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Sequential Bayesian Analysis of Multivariate
Count Data

Tevfik Aktekin∗, Nick Polson†, and Refik Soyer‡

Abstract. We develop a new class of dynamic multivariate Poisson count models
that allow for fast online updating. We refer to this class as multivariate Poisson-
scaled beta (MPSB) models. The MPSB model allows for serial dependence in
count data as well as dependence with a random common environment across
time series. Notable features of our model are analytic forms for state propagation,
predictive likelihood densities, and sequential updating via sufficient statistics for
the static model parameters. Our approach leads to a fully adapted particle learn-
ing algorithm and a new class of predictive likelihoods and marginal distributions
which we refer to as the (dynamic) multivariate confluent hyper-geometric neg-
ative binomial distribution (MCHG-NB) and the dynamic multivariate negative
binomial (DMNB) distribution, respectively. To illustrate our methodology, we
use a simulation study and empirical data on weekly consumer non-durable goods
demand.

Keywords: state space, count time series, multivariate poisson, scaled beta prior,
particle learning.

1 Introduction

Discrete-valued count data poses a number of statistical modeling challenges with
widespread applications in web analytics, epidemiology, economics, finance, operations,
and other fields. Amazon, Facebook, and Google are often interested in predicting the
number of online customer arrivals during a specific time period. Policy makers are
interested in predicting the number of individuals who possess a common trait for re-
source allocation decisions. Online web data present the challenge of fast and efficient
prediction of counts from multiple web pages over time. Moreover, the total number of
clicks over time may be dependent across pages requiring dynamic multivariate count
data models. In this paper, we develop a class of dynamic (state space) multivariate
Poisson model together with a particle filtering (PF) and learning (PL) algorithm for
sequential online updating (Gordon et al., 1993; Carvalho et al., 2010a). A scaled beta
state evolution with a random common environment is proposed to account for depen-
dence in counts. We term our model the multivariate Poisson-scaled beta (MPSB) and
as a by-product, we introduce two new multivariate distributions, the dynamic mul-
tivariate negative binomial (DMNB) and the multivariate confluent hyper-geometric
negative binomial (MCHG-NB) distributions which correspond to marginal and predic-
tive distributions, respectively.
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Recent advances in discrete-valued time series can be found in Davis et al. (2015).
However, there is little work on count data models which allow for serial dependence.
The dependence between time series of counts is modeled either using traditional sta-
tionary time series models as in Al-Osh and Alzaid (1987); Zeger (1988); Freeland and
McCabe (2004) which are known as observation driven models in the terminology of
Cox (1981), or state space models as in Harvey and Fernandes (1989); Durbin and
Koopman (2000); Fruhwirth-Schnatter and Wagner (2006); Aktekin and Soyer (2011);
Aktekin et al. (2013); Gamerman et al. (2013) that are called parameter driven models.
In a state space model, the dependence between the counts is captured via latent factors
which follow a stochastic process. These models assume that the counts are conditional
independent given the latent factors as opposed to stationary models where counts are
unconditionally dependent.

Analysis of discrete-valued multivariate time series has also been limited due to
computational challenges. In particular, little attention has been given to multivari-
ate models and our methodology fills this gap. Recent work include Pedeli and Karlis
(2011, 2012) who use observation driven multivariate INAR(1) models. Ravishanker
et al. (2014) introduce a Bayesian hierarcical multivariate Poisson time series model.
Markov chain Monte Carlo (MCMC) methods are used for computation where the eval-
uation of the multivariate Poisson likelihood requires a significant computational effort.
Serhiyenko et al. (2015) develop zero-inflated Poisson models for multivariate time series
of counts and Ravishanker et al. (2015) study finite mixtures of multivariate Poisson
time series. State space models of multivariate count data were presented in Ord et al.
(1993) and were implemented in Jorgensen et al. (1999) using the EM algorithm. Other
closely related models of correlated Poisson counts in a temporal setting include re-
search on marked Poisson processes as in Taddy (2010), Taddy and Kottas (2012), and
Ding et al. (2012).

One advantage of parameter driven models is that the previous correlations are cap-
tured by the time evolution of the state parameter, which we refer to as the random
common environment. Correlations among multiple series are induced by this random
common environment which follows a Markovian evolution; see Smith and Miller (1986);
Aktekin et al. (2013); Gamerman et al. (2013). The idea of a random common environ-
ment is widely used in risk analysis (Arbous and Kerrich, 1951) and reliability (Lindley
and Singpurwalla, 1986) literatures to model dependence. Our strategy provides a new
class of dynamic extensions of such models; see also Arbous and Kerrich (1951).

Sequential Bayesian analysis (Polson et al., 2008; Carvalho et al., 2010a) and fore-
casting requires the use of sequential Monte Carlo techniques. The forward filtering back-
ward sampling (FFBS) algorithm of Carter and Kohn (1994) and Fruhwirth-Schnatter
(1994) can be computationally expensive as it requires rerunning of chains to obtain
filtering distributions with each additional observation. Particle learning (PL) avoids
this burden by providing dynamic state and static posterior distributions in an efficient
manner. Carvalho et al. (2010a) observe that estimating static parameters is notoriously
difficult especially in higher dimensions. Given the specific structure of our proposed
state space model (as the conditional filtering densities of all the static parameters can
be obtained in closed form with known conditional sufficient statistic recursions), it is
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possible to develop such a filtering scheme that can be used for both on-line updating
and forecasting.

The rest of the paper is organized as follows. Section 2 introduces our multivariate
time series model for modeling counts and develops its properties. Section 3 introduces
the PL algorithm for the MPSB model. Our proposed model and estimation algorithms
are illustrated in Section 4 using calibration studies and an actual data set on weekly
time series of consumer demand for non-durable goods. Section 5 provides concluding
remarks, discussion of limitations and future work.

