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Abstract. We study varying coefficient partially linear models when some
linear covariates are error-prone, but their ancillary variables are available.
After calibrating the error-prone covariates, we study quantile regression esti-
mates for parametric coefficients and nonparametric varying coefficient func-
tions, and we develop a semiparametric composite quantile estimation proce-
dure. Asymptotic properties of the proposed estimators are established, and
the estimators achieve their best convergence rate with proper bandwidth con-
ditions. Simulation studies are conducted to evaluate the performance of the
proposed method, and a real data set is analyzed as an illustration.

1 Introduction

Various semiparametric regression models have become quite popular because
they relax several restrictive assumptions on parametric models and remain flex-
ible enough to capture the underlying relations between covariates and responses
to dealing with real data. One of the most popular and important semiparametric
regression models is the partial linear varying coefficient model (PLVCM):

Y = γ τ
0Z + α0(U) + ατ (U)X + ε, (1.1)

where “τ” denotes the transpose operator on a vector or a matrix throughout this
paper. The variable Y is the response variable, and Z,X, and U are the covariates.
γ 0 is a vector of the unknown parameters, α0(·) and α(·) are unknown smooth
functions, and ε is a random error with mean zero and finite variance. In this paper,
we focus on univariate U only, although the proposed procedure is directly appli-
cable for multivariate U. However, the extension might be practically less useful
due to the curse of dimensionality. Model (1.1) has attracted much attention due to
the model’s flexibility for combining multiple linear regression models and non-
parametric regression models. The model includes important special cases. When
α(·) ≡ 0, we get partial linear models (PLMs), for example, Heckman (1986),
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Robinson (1988), Speckman (1988), Li, Feng and Peng (2011). Surveys of PLMs
are given by Härdle, Liang and Gao (2000), Liang (2008). When γ 0 = 0, model
(1.1) reduces to varying coefficient models (VCMs), which have been applied to
parsimoniously describe the data structure and to uncover scientific features, see
Hastie and Tibshirani (1993), Cai, Fan and Li (2000), Fan and Zhang (2008), Wang
and Xia (2009), Wei, Huang and Li (2011), Zhu, Li and Kong (2012), Gu and Liang
(2014), Li, Ouyang and Racine (2013), Yuan et al. (2013).

Existing estimation procedures for the parameter γ 0 and the nonparametric
functions α0(·) and α(·) in PLVCMs are built on either least-squares or likelihood-
based methods. For example, Zhang, Lee and Song (2002) proposed local poly-
nomial estimators, which are further modified to achieve the optimal convergence
rate. Xia, Zhang and Tong (2004) developed the idea of minimum average variance
estimation (Xia et al., 2002, MAVE) and proposed an efficient estimation method.
Li, Xue and Lian (2011) considered variable selection problem for PLVCMs when
the number of parametric and nonparametric components diverge at appropriate
rates. Bravo (2013) consider estimation and testing problems for PLVCMs when
the response variable Y is missing at random.

It is known that ordinary least-squares regression is sensitive to extreme out-
liers, which distorts the results significantly. As a remedy, quantile regression
(QR) is more robust against outliers in the response measurements, relative to
ordinary least-squares regression. QR overcomes various problems that ordinary
least-squares regression is usually confronted with and focuses on the relation be-
tween the response variable and covariates for a given quantile. QR has experi-
enced deep and exciting developments in theory, methodology, and applications.
Koenker (2005) provided a comprehensive survey of QR. For the estimation prob-
lem and statistical inference of semiparametric quantile regression (SQR), there is
much work in the literature. See, for example, Hu, Gramacy and Lian (2013), Fan
and Zhu (2013), Cai and Xiao (2012), Wang, Zhu and Zhou (2009). Recently, Kai,
Li and Zou (2011) proposed an SQR procedure when the conditional quantile of
the response-given covariates is modeled as PLVCMs, and they investigated the
sampling properties of the proposed method. Kai, Li and Zou (2011) further pro-
posed a semiparametric composite quantile regression (SCQR) for PLVCMs. The
composite quantile regression (CQR) proposed by Zou and Yuan (2008) combines
information across multiple quantile estimates to improve estimators, which are
asymptotic efficient compared with the classical least-squares estimators. Kai, Li
and Zou (2011) showed that the SCQR estimators for model (1.1) gain at least
88.9% efficiency for many non-normal errors and lose only a small amount of ef-
ficiency for normal errors. These properties have motivated researchers to develop
CQR method for many other models; see Jiang et al. (2013), Guo et al. (2013),
Jiang, Jiang and Song (2012), Kai, Li and Zou (2010). Recent discussions about
the asymptotic relative efficiency are referred to by Feng, Zou and Wang (2012),
Kai, Li and Zou (2010), Sun, Gai and Lin (2013), Shang, Zou and Wang (2012),
Wang, Kai and Li (2009).
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In many biomedical studies, covariates may be observed with certain contam-
ination. As we know, measurement errors in covariates may cause a large bias
for the regression coefficients if we ignore measurement errors. Fuller (1987) and
Carroll et al. (2006) are two comprehensive surveys of linear and nonlinear mea-
surement errors models. In the literature of errors-in-variables for QR, He and
Liang (2000) considered the QR procedure for partial linear errors-in-variables
models. Wang, Stefanski and Zhu (2012) developed a corrected score to account
for a class of covariates measurement errors in QR. This method is simple to im-
plement and does not need parametric assumptions of the regression errors. Wei
and Carroll (2009) constructed joint estimating equations that simultaneously hold
for all the quantile levels, which produces a consistent linear quantile estimator
by correcting bias caused by the measurement errors. In this paper, we consider
a scenario where p (1 ≤ p ≤ d) components of Z, namely, ξ , are observed with
ancillary variables η and V through the following model:

η = ξ(V ) + e, (1.2)

where e is the model error with E(e|V ) = 0 and finite covariance matrix �e =
Cov(e). We focus on univariate V only, although the proposed procedure in this
paper is directly applicable for multivariate V. However, the extension might be
practically less useful due to the curse of dimensionality. This kind of measure-
ment errors model is not uncommon and includes various models, for example,
the de-noise linear or nonlinear models studied by Cui, He and Zhu (2002), Cui
and Hu (2011), Cai, Naik and Tsai (2000), the rational expectation model in the
econometric literature, and the errors-in-variables model for the Duchenne muscu-
lar dystrophy (DMD) study considered in Zhou and Liang (2009), who studied the
estimation and hypothesis testing problems for the models (1.1)–(1.2) by using the
least-squares estimation method.

The QR provides a more complete picture of the conditional distribution of re-
sponses given the covariates when the lower and upper or all quantiles are of inter-
est and has an advantage over ordinary least-squares regression due to its flexibility
for modeling data with heterogeneous conditional distributions. This motivates us
to study the QR estimation in the case of measurement errors model (1.2). In Sec-
tion 2, we propose a semiparametric quantile measurement errors regression. We
investigate the sampling properties of the proposed methods and their asymptotic
normality. Under proper conditions for the bandwidths, we show that the estima-
tors of the parameters are root-n consistent, and the quantile regression estimators
for the nonparametric parts achieve the optimal rate of convergence. In Section 3,
we also propose SCQR estimators to estimate the parameters and nonparamet-
ric components in PLVCMs in the case of measurement errors model (1.2). The
asymptotic properties of the SCQR estimators are also presented. Simulation re-
sults and a real data analysis are presented in Section 4. The regularity conditions
and technical proofs are given in the Appendix.
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2 Semiparametric quantile regression

Let Y be the response variable, X = (X1, . . . ,Xp)τ ∈ Rp , ξ = (ξ1, . . . , ξd)τ ∈
Rd , W = (W1, . . . ,Wr)

τ ∈ Rr , and U ∈ R1 be the covariates. The semipara-
metric quantile varying coefficient partial linear model (SQVCPLM) assumes
that the conditional quantile function of the Y -given covariates (ξ ,W,X,U),
Qκ(ξ,w,x, u) = arg minaE{ρκ(Y −a)|ξ = ξ,W = w,X = x,U = u} is expressed
as

Qκ(ξ,w,x, u) = βτ
κξ + θ τ

κw + α0,κ (u) + ακ(u)τ x, (2.1)

where ρκ(t) = κt − tI {t < 0} is the quantile loss function at κ ∈ (0,1).
Here, it is assumed that the components of ξ are unobserved, but auxiliary vari-

ables (η,V ) are available to remit ξ . Moreover, the observed variable η is related
to the observed variable V via

η = ξ(V ) + e, (2.2)

where e is a measurement error and independent of (X,W,V ,U,Y ). We call
model (2.1) and model (2.2) as semiparametric quantile varying coefficient par-
tial linear measurement errors models (SQVCPLMeMs).

2.1 Covariate calibration

Suppose that {Yi,Ui,ηi , Vi,Wi ,Xi , i = 1, . . . , n} be an independent and identi-
cally distributed sample from (Y,U,η,V ,W,X). When the covariate ξ is mea-
sured with errors, we first calibrate ξ by using the ancillary observed sample
{ηi , Vi, i = 1, . . . , n}.

Now, we introduce the calibration estimation procedure to remit ξ . Let ηi,k be
the kth entry of vector ηi for i = 1, . . . , n. The local linear smoothing technique
(Fan and Gijbels, 1996) is applied to estimate ξk(v), the kth component of ξ(v).
That is, to minimize

n∑
i=1

{
ηi,k − a0k − a1k(Vi − v)

}2
Lhk

(Vi − v), (2.3)

with respect to a0k, a1k , where Lhk
(·) = L(·/hk)/hk with L(·) is a kernel function,

hk (k = 1, . . . , d) is the bandwidth. Let â0k and â1k be the minimizers of (2.3), we
have

ξ̂k(v) = â0k = A20,k(v)A01,k(v) − A10,k(v)A11,k(v)

A00,k(v)A20,k(v) − A2
10,k(v)

, (2.4)

where Aj1j2,k(v) =∑n
i=1 Lhk

(Vi − v)(Vi − v)j1η
j2
i,k for j1 = 0,1,2, j2 = 0,1, k =

1, . . . , d . Under the conditions given in the Appendix (see also in Zhou and Liang
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(2009)), we have the following asymptotic expression:

ξ̂k(v) − ξk(v)
(2.5)

= μL2

2
h2

kξ
(2)
k (v) + 1

nfV(v)

n∑
i=1

Lhk
(Vi − v)ei,k + o

(
h2

k + logh−1
k /

√
nhk

)
,

uniformly on v ∈ V, where V is a bounded support of V . Here ξ
(2)
k (v) is the

second derivative of ξk(v), ei,k is the kth component of ei , i = 1, . . . , n. μL2 =∫
u2L(u)du, and fV (v) is the density of V .

2.2 Estimation and main results

After calibrating ξ , we model the synthesis data {Yi,Ui, ξ̂ i ,Wi ,Xi; i = 1, . . . , n}
by using the SQR principle (Kai, Li and Zou, 2011):

Y ≈ βτ
κ ξ̂ + θ τ

κW + α0,κ (U) + ακ(U)τ X + εκ, (2.6)

where εκ is the random error with the conditional κ th quantile zero. The quantile
estimators of βκ, θκ, α0,κ (·), and ακ(·) are obtained by minimizing the quantile
loss function:

n∑
i=1

ρκ

{
Yi − α0,κ (Ui) − ατ

κ(Ui)Xi − θ τ
κWi − βτ

κ ξ̂ i

}
. (2.7)

As Kai, Li and Zou (2011), Li and Liang (2008) claimed, different convergence
rates of the parametric components βκ and θκ and the nonparametric components
α0,κ (·) and ακ(·) are involved in (2.7). A three-stage estimation procedure is pro-
posed to obtain the proper estimators. We first use a local linear smoothing tech-
nique (Fan and Gijbels, 1996) to approximate α0,κ (·) and ακ(·) and obtain the ini-
tial local minimizer of (βτ

κ , θ τ
κ , α0,κ (·),ατ

κ(·))τ . In the second and third stages, we
use these initial estimators alternatively to obtain refined estimators of (βτ

κ , θ τ
κ)τ

and (α0,κ (·),ατ
κ(·))τ .

