
periodic components lie in the theta and alpha ranges; their moduli and amplitudes
are lower than those of the dominant component over the whole seizure course,
and show only limited changes over time. These reflect known frequency ranges
of normal brain signaling, being dominated through much of the period by the
strong seizure waveform. The innovations volatility rises in the initial part of the
seizure to drive increased amplitude fluctuations throughout the central section,
and then decays in later stages corresponding to the control and dissipation of the
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Figure 4 EEG analysis: Trajectories of posterior means (solid) and 95% credible intervals (dotted)
for the TVAR coefficients δ1:6,t .

brain seizure effects. These features are consistent with expected structure in the
seizure process, and with the broad results of Prado, West and Krystal (2001).

Figure 4 provides the trajectories of the posterior means and 95% credible in-
tervals for the TVAR coefficients δ1:p,t . All are markedly time-varying. The 95%
credible intervals are slightly wider during the late time periods, which feeds
through to increased uncertainties in features of the quasi-periodic components;
Figures 3(v) and (vi), displaying the posterior means and 95% credible intervals
of the frequency and modulus for the lowest-frequency component respectively,
showing somewhat increased uncertainties towards the end of the seizure.

To generate some insights into the nature of dynamic sparsity under the latent
threshold model, we select one channel—F7 at i = 4,—and plot the corresponding
trajectories of the estimated posterior probabilities Pr(sikt = 1|y1:T ) over time; i.e.,
the probability of a non-zero loading of channel F7 on each of the values xt−k for
k = 0 : r −1. See Figure 5 where we indicate the loadings on xt , xt−1 by Lead(+2)
and (+1) respectively, that on xt−2 by Sync, and those on xt−3, xt−4 by Lag(−1)
and (−2) respectively. The annotation here refers to lead/lag relative to the vertex
location Cz that reads-out an unbiased estimate of xt−2. So a non-zero loading of
F7 on xt , for example, defines a 2-period lead of that channel relative to the vertex,
whereas a non-zero loading on xt−3 represents a 1-period lag relative to the vertex
channel Cz, and so forth. From the figure, it is clearly inferred that there is strong
synchrony between F7 and Cz in their transfer responses to fluctuations in xt based
on the Sync trajectory. Also, F7 also has a reasonable probability of responding to
the latent factor process xt 1-period ahead of Cz, and almost surely does not lag
Cz in the transfer response over most of the time period, nor lead by more than 1
period until perhaps later in the seizure episode. The ability of latent thresholding
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Figure 5 EEG analysis: Trajectories of posterior probabilities Pr(sikt = 1|y1:T ) for channel F7,
index i = 4, indicating the inferred probabilities of lag-lead structure in transfer response to xt as
they vary over time.

to adaptively indicate existence of non-zero loadings during some periods and not
others, while also operating as a “global” variable selection mechanism as well, is
nicely exemplified here.

Figure 6 provides a visual display of posterior probabilities Pr(sikt = 1|y1:T )

across all the channels i = 1 : 19, and drawn at selected snapshots in time, with
images created by linearly interpolating between the estimates at the electrode
locations. Note that the model says nothing about spatial relationships between
channels. The marked patterns of shrinkage in the latent threshold model analysis
does nevertheless indicate strong spatial relationships, while the relationships also
show marked patterns of change over time. For example, loadings of Lead(+2)
are commonly and globally shrunk to zero from left frontal to right occipital sites.
The Lead(+2) loadings around right frontal and prefrontal areas exhibit evolving
degree of shrinkage. Similar changes are found in the parietal and occipital regions
of Lag(−2) loadings. Meanwhile, almost no shrinkage is found in the synchronized
loadings except for the channel T3 (left temporal).

Figure 7 is a companion to Figure 6 that exhibits aspects of estimated factor
loadings with the lag-lead structure at selected time points. The images represent
estimates b̂ikt = E(βikt |y1:T )ŝikt where ŝikt = 1 if Pr(sikt = 1|y1:T ) > 0.5 and
zero otherwise. Recall that the factor loading of vertex channel Cz is fixed at 1
for the basis and 0 for lagged/leaded times. The estimates show strong patterns
of positive spatial dependencies with Cz at the synchronized state (zero lag/lead),
with concurrent loadings on the xt process decaying towards the exterior regions.
The approximate centroid of the higher loadings region moves from front to back
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Figure 6 EEG analysis: Contoured values of Pr(sikt = 1|y1:T ) interpolating from values at the
channels i = 1 : 19. Each row corresponds to the values at a selected time point, and the columns
represent the indices k in relation to the transfer responses to xt−k for k = 0 : r − 1.

