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In this paper, we propose a multiscale scanning method to determine ac-
tive components of a quantity f w.r.t. a dictionary U from observations Y in
an inverse regression model Y = Tf + ξ with linear operator T and general
random error ξ . To this end, we provide uniform confidence statements for
the coefficients 〈ϕ,f 〉, ϕ ∈ U , under the assumption that (T ∗)−1(U) is of
wavelet-type. Based on this, we obtain a multiple test that allows to identify
the active components of U , that is, 〈f,ϕ〉 �= 0, ϕ ∈ U , at controlled, family-
wise error rate. Our results rely on a Gaussian approximation of the underly-
ing multiscale statistic with a novel scale penalty adapted to the ill-posedness
of the problem. The scale penalty furthermore ensures convergence of the
statistic’s distribution towards a Gumbel limit under reasonable assumptions.
The important special cases of tomography and deconvolution are discussed
in detail. Further, the regression case, when T = id and the dictionary con-
sists of moving windows of various sizes (scales), is included, generalizing
previous results for this setting. We show that our method obeys an oracle
optimality, that is, it attains the same asymptotic power as a single-scale test-
ing procedure at the correct scale. Simulations support our theory and we
illustrate the potential of the method as an inferential tool for imaging. As
a particular application, we discuss super-resolution microscopy and analyze
experimental STED data to locate single DNA origami.

1. Introduction. Suppose we have access to observations Yj which are linked
to an unknown quantity f ∈ H1 via the inverse regression model

Yj = Tf (xj) + ξj, j ∈ I d
n := {1, . . . , n}d, d ∈ N.(1)

Here, T :H1 →H2 ⊂ C[0,1]d is a bounded linear operator acting between proper
Hilbert spaces H1 and H2. In model (1), n stands for the level of discretization
such that, more rigorously, the model reads Yj,n = Tf (xj,n) + ξj,n with triangular
schemes of sampling points xj = xj,n in the d-cube [0,1]d and independent, cen-
tered but not necessarily identically distributed random variables ξj = ξj,n, j ∈ I d

n .
For ease of notation, this dependence on n is suppressed whenever it is not rele-
vant. Here and throughout the paper, bold print letters and numbers denote vectors
and multi-indices, whereas scalars are printed in regular type face.
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Models of the kind (1) underly a plenitude of applied problems varying from
astrophysics and tomography to cell biology [see, e.g., O’Sullivan (1986), Bertero
et al. (2009)] and have received considerable interest in the statistical literature.
Most of research targets (regularized) estimation of f and associated theory. An
early approach for estimation is based on a singular value decomposition (SVD)
of the operator, where f is expanded in a series of eigenfunctions of T ∗T [see,
e.g., Mair and Ruymgaart (1996), Johnstone et al. (2004), Cavalier and Golubev
(2006), Bissantz et al. (2007), Kerkyacharian et al. (2010), Johnstone and Paul
(2014), Albani et al. (2016)]. Given a proper choice of the regularization parame-
ter, SVD-based estimators are well known to be minimax optimal [Johnstone and
Silverman (1991)]. Adaptive estimation in this context was studied, for example,
by Cavalier et al. (2003), Chernousova and Golubev (2014), Goldenshluger (1999),
Tsybakov (2000). Since in SVD-based estimation the basis for the expansion is
entirely defined by the operator, as an alternative, wavelet-based methods which
incorporate the properties of the function of interest have also been frequently em-
ployed. Examples are wavelet-vaguelette [Donoho (1995)] and vaguelette-wavelet
methods [Abramovich and Silverman (1998)], where f and Kf are expanded in
a wavelet and vaguelette basis or vice versa, and the coefficients are estimated by
proper thresholding. This allows for a natural adaptation to the local smoothness
of the unknown function [see, e.g., Cavalier and Tsybakov (2002)]. Related to this,
Cohen, Hoffmann and Reiß (2004) proposed an adaptive estimator based on a com-
bination of linear Galerkin projection methods and adaptive wavelet thresholding.
Besides of these selective references a vast amount of work has been devoted to
recovery of f during the last decades and the common ground of all these works
is that the ill-posedness of an inverse problem usually only gives poor (minimax)
rates for estimation and makes full recovery of f a very difficult problem in gen-
eral [in the setup of (1) see, e.g., Willer (2009), or for deconvolution, see, e.g., the
monograph by Meister (2009) and the references given there].

A possibility to deal with this intrinsic difficulty is to relax the ambitious goal
of recovering the entire function f . Indeed, in many applications, only certain
properties or aspects of f are of primary interest and a full, precise reconstruction
is not necessary any more. Examples of practical relevance are the detection and
localization of “hot spots” in astrophysical image analysis [Friedenberg and Gen-
ovese (2013)], functional magnetic resonance imaging [Schwartzman, Dougherty
and Taylor (2008)], nondestructive testing [Kazantsev et al. (2002)], and image
deformation in microscopy [Bissantz et al. (2009)], to mention a few. For a the-
oretical account in deconvolution, see Butucea and Comte (2009). In a similar
spirit, the detection of certain geometric shapes in image analysis has been studied
by Genovese et al. (2012), but the authors do not take into account the underly-
ing inverse problem. All these issues can be treated by means of statistical testing,
presumably a simpler task than estimation.

In contrast to estimation, hypothesis testing in inverse problems has been inves-
tigated much less, early references are Butucea (2007), Holzmann, Bissantz and
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Munk (2007). Ingster, Sapatinas and Suslina (2012) treat the problem of testing
f = 0 against f ∈ �q(r) where �q(r) is a suitable smoothness class restricted to
‖f ‖ ≥ r by means of the classical minimax testing approach [see, e.g., the series
of papers by Ingster (1993)]. Also Laurent, Loubes and Marteau (2011, 2012) fol-
low this path and investigate the differences and commonalities of testing in the
image space (Tf = 0) and the preimage space (f = 0). The authors prove that in
several situations it does not matter if first f is approximately reconstructed using
an SVD-based regularization method and then tested to be 0, or if Tf is directly
tested to be 0; see also Holzmann, Bissantz and Munk (2007) for a similar obser-
vation. More precisely, minimax testing procedures for one of these problems are
also minimax for the rephrased problem and the asymptotic detection boundary for
both testing problems coincides. For related results in the multivariate setting or
for more general regularization schemes, see Ingster, Laurent and Marteau (2014),
Marteau and Mathé (2014). In contrast to the problem treated here, in all these
studies only “global” features of the full signal are investigated, such as testing
that the full signal is zero, and no simultaneous inference on sub-structures of the
signal is targeted. In fact, this is a much more challenging task in an inverse prob-
lems setup and it turns out also to be substantially different to the corresponding
direct testing problem of “hot spot” detection. This will be the topic of this paper.

In direct problems [T = id in (1)], finding relevant sub-structures, such as the
detection of regions of activity, is of “scanning-type”, which means that it can be
reformulated as a (multiple) testing problem for structures on the grid Id

n in (1) and
scanning-type procedures can be employed. These have received much attention in
the literature over the past decades. Walther (2010) considers the two-dimensional
problem of detecting spatial clusters in the Bernoulli model by scanning with rect-
angular windows of varying sizes, see also Kabluchko (2011), Butucea and Ingster
(2013) and Sharpnack and Arias-Castro (2016) for results in a Gaussian setting. In
a similar spirit, scan statistics have been employed in the context of multiscale in-
ference about higher order qualitative characteristics such as modes of a density
[see Dümbgen and Walther (2008), Rufibach and Walther (2010), Li et al. (2016),
Eckle et al. (2018)].