2 Multivariate Poisson-Scaled Beta (MPSB) Model

Suppose that we observe a sequence of evenly spaced counts observed up until time T
for J series denoted by {(Y11, . . . , Y1T ), . . . , (YJ1, . . . , YJT )}. We assume that these J
series are exposed to the same external environment similar to the common operational
conditions for the components of a system as considered by Lindley and Singpurwalla
(1986) in reliability analysis. The analysis of financial and economic time series also
includes several series that are affected by the same economic swings in the market. To
account for such dependence, we assume a Bayesian hierarchical model of the form

(Yjt|λj , θt) ∼ Pois(λjθt), for j = 1, . . . , J and t = 1, . . . , T, (1)

where λj is the rate specific to the jth series and θt represents the effects of the random
common environment modulating λj . Following Smith and Miller (1986), a Markovian
evolution is assumed for θt as

θt =
θt−1

γ
εt, (2)

where the error term follows a Beta distribution given by

(εt|Dt−1, λ1, . . . , λJ) ∼ Beta[γαt−1, (1− γ)αt−1],

where αt−1 > 0, 0 < γ < 1 and Dt−1 = {Dt−2, Y1,t−1, . . . , YJ,t−1} represents the se-
quential arrival of data. We refer to this class of models as multivariate Poisson-scaled
beta (MPSB) models due to the relationship between the observation and state equa-
tions. Following Smith and Miller (1986), the state equation is defined conditional on
previous counts unlike the state equations in traditional dynamic linear models.

2.1 Dynamic Online Bayesian Updating

The observation model (1) is a function of both the dynamic environment θt and the
static parameters, λj ’s. In the case where Yjt represents the weekly consumer demand
for household j at time t, λj accounts for the effects of the household specific rate and
θt for the effects of the random common economic environment that all households are
exposed to at time t. When θt > 1, the environment is said to be more favorable than
usual which leads to a higher overall Poisson rate and vice versa. In the evolution (2), the
term γ acts like a discount factor common for all j series. For notational convenience, we
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suppress the dependence of all conditional distributions on γ in our discussion below.
Having the state evolution as (2) also implies the following scaled beta density for
(θt|θt−1, D

t−1,λ)

Γ(αt−1)

Γ(γαt−1)Γ((1− γ)αt−1)

( γ

θt−1

)γαt−1

θ
γαt−1−1
t

(
1− γ

θt−1
θt

)(1−γ)αt−1

, (3)

where (θt|θt−1, D
t−1,λ) is defined over (0; θt−1/γ) and the vector of static parameters

is defined as λ = {λ1, . . . , λJ}. Here we assume given θt’s and λj , Yjt’s are conditionally
independent over time. Furthermore, we assume that at time t, given θt and λj ’s, Yjt’s
are conditionally independent of each other.

Conditional on the static parameters, it is possible to obtain an analytically tractable
filtering of the states. At time 0, prior to observing any count data, we assume that
(θ0|D0) ∼ Gamma(α0, β0), then by induction we have

(θt−1|Dt−1,λ) ∼ Gamma(αt−1, βt−1), (4)

and using (3) and (4), (θt|Dt−1,λ) is

p(θt|Dt−1,λ) =

∫
p(θt|θt−1, D

t−1,λ)p(θt−1|Dt−1,λ)dθt−1 (5)

∼ Gamma(γαt−1, γβt−1). (6)

The conditional filtering density at time t can be obtained using (1) and (6) as

p(θt|Dt,λ) ∝ p(Y1t, . . . , Yjt|θt,λ)p(θt|Dt−1,λ)

∝
( ∏

j

(θtλj)
Yjte−λjθt

)(
θ
γαt−1−1
t e−γβt−1θt

)
,

which is
(θt|Dt,λ) ∼ Gamma(αt, βt), (7)

where αt = γαt−1+(Y1t+ . . .+YJt) and βt = γβt−1+(λ1+ . . .+λJ ). As a consequence,
both the effects of all counts as well as the individual effects of each series are used
in updating the random common environment. The filtering density conditional on the
static parameters (7) is central for the implementation of our FFBS algorithm which is
mainly used for smoothing.

2.2 Dynamic Multivariate Negative Binomial (DMNB) Distribution

An important feature of our model is the availability of the marginal distribution of Yjt

conditional on λj ’s for j = 1, . . . , J . This is given by

p(Yjt|λ, Dt−1) =

∫
p(Yjt|θt, λj)p(θt|Dt−1,λ)dθt (8)

=

(
γαt−1 + Yjt − 1

Yjt

)(
1− λj

γβt−1 + λj

)γαt−1
( λj

γβt−1 + λj

)Yjt

, (9)
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which is a negative binomial model denoted as NB[γαt−1, λj/(γβt−1 + λj)], where
λj/(γβt−1+λj) is the probability of success. From the conditional independence assump-
tions, we can obtain the multivariate distribution of Yt = {Y1t, . . . , YJt} conditional on
λj ’s as

p(Yt|λ, Dt−1)

=
Γ(γαt−1 +

∑
j Yjt)

Γ(γαt−1)
∏

j Γ(Yjt + 1)

∏
j

(
λj

γβt−1 +
∑

j λj

)Yjt
(

γβt−1

γβt−1 +
∑

j λj

)γαt−1

. (10)

This is a generalization of the negative binomial distribution. We refer to this distribu-
tion as the dynamic multivariate negative binomial (DMNB) distribution which will play
an important role in learning about the discount parameter, γ. The joint distribution,
p(Yit, Yjt|λ, Dt−1), for series i and j, is given by

p(Yit, Yjt|λ, Dt−1) =
Γ(γαt−1 + Yit + Yjt)

Γ(γαt−1)Γ(Yit + 1)Γ(Yjt + 1)

( γβt−1

λi + λj + γβt−1

)γαt−1

( λi

λi + λj + γβt−1

)Yit
( λj

λi + λj + γβt−1

)Yjt

.