Let K(·) be the kernel function, h be the bandwidth, and Kh(·) = K(·/h)/h.
Recall that ακ(u) = (α1,κ (u), . . . , αp,κ(u))τ , α′(u) = (α′

1,κ (u), . . . , α′
p,κ(u))τ . For

each u in a neighborhood of U , we approximate αj,κ(U) by αj,κ(u)+α′
j,κ(u)(U −

u), j = 0,1, . . . , p. The local estimators of βκ , θκ , αj,κ(u), and α′
j,κ(u) are ob-

tained by minimizing the following local quantile loss function with respect to α0,
α′

0, α, α′, β , and θ :

n∑
i=1

ρκ

{
Yi − βτ ξ̂ i − θ τ Wi − α0 − α′

0(Ui − u) − ατ Xi − α′τ Xi(Ui − u)
}
(2.8)

× Kh(Ui − u).
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Denote the local estimators of α0,α,β , and θ from (2.8) by ᾰ0,κ (u), ᾰκ(u), β̆κ ,
and θ̆κ . As demonstrated in Theorem 1 in the following, these estimators are all√

nh-consistent.
Denote A⊗2 = AAτ for any matrix or vector A. Let fκ(·|v,w,x,u) be the den-

sity function of the error εκ conditional on (V ,W,X,U) = (v,w,x, u) and fU(·)
be the marginal density function of the covariate U . Define M = (ξ τ ,Wτ ,1,Xτ )τ

and

A1(u) = E
[
M⊗2fκ(0|V,W,X,U)|U = u

]
, B1(u) = E

[
M⊗2|U = u

]
,

ϒ(u) = E
[
M
(
ξ (2)(V )

)τ
fκ(0|V,W,X,U)|U = u

]
Cβκ,

where ξ (2)(V ) = (ξ
(2)
1 (V ), . . . , ξ

(2)
d (V ))τ , C = diag(c2

1, . . . , c
2
d), and ci are defined

in condition (C5) in the Appendix. Moreover,

μK2 =
∫

t2K(t) dt, μL2 =
∫

t2L(t) dt, ϑK0 =
∫

K2(t) dt.

Theorem 1. Under the regularity conditions (C1)–(C4), (C5)(i), and (C6) given
in the Appendix, we have

√
nh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

β̆κ − βκ

θ̆κ − θκ

ᾰ0,κ (u) − α0,κ (u)

ᾰκ(u) − ακ(u)

⎞⎟⎟⎟⎠− h2μK2

2

⎛⎜⎜⎝
0d×1
0r×1

α′′
0,κ (u)

α′′
κ(u)

⎞⎟⎟⎠+ h2
oμL2

2
A−1

1 (u)ϒ(u)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
L−→ N

(
0,

κ(1 − κ)ϑK0

fU(u)
A−1

1 (u)B1(u)A−1
1 (u)

)
.

Remark 1. As the data is used in a neighborhood of u based on the local
loss function (2.8), Theorem 1 indicates that the estimators β̆κ and θ̆κ are all√

nh-consistent with an extra bias π1
h2

oμL2
2 A−1

1 (u)ϒ(u), π1 = (Id+r ,

0)(d+r)×(d+r+1+p), which is caused due to the estimation of unobserved ξ(v).
This extra bias will converge to zero as nhh4

o → 0. If ξ is observed exactly, then

the bias term
h2

oμL2
2 A−1

1 (u)ϒ(u) vanishes, and the asymptotic result in Theorem 1
is the same as Theorem 2.1 obtained in Kai, Li and Zou (2011).

After the first-stage estimators ᾰ0,κ (u), and ᾰκ(u) are obtained, the improved es-
timators for βκ, θκ are obtained by minimizing the global objective function with
respect to (β, θ):

n∑
i=1

ρκ

{
Yi − βτ ξ̂ i − θ τ Wi − ᾰ0,κ (Ui) − ᾰτ (Ui)Xi

}
. (2.9)
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Denote the global estimators from (2.9) by β̂κ and θ̂κ . Theorem 3 presents the
root-n asymptotic normality of β̂κ and θ̂κ . Define

λκ(v) = E
[(

ξ τ ,Wτ )τ fκ(0|V,W,X,U)|V = v
]
,

φκ(u) = E
[(

ξ τ ,Wτ )τ (0τ
(d+r)×1,1,Xτ )fκ(0|V,W,X,U)|U = u

]
A−1

1 (u).

We have the following asymptotic result.

Theorem 2. Under the regularity conditions (C1)–(C4), (C5)(ii), and (C6) given
in the Appendix, we have

√
n

(
β̂κ − βκ

θ̂κ − θκ

)
L−→ N

(
0(d+r)×1,

−1
κ �κ−1

κ

)
,

where

κ = E
[{(

ξ τ ,Wτ )τ }⊗2
fκ(0|V,W,X,U)

]
,

�κ = E
[
λ⊗2

κ (V )
]
βτ

κ�eβκ + E
[{(

ξ τ ,Wτ )τ + φκ(U)M
}⊗2]

κ(1 − κ).

Remark 2. The proposed estimation procedure (2.9) involves bandwidths, h and
hk , k = 1, . . . , d , to be selected. By condition (C5)(ii) of that nh4 → 0 and
nh4

k → 0, under-smoothing is necessary for obtaining root-n consistent estima-
tors of βκ , θκ . Carroll et al. (1997) suggested that the rate for the undersmoothing
bandwidth is an order of O(n−1/5) × n−2/15 = O(n−1/3), and this rate meets the
requirements of condition (C5)(ii). In practice, those useful and reasonable choices
for h and hk are implemented by Zhou and Liang (2009); i.e., h = σ̂Un−1/3,
hk = σ̂Vn−1/3, where σ̂U and σ̂V are the sample deviations of U and V , respec-
tively.

The first term E[λ⊗2
κ (V )]βτ

κ�eβκ in the asymptotic variance �κ is caused by
estimating unobserved ξ(v). The rest of �κ is the same as Theorem 2.2 in Kai, Li
and Zou (2011) if ξ(v) = v and measurement error e vanishes (i.e., e = 0).

Next, we improve the estimation efficiency of α0,κ (u) and ακ(u) by using the root-
n consistent estimators β̂κ and θ̂κ . Let α̂0,κ (u), α̂′

0,κ (u), α̂κ(u), and α̂′
κ(u) be the

minimizers of

n∑
i=1

ρκ

{
Yi − β̂

τ
ξ̂ i − θ̂

τ
Wi − α0 − b0(Ui − u) − ατ Xi − bτ Xi (Ui − u)

}
(2.10)

× Kh(Ui − u),

with respect to α0, b0,α, and b. We have the following asymptotic result.
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Theorem 3. Under the regularity conditions (C1)–(C4), (C5)(i), and (C6) given
in the Appendix, we have

√
nh

{(
α̂0,κ (u) − α0,κ (u)

α̂κ(u) − ακ(u)

)
− h2μK2

2

(
α′′

0,κ (u)

α′′
κ(u)

)
+ h2

oμL2

2
A−1

2 (u)�(u)

}
L−→ N

(
0(p+1)×1,

κ(1 − κ)ϑK0

fU(u)
A−1

2 (u)B2(u)A−1
2 (u)

)
,

where

A2(u) = E
[[(

1,Xτ )τ ]⊗2
fκ(0|V,W,X,U)|U = u

]
,

B2(u) = E
[[(

1,Xτ )τ ]⊗2|U = u
]
,

�(u) = E
[(

1,Xτ )τ (ξ (2)(V )
)τ

fκ(0|V,W,X,U)|U = u
]
Cβκ .

Remark 3. The extra bias
h2

oμL2
2 A−1

2 (u)�(u) is due to the estimation of unob-
served ξ . If ξ is observed exactly, then this bias term will vanish, and the asymp-
totic result in Theorem 3 is the same as Theorem 2.3 obtained in Kai, Li and Zou
(2011). As noted in Kai, Li and Zou (2011), the refined estimators for α0,κ (u)

and ακ(u) obtained by (2.10) have smaller conditional asymptotic variances than
ᾰ0,κ (u) and ᾰκ(u) obtained by (2.8). In this context, the refined estimation pro-
cedure (2.10) provides more efficient estimators for these unknown quantities
α0,κ (u) and ακ(u).

3 Semiparametric composite quantile estimation

In this section, we aim to develop an SCQR estimate under the following measure-
ment error setting:{

Y = βτ ξ + θ τ W + α0(U) + α(U)τ X + ε,

η = ξ(V ) + e.
(3.1)

The random error ε is independent with (ξ τ ,Wτ ,U,Xτ )τ and independent with
(V , eτ )τ . We assume that ε follows the distribution Fε(·) with mean zero. If ξ is
observed, for a given κl ∈ (0,1), we have

Qκ(ξ,w,x, u) = cκl
+ βτ ξ + θ τ w + α0(u) + α(u)τ x,

where cκl
= F−1

ε (κl). As Kai, Li and Zou (2011), Zou and Yuan (2008), Kai, Li and
Zou (2010) indicated, the local CQR method significantly improves the estimation
efficiency compared with the local least-squares estimator when the model error
ε follows non-normal distributions. This motivates us to investigate the SCQR
estimate for the SQVCPLMeMs introduced in model (3.1).
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Using those calibrated variables {Yi, ξ̂ i ,Wi ,Xi ,Ui, i = 1, . . . , n}, the SCQR
estimators of β , θ , α0(u), and α(u) in model (3.1) are obtained by minimizing the
following objective function (3.2):

q∑
l=1

n∑
i=1

ρκl

(
Yi − α0l(Ui) − α(Ui)

τ Xi − βτ ξ̂ i − θτ Wi

)
, (3.2)

where κl = l
q+1 for a given q , l = 1, . . . , q . We now adapt the three-stage estima-

tion procedure proposed in Section 2.1.
Let α(u) = (α1(u), . . . , αp(u))τ , α′(u) = (α′

1(u), . . . , α′
p(u))τ . For each u in

a neighborhood of U , we approximate αj (U) by αj (u) + α′
j (u)(U − u), j =

0,1, . . . , p. The local estimates of β , θ , αj (u), and α′
j (u) are obtained by min-

imizing the following local composite quantile loss function with respect to α∗
0l ,

α′∗
0 , α∗, α′∗, β and θ , l = 1, . . . , q ,

q∑
l=1

n∑
i=1

ρκl

{
Yi − β∗τ ξ̂ i − θ∗τ Wi − α∗

0l − α′∗
0 (Ui − u)

− α∗τ Xi − α′∗τ Xi(Ui − u)
}

(3.3)

× Kh(Ui − u).

Denote the local estimators of α∗
0l ,α

∗,β , and θ from (3.3) by ᾰ0l(u), ᾰ(u), β̆, θ̆ ,
l = 1, . . . , q . The estimator of α0(u) is given by

ᾰ0(u) = 1

q

q∑
l=1

ᾰ0l(u). (3.4)

In Theorem 4, we present that these estimators are all
√

nh-consistent.

Theorem 4. Under the regularity conditions (C1)–(C4), (C5)(i), and (C7) given
in the Appendix, we have

√
nh

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

β̆ − β

θ̆ − θ
ᾰ01(u) − α0(u) − cκ1

...

ᾰ0q(u) − α0(u) − cκq

ᾰ(u) − α(u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− h2μK2

2

⎛⎜⎜⎝
0d×1
0r×1

1q×1α
′′
0 (u)

α′′(u)

⎞⎟⎟⎠+ h2
oμL2

2
A−1

1,fε
(u)ℵ(u)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
L−→ N

(
0(d+r+q+p)×1,

ϑK0

fU(u)
A−1

1,fε
(u)T(u)A−1

1,fε
(u)

)
,

where

A1,fε (u) =
q∑

l=1

fε(cκl
)E
[
M⊗2

[l] |U = u
]
,
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ℵ(u) =
q∑

l=1

fε(cκl
)E
[
M[l]

(
ξ (2)(V )

)τ |U = u
]
Cβ,

T(u) =
q∑

l=1

q∑
s=1

E
[
M[l]Mτ[s]|U = u

]
(κl ∧ κs − κlκs),

and M[l] = (ξ τ ,Wτ ,mτ
l ,Xτ )τ . Here, ml is a q-vector with 1 at the lth position

and 0 elsewhere.

Remark 4. Theorem 4 reveals that the local SCQR estimation procedure (3.3)

also entails a
√

nh-consistent estimator of (βτ , θ τ )τ with an extra bias π∗ h2
oμL2

2 ×
A−1

1,fε
(u)ℵ(u), π∗ = (Id+r ,0)(d+r)×(d+r+q+p). Analogous with Theorem 1, this

bias
h2

oμL2
2 A−1

1,fε
(u)ℵ(u) will vanish if ξ is observed exactly, and then the asymp-

totic result in Theorem 4 is the same as Theorem 3.1 obtained in Kai, Li and Zou
(2011).