However, in an inverse problem as in (1), it is not obvious how to perform sta-
tistically efficient “scanning” because local properties of f may propagate in a
nonlocal manner into Tf . If, for example, f is a function on [0,1]d and we want
to infer on the support of f , we find that despite the fact that globally testing
f ≡ 0 is equivalent to testing Tf ≡ 0, this is not true for localized tests on re-
gions B ⊂ [0,1]d we are interested in here. This is due to the fact that (Tf )|B is
not necessarily related to f|B only. Indeed, we will see that reducing this problem
to the image domain H2, that is, simultaneously testing HB : (Tf )|B ≡ 0 against
KB : (Tf )|B > 0 cannot lead to a competitive procedure as it does not take into ac-
count the propagation of (multiscale) features of f by T [cf. Figure 2(f)]. Instead,
it becomes necessary to employ probe functionals ϕi = ϕi,n (again dependent on
the discretization level n, but this dependence will be suppressed whenever not



3572 K. PROKSCH, F. WERNER AND A. MUNK

relevant below), which are compatible with the operator T , and hence allow for
transportation of “local” information from Tf back to 〈f,ϕi〉. If the probe func-
tionals ϕi are chosen properly, the values 〈f,ϕi〉 hold information about “local”
features of f , for example, in the form of a wavelet-type analysis; see also Eckle,
Bissantz and Dette (2017), Schmidt-Hieber, Munk and Dümbgen (2013), who in-
fer on shape characteristics in i.i.d. density deconvolution. Arias-Castro, Donoho
and Huo (2005) propose a scanning procedure based on a multiscale dictionary of
beamlets that allows to detect line segments hidden in a noisy image, however, not
in an inverse problems context.

The problem we consider in our paper is as follows: Given model (1) and an
associated sequence of dictionaries

(2) U = Un = {ϕ1,n, . . . , ϕN(n),n} ⊂ R
(
T ∗)

,

of cardinality N = N(n) → ∞ as n → ∞, we provide a sequence of multiple tests
(“scanning”) for the associated sequence of multiple testing problems

(HJ,n) 〈f,ϕi,n〉 = 0 for all i ∈ J

versus

(KJ,n) ∃i ∈ J such that 〈ϕi,n, f 〉 > 0,

simultaneously over all subsets J ⊂ IN(n) =: {1, . . . ,N(n)}. It is clear that the
structure of the testing problem stays the same if · > 0 in (KJ,n) is replaced by
· < 0 or | · | �= 0, hence we restrict ourselves to (KJ,n) in the following. Moreover,
it is also clear that as n → ∞, there is a detection boundary, given by a sequence
(μi,n)i∈N, dividing the space of all signals into the asymptotically detectable region
and the nondetectable region such that · > 0 will be replaced by · > μi,n later on.

The underlying idea of the present paper is to provide for each local testing
problem a local test which detects those coefficients 〈f,ϕi,n〉, i ∈ J , which are
strong enough, and hence by performing all these tests simultaneously, we expect
to (asymptotically) detect all positive coefficients above the detection boundary. If
f admits a sparse representation w.r.t. U , this is f ≈ ∑

ci,nϕi,n with ‖c‖0 small,
then the simultaneous testing problem HJ,n against KJ,n, J ⊂ IN(n) allows to
detect exactly those i with ci,n > 0. However, we emphasize that sparsity of f

w.r.t. U is not required or assumed here.
With this choice of a sequence of multiple tests, we will not simply control

the error of a wrong rejection of f ≡ 0, rather we control the family-wise error
rate (FWER) of making any wrong decision; cf. Dickhaus (2014), Definition 1.2.
Mathematically, our test is a level-α-test for the simultaneous testing problem HJ,n

against KJ,n, J ⊂ IN(n), that is, it guarantees that

(3) sup
J :J⊂IN(n)

PHJ,n

[
“at least one (wrong) rejection in J ”

] ≤ α + o(1),
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as n, and hence N(n) → ∞. Consequently, all rejections (i.e., decisions for signal
strength > 0) will be made at a uniform error control, no matter what the underly-
ing configuration of 〈f,ϕi,n〉’s is.

Fundamental to our simultaneous scanning procedure are uniform confidence
statements for the coefficients 〈f,ϕi,n〉, i ∈ IN(n) in the inverse regression model
(1). Conceptually related, Nickl and Reiß (2012) and Söhl and Trabs (2012) pro-
vide uniform Donsker-type results in the context of i.i.d. deconvolution for single-
scale contrasts 〈f,ϕ〉. As one particular example the results of the latter authors
can be used to derive uniform statements with respect to both the regularization
parameter h (which plays the role of a scale parameter) and variable location t

via the functionals 〈I(−∞,0](· − t), f̂h〉 =: F̂h(t) as estimators of the distribution
function F , where f̂h is a deconvolution estimator of the density f . We consider
dictionaries which are different in that they are closely related to estimating the
regression function f in (1) (which would correspond to estimating f , not F , in
their model), where uniform control with respect to the scale parameter requires
the use of very different techniques.

Multiscale approaches have also been discussed in the Bayesian literature [see,
e.g., Castillo and Nickl (2014), Ray (2017)], but not in the inverse problems setup.
Even though it seems promising to exploit Gaussian approximations based on pos-
terior distributions as in Castillo and Nickl (2014), this leads to additional dif-
ficulties in our general setup as typically conjugacy is lost in inverse regression
problems if the likelihood and/or the prior are non-Gaussian. Consequently, sam-
pling from the posterior becomes a computationally involved large-scale problem.
Nevertheless, we stress that in principle recent developments for nonparametric
Bayesian credible sets [see, e.g., Knapik, van der Vaart and van Zanten (2011),
Ray (2013)] can offer an alternative route to the present methodology.

1.1. Multiscale Inverse SCAnning Test: MISCAT. As we have assumed that
ϕi,n ∈ R(T ∗) for all i ∈ IN(n), there exists a sequence of dictionaries W = Wn =
{�i,n | i ∈ IN(n)} ⊂ H2 such that ϕi,n = T ∗�i,n. In the following, we will assume
that W obeys a certain wavelet-type structure, that is, for each i ∈ IN(n) there is an
associated scale hi,n = (hi,n,1, . . . , hi,n,d)T ∈ (0,1]d and an associated translation
ti,n ∈ [hi,n,1]. The products h1

i,n := hi,n,1 · . . . · hi,n,d will be referred to as sizes of
scales. In contrast to the direct problem (T = id), in an inverse problem the condi-
tion ϕi = T ∗�i implies a nonstandard scaling of the �i ’s which can be chosen to
depend only on hi and not on ti in many cases. To highlight this scaling property,
with a slight abuse of notation, we will also introduce a sequence of dictionary
functions �hi,n

and assume that Wn is as follows:

Wn =
{
�i,n(z) := �hi,n

(
ti,n − z

hi,n

) ∣∣∣ supp(�hi,n
) ⊂ [0,1]d, i ∈ IN(n)

}
.(4)

Here and in the following, division of a vector by a vector is meant component-
wise. All quantities depend on n, and this dependence is suppressed in the follow-
ing, for example, we write �i instead of �i,n. Note that if �hi

≡ � for all i ∈ IN ,
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then the dictionary (4) is a wavelet dictionary in the classical sense, which is appro-
priate for direct regression problems, that is, T = id in (1) [see, e.g., Arias-Castro,
Donoho and Huo (2005)]. For our asymptotic results, we will further assume that
the normed functions �hi

/‖�hi
‖ satisfy an average Hölder condition; see (AHC)

or (15) below. Such conditions are satisfied for many important operators T such as
the Radon transform (see Section 3.1) and convolution operators (see Section 3.2).