through the course of the seizure, consistent with what is understood to be the typi-
cal progression of seizure waveforms (Prado, West and Krystal (2001)). In the third
row of the figure (t = 2200), the highest loadings appears at and near channel Pz,
and the parietal region exhibits rising intensity. Another higher intensity is detected
around the right temporal area in Lead(+2) and in the channel C4 in Lead(+1).
This indicates dynamics of the driving latent process exhibited earlier in right tem-
poral/central areas and followed in the occipital region; this spatial asymmetry in
estimated transfer response loadings again links to experimental expectations for
the progression of seizure activity. In the last row of the figure (t = 2700, a late
stage of the seizure), the major lead/lag loadings diminish while the synchronized
loadings persist.
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Figure 7 EEG analysis: Estimated factor loadings b̂ikt with the lag-lead structure at selected time
points. The row-column layout of images corresponds to that in Figure 6.

Animated figures provide more insights into the patterns of variation over
time in factor loadings, the differences across channels, and the nature of the
dynamic latent thresholding in particular. Such animations are available as on-
line supplements to the paper1. A first animation2 shows a movie of patterns of
Pr(sikt = 1|y1:T ) interpolating from values at the channels i = 1 : 19. This shows
how these patterns evolve over time t , providing a dynamic display from which
the snapshots in Figure 6 are selected at four specific times. A second animation3

shows the corresponding movie for the interpolated estimates of factor loadings
b̂ikt over all time; the snapshots in Figure 7 are selected at four specific times. The

1Animation web page: www.stat.duke.edu/~mw/.downloads/NakajimaWest2016EEG/.
2Animation files animate-st.{avi,mp4}.
3Animation files animate-betat.{avi,mp4}.

http://www.stat.duke.edu/~mw/.downloads/NakajimaWest2016EEG/
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Figure 8 EEG analysis: Trajectories of the posterior means of time-varying standard deviations
of the idiosyncratic shocks, σikt , across all channels i = 1 : 19. For clarity in presentation, the y-s-
cale has been omitted; each standard deviation is graphed on the scale of 0–50 for comparability
across channels. Recall that the anchor channel Cz has constant standard deviation representing
pure measurement error around the latent process at that channel. Each graph is roughly located at
the corresponding electrode placement and the x-axes represent the full time period t = 1 : 3000.

animations clearly show and highlight regions of the brain surface where there is
very low or negligible probability of lag or lead effects of the xt process, other
regions where sustained effects are very evident and regions in which there is
more uncertainty about potential effects, together with inferences on the quanti-
fied lag/lead effects in terms of the temporal evolution of the spatial patterns in
estimated factor loadings.

Figure 8 plots E(σikt |y1:T ), that is, estimated standard deviations of the id-
iosyncratic shocks in each channel i = 1 : 19. Each graph is roughly located at the
corresponding electrode placement. Recall that σ1t = σ1, the innovation standard
deviation for the channel Cz, is assumed time-invariant, representing measurement
error only, as part of the model specification to define and identify the latent driv-
ing process xt . The model allows for potential variations over time in standard
deviations at other channels, with opportunity to identify variability in the data not
already captured through the time-varying loadings and latent process structure.
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From Figure 8, there do appear to be variations across channels and they show
some local spatial dependence. Trajectories of the neighboring channels F4 and
F8 are clearly similar, exhibiting a major hike in the middle of the seizure. It is
evident that some parietal and occipital sites (T3, P3, O1, O2 and P4) share a com-
mon trajectory, which marks a peak in an early stage of the seizure then gradually
decrease towards the end of the seizure. As seen in Figures 6 and 7, these sites
also share some relationships in the latent threshold-induced shrinkage and load-
ings at Lag(−1). Further, the estimate shows similarities among the channels Pz,
C4 and T6, whose patterns differ from those in the occipital region. This suggests
an intrinsic difference between the central sites (Pz, C4 and T6) and the occipital
sites (T3, P3, O1, O2 and P4), also suggested by Figures 6 and 7. Across all but
the vertex channel Cz at i = 1, the idiosyncratic error terms νit represent a com-
pound of measurement error and of additional patterns including local sub-activity
of the seizure that is not explained by the latent factor process. There are also ex-
perimental and physiological noise sources that are likely to induce local/spatial
residual dependencies in the data not forming part of the main driving process
xt , including electrical recording/power line noise and scalp-electrode impedance
characteristics; these presumably also contribute to the time-variation patterns in
the σit identified and their spatial dependencies.