Using these initial estimators, we propose SCQR estimators of β and θ and present
its asymptotic normality. The SCQR estimators of β and θ are obtained by mini-
mizing (3.5):(

β̂
τ
, θ̂

τ )τ
(3.5)

= arg min
β∗,θ∗

n∑
i=1

q∑
l=1

ρκl

(
Yi − ξ̂

τ

i β
∗ − Wτ

i θ
∗ − ᾰ0l(Ui) − ᾰ(Ui)

τ Xi

)
,

with respect to β∗ and θ∗.
Define fε(cκ) = (fε(cκ1), . . . , fε(cκq ))

τ , cfε =∑q
l=1 fε(cκl

). Moreover,

λ∗(v) = E
[(

ξ τ ,Wτ )τ |V = v
]
,

φfε
(u) = E

[(
ξ τ ,Wτ )τ (0τ

(d+r)×1, fε(cκ)τ , cfεXτ )|U = u
]
A−1

1,fε
(u).

Theorem 5. Under the regularity conditions (C1)–(C4), (C5)(ii), and (C7) given
in the Appendix, we have

√
n

(
β̂ − β

θ̂ − θ

)
L−→ N

(
0(d+r)×1,

−1∗ �1∗−1∗ + 1

c2
fε

−1∗ �2∗−1∗
)
,

where ∗ = E[{(ξ τ ,Wτ )τ }⊗2], �1∗ = E[λ⊗2∗ (V )]βτ�eβ and

�2∗ =
q∑

l=1

q∑
s=1

(κl ∧ κs − κlκs)
[
E
{
φfε

(U)M[l]
(
ξ τ ,Wτ )+ (

ξ τ ,Wτ )τ Mτ[l]φτ
fε

(U)
}

+ E
{
φfε

(U)M[l]Mτ[s]φτ
fε

(U)
}+ ∗

]
.
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Remark 5. The first term −1∗ �1∗−1∗ in the asymptotic variance of Theorem 5
is due to the estimation of unobserved ξ . If ξ is observed exactly (i.e., e = 0),
this term disappears analogous with Theorem 2. Moreover, if e = 0, E(X|U) = 0,
E(ξ |U) = 0, and E(W|U) = 0, the asymptotic relative efficiency (ARE) of CQR
for β and θ will be at least 86.4% when a large q is used, compared to the semi-
least-squares estimate proposed by Li and Liang (2008). In the context of the
measurement error considered in this paper, the ARE calculation for parameters
β and θ involve an extra unknown term �1∗, which involves the unknown covari-
ance matrix �e of e, unknown argument ∗(v) and unknown parameter β . The
ARE calculation for our models has no general result; however, it is of interest to
explore solutions for different distributions of e and some particular structures of
∗(v).

Finally, we now refine the SCQR estimators of α0(u) and α(u) by using β̂ and θ̂

obtained through (3.5). The refined estimators for α(u) and α(u) are defined as(
α̂01(u), . . . , α̂0q(u), α̂′

0(u), α̂τ
(u), α̂′τ

(u)
)τ

= arg min
α01,...,α0q ,

α′
0,α,α′

n∑
i=1

q∑
l=1

ρκl

(
Yi − ξ̂

τ

i β̂ − Wτ
i θ̂

(3.6)
− α0l − α′

0(Ui − u) − ατ Xi − α′τ Xi (Ui − u)
)

× Kh(Ui − u).

The refined estimator for α0(u) is further defined as

α̂0(u) = 1

q

q∑
l=1

α̂0l(u). (3.7)

We now study the asymptotic properties of α̂0(u) obtained from (3.7) and α̂(u)

obtained from (3.6). Define

A2,fε (u) = E

[
Cfε fε(cκ)Xτ

Xf τ
ε (cκ) cfεX⊗2

∣∣∣∣U = u

]
,

�fε (u) = E
[(

f τ
ε (cκ), cfεXτ )τ (ξ (2)(V )

)τ |U = u
]
Cβ,

G(u) =
q∑

l=1

q∑
s=1

(κl ∧ κs − κlκs)E
[(

mτ
l ,Xτ )τ (mτ

s ,Xτ )|U = u
]
,

where Cfε = diag(fε(cκ1), . . . , fε(cκq )). Moreover, let πq,1 = (1τ
q×1,0τ

p×1)
τ ,

πp,2 = (0p×q, Ip), where Ip is an identical matrix of size p.
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Theorem 6. Under the regularity conditions (C1)–(C4), (C5)(i), and (C7) given
in the Appendix, we have

√
nh

(
α̂0(u) − α0(u) − 1

q

q∑
l=1

cκl
− h2μK2

2
α′′

0 (u)

− h2
oμL2

2q
π τ

q,1A−1
2,fε(u)�fε (u)

)
(3.8)

L−→ N

(
0,

ϑK0

fU(u)q2 π τ
q,1A−1

2,fε
(u)G(u)A−1

2,fε
(u)πq,1

)
.

Moreover,

√
nh

(
α̂(u) − α(u) − h2μK2

2
α′′(u) − h2

oμL2

2
πp,2A−1

2,fε(u)�fε (u)

)
(3.9)

L−→ N

(
0p×1,

ϑK0

fU(u)
πp,2A−1

2,fε
(u)G(u)A−1

2,fε
(u)π τ

p,2

)
.

Remark 6. Note that our asymptotic variances in (3.9)–(3.9) are the same as
Theorem 3.3 obtained in Kai, Li and Zou (2011). As indicated in Kai, Li and
Zou (2011), CQR estimators utilize information shared across multiple quantile
functions, which have competitive asymptotic efficiency compared with the least-
squares methodology obtained by Zhou and Liang (2009), Li and Liang (2008).
Moreover, the ARE is at least 88.9% for estimating varying coefficient functions
(Kai, Li and Zou, 2011).

From (3.7), the baseline function estimator α̂0(u) converges to α0(u) plus the
average of the quantiles of error distribution; that is, 1

q

∑q
l=1 cκl

. This average term
is zero when the error distribution is symmetric. For non-asymmetric distributions,
as q converges to infinity, this average converges to the mean of the error ε, which
is also zero. For finite q , Sun, Gai and Lin (2013) designed weighted local linear
composite quantile (WL-CQR) techniques to eliminate possible bias caused by the
averages of the quantiles. However, deriving the asymptotic normality of the WL-
CQR estimators for SQVCPLMeMs considered in this paper involves additional
technicalities that go beyond the scope of the current paper. Therefore, this case
will be considered in future research.

4 Numerical studies

In this section, we first conduct simulation studies to assess the performance
of the proposed methods, and then we apply our methods to analyze a real
dataset from a DMD study. We used the Epanechnikov kernel function L(t) =
K(t) = 0.75(1 − t2)+ in the following numerical studies. For the estimators of
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βκ, θκ,β, and θ , as noted in Remark 2, the smoothing parameter hk is chosen
as σ̂V n−1/3, where σ̂V is the sample deviation of V . The smoothing parameter h

is chosen as σ̂Un−1/3, where σ̂U is the sample deviation of U . These choices of
hk and h naturally meet the condition (C5)(ii). For the estimators of the nonpara-
metric functions α0,κ (u),ακ(u),α0(u), and α(u), Theorems 3 and 6 entail that the
optimal theoretical bandwidth rate h = Cn−1/5 is included in the condition (C5)(i).
We suggest using the rule of thumb (Silverman, 1986) by choosing h = σ̂Uh−1/5

to meet condition (C5)(i).

4.1 A simulation study

Example. We generate 500 samples consisting of n = 400 observations from the
following model{

Y = βξ + θ τ W + 2 cos2(2πU) + (
2 sin2(2πU)

)
X + ε,

ξ = ξ(V ) ≡ 3V − cos(V ), η = ξ(V ) + e,
(4.1)

β = 2, θ = (3,1.5,2), W ∼ N3(0,�W), and �W = (σw,ij ) with σw,ij = 0.5|i−j |.
X ∼ N(0,1), U ∼ Uniform[−1,1], V ∼ N(0,1) and is independent of (U,W,X),
e ∼ N(0,1) and is independent of (U,V,W,X). The model error ε is independent
with (U,V,W,X), and we consider three cases: (i) ε ∼ N(0,0.52). (ii) ε follows
a t-distribution with 3 degrees of freedom. (iii) ε follows a mixture of normal
distributions 0.9N(0,1) + 0.1N(0,102). Because of the independence condition
between ε and (U,V,W,X), the SQR and SCQR procedures provide estimators
for the same quantity and thus are directly comparable.

Performance of β̂κ, θ̂κ and β̂, θ̂ . In Tables 1–3, we report the performances of
the proposed estimators and the naive estimators (using η directly), and the simula-
tion results for the benchmark estimators (i.e., all covariates are measured exactly)
for β, θ . The associated mean and associated standard errors of the estimators are
also presented. We see that the estimated values of the SQR procedure and the
SCQR procedure obtained by our proposed procedure, and the benchmark proce-
dures are close to the true values in all three cases. This indicates our proposed
method is promising. As anticipated, the naive estimator has severe bias and per-
forms worse. This meets our expectation that large bias will occur if we ignore
measurement errors. Moreover, the performance of the SQR procedure varies and
depends heavily on the level of the quantile and the error distribution. Overall,
SCQR outperforms SQR in general. From these numerical studies, the estimation
procedure based on SCQR is very worthy of recommendation.

Performance of α̂0,κ (u), α̂κ(u) and α̂0(u), α̂(u). Define the average square er-
rors (ASEs) of a nonparametric estimator δ̂(u) for its true value δ(u):

ASE = n−1
0

n0∑
i=1

{
δ̂(ui) − δ(ui)

}2
,
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Table 1 The simulation results for normal distribution N(0,0.52). “MEAN” is the simulation
mean; “SD” is the standard deviation. “P” stands for the proposed estimator, “B” stands for the
benchmark estimator, and “N” stands for the naive estimator

Method θ1 = 3 θ2 = 1.5 θ3 = 0.5 β1 = 2

SCQR9 P MEAN 2.9972 1.5012 0.4995 1.0522
SD 0.0224 0.0242 0.0192 0.0380

B MEAN 2.9966 1.5014 0.5003 0.9998
SD 0.0185 0.0206 0.0157 0.0041

N MEAN 2.9989 1.5133 0.5052 0.8295
SD 0.0947 0.1171 0.0802 0.0275

SQR0.05 P MEAN 2.9982 1.5080 0.4963 1.0126
SD 0.0393 0.0446 0.0389 0.0494

B MEAN 2.9978 1.5010 0.4977 0.9967
SD 0.0310 0.0399 0.0312 0.0068

N MEAN 3.0061 1.5001 0.4897 0.6228
SD 0.1372 0.1427 0.1128 0.0512

SQR0.25 P MEAN 3.0031 1.4983 0.5039 1.0343
SD 0.0232 0.0239 0.0238 0.0440

B MEAN 3.0012 1.5013 0.5008 1.0011
SD 0.0194 0.0214 0.0201 0.0066

N MEAN 2.9872 1.5092 0.4970 0.7322
SD 0.0933 0.0853 0.0965 0.0319

SQR0.5 P MEAN 3.0006 1.5007 0.5021 1.0555
SD 0.0219 0.0237 0.0215 0.0477

B MEAN 3.0017 1.5002 0.5011 1.0001
SD 0.0172 0.0190 0.0197 0.0099

N MEAN 2.9953 1.4965 0.5057 0.8212
SD 0.0907 0.0940 0.0923 0.0529

SQR0.75 P MEAN 2.9987 1.4986 0.5029 1.0700
SD 0.0214 0.0260 0.0244 0.0453

B MEAN 2.9986 1.5025 0.5010 1.0003
SD 0.0181 0.0192 0.0185 0.0062

N MEAN 3.0080 1.5081 0.4794 0.8962
SD 0.1118 0.1339 0.1210 0.0294

SQR0.95 P MEAN 2.9973 1.5087 0.4998 1.0990
SD 0.0385 0.0397 0.0370 0.0518

B MEAN 2.9979 1.5027 0.5033 1.0028
SD 0.0315 0.0345 0.0309 0.0063

N MEAN 2.9584 1.5549 0.4933 0.9884
SD 0.2575 0.2802 0.2359 0.0897

where {u1, . . . , un0} are the given grid points uniformly placed on [0,1] with
n0 = 200. We choose δ̂(ui) as the estimators for α̂0,κ (ui), α̂κ(ui), α̂0(ui), and
α̂(ui), respectively. We evaluated the estimation procedures (2.10) and (3.6) for
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Table 2 The simulation results for t (3) distribution. “MEAN” is the simulation mean; “SD” is the
standard deviation. “P” stands for the proposed estimator, “B” stands for the benchmark estimator,
and “N” stands for the naive estimator