To construct a level-α-test for simultaneously testing HJ,n against KJ,n, J ⊂ IN

we can now employ

〈f,ϕi〉H1 = 〈Tf,�i〉H2(5)

to estimate the local coefficients 〈f,ϕi〉 by their empirical counterparts

〈Y,�i〉n := 1

nd

∑
j∈Id

n

Yj�i(xj);(6)

cf. (4) for the definition of �i and see Section 3 for details. MISCAT combines
these local statistics to a global level-α-test in the sense of (3) no matter what the
(local) dependency structure is. To this end, we take the maximum of the local test
statistics, yielding a multiple “dictionary scanning” test statistic of the form

S(Y ) := max
i∈IN

S(Y, i) with S(Y, i) := ωi

( 〈Y,�i〉n
σi

− ωi

)
,(7)

where σ 2
i := Var[〈Y,�i〉n] depend on the variances σ 2(j) of the errors ξj, which

are unknown in general. For simplicity, all results will be stated with known σ 2
i , as

all results remain valid if the unknown ones are replaced by appropriate estimates
(see Remark 3). The weights

ωi = ωhi
(K,Cd) =

√
2 log

(
K/h1

i

) + Cd

log(
√

2 log(K/h1
i ))√

2 log(K/h1
i )

(8)

provide a proper scale calibration (see Section 2) if K/hi ≥ √
e for all i ∈ IN .

Since for all results maxi∈IN
hi → 0, this is satisfied for any fixed K > 0 if n is

large enough and we may assume throughout this paper, without loss of generality,
that mini∈IN

K/h1
i ≥ √

e. In this sense, our results hold for any constant K > 0,
however, in many situations K can be chosen such that the weak limit of S(Y )

in (7) is a standard Gumbel distribution [see Remark 2(c) and Theorems 3 and
5]. Cd is an explicit constant only depending on the dimension, the system of
scales considered and the degree of L2-smoothness of �hi

[see Theorem 1 and
Remark 2(b)]. Our scale balancing (8) is in line with Dümbgen and Spokoiny
(2001) and others (but notably different as explained in detail below), who pointed
out that, in a multiscale setting, some elements of the dictionary may dominate the
behavior of the maximum of a scanning statistic and it is most important to balance
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all local tests on the different scales in order to obtain good overall power, that is,
a scale dependent correction is necessary.

MISCAT now selects all probe functionals �i,n as “active”, where S(Y, i) is
above a certain (universal) threshold, which guarantees (3), to be specified now.
To this end, notice that in (3) we have

(9) sup
J :J⊂IN

PHJ,n
[“∃ rejection in J ”] ≤ P0[“∃ rejection in IN(n)”],

where P0 = P0,n = PHIN(n),n
, corresponding to f ⊥ Un. The reason for this is that

the chance of a false positive among a selection of possible false positives is high-
est if this selection is as large as possible and all positives are false. Therefore,
in order to control the FWER, we only need a universal global threshold q1−α

such that P0[S(Y ) > q1−α] ≤ α. To obtain this universal threshold q1−α , we will
determine the P0-limiting distribution of S(Y ) under a general moment condition
including many practically relevant models. Theorem 1(a) in Section 2 provides
a distribution-free (i.e., independent of any unknown quantities such as f ) limit,
which is obtained as an almost surely bounded Gaussian approximation for the
scan statistic (7) by replacing the errors by a standard Brownian sheet W , that is,

(10) S(W) := max
i∈IN

S(W, i) with S(W, i) := ωi

( | ∫ �i(z)dWz|
‖�i‖2

− ωi

)
.

Since S(W) does not depend on any unknown quantities, it can be used to sim-
ulate q1−α . Exploiting the specific and new choice of calibration in (8) we will
furthermore show in Theorem 1(b) that S(Y ) convergences in distribution towards
a Gumbel limit for a wide-range of dictionary functions �i . As S(Y ) can be seen
as a maximum over extreme value statistics of different scales, it follows that the
contributions of the different scales are balanced in an ideal way. This result is re-
markable, as it provides a general recipe how to calibrate multiscale statistics de-
pending on the degree of smoothness of the probe functionals �i and the system of
scales considered. To the best of our knowledge, this is new even in d = 1, and in
addition, it generalizes results by Sharpnack and Arias-Castro (2016) to other sys-
tems than rectangular scanning (see Remark 2), and to inverse problems and non-
Gaussian errors. Note that the calibration proposed by Dümbgen and Spokoiny
(2001) for direct regression problems [which is frequently employed in multiscale
procedures, see, e.g., Eckle, Bissantz and Dette (2017), Rohde (2008), Schmidt-
Hieber, Munk and Dümbgen (2013), Walther (2010)] is tailored to a continuous
observation setting in which all scales within a range (0, a], a ∈ R

+ are consid-
ered. If this calibration is used in a discrete setting like (1), the overall test-statistic
converges to a degenerate limit, since the largest scale hmax has to satisfy hmax → 0
as n → ∞, otherwise the finite sample approximations do not converge to their
continuous counterparts. Therefore, we propose a different scale calibration which
also takes into account the ill-posedness and yields a proper weak limit in many of
such cases.
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The approximation in (10) requires a coupling technique to replace the obser-
vation errors by i.i.d. Gaussian random variables. To this end, we do not make use
of strong approximations by KMT-like constructions [see Komlós, Major and Tus-
nády (1975) for the classical KMT results and, e.g., Rio (1993) or Dedecker, Mer-
levède and Rio (2014) for generalizations] as, for instance, Schmidt-Hieber, Munk
and Dümbgen (2013) in the univariate case, d = 1, but we take a different route
and employ a coupling of the supremum based on recent results by Chernozhukov,
Chetverikov and Kato (2014). Doing so, we can prove the approximation in (10)
to hold for a much larger range of scales.

A major benefit of MISCAT is its wide range of applicability and its multiscale
detection power. Given the operator T , one chooses a dictionary U of probe func-
tionals as in (2) such that W is of the form (4). We will demonstrate this for the case
of T being the Radon transform in Section 3.1 and for T being a convolution oper-
ator in Section 3.2. For the latter situation, we will also discuss an optimal choice
of the probe functionals ϕi . Once the dictionaries U and W have been obtained,
the quantiles q1−α from the Gaussian approximation (10) or its finite sample ana-
logues can be simulated. As it is well known that convergence towards the Gumbel
limit is extremely slow, it is beneficial that for deconvolution we find that the limit
only depends on the degree of smoothness (see Theorem 4), and hence the finite
sample distribution can be pre-simulated in a universal manner.

We will show in Section 2.4 that the power of MISCAT asymptotically coincides
with the power of a single-scale oracle test which knows the correct size of the
unknown object beforehand. More generally, if prior scale information is available,
our method can be adapted immediately to this situation by restricting (7) to this
subset, which mat lead to different calibration constants in (8) [see Remark 2(b)].
This will further increase detection power in finite sample situations.

1.2. MISCAT in action: Locating fluorescent markers in STED super-resolution
microscopy. In Section 3.2, we specify and refine our results to deconvolution
which is applied to a data example from nanobiophotonics in Section 4.2 which
we briefly review in the following. Suppose that the operator T is a convolution
operator having a kernel k such that

(11) (Tf )(y) = (k ∗ f )(y) =
∫
Rd

k(x − y)f (y)dy.