5.4 Summaries from analysis of extended DTRFM Model M+
Model M+ has

yt = Atyt−1 + B tf t + νt , νt ∼ N(0,�t ), (8)

where At is the m × m matrix of lag-1 time-varying coefficients modeled using
latent threshold AR(1) processes. Model M+ extends Model M to potentially
capture data structure not fully explained by the factor and residual component.
One interest is to more structurally explain the time variation in estimated resid-
ual volatilities σit exhibited in the analysis of the baseline Model M. A contex-
tual question is that of representing potential “spill-over” effects between EEG
channels as the seizure waves cascade around the brain; that is, local (in terms
of the neural network and perhaps in part, though not necessarily, physically spa-
tially) transmission of signals between subsets of channels that represent delayed
responses to the latent xt process not already captured by the dynamic latent fac-
tor model form. The matrix At is expected to be sparse and modeled via latent
threshold dynamic models, as earlier described.

Figure 9 plots the posterior means of the states {αikt} and the posterior probabil-
ities Pr(sa

ikt = 1|y1:T ), where sa
ikt = I (|αikt | ≥ da

ik) and da
ik is the latent threshold

for each state αikt . The matrix At is evidently sparse and exhibits considerable
changes in the state and the posterior shrinkage probability among the selected
time points. Figure 10 shows the estimated standard deviations of the idiosyn-
cratic shocks E(σikt |y1:T ). Compared with Figure 8, the trajectories of standard
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Figure 9 EEG analyses: Posterior means of {αikt } (top) and posterior probabilities
Pr(sa

ikt = 1|y1:T ) (bottom) for At , in the TV-VAR extended model M+.

deviations are generally somewhat smoother over time; some of the variation in
the data not already captured by the B tf t is now absorbed by the Atyt−1.

To explore some practical implications of the extended Model M+ and com-
pare with the baseline Model M, one aspect of interest is predicted behavior of the
time series based on impulse response analysis relative to the underlying xt pro-
cess. Standing at a current, specified time t , this simply asks about the nature of
expected development of the series yt+1:t+h over the next h time points based on
an assumed level of the “impulse” εt+1 = e to the driving innovations of the latent
process. In applied work in economics, impulse responses are often primary vehi-
cles for communicating model implications, comparing models, and feeding into
decisions. The use of latent thresholding in macroeconomic models has focused
on this, in part, and clearly demonstrated the utility of dynamic latent threshold-
ing in inducing more accurate predictions and, in particular, more statistically and
substantively reliable impulse response analyses (Nakajima and West (2013a)).

We do this here from three time points (t = 900,1900,2900) chosen in the
early, middle and later sections of the EEG series; this exhibits differences in the
model projections/implications over time due to the dynamics, as well as differ-
ences between the two models in each of these periods. Computations are easily
done by using the posterior MCMC samples to project forward in time; predictive
expectations are then computed as Monte Carlo averages. The impulse value e is
taken as the average over t = 1 : T of the estimated historical innovations standard
deviations E(w

1/2
t |y1:T ). Figure 11 plots the impulse responses of the 19 EEG
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Figure 10 EEG analysis: Trajectories of the posterior means of time-varying standard deviations
of the idiosyncratic shocks, σikt , across all channels i = 1 : 19 for the extended Model M+. Details
as in as in Figure 8 for model M.

channels with h = 80 and from each of the two models. Note that, for our compar-
ison purposes here, we are interested in the forms of the impulse responses over
the horizon specified, not their specific values. We already know that the innova-
tions variance wt shows marked changes over time and, in particular, decays to
rather low values in the later stages of the seizure. Hence, the shock size e taken
here is larger than relevant and realized innovations over the latter part of the time
period, and the amplitudes of impulse responses should therefore not be regarded
as pertinent. The form of the projections are the focus.

Patterns of the impulse response are clearly time-varying across the three ex-
hibited time points; variation is evident with respect to wave frequency, per-
sistence/decay speed, and variation across the channels. In early periods of the
seizure, the responses decay slowly with a high-frequency cyclical wave, while in
later periods the decay is more rapid and the oscillations at lower frequency. While
there are, as we have discussed above, marked patterns of variation in lag/lead rela-
tionships across channels, there is the appearance of stronger synchronicity earlier
in the seizure episode, and this deteriorates towards end of the seizure.