Method θ1 = 3 θ2 = 1.5 θ3 = 0.5 β1 = 2

SCQR9 P MEAN 3.0032 1.4984 0.5135 1.0458
SD 0.0756 0.0708 0.0750 0.0476

B MEAN 3.0025 1.4983 0.5102 1.0006
SD 0.0743 0.0689 0.0754 0.0155

N MEAN 3.0119 1.4917 0.5102 0.8362
SD 0.1191 0.1219 0.1191 0.0305

SQR0.05 P MEAN 3.0015 1.4968 0.4819 1.0277
SD 0.2236 0.2558 0.2405 0.0642

B MEAN 3.0009 1.4947 0.4892 0.9931
SD 0.2233 0.2425 0.2285 0.0497

N MEAN 3.0290 1.5274 0.4467 0.7129
SD 0.2707 0.3088 0.2649 0.0693

SQR0.25 P MEAN 3.0027 1.4926 0.5195 1.0454
SD 0.0933 0.1210 0.1130 0.0559

B MEAN 2.9992 1.4946 0.5169 1.0026
SD 0.0923 0.1166 0.1136 0.0233

N MEAN 2.9982 1.4950 0.5042 0.7742
SD 0.1325 0.1630 0.1489 0.0429

SQR0.5 P MEAN 2.9919 1.4999 0.5175 1.0564
SD 0.0911 0.1115 0.0852 0.0443

B MEAN 2.9955 1.5027 0.5145 1.0006
SD 0.0907 0.1050 0.0827 0.0171

N MEAN 2.9735 1.5303 0.5060 0.8310
SD 0.1221 0.1674 0.1369 0.0330

SQR0.75 P MEAN 3.0058 1.4970 0.5167 1.0693
SD 0.0909 0.1182 0.1028 0.0403

B MEAN 3.0126 1.4923 0.5176 1.0003
SD 0.0872 0.1186 0.1035 0.0194

N MEAN 3.0274 1.4834 0.5262 0.8972
SD 0.1670 0.1926 0.1653 0.0399

SQR0.95 P MEAN 3.0184 1.4920 0.5148 1.0720
SD 0.2381 0.3023 0.2697 0.0673

B MEAN 3.0082 1.5030 0.5055 0.9987
SD 0.2441 0.3066 0.2728 0.0456

N MEAN 3.0392 1.5014 0.5031 0.9707
SD 0.3101 0.4068 0.3214 0.0637

two scenarios: (i) using the estimated β̂κ , θ̂κ, β̂, and θ̂ , (ii) using the true value
β and θ . We report the simulation means and standard derivations of the ASE for
α̂0,κ (ui), and α̂κ(ui), α̂0(ui), and α̂(ui) in Table 4 and Table 5. These results indi-
cate that the performance of the benchmark estimators and the proposed estimators
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Table 3 The simulation results for mixture of normal distributions 0.9N(0,1) + 0.1N(0,102).
“MEAN” is the simulation mean; “SD” is the standard deviation. “P” stands for the proposed
estimator, “B” stands for the benchmark estimator, and “N” stands for the naive estimator

Method θ1 = 3 θ2 = 1.5 θ3 = 0.5 β1 = 2

SCQR9 P MEAN 2.9830 1.5098 0.4906 1.0457
SD 0.0747 0.0769 0.0719 0.0429

B MEAN 2.9874 1.5087 0.4921 0.9994
SD 0.0730 0.0766 0.0730 0.0129

N MEAN 2.9832 1.5071 0.4998 0.8386
SD 0.1227 0.1347 0.1144 0.0294

SQR0.05 P MEAN 2.9769 1.5063 0.5050 1.0212
SD 0.1752 0.2040 0.1723 0.0569

B MEAN 2.9774 1.4916 0.5134 0.9962
SD 0.1718 0.1997 0.1756 0.0373

N MEAN 2.9908 1.4820 0.5463 0.7073
SD 0.2517 0.2648 0.2202 0.0608

SQR0.25 P MEAN 2.9943 1.5046 0.4910 1.0483
SD 0.1197 0.1098 0.1144 0.0504

B MEAN 2.9986 1.5022 0.4923 0.9968
SD 0.1143 0.1042 0.1095 0.0216

N MEAN 3.0082 1.4799 0.5064 0.7764
SD 0.1608 0.1760 0.1561 0.0370

SQR0.5 P MEAN 2.9845 1.5076 0.4986 1.0509
SD 0.1034 0.1288 0.0957 0.0490

B MEAN 2.9862 1.5032 0.4916 1.0006
SD 0.1050 0.1278 0.0930 0.0191

N MEAN 2.9855 1.4888 0.4978 0.8353
SD 0.1462 0.1527 0.1280 0.0306

SQR0.75 P MEAN 2.9965 1.4945 0.4868 1.0655
SD 0.1254 0.1295 0.1000 0.0572

B MEAN 2.9914 1.4958 0.4891 1.0022
SD 0.1258 0.1263 0.0995 0.0230

N MEAN 2.9908 1.5020 0.4699 0.8843
SD 0.1662 0.1947 0.1405 0.0322

SQR0.95 P MEAN 3.0013 1.5003 0.5020 1.0767
SD 0.1707 0.1801 0.1683 0.0650

B MEAN 3.0091 1.5074 0.4995 1.0008
SD 0.1724 0.1790 0.1638 0.0348

N MEAN 2.9910 1.4891 0.5424 0.9733
SD 0.3090 0.2961 0.3111 0.0596

works well regardless β̂κ, θ̂κ , β̂, θ̂ or β, θ being used. This is not surprising be-
cause parameter estimators are always root-n consistent with higher convergence
rates than nonparametric estimators. As a result, the benchmark estimator and the
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Table 4 The simulation results for 2 cos2(2πU) with “MEAN”±“SD”. “MEAN” is the simulation
mean; “SD” is the standard deviation. “P” stands for the proposed estimator, “B” stands for the
benchmark estimator, and “N” stands for the naive estimator

2 cos2(2πu)

Method Normal distribution t (3) distribution Mixture normal distribution

SCQR9 P 0.0141 ± 0.0104 0.0645±0.0378 0.0477 ± 0.0282
B 0.0081 ± 0.0013 0.0334 ± 0.0151 0.0272 ± 0.0118
N 0.7627 ± 0.0987 0.7200 ± 0.1297 0.7156 ± 0.1287

SQR0.05 P 0.0372 ± 0.0491 0.0913 ± 0.0413 0.0933 ± 0.0431
B 0.0283 ± 0.0130 0.0889 ± 0.0309 0.0872 ± 0.0341
N 1.2628 ± 0.3138 2.1133 ± 0.2356 1.2090 ± 0.1456

SQR0.25 P 0.0535 ± 0.0242 0.0674 ± 0.0344 0.0649 ± 0.0403
B 0.0448 ± 0.0074 0.0407 ± 0.0118 0.0460 ± 0.0211
N 1.2021 ± 0.0996 0.3407 ± 0.0872 0.4519 ± 0.1227

SQR0.50 P 0.0445 ± 0.0413 0.0569 ± 0.0341 0.0666 ± 0.0322
B 0.0396 ± 0.0156 0.0346 ± 0.0124 0.0415 ± 0.0165
N 1.1931 ± 0.1208 0.9576 ± 0.1789 0.8573 ± 0.1857

SQR0.75 P 0.0312 ± 0.0218 0.0649 ± 0.0334 0.0702 ± 0.0379
B 0.0150 ± 0.0123 0.0405 ± 0.0159 0.0504 ± 0.0159
N 2.2695 ± 0.1481 1.6419 ± 0.2408 1.3760 ± 0.2091

SQR0.95 P 0.0377 ± 0.0244 0.0987 ± 0.0456 0.0989 ± 0.0604
B 0.0185 ± 0.0088 0.0820 ± 0.0378 0.0845 ± 0.0404
N 3.5396 ± 0.1495 2.5556 ± 0.2322 1.9964 ± 0.3255

proposed estimator work satisfactorily under the two scenarios in term of the ASE.
However, the naive procedure results in no-ignorable bias in the estimation of pa-
rameters θκ , θκ , β , θ , and the nonparametric components α0(u) and α(u). The
naive estimators by using true β , θ work well since no bias occurs. The estima-
tors for α0(u) and α(u) with the estimated β̂κ, θ̂κ, β̂, θ̂ perform as well as if we
knew the true value of β and θ regardless the proposed estimation method or naive
estimation. The performance of SQR varies and depends heavily on the level of
quantiles and the error distributions, while SCQR outperforms more stable. Thus,
the SCQR procedure outperforms the SQR procedure in this simulation.

4.2 An empirical example

We analyzed a dataset with 209 observations corresponding to blood samples from
192 patients from a DMD study. The patients were collected from a project to de-
velop a screening program for female relatives of boys with DMD. The program’s
goal was to inform a woman of her chances of being a carrier based on serum
markers, as well as her family pedigree. See Zhou and Liang (2009), Andrews
and Herzberg (1985) for a detailed discussion of the dataset. In this dataset, the
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Table 5 The simulation results for 2 sin2(2πU) with “MEAN”±“SD”. “MEAN” is the simulation
mean; “SD” is the standard deviation. “P” stands for the proposed estimator, “B” stands for the
benchmark estimator, and “N” stands for the naive estimator

2 sin2(2πu)

Method Normal distribution t (3) distribution Mixture normal distribution

SCQR9 P 0.0065 ± 0.0018 0.0261 ± 0.0133 0.0278 ± 0.0118
B 0.0061 ± 0.0015 0.0257 ± 0.0122 0.0271 ± 0.0111
N 0.0148 ± 0.0055 0.0360 ± 0.0216 0.0388 ± 0.0178

SQR0.05 P 0.0141 ± 0.0104 0.0790 ± 0.0323 0.0972 ± 0.0410
B 0.0083 ± 0.0027 0.0689 ± 0.0147 0.0938 ± 0.0393
N 0.2280 ± 0.0710 0.1304 ± 0.0677 0.2322 ± 0.0899

SQR0.25 P 0.0377 ± 0.0066 0.0378 ± 0.0089 0.0482 ± 0.0168
B 0.0367 ± 0.0055 0.0375 ± 0.0088 0.0479 ± 0.0167
N 0.0704 ± 0.0190 0.0650 ± 0.0270 0.0707 ± 0.0302

SQR0.50 P 0.0256 ± 0.0144 0.0335 ± 0.0111 0.0396 ± 0.0149
B 0.0246 ± 0.0094 0.0326 ± 0.0112 0.0381 ± 0.0145
N 0.0433 ± 0.0113 0.0489 ± 0.0183 0.0532 ± 0.0223

SQR0.75 P 0.0043 ± 0.0013 0.0379 ± 0.0162 0.0448 ± 0.0178
B 0.0041 ± 0.0013 0.0366 ± 0.0156 0.0401 ± 0.0188
N 0.0124 ± 0.0049 0.0438 ± 0.0198 0.0563 ± 0.0254

SQR0.95 P 0.0114 ± 0.0066 0.0701 ± 0.0323 0.0960 ± 0.0320
B 0.0084 ± 0.0028 0.0686 ± 0.0123 0.0929 ± 0.0327
N 0.0132 ± 0.0049 0.0823 ± 0.0345 0.1168 ± 0.0444

serum marker creatine kinase (ck) is measured with errors and is inexpensive to
obtain. We followed Zhou and Liang’s (2009) procedure by regressing observed
ck-η on the covariate U age. The covariate carrier status (cs-W) and hemopexin-X
are exactly measured. The marker lactate dehydrogenase (ld-Y ) is very expensive
to obtain, so it is of interest to predict the value ld-Y by using the level of ck,
cs, hemopexin and age of the patients. Enzyme levels were measured in known
carriers (75 observations) and in a group of non-carriers (134 observations). All
the covariates are standardized. We used two SQR and SCQR procedures for this
dataset.

The estimated values of the parameters for ck and cs are reported in Ta-
ble 6. In Table 6, the 25% quantile, 50% quantile, and 75% quantile esti-
mated values for ck are all negative, and those for cs are positive. Meanwhile,
we use the 95%,85%,75%,0.65%,50%,35%,25%,15%, and 5% quantiles for
SCQR9, the 85%,75%,0.65%,50%,35%, 25%, and 15% quantiles for SCQR7,
the 75%,65%,50%,35%, and 25% quantiles for SCQR5, and the 65%,50%,
and 35% quantiles for SCQR3. The estimated SCQR values for ck are all neg-
ative, and those for cs are also positive. In Figures 1–2, we plot the 75%, 50%,
and 25% quantile estimators for α0,κ (u) and ακ(u) and the SCQR7, SCQR5, and
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Table 6 Analysis results for a DMD study

Method

SQR0.25 SQR0.50 SQR0.75 SCQR9 SCQR7 SCQR5 SCQR3

Parameter estimate for ck −1.2575 −1.1129 −0.3346 −1.0889 −1.0782 −1.5619 −1.2280
Parameter estimate for cs 0.3488 0.5872 0.7308 0.5612 0.5315 0.5213 0.5159

Figure 1 The quantile estimators of α̂0,κ (·) (the left panel) and SCQR estimators of α0(·) (the right
panel).