In our subsequent application, the convolution kernel k corresponds to the point
spread function of a microscope and the object of interest, f , is an image such that
d = 2. We assume that k is finitely smooth, which is equivalent to a polynomial
decay of its Fourier coefficients. Futhermore, if we choose U to be of wavelet-
type, then the specific structure of the convolution ensures that W is as in (4) [cf.
(29) and (30) below]. Consequently, in this situation we may choose the dictionar-
ies U and W such that each ϕi ≥ 0 has compact support supp(ϕi) ⊂ [ti − hi , ti].
Consequently, if f ≥ 0, we find

(12) 〈f,ϕi〉 > 0 ⇒ ∃x ∈ [ti − hi , ti] s.t. f (x) > 0,
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that is, there must be a point x ∈ [t−h, t] belonging to the support of f . Employing
this, we can use MISCAT to segment f into active and (most likely) inactive parts,
which is of particular interest in many imaging modalities.

With this setup, MISCAT will be used to infer on the location of fluorescent
markers in DNA origami imaged by a super-resolution STED microscope [cf. Hell
(2007)]. In STED microscopy, the specimen is illuminated by a laser beam along
a grid with a diffraction-limited spot centered at the current grid point and the
entire specimen is scanned this way, pixel by pixel, leading to observations as in
(1) with a convolution T as in (11). The error distribution and the kernel k in (11)
are well known experimentally; see the Supplementary Material [Proksch, Werner
and Munk (2018)] for a detailed description of the mathematical model.

The investigated specimen consists of DNA origami, which have been designed
in a way such that each of the clusters contains up to 24 fluorescent markers,
arrayed in two strands of up to 12 having a distance of 71 nanometers (nm) (cf. the
sketch in the upper left of Figure 1). As the ground truth is basically known, this
serves as a real world phantom. Data were provided by the lab of Stefan Hell of
the Department of NanoBiophotonics of the Max Planck Institute for Biophysical
Chemistry; cf. Figure 1.

To infer on the positions of the fluorescent markers, we apply MISCAT with a
set of scales defined by boxes of size kx × ky pixels, kx, ky = 4,6, . . . ,20. One
pixel in the measurements in Figure 1 is of size 10 nm × 10 nm. To highlight our
multiscale approach, we also display results of a single scale version of MISCAT
[see Remark 2(b) and Section 4.2] using only boxes of size 4 × 6 pixels (these
are the smallest boxes found by MISCAT), and to highlight the deconvolution
effect, we apply a direct multiscale scanning test not designed for deconvolution
[i.e., T = id in the model (1) and �i = ϕi in (7)] based on indicator functions as

FIG. 1. Experimental data of the DNA origami sample and zoomed region (150 × 150 pixels).
The sketch in the upper left shows the structure of the investigated DNA origami sample [red dots
represent possible positions for fluorophores; see Ta et al. (2015)].
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FIG. 2. Experimental data and corresponding 90% significance maps computed by different tests.
The color-coding of the significance maps always show the size of smallest significance in nm2, cf. the
main text. (a)–(c) data and zoomed regions, (d) MISCAT, (e) a single scale test with deconvolution,
(f) a multiscale scanning test without deconvolution. We emphasize that MISCAT performs 1,587,600
tests on the data in (a), and out of those 13,973 local hypotheses are rejected. The FWER control
ensures that with (asymptotic) probability at least 90% among the selected regions there is no wrong
detection.

probe functionals using the scale calibration suggested by Dümbgen and Spokoiny
(2001); for details, see Section 4.2.

In Figure 2, the zoomed region of Figure 1 is shown together with significance
maps for all three tests. The significance map color-codes for each pixel the small-
est scale (volume of the box in nm2) on which it is significant. In case that a pixel
belongs to significant boxes of different scales, only the smallest one is displayed
for ease of visualization by the color coding. For instance, in Figure 2(d) MISCAT
marked several boxes as significant, and the smallest scale on which significant
boxes were found is of size 2400 nm2 (yellow). These results show that MISCAT
is able (at least for some of the single DNA origamis) to distinguish both strands.
In view of the zoomed data in Figure 2(b) and Figure 2(c), this is quite remark-
able as not visible from the data. The latter is due to the fact that the distance
between the two strands of 71 nm is slightly smaller than the full width at half
maximum (FWHM, see the Supplementary Material [Proksch, Werner and Munk
(2018)] for details) of the convolution kernel k (≈ 76 nm), and there is a common
understanding that objects which are closer to each other than a distance of ap-
proximately the FWHM cannot be identified as separate objects. Hence, MISCAT
allows to discern objects below the resolution level of the STED microscope. The
single scale variant of MISCAT (for explanation see Section 4) in Figure 2(e) has
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clearly more power in detecting small features on this single scale. While the mul-
tiscale test detects 4 boxes of 4×6 pixels, the single scale test detects several more,
however, at the price of overseeing many DNA origamis at different scales. Note
that the investigated specimen consists only of structures, which are present on a
few (known) scales. For illustrative purposes, MISCAT, as employed here, does
not use this information, as in general, these scales are not a priori known in living
cell imaging. It is also clearly visible in Figure 2(f) that ignoring the deconvolution
does not lead to a competitive test: distinguishing between different DNA origamis
fails completely, as the support of the DNA-origami has been severely blurred by
the STED microscope. We emphasize that the FWER control in (3) with α = 0.1
implies that with (asymptotic) probability ≥ 90%, each of the 13,973 detections
out of 1,587,600 local tests in Figure 2(d) is correct.

2. General theory.

2.1. Framework and notation. Recall the general framework introduced in
Section 1 and model (1) and that all quantities may depend on the sample size n.
Throughout this paper, {Tf (xj,n) | j ∈ I d

n } is the discretization of the function Tf

on the grid {(j1/n, . . . , jd/n) | 1 ≤ jk ≤ n,1 ≤ k ≤ d}. This discretization model
is a prototype for many inverse problems and in particular matches the application
to imaging considered in Section 4 below. For different applications, alternative
discretization schemes may be of interest as well but, for the sake of a clearer dis-
play, we consider uniform sampling on a complete grid since most of the results
presented below do not crucially depend on the specific discretization. We make
the following assumption on the dictionaries U and W in (2) and (4).

ASSUMPTION 1. Let U as in (2) and W as in (4).

(a) Dictionary source condition. Let

ϕi ∈ R
(
T ∗)

, that is, ϕi = T ∗�i.(DSC)

(b) Growth of the dictionary. For some κ > 0,

|U | = |W| = N = O
(
nκ)

.(G)

(c) Scale restrictions. For the smallest and the largest scale in (4), that is,
hmin = (hmin, . . . , hmin)

T and hmax = (hmax, . . . , hmax)
T , respectively,

hmin � n−1 log(n)15/d∨3 log log(n)2 and hmax = o
(
log(n)−2)

.(SR)

(d) Average Hölder condition. Suppose that the functions �hi
in (4) are uni-

formly bounded, supported on [0,1]d , vanishing at the boundary and∫ ∣∣�hi
(t − z) − �hi

(s − z)
∣∣2 dz ≤ L‖t − s‖2γ

2 ‖�hi
‖2

2(AHC)

for some γ ∈ (0,1] and all i ∈ IN uniformly as n and hence N → ∞.
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REMARK 1. (a) Assumption (DSC) is a smoothness condition on the func-
tions of the dictionary U related to T . Instead of posing such an assumption on the
dictionary, it is common to pose such an assumption on f , that is, the so-called
benchmark source condition f ∈ R(T ∗), which requires the unknown solution f

to be at least as smooth as any function in the range of T ∗. For deconvolution
problems with real-valued kernel, this means that f is at least as smooth as the
kernel itself. In this paper, as we want to reconstruct pairings 〈f,ϕi〉 instead of
f , we may relax this and pose conditions on the functions ϕi instead of f ; see
also Burger, Flemming and Hofmann (2013). Note, that if additionally f admits
a sparse representation w.r.t. the dictionary U , then (DSC) implies f ∈ R(T ∗).
We emphasize that our approach strongly relies on the condition (DSC); see also
Anderssen (1986), Donoho (1995). For a strategy how to estimate a linear func-
tional 〈f,ϕ〉 for ϕ /∈ R(T ∗), we refer to Mathé and Pereverzev (2002).