The responses from the TV-VAR extended Model M+ model exhibit more vari-
ation across the channels than those from the Model M. This is attributable to
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Figure 11 EEG analyses: Impulse responses of the m = 19 EEG channels to a shock to the under-
lying factor process xt obtained from (i) Model M, (ii) Model M+. The impulse response functions
computed at three different time points throughout the seizure are shown (columns). For each model,
the impulse response projections are made from the time point indicated by column header up to 80
time periods ahead (lower rows in (i) and (ii)); the same responses are shown on a truncated time
period up to only 30 time periods ahead (upper rows in (i) and (ii)), for clarity.
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Figure 12 EEG analyses: Interpolated patterns of impulse responses from Model M+. These are
computed at the six time points indicated, and shown for selected impulse response horizons h = 2
and 8, respectively.

the induction of some spill-over effects of the shock. Through the latent factor
model component alone, the shock εt+1 = e has an impact on each of the channels
through its immediate influence on xt+1 and the consequent transfer response of
these effects via xt+1, and so forth. In the extended model, additional feed-forward
effects are passed through the channels via the TV-VAR component. Some addi-
tional insights into the nature of impulse responses can be gained from Figure 12
that shows images interpolating the 9 channel responses across the brain areas,
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based on analysis of the extended Model M+. These are shown at six time points
and for selected horizons h = 2 and 8, respectively; these images clearly show the
time variation of the responses spreading over the channels.

An animated figure, available as an online supplement4, provides a dynamic
display over impulse response horizons 1:80, with a movie that more vividly ex-
hibits the differences due to time period. The frames in the animation represent
the six time points in Figure 12, and show images of the impulse responses as the
projections are made over t + 1, t + 2, . . . , t + h to horizon h = 80.

6 Concluding remarks

The EEG time series analysis highlights the utility of latent thresholding dynamic
models in constraining model parametrization adaptively in time, with resulting
improvements in intepretation and inferences on inter-relationships among series
and transfer response characteristics. An additional comment on model compari-
son in the case study is worth mentioning. Statistical evaluation and comparison
of Model M+ with Model M is implicit since the latter is a special case of the
former. The analysis results of M+ explicitly show the relevance of the extensions
and hence support the more general model. This is separately supported by values
of the deviance information criterion (DIC; see Spiegelhalter et al. (2002)) com-
puted from the MCMC results for each model separately; this yields estimated DIC
is 996,191.7 for Model M and 988,435.9 for Model M+, which indicates strong
evidence that Model M+ dominates Model M.

A number of methodological and computational areas remain for further study.
Among them, we note potential for integrating spatially-dependent structures with
latent threshold factor models, motivated in part by the spatial-temporal findings
in the EEG study. Also, incorporating two or more common latent processes might
allow evaluation of more complex latent factor structures for these and other ap-
plications. Computational challenges are clear in connection with applying these
models to higher dimensional time series such as are becoming increasing com-
mon in neuroscience as they are other other areas. That said, we expect the dy-
namic latent thresholding approach to become increasing relevant and important—
in constraining and reducing effective parameter dimension via dynamic sparsity
in model parameters—in contexts with higher-dimensional time series.

4Animation web page: www.stat.duke.edu/~mw/.downloads/NakajimaWest2016EEG/. Animation
files animate-impulse.{avi,mp4}.

http://www.stat.duke.edu/~mw/.downloads/NakajimaWest2016EEG/
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Appendix: Summary of MCMC analysis

Based on the observations y1:T , the full set of latent state parameters and model
parameters for the posterior analysis of DTRFM Model M is as follows:

• The latent factor process states x−p+1:T including uncertain initial values;
• The latent TVAR coefficient process δ1:T ;
• The variance processes �1:T and w1:T ;
• The latent factor loading process B0:T , including the uncertain initial state;
• The hyper-parameters θ = {μik,φik, vik; i = 2 : m,k = 1 : r} and �;
• The latent threshold hyper-parameters d2:m,1:r .

Key components of the MCMC are below. We simply note the states or parameters
being generated, implicitly conditional on all other states and parameters.