We remark that this is a dynamic version of the multivariate negative binomial distribu-
tion from Arbous and Kerrich (1951) who modeled the number of industrial accidents
in a workplace such as a production facility. The conditional distributions of Yjt’s are
also negative binomial distributions. The conditional mean regression of Yjt on Yit is a
linear function of Yit, given by

E[Yjt|Yit,λ, D
t−1] =

λj(γαt−1 + Yit)

(λi + γβt−1)
. (11)

The bivariate counts have positive correlation given by

Cor(Yit, Yjt|λ, Dt−1) =

√
λiλj

(λi + γβt−1)(λj + γβt−1)
. (12)

Our proposed model is suitable for positively correlated series. In our examples, we con-
sider counts of weekly demand for consumer non-durable goods of several households
that are positively correlated with each other. The structure (12) suggests that as γ
approaches zero holding the values of λj ’s the same, the correlation between two series
increases. A similar argument can be made by observing the state (2) where γ was in-
troduced as a common discount parameter. In our simulations and analysis of real count
data, we only consider series that are positively correlated and discuss its implications.
Even though this is a limitation of our model, it is possible to find positively correlated
time series of counts in many fields when the series are assumed to be exposed to the
same environment.
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2.3 Forward Filtering and Backward Sampling (FFBS)

In what follows, we introduce the forward filtering and backward sampling (FFBS)
algorithm for estimating the dynamic state parameters, θt’s, the static parameters,
λj ’s, and the discount factor γ. We first assume that γ is known.

We assume that apriori λj ’s are independent of each other as well as θ0 and having
gamma priors as

λj ∼ Gamma(aj , bj), for j = 1, . . . , J. (13)

The model can be estimated either using MCMC techniques or PF methods. For
MCMC, one needs to generate samples from the joint posterior of all parameters as in
p(θt,λ|Dt) where θt = {θ1 . . . , θt} using a Gibbs sampling scheme via the following
steps

1. Generate θt’s via p(θ1, . . . , θt|λ1, . . . , λj , D
t)

2. Generate λ′
js via p(λ1, . . . , λj |θ1, . . . , θt, Dt)

In step 1, the FFBS algorithm can be used to estimate the conditional joint distribution
of the state parameters where the joint density p(θ1, . . . , θt|λ, Dt) can be factored as

p(θt|λ, Dt)p(θt−1|θt,λ, Dt−1) · · · p(θ1|θ2,λ, D1).

The implementation of FFBS would be straightforward in our model as we have the
following shifted gamma densities where γθt < θt−1

(θt−1|θt,λ, Dt−1) ∼ Gamma[(1− γ)αt−1, βt−1].

In Step 2, we can use the Poisson-Gamma conjugacy,

p(λj |θt, Dt) ∝ p(Yj1, . . . , Yjt|θt, λj)p(λj)

∝
( ∏

t

(θtλj)
Yjte−λjθt

)(
λ
aj−1
j e−bjλj

)
,

which is a gamma density as

(λj |θt, Dt) ∼ Gamma(ajt, bjt), (14)

where ajt = aj + (Yj1 + . . . + Yjt) and bjt = bj + (θ1 + . . . + θt). It is important to
observe that given the state parameters, θt and data, λj ’s are conditionally independent.
However, unconditionally they will not necessarily be independent. The availability of
(14) and more importantly the sequential updating of its parameters using sufficient
statistics is important in developing PL methods which we discuss in detail in the
sequel.

As pointed out by Storvik (2002) and Carvalho et al. (2010a), the issue with MCMC
methods in state space models is that the chains need to be restarted for every data point
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observed and the simulation dimension becomes larger as we observe more data over
time. Furthermore, MCMC methods require convergence of chains via the calibration
of thinning intervals (to reduce autocorrelation of the samples) and the determination
of the burn-in period’s size, both of which would increase the computational burden.
Therefore, using MCMC methods would not be ideal for sequential updating whose
implications we investigate in our numerical example section. However, the FFBS algo-
rithm can be used to obtain smoothing estimates in a very straightforward manner since,
unlike filtering, smoothing does not require sequentially restarting the chains. In a single
block run of the above FFBS algorithm, one can obtain estimates of (θ1, . . . , θt|Dt) by
collecting the associated samples generated from p(θ1, . . . , θt,λ|Dt). When fast sequen-
tial estimation is of interest, an alternative approach is the use of PF techniques that
are based on the idea of re-balancing a finite number of particles of the posterior states
given the next data point with weights that are proportional to its likelihood.

3 Particle Learning of the MPSB Model

For sequential state filtering and parameter learning, we make use of the PL method
of Carvalho et al. (2010a) to update both the dynamic and the static parameters. To
summarize, the PL approach starts with the resampling of all particles at time t using
weights proportional to the predictive likelihood which ensures that the highly likely
particles are moved forward. The resampling step is followed by the propagation of the
current state (t) to the future state (t+1). Note that in both the resampling and propa-
gation steps, one-step-ahead observations are used. The last step involves updating the
static parameters by computing the conditional sufficient statistics. Even though there
has been several applications of the PL methods in the literature, almost none of them
focus on the analysis of Poisson count data with the exception of Taddy (2010). Among
many other successful applications, some recent work of the PL algorithm include Car-
valho et al. (2010b) for estimating general mixtures, Gramacy and Polson (2011) for
estimating Gaussian process models in sequential design and optimization, and Lopes
and Polson (2016) for estimating fat-tailed distributions.

Let us first assume that γ is known and define zt as the essential vector of parameters
that we need to keep track of at each t. The essential vector will consist of the dynamic
state parameter (θt), static parameters (λ) and conditional sufficient statistics st =
f(st−1, θt,Yt) for updating the static parameters. The fully adapted version of PL can
be summarized as follows using the traditional notation of PF methods

1. (Resample) {zt}Ni=1 from z
(i)
t = {st,λ}(i) using weights w

(i)
t ∝ p(Yt+1|z(i)t )

2. (Propagate) {θ(i)t } to {θ(i)t+1} via p(θt+1|z(i)t ,Yt+1)

3. (Update) s
(i)
t+1 = f(s

(i)
t , θ

(i)
t+1,Yt+1)

4. (Sample) (λ)(i) from p(λ|s(i)t+1)
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In step 1, zt will be stored at each point in time and only includes one state parameter

(θt), hence eliminating the need to update all state parameters (θt) jointly for each

time new data is observed. In step 1, st represents the ensemble of conditional sufficient

statistics for updating the static parameters. From (14), it is easy to see that st should

only consist of Yt and θt if we rewrite ajt = aj,t−1 + Yjt and bjt = bj,t−1 + θt for

each j. In step 3, f(.) represents this deterministic updating of the conditional sufficient

statistic based on the ajt and bjt recursions.