(b) Assumption (G) is rather mild. In particular, it implies that positions and
scales (ti ,hi) from any grid of polynomial size can be used. In the example of
imaging, this is naturally satisfied as the ti are grid points of the pixel grid and
the sizes of the scales hi are given by rectangular groups of pixels and are hence
also only of polynomial order in n. Furthermore, to serve as an approximation for a
continuous version, the grid can be chosen sufficiently fine and still (G) is satisfied.
The constant κ only enters into our results via some constants.

As already discussed in the Introduction, the scale restrictions (SR) are also
rather mild. The lower bound on hmin is up to a poly-log factor of the same order
as the sampling error, and the upper bound on hmax is required to ensure asymptotic
unbiasedness of our local test statistics. For some of the results presented below,
a slightly stricter bound on hmax will be necessary, and this is emphasized in the
corresponding theorems.

(c) Assumption (AHC) is a smoothness condition on the dictionary W . In the
case γ < 1, the class of functions satisfying Assumption (AHC) corresponds to the
class H

(γ,...,γ )
2 , defined by Nikol’skiı̆ [(1951), pages 256–257]; see also Tsybakov

(2009), page 13. It holds, for instance, if all �hi
are Hölder-continuous of order γ .

In case T = id, the “classical” scanning function �hi
≡ I(0,1)d satisfies condition

(AHC) with γ = 1/2 and L = d . In Section 3, we discuss this condition in more
detail and show its validity if T is the Radon transform and if T is a convolution
operator (see Section 3.1 and Section 3.2, resp.).

The following assumptions concern the noise ξj, j ∈ I d
n in model (1).

ASSUMPTION 2. Let ξj, j ∈ I d
n in (1) be independent and centered random

variables. Assume that there exists a function σ ∈ C1[0,1]d such that Var[ξj] =
σ 2(xj) and

E|ξj|2J ≤ 1

2
J !Eξ4

j for all J ≥ 2.(M1)
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Assume further that

0 < lim inf
n→∞ inf

j∈Id
n

E
[|ξj|2]

and lim sup
n→∞

sup
j∈Id

n

E
[|ξj|4]

< ∞.(M2)

Note that (M1) is in fact equivalent to the well-known Cramér condition that the
moment generating function exists in a small neighborhood of 0 [cf. Lin (2017),
Theorem 1] and is satisfied by many distributions, including Gaussian and Poisson.
The latter is most relevant for our subsequent application.

2.2. Asymptotic theory. We are now in the position to provide some general
asymptotic properties of MISCAT such as a uniform Gaussian approximation of
the test statistic, a.s. boundedness of the simulated quantiles, and weak conver-
gence under further specification of assumptions towards an explicit Gumbel-type
distribution. The latter is for ease of presentation only shown when using the full
set of possible scales. If MISCAT is restricted to smaller subsets of scales (e.g.,
resulting from prior information), this may change the limit distribution; see Re-
mark 2 below.

THEOREM 1. Suppose we are given observations from model (1) with ran-
dom noise satisfying Assumption 2 and dictionaries U and W as specified in As-
sumption 1. Let hmax ≤ n−δ for some (small) δ > 0 in (SR) and suppose that the
approximation error of 〈E[Y ],�i〉n := 1

nd

∑
j∈Id

n
Tf (xj)�i(xj) is asymptotically

negligible, that is,

n
d
2 max

i∈IN

〈E[Y ],�i〉n − 〈Tf,�i〉
‖�i‖2

= o

(
1

log(n)2 log log(n)2

)
.(13)

For any constant K > 0 and Cd = 2d + d/γ − 1, consider the calibration values
ωi = ωi(K,Cd) as in (8).

(a) Then, for a standard Brownian sheet W on [0,1]d , it holds

lim
n→∞

∣∣P0
(
S(Y ) ≤ q

) − P0
(
S(W) ≤ q

)∣∣ = 0, q ∈R,

where S(Y ) and S(W) are defined in (7) and (10), respectively. Consequently,
under H0, S(Y ) and S(W) converge weakly towards the same limit. Furthermore,
the approximating statistic S(W) is almost surely bounded and does not depend
on any unknown quantity.

(b) Instead of (AHC) assume the stronger condition that there exists a function
� supported on [0,1]d with ‖�‖2 = 1 such that

(14) max
i∈IN

∣∣∣∣∫ (
�hi

(ti − z)
‖�hi

‖2
− �(ti − z)

)
dWz

∣∣∣∣ = oP

(
1√

log(n)

)
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and ∫ ∣∣�(
D�(t − z)

) − �
(
D�(s − z)

)∣∣2 dz =
d∑

j=1

|tj − sj |2γ (
1 + o(1)

)
(15)

with γ ∈ (0,1] and a symmetric, positive definite matrix D� ∈ R
d×d . Suppose that

the set of scales H := {hi | i ∈ IN } is complete, that is, H = {hmin, . . . , hmax}d ,
where

− log(hmax) = δ log(n) + o
(
log(n)

)
,

− log(hmin) = 
 log(n) + o
(
log(n)

)(16)

with 0 < δ < 
 ≤ 1. If the grids of positions t and scales h are furthermore suffi-
ciently fine, that is,

max
i∈IN

min
j∈IN :ti �=tj

‖ti − tj‖∞ = O
(
n−1)

(17)

and

max
i∈IN

min
j∈IN ;hi,l �=hj,l

∣∣(hj,l − hi,l)/
√

hi,lhj,l

∣∣ → 0 for all 1 ≤ l ≤ d(18)

then it holds

lim
n→∞P0

(
S(Y ) ≤ λ

) = exp
(
− exp(−λ) · H2γ det(D−1

� )Id(δ,
)√
2πK

)
(19)

with

Id(δ,
) := (−1)d−1

(d − 1)!
d∑

k=0

(−1)k

(
d

k

)
log

(
kδ + (d − k)


)
> 0(20)

and Pickands’ constant H2γ [cf. Pickands (1969)].

Detailed proofs are deferred to the Supplementary Material [Proksch, Werner
and Munk (2018)], and the main ideas are described in Section 6.

REMARK 2. (a) Assumption (13) is a mild assumption on the integral approx-
imation as the required rate is very slow. It is satisfied, in particular, if Tf and � in
(4) are Hölder-continuous of some order, or if Tf is Hölder-continuous and � is
an indicator function. Note that due to the ill-posedness of the problem, Tf being
Hölder-continuous does typically not require f to be continuous.