SCQR3 estimators for α0(u) and α(u). The patterns of the SCQR7, SCQR5 and
SCQR3 estimators for α0(u) and α(u) are similar to the 50% quantile estimators
for α0,κ (u) and ακ(u), and are slightly different. The 75% quantile estimator for
α0,κ (u) increases as u increases, and the 25% quantile estimator for ακ(u) is dif-
ferent from the SCQR estimators.

Appendix

We present the conditions, prepare a preliminary lemma, and give the proofs of the
main results.

A.1 Conditions

The following conditions are the regularity conditions for our asymptotic results.

(C1) The density function fV (v) of V is bounded away from 0 on v ∈ V, where
V is a bounded support of V . fV (v) and ξ(v) are twice continuously dif-
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Figure 2 The quantile estimators of α̂κ (·) (the left panel) and SCQR estimators of α(·) (the right
panel).

ferentiable with respect to v. Moreover, their second derivatives are uni-
formly Lipschitz continuous on V: There exists a neighborhood of the ori-
gin, say �, and a constant c > 0 such that for any ε∗ ∈ �, |f (2)

V (v)(v + ε∗)−
f

(2)
V (v)(v)| < c|ε∗|.

(C2) The random variable U has bounded support U, and its density function
fU(·) is positive and has a continuous second derivative. Moreover, the joint
density function fU,V (u, v) of (U,V ) is continuous on the support U×V.

(C3) The varying coefficients α0,κ (u) and α0(u) and the components of ακ(u) and
α(u) have a continuous second derivative in u ∈ U.

(C4) The kernel functions K(·), L(·) are univariate bounded, continuous, and
symmetric density functions satisfying that supt |K(t)| ≤ M0, supt |L(t)| ≤
M0 with a positive constant M0, and

∫
t2K(t) dt = 0,

∫
t2L(t) dt = 0, and∫ |t |jK(t) dt < ∞,

∫ |t |jL(t) dt < ∞. for j = 1,2,3,4. Moreover, the sec-
ond derivatives of K(·) and L(·) are bounded on R1.

(C5) The bandwidths h and hk , k = 1, . . . , d satisfy hk � ckho for some constant
ck > 0; h � chho for some constant ch > 0. Moreover,

(i) As n → ∞, ho → 0 and nho/(logn) → ∞.
(ii) As n → ∞, nh4

o → 0 and nh2
o/(logn)2 → ∞.

(C6) For the SQR procedure,
(i) Fκ(0|V = v,W = w,X = x,U = u) = κ for all v,w,x, u, and fκ(0|

V = v,W = w,X = x,U = u) = κ is bounded away from zero and has
a continuous and uniformly bounded derivative;

(ii) A1(u) defined in Theorem 1 and A2(u) defined in Theorem 3 are non-
singular for all u ∈ U. κ defined in Theorem 2 is a nonsingular matrix.

(C7) For the SCQR procedure,
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(i) fε(·) is bounded away from zero and has a continuous and uniformly
bounded derivative;

(ii) A1,fε (u) defined in Theorem 4 and A2,fε (u) defined in Theorem 6 are
nonsingular for all u ∈ U. ∗ defined in Theorem 5 is a nonsingular
matrix.

Conditions (C1)–(C3) are several mild smoothness conditions on the involved
functions. fV (v) and fU(u) are all positive, which guarantees the denomina-
tors involved in the nonparametric smoothing are not equal to 0, once n is
large enough. See, for example, Kai, Li and Zou (2010), Li and Liang (2008).
Condition (C4) is the usual condition for the kernel functions K(·) and L(·).
The Gaussian kernel and the quadratic kernel satisfy this condition. Condi-
tion (C5) is the condition for the bandwidths h and hk in the nonparamet-
ric kernel smoothing. Conditions (C6)–(C7) are the regular conditions for the
proposed SQR and SCQR procedures. For more details, see Kai, Li and Zou
(2010).

A.2 A preliminary lemma

Lemma A.1. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d . random vectors, where the Y ’s
are scalar random variables. Assume that E|Y |r < ∞ and that supx

∫ |y|rf (x,

y) dy < ∞, where f denotes the joint density of (X,Y ). Let K(·) be a bounded
positive function with bounded support, satisfying a Lipschitz condition. Then

sup
x

∣∣∣∣∣1n
n∑

i=1

Kh(Xi − x)Yi − E
[
Kh(Xi − x)Yi

]∣∣∣∣∣
(A.1)

= OP

[{nh/logn}−1/2]
provided that n2ε−1h → ∞ for some ε < 1 − r−1.

Proof. Lemma A.1 follows a direct result of Mack and Silverman (1982). �

A.3 Proof of Theorem 1

In the following, for notational simplicity, let ri(u) = α0κ(Ui) − α0κ(u) −
α′

0κ(u)(Ui −u)+Xτ
i [ακ(Ui)−ακ(u)−α′

κ(u)(Ui −u)] and Ku
h(Ui) = Kh(Ui −u).

Define the local quantile estimators from (2.8) as

δ̆ = √
nh
{
(β̆κ − βκ)τ , (θ̆κ − θκ)τ ,

ᾰ0,κ (u) − α0,κ (u),
(
ᾰκ(u) − ακ(u)

)τ
, (A.2)

h
(
ᾰ′

0,κ (u) − α′
0,κ (u)

)
, h
(
ᾰ′

κ(u) − α′
κ(u)

)τ }
.
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Proof. Recall that {β̆κ , θ̆κ, ᾰ0κ(u), ᾰκ(u), ᾰ′
0κ(u), ᾰ′

κ(u)} minimizes

n∑
i=1

ρκ

{
Yi − βτ ξ̂ i − θ τ Wi − α0 − α′

0(Ui − u) − ατ Xi − α′τ Xi (Ui − u)
}
Ku

h(Ui)

with respect to {β, θ, α0, α
′
0,α,α′}. We write Yi − βτ ξ̂ i − θ τ Wi − α0 − α′

0(Ui −
u)−ατ Xi −α′τ Xi (Ui −u) = εκ,i + ri(u)−�̂κ,i − ω̂κ,i , where �̂κ,i = δ̃

τ
Ẑu

i /
√

nh,

Ẑu
i = (ξ̂

τ

i ,Wτ
i ,1,Xτ

i ,
Ui−u

h
, Ui−u

h
Xτ

i )
τ and ω̂κ,i = βτ

κ(ξ̂ i − ξ i ). Then, δ̂ defined in
(A.2) is also the minimizer of

Ln(δ̃) = 1

n

n∑
i=1

[
ρκ

{
εκ,i + ri(u) − �̂κ,i − ω̂κ,i

}− ρκ

{
εκ,i + ri(u) − ω̂κ,i

}]
Ku

h(Ui),

with respect to δ̃. By using the identity (Knight, 1998)

ρκ(x − y) − ρκ(x) = y
[
I {x ≤ 0} − κ

]+ ∫ y

0

[
I {x ≤ z} − I {x ≤ 0}]dz, (A.3)

we have

Ln(δ̃) = 1

n

n∑
i=1

�̂κ,i

[
I
{
εκ,i ≤ −ri(u) + ω̂κ,i

}− κ
]
Ku

h(Ui)

+ 1

n

n∑
i=1

∫ �̂κ,i

0

[
I
{
εκ,i ≤ −ri(u) + ω̂κ,i + z

}
− I

{
εκ,i ≤ −ri(u) + ω̂κ,i

}]
dzKu

h(Ui)

= Ln,1(δ̃) +Ln,2(δ̃).

Step 1. In this step, we analyze Ln,2(δ̃). Define

Sn(u, t, �) = 1

nh

n∑
i=1

∫ �

0

[
I
{
εκ,i ≤ −ri(u) + t + z

}− I
{
εκ,i ≤ −ri(u) + t

}
− Fκ

(−ri(u) + t + z|Oi

)
(A.4)

+ Fκ

(−ri(u) + t |Oi

)]
dzK

(
(Ui − u)/h

)
def= 1

nh

n∑
i=1

Sn(u, t, �)[i].

Denote {δ1, δ2, . . . , δn} be the Rademacher random variables; i.e., with P(δi =
1) = P(δi = −1) = 1/2 and independent with Rn = {Oi , εκ,i, i = 1, . . . , n},
where Oi = {Vi,Wi ,Xi ,Ui}. Let ςn = ς 1

nh
, ιn = c(h2

o +
√

logn
nho

), here ς , c are
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two positive constants. The symmetrization Lemma (Pollard, 1984) implies that

P

(
sup

|t |≤ιn,|�|≤�0/
√

nh

∣∣∣∣∣
n∑

i=1

Sn(u, t, �)[i]
∣∣∣∣∣≥ nhςn

)
(A.5)

≤ 4E

{
P

(
sup

|t |≤ιn,|�|≤�0/
√

nh

∣∣∣∣∣
n∑

i=1

δiSn(u, t, �)[i]
∣∣∣∣∣≥ nhςn/4|Rn

)}
.

Note that the class of functions Sn(u, t, �)[i] has envelope function 4M0�0/
√

nh

by Condition (C4). Let Fn = {Sn(u, t, �)[i], i = 1, . . . , n; |t | ≤ ιn, |�| ≤ �0/
√

nh}
indexed by t, �, and N∗ be the smallest number such that minj1,j2∈{1,...,N∗} 1

nh
×∑n

i=1 |Sn(u, t, �)[i] − Sn(u, tj1, �j2)[i]| ≤ ςn/8, Sn(u, tj1, �j2)[i] ∈ Fn. Then, the
conditional probability in (A.5) is further bounded by

N∗P
(

sup
|t |≤ιn,|�|≤�0/

√
nh

∣∣∣∣∣
n∑

i=1

δiSn(u, tj1, �j2)[i]
∣∣∣∣∣≥ nhςn/4|Rn

)

≤ N∗ max
j1≤N∗,j2≤N∗ P

(∣∣∣∣∣
n∑

i=1

δiSn(u, tj1, �j2)[i]
∣∣∣∣∣≥ nhςn/8|Rn

)
(A.6)

≤ 2N∗ max
j1≤N∗,j2≤N∗ exp

{
− c∗

1n
2h2ς2

n∑n
i=1 S2

n(u, tj1, �j2)[i]
}
,

for some positive constant c∗
1. The last inequality in (A.6) is asserted by the Ho-

effding’s Inequality. Note that |�j2 | ≤ �0√
nh

, |tj1 | ≤ ιn. Similar to the proof of The-
orem 3.1 in Fan and Gijbels (1996), Taylor expansion for Fκ(x|Oi ) around 0, we
have

1

nh

n∑
i=1

E
[
E
{
S2

n(u, tj1, �j2)[i]|Oi

}]= O
(
ιn�

2
j2

)
. (A.7)

Recalling that ςn = ς 1
nh

, ιn = c(h2
o +

√
logn
nho

) and |�j2 | ≤ �0√
nh

, using (A.7), the last

inequality in (A.6) is further bounded by exp{− c∗
2n2h2ς2

n

ιn�2
j2

nh
} = exp{−c∗

2ι
−1
n } for some

constant c∗
2 in probability. Moreover, note that the indicator function is a Vapnik–

Chervonenkis class and conditional distribution function Fκ(−ri(u) + t |Oi ) is a
Lipschitz function with respect to t , then the number N∗ for the indicator func-

tions and Lipschitz functions are bounded at most
k0 max{ιn, 1√

nh
}

ςn
for some positive

constant k0, see van der Vaart and Wellner (1996). As ho → 0, nho

logn
→ ∞, together

with (A.5) and (A.6), we show that

sup
|t |≤ιn,|�|≤�0/

√
nh

∣∣Sn(u, t, �)
∣∣= oP

(
1

nh

)
. (A.8)
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Directly using (A.8) and Taylor expansion, we have

Ln,2(δ̃) = 1

nh

n∑
i=1

∫ �̂κ,i

0

[
Fκ

(−ri(u) + ω̂κ,i + z|Oi

)− Fκ

(−ri(u) + ω̂κ,i |Oi

)]
dz

× K
(
(Ui − u)/h

)+ oP

(
1

nh

)
(A.9)

= 1

2nh
δ̃
τ

[
1

n

n∑
i=1

(
Ẑu

i

)⊗2
fκ

(−ri(u) + ω̂κ,i |Oi

)
Ku

h(Ui)

]
δ̃ + oP

(
1

nh

)

= 1

2nh

(
fU(u)δ̃

τ
�(u)δ̃ + oP (1)

)
,

where �(u) = diag(A1(u),μK2A2(u)) is a quasi-diagonal matrix. Here A1(u) and
A2(u) are defined as

A1(u) = E
[
M⊗2fκ(0|V,W,X,U)|U = u

]
,

A2(u) = E
[
fκ(0|V,W,X,U)

[(
1,Xτ )τ ]⊗2|U = u

]
,

where M = (ξ τ ,Wτ ,1,Xτ )τ .
Step 2. In this step, we analyze Ln,1(δ̃) and we have that

Ln,1(δ̃) = 1

n

n∑
i=1

[
I
{
εκ,i ≤ −ri(u) + ω̂κ,i

}− I {εκ,i ≤ 0} − Fκ

(−ri(u) + ω̂κ,i |Oi

)
+ Fκ(0|Oi )

]
�̂κ,iK

u
h (Ui)

+ 1

n

n∑
i=1

�̂κ,i

[
Fκ

(−ri(u) + ω̂κ,i |Oi

)− Fκ(0|Oi )
]
Ku

h(Ui)

+ 1

n

n∑
i=1

�̂κ,i

[
I {εκ,i ≤ 0} − κ

]
Ku

h(Ui)

def= L[1]
n,1(δ̃) +L[2]

n,1(δ̃) +L[3]
n,1(δ̃).