In order to implement the above PL scheme, we need p(Yt+1|z(i)t ), the predictive

likelihood, for computing the weights in step 1 and p(θt+1|z(i)t ,Yt+1), the propagation

density, for step 2. Note that this propagation density is not the same state evolution

equation from (3) due to the inclusion of Yt+1 in the conditioning argument, which

ensures that the most current data is considered in propagating the states. Next, we

present the summary of how these two quantities can be obtained. A detailed version can

be found in Supplementary Appendix A (Aktekin et al., 2017). We also show in detail

the conjugate nature of our model in Supplementary Appendix B with the detailed

steps of how the dynamic multivariate version was obtained starting with the static

univariate model.

Step 1: Obtaining the Resampling Weights

The predictive likelihood is denoted by p(Yt+1|zt) = p(Yt+1|θt,λ, Dt) and is required

to compute the resampling weights in step 1 of the above PL algorithm. Specifically, we

need to compute

wt = p(Yt+1|θt,λ, Dt) =

∫
p(Yt+1|θt+1,λ)p(θt+1|θt,λ, Dt)dθt+1,

where p(Yt+1|θt+1,λ) is the product of the Poisson likelihoods (1) and p(θt+1|θt,λ, Dt)

is the state (3). Thus, wt would be

wt =

( ∏
j

λ
Yj,t+1

j

Yj,t+1!

)(
θt
γ

)∑
j Yj,t+1

(
Γ(

∑
j Yj,t+1 + γαt)Γ(αt)

Γ(
∑

j Yj,t+1 + αt)Γ(γαt)

)
CHF (a; a+ b;−c),

(15)

where a =
∑

j Yj,t+1 + γαt, a+ b =
∑

j Yj,t+1 + αt, c =
θt
γ

∑
j λj . Here, CHF represents

the confluent hyper-geometric function of Abramowitz and Stegun (1968). For evaluat-

ing the CHF function, fast computation methods exist; see for instance the gsl package

in R by Hankin (2006). The resampling weights (15) also represent the predictive like-

lihood (marginal) for the proposed class of dynamic multivariate Poisson models. To

the best of our knowledge, (15) represents the form of a new multivariate distribution

which we refer to as (dynamic) multivariate confluent hyper-geometric negative binomial

distribution (MCHG-NB); see the Supplementary Appendix B for the details.
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Step 2: Obtaining the Propagation Density

The propagation density in step 2 of the PL algorithm can be shown to be

p(θt+1|θt,λ,Yt+1, D
t) ∝ θ

(
∑

j Yj,t+1)+γαt−1

t+1

(
1− γ

θt
θt+1

)(1−γ)αt−1

e−(
∑

j λj)θt+1 .

The above form is proportional to a scaled hyper-geometric beta density as in Gordy
(1998) and is defined over the range (0; θtγ ), as HGB(a, b, c), with parameters

a = (
∑
j

Yj,t+1) + γαt, b = (1− γ)αt and c =
θt
γ

∑
j

λj .

To generate samples from the HGB density, it is possible to use a rejection sampling
based approach. First, we can numerically evaluate the maximum of the HGB density
over (0,1) using a non-linear numerical search technique and use the maximum as an
enveloping constant for developing a rejection sampling algorithm. We comment on
the performance of the sampling method in our numerical section and also provide an
alternative below.

Now that we have both the predictive likelihood for computing the resampling
weights and the propagation density, the PL algorithm can be summarized as

1. (Resample) {zt}Ni=1 from z
(i)
t = {st,λ}(i) using weights

w
(i)
t ∝

( ∏
j

λ
Yj,t+1

j

Yj,t+1!

)(
θt
γ

)∑
j Yj,t+1

(
Γ(

∑
j Yj,t+1 + γαt)Γ(αt)

Γ(
∑

j Yj,t+1 +αt)Γ(γαt)

)
CHF (a; a+b;−c)

2. (Propagate) {θ(i)t } to {θ(i)t+1} via HGB[(
∑

j Yj,t+1)+γαt, (1−γ)αt,
∑

j λj ] defined

over (0; θt
γ )

3. (Update) s
(i)
t+1 = f(s

(i)
t , θ

(i)
t+1,Yt+1)

4. (Sample) (λ)(i) from p(λj |s(i)t+1) ∼ Gamma(aj,t+1, bj,t+1) for j = 1, . . . , J .

The availability of the recursive updating for the sufficient statistics of the static pa-
rameters makes our model an ideal candidate for applying the PL method. Note that
in step 4, the conditional distributions of the static parameters are coming from (14).
Alternatively, if generating from the HGB distribution in step 2 is not computationally
efficient, then one can use another step in the vein of sequential importance sampling
by resampling the θt+1’s using weights proportional to the likelihood. For instance, we
can replace step 2 in the above with

• (Propagate) {θ̃t+1}(i) from p(θt+1|θ(i)t ,λ(i), Dt)

• (Resample) {θt+1}(i) using weights wt+1 ∝ p(Yt|θ̃(i)t+1,λ
(i))

We comment on the performance of the above approach in our numerical example.
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Updating the Discount Factor γ

For the sequential estimation of the γ posterior at each point in time, we make use of
the availability of the marginal likelihood conditional on the λj ’s which is a dynamic
multivariate negative binomial density. Estimation of a static parameter that does not
evolve over time is surprisingly challenging in a PL context. It is not possible to incorpo-
rate the estimation of γ in step 5 of the above algorithm using an importance sampling
step as it will lead to the well known particle degeneracy issue. Unlike the λj ’s, the
conditional posterior distribution of γ is not a known density with deterministic con-
ditional recursive updating. Therefore, for models where γ is treated as an unknown
quantity, we suggest the use of the marginal likelihood conditional on the λj ’s from (9).
Therefore, we can write the conditional posterior distribution of γ as

p(γ = k|λ, Dt+1) ∝
t+1∏
i=1

p(Yi|λ, Di−1, γ = k)p(γ = k), (16)

where p(γ = k) is a discrete uniform prior defined over (0.001, 0.999) with K categories
(we comment on determining the dimension of K in our simulation studies). To incorpo-
rate the learning of (16) at the end of step 4 of our PL algorithm above, we first estimate
the discrete posterior distribution of γ using the Monte Carlo average of the updated
samples of λ1, . . . , λJ at time t+ 1. Then, we resample particles from this distribution
to update f(.) in step 3 at time t+ 2.