(b) Although it might seem marginal, a proper choice of the constant Cd is
crucial for the boundedness of S(W). The choice Cd = 2d + d/γ − 1 used in the
formulation of the theorem is adjusted to the case where a dense grid of scales in
the sense of (18) is considered. In particular, this includes the case where all scales
in Assumption 1 (SR) ranging from hmin to hmax are used. If now, for instance,
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T = id and � in (4) is chosen to be the indicator function of [0,1]d , we have
γ = 1/2, and consequently Cd = 4d − 1, which coincides with the constant of
Sharpnack and Arias-Castro (2016) for the Gaussian case.

However, in many situations a less dense grid of scales might be of interest, for
example, under prior scale information on the object of interest f . Then for the
choice Cd = 2d + d/γ − 1 the statistic S(W) is still a.s. bounded from above, but
(19) might not be valid anymore. To avoid this, Cd has to be adjusted. Suppose
in what follows that the grid of positions still satisfies (17). In the least dense
regime, when S(W) behaves as in a single scale scenario, the proper choice is
Cd = d/γ − 1. Another interesting special case is when only squares in a dense
range are considered [this is hi = (hi, . . . , hi) and (18) is satisfied], where one
should choose Cd = 1 + d/γ .

All these choices of Cd are specified in more detail in Corollary 1 in Section 5
and follow from our general result in Theorem 7.

(c) As specified in the theorem, S(W) is bounded for any choice of the con-
stant K > 0. In fact, K does not affect the asymptotic power of MISCAT as it
only determines the location of the limiting distribution. For γ ∈ {1/2,1}, H2γ

can be computed explicitly [see Pickands (1969)], that is, H1 = 1 and H2 = π− d
2 .

In these cases, the explicit choice K = |detD−1
� |Id(δ,
)H2γ /

√
2π yields stan-

dard Gumbel limit distributions. If γ = 1 and if the correlation function r� of the
Gaussian field Zt = ∫

�(t − z)dWz is twice differentiable in 0, the matrix D� can
be computed via D∗

�D� = Hessr�(0)−1. For T being the Radon transform or a
convolution operator, this allows us to give explicit constants K in (27) and (37),
respectively, ensuring standard Gumbel limit distributions.

(d) In the situation of Theorem 1(b) under a weaker assumption than (14) and
(15), it can be shown that the limiting distribution is stochastically bounded by
Gumbel distributions and is hence nondegenerate in the limit. This will be done in
Theorem 4 in the situation of deconvolution.

2.3. Statistical inference. In the following, let q1−α denote the 1 − α-quantile
of the approximating process S(W). To compare the local test statistics S(Y, i)

in (7) with q1−α , we have assumed so far to know the local variances σ 2
i =

Var[〈Y,�i〉n]. The next remark shows that they can easily be estimated without
changing the limiting distribution of S(W).

REMARK 3. As mentioned before, the local variances σ 2
i , i ∈ IN , depend on

Var[ξj] = σ 2(xj) (cf. Assumption 2), j ∈ I d
n , which are typically unknown in appli-

cations. Nevertheless, all results remain valid if the C1-function σ 2 (see Assump-
tion 2) can be estimated from the data by σ̂ 2 such that

max
i∈IN

∣∣σ̂ 2(ti ) − σ 2(ti )
∣∣ = oP

(
log(n)−

1
2
)
.(V)
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The local variances σ 2
i can then be estimated by σ̂ 2

i := 〈σ̂ 2,�2
i 〉n. Condition (V) is,

for example, satisfied for (suitable) kernel-type estimators or point-wise maximum
likelihood estimators as used in Section 4.2.

We conclude by Theorem 1 that limn→∞ P0(S(Y, i) ≤ q1−α ∀i ∈ IN) ≥ 1 − α,
and hence (3) is valid, that is, all rejections are significant findings. Conversely, it
can be shown that, with overall confidence of approximately (1 − α) · 100%, all
relevant components are found, provided that the signal is sufficiently strong.

LEMMA 1. Suppose we are given observations from model (1) with random
noise satisfying Assumption 2 and dictionaries U and W as specified in Assump-
tion 1. Let Iα denote the set of all large components, that is,

Iα :=
{
i
∣∣∣ 〈ϕi, f 〉 > 2

(
q1−α

ωi

+ ωi

)
σi

}
.

Then, under the assumptions of Theorem 1,

lim
n→∞P

(
S(Y, i) > q1−α for all i ∈ Iα

) ≥ 1 − α.

For general T , it is not clear if the detection guarantee in Lemma 1 is optimal
in the sense that weaker signals cannot be detected by any procedure. However,
in the next subsection we will show that in special situations MISCAT obeys an
oracle optimality property.

2.4. Asymptotic optimality. For signals built from block signals, the asymp-
totic power of MISCAT can be computed explicitly which reveals an ora-
cle optimality property of MISCAT in the following sense. Suppose that f =
μn,h�

I[t�−h�,t�]. If one knew the correct scale h�, one would perform a single-scale
test in order to find the location t�. Hence, in this idealized situation, the “oracle
scan statistic” S�(Y ) given by

S�(Y ) = sup
i∈IN

ωh�

(
K,

d

γ
− 1

)(
σ−1

i

〈
Y,�h�

(
ti − ·

h�

)〉
n

− ωh�

(
K,

d

γ
− 1

))
would be used. Note the different adjustment of weights due to Remark 2(b).
It turns out that MISCAT performs as well in terms of its asymptotic power as
the oracle test corresponding to S�(Y ). Moreover, the following theorem guar-
antees that signals will be detected asymptotically with probability 1, if μn,h ≥
maxt σ(t)(

√
2 log(1/h�) + βn)n

− d
2 ‖�i�‖2, where i� is such that (ti ,hi) = (t�,h�)

and βn → ∞. In this setting, if the errors are i.i.d. standard normal and T = id, the

single scale test is minimax optimal if ‖�i‖2 =
√

h1
i , which follows from the ar-

guments in Kou (2017) [see also Arias-Castro, Donoho and Huo (2005), Chan and
Walther (2013) for related results]. A rigorous proof for the case d = 2, � = I[0,1]2
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and h1 = h2 can be found in Butucea and Ingster (2013). Thus, also the multiscale
procedure MISCAT is minimax optimal in this case. If T �= id, optimality depends
on both dictionaries W and U and special care has to be put into the choice of dic-
tionary functions. This is discussed in more detail in Section 3.2.1 below. Under
general noise, the following can be said.

THEOREM 2 (Asymptotic power of MISCAT). Suppose we are given obser-
vations from model (1) with random noise satisfying Assumption 2 and dictionar-
ies U = {ϕi | ϕi(z) = ϕ((ti − z)/hi ), ϕ(z) > 0, z ∈ (0,1)d} and W as specified
in Assumption 1. Suppose (16) with 0 < δ < 
 ≤ 1 and fix a scale h� = h�(n) ∈
[hmin,hmax] and a subset T� ⊂ IN such that hi = h� for all i ∈ T�. Now consider
the set of functions f with support given by the union of all corresponding boxes
which are sufficiently strong, that is,

ST�(h�,μn) :=
{
f

∣∣∣ (13) holds, supp(f ) = ⋃
i∈T�

Iti ,h�
,
〈ϕi, f 〉
‖�i‖2

≥ μn

nd/2 , i ∈ T�

}
,

where Iti ,h�
:= [ti − h�, ti]. Assume that σ ∈ C1([0,1]d) and t� ∈ (0,1)d where

t� ∈ argmax{σ(t) | t ∈ [0,1]d} and let K > 0.