Step 2.1. In this substep, we first deal with L[1]
n,1(δ̃). Let Zu

i = (ξ τ
i ,Wτ

i ,1,Xτ
i ,

Ui−u
h

, Ui−u
h

Xτ
i )

τ and Zu
i,s be the s-component of Zu

i , s = 1, . . . , (d + r + 2p + 2)

and further we define

υi(t, u) = [
I
{
εκ,i ≤ −ri(u) + t

}− I {εκ,i ≤ 0}
− Fκ

(−ri(u) + t |Oi

)+ Fκ(0|Oi )
]
K
(
(Ui − u)/h

)
.

We first show that sup|t |≤ιn
1√
nh

|∑n
i=1 Zu

i,sυi(t, u)| = oP (1) for s = 1, . . . , (d +
r + 2p + 2), where ιn = c(h2

o +
√

logn
nho

) for some positive constant c. Similar to the
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analysis of (A.4)–(A.7), for any ς0 > 0, we have

P

(
sup
|t |≤ιn

1√
nh

∣∣∣∣∣
n∑

i=1

Zu
i,sυi(t, u)

∣∣∣∣∣≥ ς0

)

≤ 4E

{
N∗∗ max

1≤j≤N∗∗ P

(∣∣∣∣∣
n∑

i=1

δiZu
i,sυi(tj , u)

∣∣∣∣∣≥ √
nhς0/8

∣∣∣∣Rn

)}
(A.10)

≤ 4E

{
N∗∗ max

1≤j≤N∗∗ exp
(
− ς∗

0∑n
i=1(Z

u
i,s )

2υ2
i (tj ,u)

nh

)}
,

for some positive constant ς∗
0 . As |tj | ≤ ιn, Taylor expansion entails that

Fκ(tj |Oi ) = Fκ(0|Oi ) + F ′
κ(t̃j |Oi )tj , |t̃j | ≤ |tj |. Similar to the proof of Theo-

rem 3.1 in Fan and Gijbels (1996), using Lemma A.1, it is seen that

1

nh

n∑
i=1

E
[
E
{
υ2

i,s(tj , u)|Oi

}]

= 1

nh

n∑
i=1

E
[(

Zu
i,s

)2
K2((Ui − u)/h

)
× {

Fκ(tj |Oi ) + Fκ(0|Oi ) − F 2
κ (tj |Oi ) + F 2

κ (0|Oi ) (A.11)

− 2Fκ

(
min{tj ,0}|Oi

)}]
= O(ιn).

Using (A.11), we have
∑n

i=1 (Zu
i,s )

2υ2
i,s (tj ,u)

nh
= OP (ιn). Similar to the analysis

of (A.8), the number of N∗∗ is bounded by
k∗

0ς0
ιn

for some positive constant
k∗

0 (van der Vaart and Wellner, 1996). Then, the last inequality in (A.10) is

bounded as
k∗

0ς0
ιn

exp{−ς∗∗
0 ι−1

n } in probability for some positive constant ς∗∗
0 , and

k∗
0ς0
ιn

exp{−ς∗∗
0 ι−1

n } converges to 0 as n → ∞. Thus,

1

nh
δ̃
τ

(
1√
nh

n∑
i=1

Zu
i υi(ω̂κ,i , u)

)
= oP

(
1

nh

)
. (A.12)

Moreover, let π = (Id×d,0d×(r+2p+2)) be a d × (d + r + 2p + 2) matrix, C =
diag(c2

1, . . . , c
2
d), where ci , i = 1, . . . , d are defined in Condition (C9). Similar to

(A.12), using (2.5) and Lemma A.1,

1

nh
δ̃
τ

{
1√
nh

n∑
i=1

(
Ẑu

i − Zu
i

)
υi(ω̂κ,i , u)

}

= 1

nh
δ̃
τ

{
1√
nh

n∑
i=1

(
h2

oμL2π
τ

2
Cξ (2)(Vi) (A.13)



SQR for VCPLMeMs 641

+ O

(√
logn

nho

)
υi(ω̂κ,i, u)

)}

= oP

(
1

nh

)
.

Together with (A.12)–(A.13), we obtain that

L[1]
n,1(δ̃) = oP

(
1

nh

)
. (A.14)

Step 2.2. In this substep, we analyze L[2]
n,1(δ̃) and L[3]

n,1(δ̃).

L[2]
n,1(δ̃) = 1

nh
δ̃
τ

(
1√
nh

n∑
i=1

Ẑu
i fκ(0|Oi )

(−ri(u) + ω̂κ,i

)
K
(
(Ui − u)/h

))

+ 1

nh
δ̃
τ

(
1

2
√

nh

n∑
i=1

Ẑu
i f

′
κ(l̃i |Oi )

(−ri(u) + ω̂κ,i

)2
K
(
(Ui − u)/h

))
def= L[2,1]

n,1 (δ̃) +L[2,2]
n,1 (δ̃),

where l̃i is between −ri(u) + ω̂κ,i and zero. Using Lemma A.1, we have

1

nh

n∑
i=1

Zu
i fκ(0|Oi )ri(u)K

(
(Ui − u)/h

)
(A.15)

= h2
{
fU(u)μK2

2
�(u)

(
0τ , α′′

0,κ (u),α′′τ
κ (u),0τ )τ + OP

(√
logn

nh

)}
.

Moreover, using the projection of U -statistics in Section 5.3.1 of Serfling (1980),
we have

1

n2

n∑
i=1

n∑
j=1

Zu
i fκ(0|Oi )

fV (Vi)

1

h
K

(
Ui − u

h

)
1

hs

L

(
Vj − Vi

hs

)
ej,s

(A.16)

= 1

n

n∑
i=1

(
m(u,Vi)

0

)
fU,V (u,Vi)

fV (Vi)
ei,s + oP

(
n−1/2),

where m(u, v) = E[Mfκ(0|V,W,X,U)|U = u,V = v]. Then, using (2.5) and
Lemma A.1, together with (A.16) and Condition (C5), we have that

1

nh

n∑
i=1

Zu
i fκ(0|Oi )ω̂κ,iK

(
(Ui − u)/h

)
(A.17)

= h2
o

{
μL2fU(u)

2

(
ϒτ (u),0τ )τ + OP

(√
logn

nh

)}
,
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where ϒ(u) = E[M(ξ (2)(V ))τ fκ(0|V,W,X,U)|U = u]Cβκ and C = diag(c2
1,

. . . , c2
d) and ci’s are defined in condition (C5). Similar to (A.15)–(A.17), we have

L[2,2]
n,1 (δ̃) = oP ( 1

nh
), and we obtain that

L[3]
n,1(δ̃) = 1

nh
δ̃
τ

(
1√
nh

n∑
i=1

Zu
i

[
I {εκ,i ≤ 0} − κ

]
K
(
(Ui − u)/h

))
(A.18)

+ oP

(
1

nh

)
.

Step 3. Together with asymptotic results (A.9) obtained in Step 1 and (A.14)
and (A.18) in Step 2, we obtain that

Ln(δ̃) = 1

nh
δ̃
τ
(

1

2
fU(u)�(u)

)
δ̃

+ 1

nh
δ̃
τ

(
1√
nh

n∑
i=1

Zu
i

[
I {εκ,i ≤ 0} − κ

]
K
(
(Ui − u)/h

))
(A.19)

+ 1

nh
δ̃
τ
(
−√

nh
h2μK2fU(u)

2
�(u)

(
0τ , α′′

0,κ (u),α′′τ
κ (u),0τ )τ)

+ 1

nh
δ̃
τ
(√

nh
h2

oμL2fU(u)

2

(
ϒτ (u),0τ )τ)+ oP

(
1

nh

)
.

By the convexity lemma (Pollard, 1991) and the quadratic approximation lemma
(Fan and Gijbels, 1996), the minimizer of Ln(δ̃) in (A.19) is expressed as

δ̆ − √
nh

h2μK2

2

(
0τ , α′′

0,κ (u),α′′τ
κ (u),0τ )τ

+ √
nh

h2
oμL2

2
�(u)−1(ϒτ (u),0τ )τ

(A.20)

= f −1
U (u)�(u)−1

(
1√
nh

n∑
i=1

Zu
i

[
I {εκ,i ≤ 0} − κ

]
K
(
(Ui − u)/h

))
+ oP (1).

Recalling the definition of δ̂, Zu
i , we complete the proof of Theorem 1. �

A.4 Proof of Theorem 2

Recall that β̂κ , θ̂κ minimize (A.21) with respect to β, θ ,

n∑
i=1

ρκ

{
Yi − βτ ξ̂ i − θτ Wi − ᾰ0,κ (Ui) − ᾰτ (Ui)Xi

}
.
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Define ζ̂ κ = √
n((β̂κ −βκ)τ , (θ̂κ −θκ)τ ). Then ζ̂ κ is also the minimizer of (A.21)

with respect to ζ :

Qn(ζ κ)
def=

n∑
i=1

(
ρκ

{
εκ,i − n−1/2ζ τ

κ Ŝi − ω̂κ,i − r̃(Ui)
}

(A.21)
− ρκ

{
εκ,i − ω̂κ,i − r̃(Ui)

})
,

where Ŝi = (ξ̂
τ

i ,Wτ
i )

τ and r̃(Ui) = (α̃0,κ (Ui) − α0,κ (Ui)) + (α̃κ(Ui) −
ακ(Ui))

τ Xi . Using (A.3) again, we have

Qn(ζ κ) = n−1/2ζ τ
κ

n∑
i=1

Ŝi

[
I
{
εκ,i ≤ ω̂i + r̃(Ui)

}− κ
]

+
n∑

i=1

∫ n−1/2ζ τ
κ Ŝi

0

[
I
{
εκ,i ≤ z + ω̂i + r̃(Ui)

}− I
{
εκ,i ≤ ω̂i + r̃(Ui)

}]
dz

def= Qn,1(ζ κ) +Qn,2(ζ κ).

Step 1. Note that

Qn,1(ζ κ) = n−1/2ζ τ
κ

n∑
i=1

Ŝi

[{
εκ,i ≤ ω̂i + r̃(Ui)

}− I {εκ,i ≤ 0}

− Fκ

(
ω̂i + r̃(Ui)|Oi

)+ Fκ(0|Oi )
]

+ n−1/2ζ τ
κ

n∑
i=1

Ŝi

[
Fκ

(
ω̂i + r̃(Ui)|Oi

)− Fκ(0|Oi )
]

+ n−1/2ζ τ
κ

n∑
i=1

Ŝi

[
I {εκ,i ≤ 0} − κ

]
def= Q[1]

n,1(ζ κ) +Q[2]
n,1(ζ κ) +Q[3]

n,1(ζ κ).

Let ϕi(t) = I {εκ,i ≤ t} − I {εκ,i ≤ 0} − Fκ(t |Oi ) + Fκ(0|Oi ). Similar to the proof
of (A.10), we have sup|t |≤ιn

n−1/2|∑n
i=1 Siϕi(t)| = oP (1) where Si = (ξ i ,Wi).