4 Numerical Examples

To illustrate our MPSB model and the associated estimation algorithms, we consider
several simulation studies and an actual data on consumer demand for two households.
The consumer demand data we were given access to is a subset of a large set used in
Kim (2013). The data as well as the R code are available upon request via email from
the authors.

4.1 Example: Calibration Study

First, we present the results of several simulated studies. We constructed 10 simulated
sets from the data generating process of the MPSB given by (1) and (2). Each simulated
set contains a total of 200 observations that consist of 40 data points for 5 series.
Each sequence of counts sampled from the model are realizations from the underlying
time series model with varying pairwise sample correlations among individual series.
The parameter values are unchanged but each simulated set behaves differently as the
random common environment differs drastically across simulations even for the same
values of the static parameters.

To initialize the simulations, we set θ0 ∼ G(α0 = 10, β0 = 10) representing the initial
status of the random common environment. We explicitly assume that the random
common environment is initialized around the unit scale (with mean α0/β0 = 1). In
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doing so, one obtains a better understanding of the scale of the static parameters, λj ’s,
as a function of actual count data. This is especially important when dealing with real
count data when specifying the hyper-parameters of priors for θ0 and the λj ’s which we
discuss in the sequel. We assumed that J = 5, and the static parameters, λj ’s, were 2,
2.5, 3, 3.5, and 4, respectively. The values are close to each other to investigate if the
model can distinguish these static parameters. Finally, the common discount parameter,
γ was set at 0.30.

Our PL algorithm uses N=1,000 particles. Since all simulated counts are roughly
between 0 and 40 with initial values up to 5–6, we set θ0 ∼ G(10, 10) and λj ∼ G(2, 1)
for all j (reflecting the fact that very high values of the parameter space does not
make practical sense). Our numerical experiments revealed that having tighter priors
especially on λj ’s help identifying the true value of the parameters. Varying the hyper-
parameters of the priors (within reasonable bounds with respect to the scale of the
counts) does not have a significant effect on the overall fit of the models. When the
priors are vague and uninformative (e.g. G(0.001, 0.001)), our algorithm has difficulty
identifying regions close to the real values of the parameters at the outset. However,
in such cases the mean filtered estimates, E(θtλj |Dt)’s, are found to be in the near
proximity of the real counts. When dealing with real data, this is not a major drawback
as long as the model is able to provide reasonable filtering estimates since the true value
of the static parameters will always be unknown. For practical reasons, we suggest that
the initial state prior be set around the unit scale as in θ0 ∼ G(10, 10). We note here
that the results were not sensitive to changes in the hyper-parameters of θ0 as long as
its mean stayed around the region of unit scale such as those in G(1, 1), G(10, 10) or
G(100, 100).

Sim #1 Sim #2 Sim #3 Sim #4 Sim #5

λ1 2.06 (1.83;2.29) 2.05 (1.83;2.25) 1.70 (1.40;2.05) 1.66 (1.42;1.93) 1.91 (1.73;2.10)
λ2 2.32 (2.09;2.57) 2.64 (2.39;2.87) 2.22 (1.85;2.61) 2.20 (1.92;2.51) 2.52 (2.31;2.75)
λ3 2.69 (2.43;2.97) 2.79 (2.54;3.05) 2.75 (2.37;3.19) 2.38 (2.11;2.70) 2.99 (2.76;3.24)
λ4 2.97 (2.70;3.24) 3.54 (3.27;3.86) 2.95 (2.53;3.39) 2.58 (2.27;2.93) 3.42 (3.17;3.67)
λ5 3.54 (3.24;3.85) 3.80 (3.52;4.08) 3.57 (3.08;4.02) 3.19 (2.82;3.55) 3.72 (3.47;3.99)
γ 0.19 (0.14;0.32) 0.20 (0.12;0.32) 0.37 (0.22;0.50) 0.25 (0.15;0.43) 0.26 (0.15;0.43)

Sim #6 Sim #7 Sim #8 Sim #9 Sim #10

λ1 2.13 (1.83;2.46) 1.96 (1.67;2.26) 2.25 (1.91;2.59) 2.17 (1.94;2.39) 2.01 (1.81;2.21)
λ2 2.81 (2.47;3.19) 2.40 (2.10;2.71) 2.50 (2.17;2.87) 2.48 (2.25;2.77) 2.67 (2.43;2.92)
λ3 3.01 (2.64;3.37) 2.81 (2.47;3.17) 2.97 (2.59;3.35) 2.72 (2.47;2.98) 3.05 (2.76;3.30)
λ4 3.57 (3.18;3.98) 3.26 (2.88;3.65) 3.38 (3.00;3.83) 3.36 (3.08;3.66) 3.25 (2.99;3.53)
λ5 4.29 (3.87;4.75) 3.75 (3.35;4.19) 3.96 (3.53;4.44) 3.52 (3.23;3.84) 3.77 (2.50;4.05)
γ 0.28 (0.18;0.45) 0.28 (0.17;0.45) 0.26 (0.16;0.41) 0.22 (0.14;0.33) 0.22 (0.14;0.33)

Table 1: Posterior means and 95% credibility intervals (in parenthesis) for static param-
eters across 10 simulated examples.