(a) If {hi | i ∈ IN } = {h�}, that is, for each t we consider scanning windows
of (correct) size h�, then MISCAT with the single-scale-calibration
ωi(K,d/γ − 1) as in (8) [cf. Remark 2(b)] attains power

inf
f ∈ST� (h�,μn)

Pf

(S�(Y ) > q1−α

) = inf
f ∈S{t�}(h�,μn)

Pf

(S�(Y ) > q1−α

)
= α + (1 − α) · ψ

(√
2 log

(
1

h1
�

)
− μn

σ(t�)

)
+ o(1).

Here and in the following, ψ(x) := ∫ ∞
x (2π)−1/2 exp(−y2/2)dy is the tail function

of the standard normal distribution.
(b) In general, MISCAT with the multiscale-calibration ωi(K,2d + d/γ − 1)

as in (8) satisfies

(21) inf
f ∈ST� (h�,μn)

Pf

(
S(Y ) > q1−α

) + o(1) ≥ inf
f ∈ST� (h�,μn)

Pf

(
S�(Y ) > q1−α

)
,

that is, the multiscale procedure performs at least as well as the oracle procedure.

This complements the results from Theorems 4 and 6 in Sharpnack and Arias-
Castro (2016), where a similar expansion of the power is provided for the case
T = id and � = I[0,1]d .

3. Examples.
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3.1. The d-dimensional Radon transform. Assume one observes a discretized
and noisy sample of the Radon transform of f ,

Yk,l = Tf (ϑϑϑk, ul) + ξk,l; ul = l − 1/2

n
, l = 1, . . . , n(22)

and ϑϑϑk ∈ S
d−1,k ∈ I d−1

n are design points which are uniformly distributed w.r.t.
the angles in a parametrization using polar coordinates, where

Tf (u,ϑϑϑ) =
∫
〈v,ϑϑϑ〉=u

f (v)dμd−1(v)

denotes Radon transformation [cf. Natterer (1986)], dμd−1 denotes the (d − 1)-
dimensional Lebesgue measure on the hyperplane {v | 〈v,ϑϑϑ〉 = u} and ξk,l are
i.i.d., Var[ξ(1,1)] = σ 2. In this case, fix ϕ̃ : R+ → R, set ϕ(x) := ϕ̃(‖x‖2),
supp(ϕ̃) ⊂ [0,1] and define

U =
{
ϕi = h

−d/2
i ϕ

( · − ti
hi

) ∣∣∣ i ∈ IN

}
,(23)

that is, we consider a dictionary U of rotationally invariant functions. We now
construct the corresponding dictionary W . To this end, we need to fix some more
notation. Let dϑϑϑ denote the common surface measure on Sd−1 such that for mea-
surable S ⊂ S

d−1 we have |S| = ∫
S dϑϑϑ . Let further Fdf denote the d-dimensional

Fourier transform of f , defined by

Fdf (ξξξ) =
∫

f (x) exp
(
i〈x,ξξξ〉) dx, f (x) = 1

(2π)d

∫
Fdf (ξξξ) exp

(−i〈ξξξ,x〉) dξξξ .

LEMMA 2. Let U be as in (23), ϕ ∈ R(T ∗). Then

W =
{
�i

∣∣∣ �i(u,ϑϑϑ) = h
− d

2
i �

(
u − 〈ϑϑϑ, ti〉

hi

)}
,(24)

where, due to the rotational invariance of ϕ, the function �, defined by

�(x) := 1

2(2π)d
F1

(
(Fdϕ)(·ϑϑϑ)| · |d−1)

(x), x ∈ R,(25)

is independent of ϑϑϑ .

Consequently, the functions �hi
as in (4) are in W as in (24), that is,

we have the special structure �hi
= Chi

�, and hence we can define � :=
�hi

/‖�hi
‖L2(R×Sd−1). It turns out that (AHC) and (15) are satisfied if ϕ is suf-

ficiently smooth. This is made more precise in the following lemma.

LEMMA 3. Let 4π‖F1((Fdϕ)(·ϑϑϑ)| · |d−1)(u − 〈ti ,ϑϑϑ〉)‖−1
L2(R×Sd−1)

=: Cϕ,d . If

ϕ ∈ H
d+1

2 (Rd), (15) holds with

D−2
� := diag

(
Cϕ,d

∫
Rd

ω2
1‖ωωω‖d−1∣∣(Fdϕ)(ωωω)

∣∣2 dωωω
)
.(26)
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In general, the dictionary functions � may be of unbounded support. In this
case, the results from Theorem 1(b) remain valid if we exclude a small boundary
region from our analysis. Here, we only consider positions ti ∈ [0,1 − ρρρ], where
ρρρ = (ρ, . . . , ρ)T , ρ > 0 and we obtain the following extreme value theorem for
MISCAT in the case of the Radon transform.

THEOREM 3 (MISCAT for the Radon transform). Suppose that we have
access to observations following model (22). Let ti ∈ [0,1 − ρρρ], where ρρρ =
(ρ, . . . , ρ)T , ρ > 0. Assume also that the approximation error of 〈E[Y ],�hi

〉n is

asymptotically negligible, that is, (13) holds and ϕ ∈ H
d+1

2 (Rd), such that the in-
tegral in (26) is finite. If furthermore (16) holds true with 0 < δ < 
 ≤ 1 and the
grids of positions t and scales h are sufficiently fine, that is, satisfy (17) and (18)
and if the calibration

ω(K,1 + d) with K = (1 − ρ)d(2π)−
d+1

2 det
(
D−2

�

) 1
2 log(
/δ)(27)

is used [see (8) and Remark 2(b)], where D−2
� is defined in (26), then one has

limn→∞ P0[S(Y ) ≤ λ] = e−e−λ
. Furthermore, the statements of Lemma 1 and The-

orem 2 also hold.

3.2. Deconvolution. We discuss now in detail the case of deconvolution, that
is, (1) specializes to

Yj = (k ∗ f )(xj) + ξj, j ∈ {1, . . . , n}d,(28)

where the function k is a convolution kernel and the operation “∗” denotes con-
volution as defined in (11). In our subsequent data example, k corresponds to
the point-spread function (PSF) of a microscope [see, e.g., Bertero et al. (2009),
Aspelmeier, Egner and Munk (2015), Hohage and Werner (2016)].

Assume that there exist positive constants c,C and a such that

c
(
1 + ‖ξξξ‖2

2
)−a ≤ ∣∣Fdk(ξξξ)

∣∣ ≤ C
(
1 + ‖ξξξ‖2

2
)−a

.(D1)

Assumption (D1) is a standard assumption characterizing mildly ill-posed decon-
volution problems [see, e.g., Fan (1991), Meister (2009)]. For any fixed function
ϕ, ‖ϕ‖2 > 0, generating a dictionary

(29) U =
{
ϕi

∣∣∣ ϕi(z) = ϕ

(
ti − z

hi

)
, i ∈ IN

}
,

the corresponding dictionary W inherits the required wavelet-type structure:

(30) W =
{
�i

∣∣∣ �i(z) = �hi

(
ti − z

hi

)
,�hi

:= F−1
d

( Fdϕ

Fdk(·/hi )

)
, i ∈ IN

}
,

and the results from the previous section transfer to deconvolution as follows.
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THEOREM 4 (MISCAT for deconvolution). Suppose model (28) with convo-
lution kernel k satisfying Assumption (D1) and ξj satisfying Assumption 2. Let
ti ∈ [ρρρ + hi ,1 − ρρρ], where ρρρ = (ρ, . . . , ρ)T , ρ > 0. Consider the dictionary W ,
given by (30) such that Assumption 1 is satisfied and, in addition, ϕ belongs to
a Sobolev space H 2a+γ∨1/2(Rd). Assume further that the approximation error of
〈E[Y ],�i〉n is asymptotically negligible, that is, (13) holds.