Using (2.5), (A.20) and Lemma A.1, it is easily seen that ω̂i + r̃i (Ui) = OP (ιn).
Then Q[1]

n,1(ζ κ) = oP (1)ζ κ .

Q[2]
n,1(ζ κ) = n−1/2ζ τ

κ

n∑
i=1

Ŝifκ(0|Oi )
[
ω̂i + r̃i (Ui)

]

+ n−1/2ζ τ
κ

n∑
i=1

Ŝif
′
κ(l̃i |Oi )

[
ω̂i + r̃i (Ui)

]2
= Q[2,1]

n,1 (ζ κ) +Q[2,2]
n,1 (ζ κ),
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where l̃i is between 0 and ω̂i + r̃i (Ui). Using (2.5), similar to (A.16), we have

n−1/2
n∑

i=1

Sifκ(0|Oi )ω̂i

= n1/2h2
oμL2

2

1

n

n∑
i=1

Sifκ(0|Oi )ξ
(2)(Vi)

τ Cβκ (A.22)

+ 1√
n

n∑
i=1

E
[
Sfκ(0|O)|V = Vi

]
eτ
i βκ + oP (1).

Next, using (A.20), we have

r̃(Ui) = μK2h
2

2

(
α′′

0,κ (Ui) + α′′
κ(Ui)Xi

)− μL2h
2
o

2

(
0τ ,1,Xτ

i

)
A−1

1 (Ui)ϒ(Ui)

+ f −1
U (Ui)

(
0τ ,1,Xτ

i

)
(A.23)

× A−1
1 (Ui)

[
1

nh

n∑
j=1

Mj

[
I {εκ,j ≤ 0} − κ

]
K

(
Uj − Ui

h

)]

+ oP

(
1√
nh

)
.

where π2 = (0(p+1)×(d+r), Ip+1)(d+r)×(d+r+p+1). Using the above expression
(A.23), we have

n−1/2
n∑

i=1

Sifκ(0|Oi )r̃i(Ui)

= n1/2h2μK2

2

1

n

n∑
i=1

Sifκ(0|Oi )
(
α′′

0,κ (Ui) + α′′
κ(Ui)Xi

)

− n1/2h2
oμL2

2

1

n

n∑
i=1

Sifκ(0|Oi )
(
0τ ,1,Xτ

i

)
A−1

1 (Ui)ϒ(Ui)

(A.24)

+ 1

n3/2h

n∑
i=1

n∑
j=1

Sifκ(0|Oi )

fU (Ui)

(
0τ ,1,Xτ

i

)
× A−1

1 (Ui)

[
Mj

[
I {εκ,j ≤ 0} − κ

]
K

(
Uj − Ui

h

)]
+ oP (1).
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Using the projection of U -statistics in Section 5.3.1 of Serfling (1980), the third
expression of (A.24) is asymptotically equivalent to

1

n3/2h

n∑
i=1

n∑
j=1

Sifκ(0|Oi )

fU (Ui)

(
0τ ,1,Xτ

i

)
× A−1

1 (Ui)

[
Mj

[
I {εκ,j ≤ 0} − κ

]
K

(
Uj − Ui

h

)]

= 1√
n

n∑
i=1

E
[
S
(
0τ ,1,Xτ )fκ(0|O)|U = Ui

]
(A.25)

× A−1
1 (Ui)Mi

[
I {εκ,i ≤ 0} − κ

]
+ oP (1).

Using (A.23), (A.24) and (A.25), as nh4 → 0, nh4
o → 0, we have

Q[2,1]
n,1 (ζ κ) = ζ τ

κ

{
1√
n

n∑
i=1

E
[
Sfκ(0|O)|V = Vi

]
eτ
i βκ

}

+ ζ τ
κ

{
1√
n

n∑
i=1

E
[
S
(
0τ ,1,Xτ )fκ(0|O)|U = Ui

]
(A.26)

× A−1
1 (Ui)Mi

[
I {εκ,i ≤ 0} − κ

]+ oP (1)

}
.

Using (2.5) and (A.23), as (logn)2

nh2 → 0, it is easily seen that

n−1/2
n∑

i=1

Ŝif
′
κ(l̃i |Oi )

[
ω̂i + r̃i (Ui)

]2
= n1/2OP

(
h4

o + h4 + logn

nh

)
(A.27)

= oP (1).

Together with (A.26) and (A.27), the asymptotic expression of Q[2]
n,1(ζ κ) is ob-

tained. Using (2.5) again, we have

Q[3]
n,1(ζ κ) = ζ τ

κ

{
n−1/2

n∑
i=1

Si

[
I {εκ,i ≤ 0} − κ

]+ oP (1)

}
. (A.28)

As a result, the asymptotic expression of Qn,1(ζ κ) is the summation of (A.26)
and (A.28).
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Step 2. In this step, we analyze Qn,2(ζ κ).

Qn,2(ζ κ) =
n∑

i=1

∫ n−1/2ζ τ
κ Ŝi

0

[
I
{
εκ,i ≤ z + ω̂i + r̃(Ui)

}− I
{
εκ,i ≤ ω̂i + r̃(Ui)

}
− Fκ

(
z + ω̂i + r̃(Ui)|Oi

)− Fκ

(
ω̂i + r̃(Ui)|Oi

)]
dz

+
n∑

i=1

∫ n−1/2ζ τ
κ Ŝi

0

[
Fκ

(
z + ω̂i + r̃(Ui)|Oi

)− Fκ

(
ω̂i + r̃(Ui)|Oi

)]
dz

def= Q[1]
n,2(ζ κ) +Q[2]

n,2(ζ κ).

Similar to (A.8) and (A.9), we have Q[1]
n,2(ζ κ) = oP (1). Next, Taylor expansion

entails that

Q[2]
n,2(ζ κ) =

n∑
i=1

∫ n−1/2ζ τ
κ Ŝi

0

[
Fκ

(
z + ω̂i + r̃(Ui)|Oi

)− Fκ

(
ω̂i + r̃(Ui)|Oi

)]
dz

= 1

2
ζ τ

κ

[
1

n

n∑
i=1

(Ŝi)
⊗2fκ

(
ω̂i + r̃(Ui)|Oi

)]
ζ κ + oP (1) (A.29)

= 1

2
ζ τ

κ

{
E
[
S⊗2fκ(0|O)

]}
ζ κ + oP (1)

def= 1

2
ζ τ

κκζ κ + oP (1).

Together with (A.26), (A.28) and (A.29), using the convexity lemma (Pollard,
1991) and the quadratic approximation lemma (Fan and Gijbels, 1996), the mini-
mizer of Qn(ζ ) in (A.21) is expressed as

ζ̂ κ = −1
κ

{
1√
n

n∑
i=1

E
[
Sfκ(0|O)|V = Vi

]
eτ
i βκ

+ 1√
n

n∑
i=1

[
Si + E

[
S
(
0τ ,1,Xτ )fκ(0|O)|U = Ui

]
A−1

1 (Ui)Mi

]
(A.30)

× [
I {εκ,i ≤ 0} − κ

]}
+ oP (1).

Recalling the definition of ζ̂ κ , Si , we complete the proof of Theorem 2.

A.5 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 1. We present some
main steps. Let Nu

i = (1,Xτ
i ,

Ui−u
h

,Xτ
i

Ui−u
h

)τ and

κ̂ = √
nh
((

α̂0,κ (u) − α0,κ (u)
)
,
(
α̂τ

κ(u) − ατ
0,κ (u)

)τ
,

(A.31)
h
(
α̂′

0,κ (u) − α′
0,κ (u)

)
, h
(
α̂′τ

0,κ (u) − α′τ
0,κ (u)

)τ )
.
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Then (A.31) is the minimizer of (A.32) with respect to κ,

Fn(κ)
def= 1

nh

n∑
i=1

(
ρκ

{
εκ,i − n−1/2ζ̂

τ

κ Ŝi − ω̂κ,i + ri(u) −κ
τ Nu

i /
√

nh
}

(A.32)
− ρκ

{
εκ,i − n−1/2ζ̂

τ

κ Ŝi − ω̂κ,i + ri(u)
})

K
(
(Ui − u)/h

)
.

Note that (A.32) is decomposed as

Fn(κ) = 1

nh
κ

τ

(
1√
nh

n∑
i=1

Nu
i

[
I
{
εκ,i ≤ −ri(u) + ω̂κ,i + n−1/2ζ̂

τ

κ Ŝi

}− κ
]

× K
(
(Ui − u)/h

))

+ 1

nh

(
n∑

i=1

∫
κτ Nu

i /
√

nh

0

[
I
{
εκ,i ≤ −ri(u) + ω̂κ,i + n−1/2ζ̂

τ

κ Ŝi + z
}

− I
{
εκ,i ≤ −ri(u) + ω̂κ,i + n−1/2ζ̂

τ

κ Ŝi

}]
dz

)
K
(
(Ui − u)/h

)
= Fn,1(κ) +Fn,2(κ).

Similar to the analysis in the Step 2.1 of Theorem 1, we have

Fn,1(κ) = 1

nh
κ

τ

⎛⎜⎝−
√

nhh2μK2fU(u)

2
diag

(
A2(u),0l1×l1

)⎛⎝α′′
0,κ (u)

α′′
κ(u)

0

⎞⎠
l2×1

⎞⎟⎠
+ 1

nh
κ

τ

(√
nhh2

oμL2fU(u)

2

(
�(u)

0

)
l2×1

)
(A.33)

+ 1

nh
κ

τ

(
1√
nh

n∑
i=1

Nu
i

[
I {εκ,i ≤ 0} − κ

]
K
(
(Ui − u)/h

))

+ oP

(
1

nh

)
,

where l1 = p + 1, l2 = 2p + 2, �(u) = E[(1,Xτ )τ (ξ (2)(V ))τ fκ(0|V,W,X,U)|
U = u]Cβκ . Similar to the analysis in the Step 1 of Theorem 1, we have

Fn,2(κ) = 1

nh
κ

τ {fU(u)diag
(
A2(u),μK2A2(u)

)}
κ

(A.34)

+ oP

(
1

nh

)
.
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Together with (A.34) and (A.34), using the convexity lemma (Pollard, 1991) and
the quadratic approximation lemma (Fan and Gijbels, 1996), we have

√
nh

(
(α̂0,κ − α0,κ ),

(
α̂τ

κ − ατ
κ

)τ − μK2h
2

2

(
α′′

0,κ (u),α′′τ
κ (u)

)τ
+ μL2h

2
o

2
A−1

2 (u)�(u)

)
(A.35)

= A−1
2 (u)f −1

U (u)

{
1√
nh

n∑
i=1

(
1,Xτ

i

)τ [
I {εκ,i ≤ 0} − κ

]
K
(
(Ui − u)/h

)}
+ oP (1).

We complete the proof of Theorem 3.

A.6 Proof of Theorem 4

In the following, �ri(u) = α0(Ui) − α0(u) − α′
0(u)(Ui − u) + Xτ

i [α(Ui) − α(u) −
α′(u)(Ui − u)]. Furthermore, let

ν̆ = √
nh
{
(β̆ − β)τ , (θ̆ − θ)τ ,

ᾰ01(u) − α0(u) − cκ1, . . . , ᾰ0q(u) − α0(u) − cκq , (A.36)(
ᾰ(u) − α(u)

)τ
, h
(
ᾰ′

0(u) − α′
0(u)

)
, h
(
ᾰ′(u) − α′(u)

)τ }
.

and we define Ẑu
i,l = (ξ̂

τ

i ,Wτ
i ,m

τ
l ,Xτ

i ,
Ui−u

h
, Ui−u

h
Xτ

i )
τ where ml is a q-vector

with 1 at the lth position and 0 elsewhere. Recall that {β̆, θ̆, ᾰ0l(u), ᾰ(u), ᾰ′
0(u),

ᾰ′(u)} minimizes

n∑
l=1

n∑
i=1

ρκl

{
Yi − βτ ξ̂ i − θ τ Wi − α0l − α′

0(Ui − u) − ατ Xi − α′τ Xi(Ui − u)
}

× Ku
h(Ui)

with respect to {β, θ, α0l, α
′
0,α,α′}. We write Yi − βτ ξ̂ i − θ τ Wi − α0l − α′

0(Ui −
u) − ατ Xi − α′τ Xi(Ui − u) = εκ,i − cκl

+ �ri(u) − �̂i,l − ω̂i , where �̂i,l =
ν̆τ Ẑu

i,l/
√

nh, ω̂i = βτ (ξ̂ i − ξ i ). Then, ν̆ is also the minimizer of

L∗
n(ν) = 1

n

q∑
l=1

n∑
i=1

{
ρκl

(
εi − cκl

+ �ri(u) − �̂i,l − ω̂i

)
− ρκl

(
εi − cκl

+ �ri(u) − ω̂i

)}
× Ku

h(Ui)
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with respect to ν. Using (A.3), we have

L∗
n(ν) = 1

n

q∑
l=1

n∑
i=1

�̂i,l

[
I
{
εi ≤ cκl

− �ri(u) + ω̂i

}− κl

]
Ku

h(Ui)

+ 1

n

q∑
l=1

n∑
i=1

∫ �̂i,l

0

[
I
{
εi ≤ cκl

− �ri(u) + ω̂i + z
}

− I
{
εi ≤ cκl

− �ri(u) + ω̂i

}]
dzKu

h(Ui)

= L∗
n,1(ν) +L∗

n,2(ν).