Latent factor process states x−p+1:T
The model of equations (1), (3) can be written in a conditionally linear, Gaus-
sian dynamic model form with a modified state f̃ t = (xt , . . . , xt−p+1)

′ and a state
transition

f̃ t = Gt f̃ t−1 + et , (9)

where

Gt =

⎛
⎜⎜⎜⎜⎜⎜⎝

δ1t δ2t · · · δp−1,t δpt

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and et =

⎛
⎜⎜⎜⎜⎜⎜⎝

εt

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Generation of the full sets of states is obtained by the standard forward filtering,
backward sampling (FFBS) algorithm (e.g., Prado and West (2010)), which is ef-
ficient in the sense that the full trajectories of the states over time are regenerated
at each iterate of the overall MCMC.

TVAR coefficients

Conditional on x−p+1:T and the variances w1:T ,� , equations (2), (3) reduce to a
univariate, linear and Gaussian dynamic regression model with respect to the state
process δ1:T . We sample the states using the FFBS algorithm.

TVAR innovations volatility

Based on the standard inverse gamma/beta Bayesian discount model for the vari-
ance sequence w1:T over time as noted in Section 3.2, the corresponding FFBS for
volatilities provides a full sample from the conditional posterior for w1:T given all
other quantities.



Dynamics & sparsity 727

Observation variances

Similarly, the full conditional posterior for the �1:T factorizes into m components
involving the individual σi,1:T separately over i, and the discount variance FFBS
applies to each in parallel to generate full conditional posterior samples.

Factor loading process states

Following Nakajima and West (2013a, 2013b), we sample each β t = {β1:k,t } from
its conditional posterior distribution given β−t = β0:T \β t and all other param-
eters. Recall that the elements of β t follow standard AR(1) processes, but are
linked to the observation equation by the latent threshold structure. The resulting
conditional posterior for β t is a non-standard distribution that we cannot directly
sample. We use a Metropolis-within-Gibbs sampling strategy with the proposal
distribution derived in the non-threshold case by assuming sikt = 1; that is, we
generate the candidate from a standard linear dynamic model for β t without the
latent thresholds (see Section 2.3 of Nakajima and West (2013a)).

Hyper-parameters of AR and TVAR model components

Priors for the latent AR hyper-parameters θ assume prior independence across
series i = 2 : m with traditional forms: normal or log-gamma priors for μik , trun-
cated normal or shifted beta priors for φik , and inverse gamma priors for v2

ik . On
this basis, the full conditional posterior for θ breaks down into conditionally inde-
pendent components across i = 2 : m. We then resample the (μik, φik, v

2
ik) in par-

allel across i, using direct sampling from the conditional posterior in cases that the
priors are conditionally conjugate, or alternatively via Metropolis Hastings steps.

For the TVAR error variance matrix � , an inverse Wishart prior leads to an
easily sampled inverse Wishart complete conditional posterior.

Latent thresholds hyper-parameters

As discussed in Section 3.2, the structured prior for the thresholds dik takes them
as conditionally independent over i = 2 : m,k = 1 : r , with marginal priors that
depend on the parameters of the corresponding latent AR processes, viz. dik ∼
U(0, |μik| + Kuik) where u2

ik = v2
ik/(1 − φ2

ik). The set of thresholds are then also
independent in the complete conditional posterior; they are resampled in parallel
via Metropolis Hastings independence chain steps using the conditional uniform
priors as proposals. This is precisely as pioneered in Nakajima and West (2013a,
2013b) in other latent threshold models, and its efficacy has been borne out in a
number of examples there.

Finally, note that the above requires a slight modification and extension to gen-
eralize the MCMC for the extended DTRFM Model M+ of Section 3.4. The ex-
tension now involves the TV-VAR parameter matrices A1:T in equation (1) with
zt = yt−1, together with the required latent initial “missing” vector y0. The above
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Figure 13 EEG analyses: Typical MCMC trace plots for selected parameters.

development applies conditional on these elements with the obvious modifications
to subtract Atyt−1 from yt throughout. Then additional MCMC steps are needed.
First, y0 is generated from a complete conditional normal posterior under a suit-
ably diffuse normal prior. Second, the latent thresholded elements of the sequence
A1:T , and the set of hyper-parameters of the underlying AR(1) processes as well
as the corresponding thresholds, are treated just as are the elements of B1:T , dis-
cussed above. This component is a special case of the MCMC analysis for more
general TV-VAR models as developed in Nakajima and West (2013a).

Comment on MCMC convergence

Some insights into the convergence of the MCMC sampling are gained by view-
ing trace plots for selected parameters. As an example, some such plots from the
analysis of the extended Model M+ are shown in Figure 13.
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