Table 1 shows the means and 95% credibility intervals (in parenthesis) for the esti-
mated static parameters for 10 different simulations. For each case, the PL algorithm is
able identify posterior distributions that are close to the true values of the parameters



396 Sequential Bayesian Analysis of Multivariate Count Data

(λ1 = 2, λ2 = 2.5, λ3 = 3, λ4 = 3.5, λ5 = 4 and γ = 0.3). In addition, we also computed
posterior coverage probabilities across 10 simulations by investigating if the true value
of the parameter was within the 95% credibility bounds. (i.e. the number of times the
true values of the parameter was within a given credibility interval across 10 simula-
tions). These coverage probabilities were estimated to be 0.9, 1.0, 0.7, 0.7 and 0.7 for
the λj ’s and 1.00 for γ, showing support in favor of the algorithm being able to provide
coverage of the true values most of the time.

Figure 1: Estimation paths of the static parameters, λ1, λ2, λ3 over time for a given
simulation (red straight line represents the real value of the parameter).

Figures 1 and 2 show the boxplots of the estimation paths of the static parame-
ters for one of the simulations where the straight line represents the true value of the
parameter. As can be observed from the size of the boxplots, for the first few observa-
tions the posterior distributions exhibit more uncertainty. As we observe more data, the
uncertainty tapers off and the posterior distributions converge to regions close to the
true value of the parameters (similar plots were obtained for all 10 simulations). After
observing up to 9–10 points in time, our algorithm is able to learn about the λj ’s very
easily, however learning of the γ takes a few more observations. The dip in the value of
γ around time period 10 may be attributed to the jump we observe in the simulated
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Figure 2: Estimation paths of the static parameters, λ4, λ5, γ over time for a given
simulation (red straight line represents the real value of the parameter).

counts in 4 out of 5 series that can be observed in Figure 4 (from time period 9 to 10)
since a lower value of γ implies a higher correlation in our model. After a few more
observations, the posterior γ goes back to exploring regions around its true value.

The final posterior density plots of λ1, . . . , λ5 after observing all the data are shown
in the top panel of Figure 3 for one of the simulations. All of the density plots cover
the true value of the parameter as indicated by the vertical straight lines. The posterior
distribution of γ from Figure 3 also shows that most of its support is close to the region
of 0.30 which is the actual value of γ. The posterior mode was between 0.25 and 0.30
and the mean was estimated to be 0.27 (as there is more support on the left side of
the true value in the posterior distribution). In our proposed algorithm, the estimation
of γ discussed in (16) requires that we put a reasonably large value for K which is the
number of discrete categories for γ. For a discrete uniform prior defined over the region
(0.001; 0.999), we experimented with different values for K and explored cases when
K = 5, 10, 30, 50, 100 and 500. For all 10 simulations, the posterior distributions were
almost identical when K was 30 or larger. For relatively smaller values of K as in 5 and
10, the posterior distribution did not mix well and did not explore regions wide enough
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Figure 3: Posterior distributions of the static parameters, λ1, . . . , λ5 (left) and γ (right),
for a given simulation. Vertical lines represent the real value of the parameter.

Sim #1 Sim #2 Sim #3 Sim #4 Sim #5

MAPE 0.19 0.14 0.31 0.22 0.18
Sim #6 Sim #7 Sim #8 Sim #9 Sim #10

MAPE 0.21 0.25 0.25 0.20 0.23

Table 2: Summary of MAPEs for all simulations.

for converging to the right distribution. In cases when fast estimation is of interest, we
suggest that K is kept in the region of 30–40 since increasing its dimension leads to
losses in estimation speed due to the fact that the negative binomial likelihood needs
to be evaluated for each point in time equal to “K× number of particles”.

Another noteworthy investigation is how good our estimated filters are with respect
to actual data across simulations. To assess the model fit, we first computed the abso-
lute percentage error (APE) for each simulation (a total of 200 observations for each
simulation where each one of the 5 series consists of 40 observations) and computed
the median of these APEs. The results are shown in Table 2 where the estimates range
between 14% and 25%. The reason we report the median instead of the mean APEs is
the presence of some outliers which skew the results immensely. Typically the APE es-
timates range between 0 and 0.30 and some outliers are in the range of 3–4, which when
we take the average of, show very misleading results. When we plotted the histograms
of APEs for each simulation, we were able to observe that the median and the mode
of the distributions were very close to each other with the means located away from
these two measures due to one or two very highly influential percentage error values in
the right tail of the distributions. We did not report the mean squared errors (MSE)
as they would not be comparable across simulations since the scale of the counts vary
from one simulation to another even for the same values of the static parameters.

Figure 4 shows the posterior means of the filtered rates, E(θtλj)’s, at each point
in time versus the actual counts for a given simulated example. In this example, the
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Figure 4: Mean filtered states, E(θtλj |Dt)’s (red), versus the actual counts (straight
line) for one of the simulated examples.

series were moderately correlated with sample pairwise correlations ranging between

0.59 and 0.69. The model is able to capture most swings except for rare cases when all
five series do not exhibit similar (upward/downward) patterns at a given point in time.

For instance, around roughly time period 9, the counts for series 1, 2, 4 and 5 exhibit
a drop whereas series 3 shows an increase. As the dependency across series is based on

the random common environment idea, the filtered states around time period 9 exhibit
a decay for all 5 series (not only for series 1, 2, 4 and 5). Such disagreements lead to

extremely large APE estimates as discussed before but are usually no more than 1–2
times in a given simulated set.

Figure 5 shows the stochastic evolution of the state of the random common envi-
ronment over time that all five series have been exposed to (i.e. p(θt|Dt) which is free
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Figure 5: Filtered stochastic evolution for the state of the environment, (θt|Dt)’s, over
time for one of the simulated examples.

of the static parameters) for a given simulation study. For instance, such a common
environment could represent the economic environment financial and economic series
are exposed to with swings representing local sudden changes in the market place. In
our model, θts dictate the autocorrelation structure of the underlying state evolution
and they induce correlations among the 5 series. The sample partial autocorrelation
estimate at lag 1 for the mean of these posterior state parameters was between 0.80
and 0.90 indicating a strong first order Markovian behavior in the random common
environment.