Similar to the proof of Ln,2(̃δ) in the Step 1 of Theorem 1, it is shown that

L∗
n,2(ν) = 1

nh
ντ

q∑
l=1

[
1

2n

n∑
i=1

fε

(
cκl

− �ri(u) + ω̂i

)
Ku

h(Ui)
(
Ẑu

i,l

)⊗2

]
ν

+ oP

(
1

nh

)
(A.37)

= 1

nh
ντ

[
1

2
fU(u)�fε (u)

]
ν + oP

(
1

nh

)
,

where �fε (u) = diag(A1,fε (u), cfεμK2A2(u)) is a quasi-diagonal matrix. Here
cfε =∑q

l=1 fε(cκl
), and A1,fε (u) is defined as

A1,fε (u) =
q∑

l=1

fε(cκl
)E
[
M⊗2

l |U = u
]
, M[l] = (

ξ τ ,Wτ ,mτ
l ,Xτ )τ .

Similar to the proof of Ln,1(̃δ) in the Step 2 of Theorem 1, it is shown that

L∗
n,1(ν) = ντ

nh

(
1√
nh

q∑
l=1

n∑
i=1

Zu
i,l

[
I {εi ≤ cκl

} − κl

]
K
(
(Ui − u)/h

))

+ ντ

nh

(
−

√
nhμK2fU(u)h2

2
(A.38)

×
q∑

l=1

fε(cκl
)Tl(u)

(
0τ ,mτ

l α
′′
0 (u),α′′τ (u),0τ )τ)

+ ντ

nh

(
−

√
nhμL2fU(u)h2

o

2

(ℵτ (u),0τ )τ)+ oP

(
1

nh

)
,

where Zu
i,l = (Mτ[l]i ,

Ui−u
h

, Ui−u
h

Xτ
i )

τ , Tl(u) = E[{(Mτ[l],1,Xτ )τ }⊗2|U = u] with
M[l]i = (ξ τ

i ,Wτ
i ,mτ

l ,Xτ
i )

τ and M[l]i = (ξ τ ,Wτ ,mτ
l ,Xτ )τ , and

ℵ(u) =
q∑

l=1

fε(cκl
)E
[
M[l]

(
ξ (2)(V )

)τ |U = u
]
Cβ.
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Together with (A.38) and (A.39), the proof of Theorem 4 is completed by directly
using the convexity lemma (Pollard, 1991), the quadratic approximation lemma
(Fan and Gijbels, 1996) and proofs of Theorem 3.1 of Kai, Li and Zou (2011).

A.7 Proof of Theorem 5

The proof of Theorem 5 is similar to the proof of Theorem 2, we only present the
main steps. Define ζ̂ = √

n((β̂ − β)τ , (θ̂ − θ)τ )τ . Recalling the definition of Ŝi

used in the proof of Theorem 2, then the estimator ζ̂ is also the minimizer of

Hn(ζ )
def=

n∑
i=1

q∑
l=1

(
ρκl

{
εi − cκl

− n−1/2ζ τ Ŝi − ω̂i − �rl(Ui)
}

− ρκ

{
εi − cκl

− ω̂i − �rl(Ui)
})

,

where �rl(Ui) = (ᾰ0l(Ui) − α0(Ui) − cκl
) + (ᾰ(Ui) − α(Ui))

τ Xi . We have

Hn(ζ ) = n−1/2ζ τ
n∑

i=1

q∑
l=1

Ŝi

[
I
{
εi ≤ cκl

+ ω̂i + �rl(Ui)
}− κl

]

+
n∑

i=1

q∑
l=1

∫ n−1/2ζ τ Ŝi

0

[
I
{
εi ≤ z + cκl

+ ω̂i + �rl(Ui)
}

− I
{
εi ≤ cκl

+ ω̂i + �rl(Ui)
}]

dz

def= Hn,1(ζ ) +Hn,2(ζ ).

Let X[l]i = (0τ
(d+r)×1,m

τ
l ,Xτ

i )
τ in the following. Similar to (A.25), the asymptotic

expression (A.39) and the projection of U -statistics in Section 5.3.1 of Serfling
(1980) entail that

1√
n

n∑
i=1

q∑
l=1

fε(cκl
)SiXτ[l]i

A−1
1,fε

(Ui)

fU(Ui)

×
[

1

nh

n∑
s=1

q∑
j=1

M[j ]s
[
I {εs ≤ cκj

} − κj

]
K

(
Us − Ui

h

)]

=
q∑

l=1

q∑
j=1

fε(cκl
)

[
1

n3/2h

n∑
i=1

n∑
s=1

SiXτ[l]i
A−1

1,fε
(Ui)

fU(Ui)
(A.39)

× M[j ]s
[
I {εs ≤ cκj

} − κj

]
K

(
Us − Ui

h

)]

=
q∑

l=1

q∑
j=1

fε(cκl
)

1√
n

n∑
i=1

E
[
SXτ[l]|U = Ui

]
× A−1

1,fε
(Ui)M[j ]i

[
I {εi ≤ cκj

} − κj

]
.
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Similar to the Step 1 in the proof of Theorem 2, we have

Hn,1(ζ )

= ζ τ

[ q∑
l=1

q∑
j=1

fε(cκl
)

1√
n

n∑
i=1

E
[
SXτ[l]|U = Ui

]

× A−1
1,fε

(Ui)M[j ]i
[
I {εi ≤ cκj

} − κj

]]
(A.40)

+ ζ τ

[
1√
n

n∑
i=1

q∑
l=1

{
Si

[
I {εi ≤ cκl

} − κl

]

+ fε(cκl
)E[S|V = Vi]eτ

i β
}+ oP (1)

]
and

Hn,2(ζ ) = ζ τ

[
1

2

q∑
l=1

fε(cκl
)

1

n

n∑
i=1

Ŝ⊗2
i

]
ζ

(A.41)

= ζ τ

[
1

2

q∑
l=1

fε(cκl
)E
(
S⊗2)+ oP (1)

]
ζ .

Using (A.40) and (A.41), the proof of Theorem 4 is completed by directly using
the convexity lemma (Pollard, 1991), the quadratic approximation lemma (Fan and
Gijbels, 1996). We complete the proof of Theorem 5.

A.8 Proof of Theorem 6

The proof of Theorem 6 is similar to the proof of Theorem 3. We present some
main steps. Let Nu

li = (mτ
l ,Xτ

i ,
Ui−u

h
,Xτ

i
Ui−u

h
)τ and

ϕ̂ = √
nh
((

α̂0l(u) − α0(u) − cκ1

)
, . . . ,(

α̂0q(u) − α0(u) − cκq

)
,
(
α̂τ

(u) − ατ (u)
)τ

, (A.42)

h
(
α̂′

0(u) − α′
0(u)

)
, h
(
α̂′τ (u) − α′τ (u)

)τ )
.

Recalling the definition of ζ̂ used in the proof of Theorem 5, Then (A.42) is the
minimizer of (A.43) with respect to ϕ,

Dn(ϕ)
def= 1

nh

q∑
l=1

n∑
i=1

(
ρκl

{
εi − cκl

− n−1/2ζ̂
τ
Ŝi − ω̂i + �ri(u) − ϕτ Nu

li/
√

nh
}
(A.43)

− ρκl

{
εi − cκl

− n−1/2ζ̂
τ
Ŝi − ω̂i + �ri(u)

})
K
(
(Ui − u)/h

)
.
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Note that (A.43) is decomposed as

Dn(ϕ)

= 1

nh
ϕτ

(
1√
nh

q∑
l=1

n∑
i=1

Nu
li

[
I
{
εi ≤ cκl

− �ri(u) + ω̂i + n−1/2ζ̂
τ
Ŝi

}− κl

]

× K

(
Ui − u

h

))

+ 1

nh

( q∑
l=1

n∑
i=1

∫ ϕτ Nu
li/

√
nh

0

[
I
{
εi ≤ cκl

− �ri(u) + ω̂i + n−1/2ζ̂
τ
Ŝi + z

}

− I
{
εi ≤ cκl

− �ri(u) + ω̂i + n−1/2ζ̂
τ
Ŝi

}]
dz

)
K
(
(Ui − u)/h

)
=Dn,1(ϕ) +Dn,2(ϕ).

Similar to the analysis in the Step 1 of Theorem 1, we have

Dn,2(ϕ) = fU(u)

nh

× ϕτ

[
diag

{
E

(
Cfε fε(cκ)Xτ

Xf τ
ε (cκ) cfεX⊗2

∣∣∣∣U = u

)
, cfεμK2A2(u)

}]
ϕ

(A.44)

+ oP

(
1

nh

)
def= 1

nh
ϕτ

[
1

2
fU(u)diag

(
A2,fε (u), cfεμK2A2(u)

)]
ϕ + oP

(
1

nh

)
,

where Cfε = diag(fε(cκ1), . . . , fε(cκq )). Moreover, similar to the analysis in the
Step 2 of Theorem 1, we have

Dn,1(ϕ) = 1

nh
ϕτ

⎛⎜⎝−
√

nhh2μK2fU(u)

2
diag

(
A2,fε (u),0l1×l1

)⎛⎝α′′
0 (u)1q

α′′(u)

0

⎞⎠
l∗2×1

⎞⎟⎠
+ 1

nh
ϕτ

(√
nhh2

oμL2fU(u)

2

(
�fε (u)

0

)
l2×1

)
(A.45)

+ 1

nh
ϕτ

(
1√
nh

n∑
i=1

q∑
l=1

Nu
li

[
I {εi ≤ cκl

} − κl

]
K
(
(Ui − u)/h

))

+ oP

(
1

nh

)
,
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where l1 = p + 1, l∗2 = 2p + q + 1, �fε (u) = E[(f τ
ε (cκ), cfεXτ )τ (ξ (2)(V ))τ |U =

u]Cβ . Together with (A.44) and (A.45), using the convexity lemma (Pollard, 1991)
and the quadratic approximation lemma (Fan and Gijbels, 1996), we have

√
nh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

α̂01(u) − α0(u) − cκ1
...

α̂0q(u) − α0(u) − cκq

α̂(u) − α(u)

⎞⎟⎟⎟⎠− h2μK2

2

(
c1q×1α

′′
0 (u)

α′′(u)

)

+ h2
oμL2

2
A−1

2,fε
(u)�fε (u)

}
(A.46)

L−→ N

(
0(q+p)×1,

ϑK0

fU(u)
A−1

2,fε
(u)G(u)A−1

2,fε
(u)

)
,

where G(u) = ∑q
l=1

∑q
s=1(κl ∧ κs − κlκs)E[(mτ

l ,Xτ )τ (mτ
s ,Xτ )|U = u]. Define

πq,1 = (1τ
q,0τ

p)τ , using (A.46), recalling that α̂0(u) = 1
q

∑q
l=1 α̂0l(u), we have

√
nh

(
α̂0(u) − α0(u) − 1

q

q∑
l=1

cκl
− h2μK2

2
α′′

0 (u)

− h2
oμL2

2q
π τ

q,1A−1
2,fε(u)�fε (u)

)
(A.47)

L−→ N

(
0,

ϑK0

fU(u)q2 π τ
q,1A−1

2,fε
(u)G(u)A−1

2,fε
(u)πq,1

)
.

Define πp,2 = (0p×q, Ip), similar to (A.47), we have

√
nh

(
α̂(u) − α(u) − h2μK2

2
α′′(u) − h2

oμL2

2
πp,2A−1

2,fε(u)�fε (u)

)
(A.48)

L−→ N

(
0,

ϑK0

fU(u)
πp,2A−1

2,fε
(u)G(u)A−1

2,fε
(u)π τ

p,2

)
.

We complete the proof of Theorem 6.
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