As a final exercise, we also used the FFBS algorithm introduced in Section 2.3 to
generate the full posterior joint distribution of the model parameters for each time period
t as in, p(θ1, . . . , θt, λ1, . . . , λj |Dt). As pointed out by Storvik (2002), for any MCMC
based sampling method dealing with sequential estimation, the chains would need to
be restarted at each point in time. In addition, issues of convergence, thinning and the
size of the burn-in periods would need to be investigated. Therefore, using the FFBS
algorithm would not be preferred over the PL algorithm when fast sequential estimation
would be of interest as in the analysis of streaming data in web applications. To show
the differences in computing speed, we estimated one of the simulated examples using
both algorithms. The models were estimated on a PC running Windows 7 Professional
OS with an Intel Xeon @3.2GHz CPU and 6GBs of RAM. The PL algorithm takes
about 17.25 (or 58.7) seconds with 1,000 (or 5,000) particles and the FFBS algorithm
takes about 270.74 seconds for 5,000 collected samples (with a thinning interval of
4) where the first 1,000 are treated as the burn-in period. In both cases, we kept γ
fixed at 0.30 even though the computational burden for its estimation with the FFBS
algorithm would have been higher with “K× Number of Samples generated=5,000”
versus “K× Number of particles=1,000”. We also note that the posterior means of
the static parameters using the FFBS model were close to those estimated with the
PL algorithm from Table 1. A summary of posterior statistics for one of the simulated
sets is shown in Table 3 for the FFBS algorithm. We view the FFBS algorithm as an
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λ1 λ2 λ3 λ4 λ5

Mean 1.92 2.64 3.11 3.51 3.70
95% CI (1.56;2.32) (2.18;3.15) (2.57;3.71) (2.91;4.16) (3.05;4.28)

Table 3: Posterior means and 95% credibility intervals (in parenthesis) for static param-
eters for simulation no: 5 using the FFBS algorithm.

alternative when smoothing is of interest which can be handled in a straightforward
manner as discussed in Section 2.3. For sequential filtering and prediction, we would
prefer the PL algorithm due to its computational efficiency. We would like to note that
the results summarized above are based on the version of our algorithm which uses the
sequential importance sampling step for the state propagation instead of the rejection
sampling method discussed in Step 2 of our PL algorithm. Even though the results were
identical in both cases, the computational burden for the rejection sampling algorithm
was very high in some cases. Our numerical experiments revealed that the acceptance
rate of the sampler became extremely small for certain values of the HGB density
parameters. Therefore, unless a very efficient way of generating samples from the HGB
density can be developed, we suggest the use of the extra importance sampling step in
implementing our PL algorithm.

Sequential Predictive Likelihood Computation

Another important feature of the PL approach is the availability of sequential predictive
likelihood computations that can be used for model assessment in obtaining estimates for
(sequential) Bayes factors. To show the implementation of this feature, we considered a
simple model comparison for one of our simulated examples where the competing model
is a series of static univarite Poisson densities with Gamma priors on the rates as in
(Yjt|λj) ∼ Pois(λj) with flat priors set as λj ∼ G(0.001, 0.001). The marginal likelihood
of the static univariate model will be straightforward to evaluate due to the Poisson-
Gamma-Negative Binomial relation. In our model the sequential predictive densities
can be evaluated using

p(Yt|Dt−1) =
1

N

N∑
i=1

p(Yt|λ(i), Dt−1),

where N is the size of the particle set and p(Yt|λ, Dt−1) is given by (9). Thus, the
marginal likelihood can be evaluated as

p(Y1, . . . ,YT) =

T∏
j=1

p(Yj|Dj−1).

Using the counts of one of the simulated sets, we computed the marginal likelihoods
in the log-scale for both our model and the univariate static Poisson models as −10,784
and −267,462, respectively. As expected, accounting for temporal variations leads to
better model fit as evidenced by the estimated marginal likelihoods. PL allows the
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predictive likelihoods to be evaluated directly without the need for repeating the same
process by T times unlike MCMC based methods. Johannes et al. (2009) remark the
importance of sequential monitoring of model fit using particle methods and considers
an example of modeling stochastic volatility where a simpler model significantly under
performs their model when a large shock is observed in the system.

4.2 Example: Weekly Consumer Demand Data

To show the application of our model with actual data, we used the weekly demand
for consumer non-durable goods (measured by the total number of trips to the super
market) of two households in the Chicago region over a period of 104 weeks (an ex-
ample for a bivariate model). Therefore, in this illustration, Yjt for t = 1, . . . , 104 and
j = 1, 2 are the demand of household j during the time period t, θt represents the
common economic environment that the households are exposed to at time t and λj

represents the individual random effect for household j. The example is suitable for our
proposed model since a quick empirical study of the data revealed that weekly demand
of these households exhibit correlated behavior over time (temporal dependence) as well
as across households (dependence from the random common environment). The sam-
ple correlation between the two series was estimated to be 0.41 which is in line with
our model structure that requires positively correlated counts. In addition, the partial
auto-correlation functions of both series also show significant correlations at lag 1, jus-
tifying our use of the first order Markovian evolution equation for the states. As before,
we estimated the model using 1,000 particles and used similar priors. Specifically, we
assumed that θ0 ∼ (10, 10) so that the initial state distribution is around the unit scale
and assumed that λj ∼ G(2, 1). Figure 6 shows the time series plot of these two series
(straight red line represents household 1 and the dashed black line represents household
2) for 104 consecutive weeks.

Figure 6: Time series plot of weekly demand for households 1 (top straight red line) and
2 (bottom dashed black line) for 104 weeks.

Figure 7 shows the mean posterior (filtered) estimates (red circles) and the 95%
credibility intervals (straight lines) versus the actual data (black dots). We can observe
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Figure 7: Mean posterior estimates (red circles) and the 95% credibility intervals
(straight lines) versus the actual data (black dots) for the consumer demand data.

that in most cases the counts are within the credibility intervals except for the beginning
first roughly ten time periods. This may be attributed to the fact that the counts for
these two households were relatively lower and closer to each other initially, resulting
with less global uncertainty in the counts and tighter intervals. However, visually the
plots suggest that the model is able to account for sudden changes in the environment
(for instance there is a sudden drop around weeks 80–85) while providing an overall
reasonable fit for the counts of both households. Since the sample correlation between
the two series was 0.41, suggesting a relatively low correlation, there were certain time
periods when the intervals do not cover the actual data. For instance, the first 10
observations especially for series 2, look problematic and the model is slow to adapt to
the sudden drop between weeks 80–85. However, approximately more than 90% of the
real counts are within the credibility interval bounds of the filtered states. Even though
we do not know the data generating process unlike the simulated examples, MAPE
obtained for this example was 0.18 which is reasonably low.

The posterior distributions of γ as well as those of λ1 and λ2 are given in Figure 8.
A higher value of λ indicates a higher order of spending habit for household 1 as op-
posed to household 2 given that both are exposed to the same economic environment.
The mean estimates were 3.05 and 2.04, respectively for the two static parameters. We
also note that the posterior correlation between λ1 and λ2 was estimated to be 0.21,
as expected a positive correlation a posteriori. Furthermore, the posterior mean of γ
was around 0.29. In our experience with both simulated and demand data, we observed
that the posterior distribution of the static parameter γ did not vary significantly as we
observe more data points (say beyond 20–30 observations as argued previously based
on Figure 2). Therefore, a practical approach for cases where on-line learning and fore-
casting is of highest importance, would be to treat γ as fixed (either at the posterior
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Figure 8: Posterior distributions of the static parameters, λ1, λ2 (left) and γ (right) for
the customer demand data. λ1 and λ2 posterior estimates indicate distinct customer
demand behavior for each household.

Figure 9: Boxplot of the dynamic state parameters, θt’s for the customer demand exam-
ple, representing the random common economic environment that the two households
are exposed to.

mean or the mode) which can significantly reduce the computational burden by making
filtering very fast.

Figure 9 shows the boxplot of the posterior state parameters, in other words how the
common environment that both households are exposed to changes over time. We can
observe that the uncertainty about the environment is relatively lower at the beginning
(in the first 1–5 time periods) with respect to the following time periods. This is the same
observation we had drawn from the credibility intervals and could be due to the small
difference between the counts. Also, the environment is said to be less favorable during
roughly weeks 80–85 as there is a steep drop in the state estimates. We believe that
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being able to model and predict household demand would be of interest to operations
managers for long term as well as short term staffing purposes. For instance, related work
in queuing systems require the modeling of the time varying arrival rates that are used as
inputs of a stochastic optimization formulation to determine the optimal staffing levels
(see Weinberg et al. (2007) and Aktekin and Soyer (2012) and the references therein for
recent work using Bayesian methods for modeling Poisson arrivals in queuing models).
In addition, the marketers may use these models for optimally timing the placements
of advertisements and promotions. For instance, a steep drop in the state parameters
(as in the weeks of 80–85 in our illustration) might lead to reductions in staffing for
cutting operational costs (employees may be diverted to other tasks) or the company
may decide to launch a more aggressive advertisement/promotion campaign to cope
with undesirable market conditions.

5 Conclusion

In summary, we introduced a new class of dynamic multivariate Poisson models (which
we call the MPSB model) that are assumed to be exposed to the same random common
environment. We considered their Bayesian sequential inference using PL methods for
fast online updating. One of the attractive features of the PL approach as opposed to
MCMC counterparts, is how fast it generates particles sequentially in the face of new
data, a feature not shared with MCMC methods where the whole chain needs to be
restarted when new data is observed. The model allowed us to obtain analytic forms of
the propagation density and as well as the predictive likelihood that are essential for the
implementation of PL methods which is a property that not many state space models
possess in the literature outside of Gaussian models. In addition, our model allowed us
to obtain sequential updating of sufficient statistics in learning our static parameters
that is another crucial and desirable feature of the PL method. Further, we showed
how the proposed model leads to a new class of predictive likelihoods (marginals) for
dynamic multivariate Poisson time series, which we refer to as the (dynamic) multi-
variate confluent hyper-geometric negative binomial distribution (MCHG-NB) and a
new multivariate distribution which we call the dynamic multivariate negative binomial
(DMNB) distribution. To show the implementation of our model, we considered various
simulations and one actual data on weekly consumer demand for non-durable goods and
discussed implications of learning both the dynamic state and static parameters.

To conclude, we believe that it is worth noting limitations of our model. The first one
is the positive correlation requirement among series as induced by (12). As the series are
assumed to be exposed to the same random common environment, our model requires
them to be positively correlated. We investigated the implications of this requirement
in the estimation paths of our static parameters in Figures 1 and 2 and the empirical
example in Figure 7. Based on these plots, it is possible to infer that initially there
maybe a few observations that do not follow this requirement where the static parameter
estimation paths and the filtered means are not in line with their respective real values.
However, if the data is overall positively correlated, our model converges to regions
around the true values of the parameters (Figures 1 and 2) and the mean filtered
estimates are within the 95% credibility intervals of the real counts (Figure 7) after
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8–10 time periods. Another noteworthy limitation is the identifiability issue when the
priors for the static parameters are uninformative. Even though, the model keeps the
product of the Poisson mean, θtλj , close to the observed counts, it takes a very long
time for the learning algorithm to explore regions close to the real values of the static
parameters. To mitigate this issue, we suggest to use a prior centered around unity for
θ0 and to use slightly tighter priors on λj ’s as discussed in our numerical example. When
dealing with real count data, we believe this approach to be reasonable as long as the
posterior filtered estimates provide coverage for the true counts, as the true values of
the static parameters will never be known.

In addition, we believe that the proposed class of models can be a fertile future area
of research in developing models that can account for sparsity typically observed in mul-
tivariate count data. Our current model does not have a suitable mechanism for dealing
with sparsity, however modifying the state equation to account for a transition equa-
tion that can account for sparsity may be possible and is currently being investigated
by the authors. Another possible extension would be to introduce a similar approach for
a general class of multivariate non-Gaussian state space models. This is also currently
being considered by the authors with encouraging results.

Supplementary Material

Supplementary Appendices for “Sequential Bayesian Analysis of Multivariate Count
Data” (DOI: 10.1214/17-BA1054SUPP; .pdf).
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