(a) The results of Theorem 1(a) carry over to this general setting.
(b) Furthermore, let the grids of positions t and scales h sufficiently fine, that

is, satisfy (17) and (18). Then there exist positive constants Dγ and Dγ such that
for any fixed λ ∈R

e−Dγ e−λ ≤ lim
n→∞P0

[
S(Y ) ≤ λ

] ≤ e−Dγ e−λ

.

Hence, under H0, S(Y ) is asymptotically nondegenerate.
(c) In the situation of (b), let hi = (hi, . . . , hi) for all i ∈ IN and assume that

(16) holds true with 0 < δ < 
 ≤ 1. If the stronger condition (14) holds, then with
the calibration w(K,1 + d) we obtain

lim
n→∞P0

(
S(Y ) ≤ λ

) = exp
(
− exp(−λ) · H2γ det(D−1

� ) log(
/δ)√
2πK

)
.

REMARK 4. (a) In Theorem 4, we need to exclude a small boundary region of
the observations from the analysis since, in general, the functions �hi

in W might
be of unbounded support. Then the results of Theorem 1 transfer to this setting.

(b) The results from Theorem 4 (c) require assumption (14) which basically
means that the convolution kernel k should decay exactly like a polynomial if
‖ξξξ‖2 → ∞ in contrast to the weaker assumption (D1) which only requires upper
and lower polynomial bounds and can hence only ensure upper and lower Gumbel
bounds. In Section 4, we provide a specific example for which both (D1) and (14)
are satisfied.

3.2.1. Optimal detection in deconvolution. In this section, we discuss and
specify the results from Sections 2.3 and 2.4 for deconvolution. The results given
in Lemma 1 also hold in the general deconvolution setting. The following lemma
contains a related result in the situation of (32) concerning the support inference
about the signal f itself.

LEMMA 4. Given observations from model (28) with random noise satisfying
Assumption 2 and k as in (32) and given a nonnegative function ϕ ∈ R(T ∗), define
the dictionary W as in (30). Suppose that the signal f is nonnegative as well. Let
further Iα(f ) denote the set

Iα(f ) := {
i
∣∣ f |supp(ϕi) > 2qi,1−α‖σ�i‖2/

(
hi,1hi,2n

d/2)}
.
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Then, under the assumptions of Theorem 1,

lim
n→∞P

(〈�i,Y 〉n > qi,1−α‖σ�i‖2/n for all i ∈ Iα(f )
) ≥ 1 − α.

The result above immediately shows that the choice of ϕ in (29) has a high
influence on the detection properties of the corresponding test via the variances
‖σ�i‖2

2. Extending an argument from Schmidt-Hieber, Munk and Dümbgen
(2013) for d = 1 to general d , we can provide a mother wavelet ϕ which minimizes
the asymptotic variance of the test statistic over all tensor-type probe functions. It
only depends on the polynomial order of decay of the convolution kernel in Fourier
space (=̂ degree of ill-posedness) and is (for d = 2) given by

(31) ϕ(x, y) = xβ1+1(1 − x)β1+1yβ2+1(1 − y)β2+11(0,1)(x)1(0,1)(y),

where the two parameters β1, β2 ∈ N equal the polynomial order of decay of the
convolution kernel in x and y direction. This choice will be considered in the
following.

The previous lemma implies the consistency of the testing procedure for the
signal itself, that is, testing f = 0 versus f > 0, if the minimal scale satisfies
hmin � (log(n)/n)1/(4a+1). Moreover, in the situation of Theorem 5(c) the opti-
mality results of Section 2.4 carry over to the deconvolution setting. For a compar-
ison, consider the rate of estimation of the 2ath derivative of a Hölder β function
w.r.t. L∞ risk in d = 1. We restrict to this case as otherwise the deconvolution is
no longer equivalent to estimating derivatives; cf. (33). This is possible with min-
imax rate (logn/n)β/(2β+4a+1), which is attained for h ∼ (logn/n)1/(2β+4a+1)

[see, e.g., Johnstone et al. (2004)], that is, such a function can be distinguished
from 0 by means of estimation on a box [t − h, t] as long as it is asymptotically
larger than hβ . Posing the same question to MISCAT, the above result shows that
for f |[t−h,t] ∼ hβ and h ∼ (logn/n)1/(2β+4a+1) it recognizes [t − h, t] as active
with (asymptotic) probability ≥ 1 − α. Consequently, any support points found by
estimation will also be found by MISCAT.

4. Simulations and real data applications. In this section, we investigate the
finite sample properties of the proposed multiscale test. To this end, we apply MIS-
CAT in a 2-dimensional mildly ill-posed deconvolution problem. In Section 4.2,
we then analyze experimental STED data to locate single DNA origami in a sam-
ple.

Specifying the setting described in Section 3.2 to this situation, the data is given
by (28). The convolution kernel k is chosen from the parametric family {ka,b |
a ∈N, b > 0} defined in Fourier space via

(F2ka,b)(ξξξ) = (
1 + b2‖ξξξ‖2

2
)−a

, ξξξ ∈ R
2.(32)

Model (32) is a 2-dimensional generalization of the one-dimensional family of
auto-convolutions of a scaled version of the density of the Laplace distribution
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with itself with radially symmetric PSF. For any convolution kernel ka,b Assump-
tion (D1) is obviously satisfied and we obtain

(33) �hi
=

a∑
j=0

j∑
k=0

(
a

j

)(
j

k

)(
b

hi,1

)2k( b

hi,2

)2(j−k)

∂(2k,2(j−k))ϕ.

Alternatively, the functions �hi
can be computed by means of the Fourier trans-

form as in (30). However, (33) shows that a compactly supported function ϕ results
in a dictionary W which consists of compactly supported functions as well. Con-
sequently, the results from Theorem 4 can be obtained even without excluding a
small boundary region, and furthermore a Gumbel limit theorem can be obtained
as follows. Let

(34) � = �̃

‖�̃‖2
where �̃ = b2a

a∑
k=0

(
a

k

)
∂2k,2(a−k)ϕ,

and consider the case hi = (hi, hi) for all i ∈ IN . Then

(35) ‖�hi
‖2 =

(
1

hi

)2a∥∥� + h2
i �n,i

∥∥
2 and

�hi

‖�hi
‖2

= � + h2
i �n,i

‖� + h2
i �n,i‖2

,

where

�n,i :=
a−1∑
j=0

h
2(a−1−j)
i

j∑
k=0

(
j

k

)(
a

j

)
∂2k,2(j−k)ϕ.(36)

In this setting, it is easy to verify that condition (14) holds.

THEOREM 5 (MISCAT for our application). Suppose that we have access to
observations following model (28) with convolution kernel ka,b satisfying Assump-
tion (32), d = 2 and random noise satisfying Assumption 2. Assume that the dic-
tionary is given by (30) with dictionary functions �hi

defined in (33) such that
Assumption 1 is satisfied, and that (13) holds.

(a) The results of Theorem 1(a) carry over to this particular convolution setting.
(b) If ϕ ∈ H 2a+γ∧1/2(R2) and if the grids of positions t and scales h are suf-

ficiently fine, that is, satisfy (17) and (18), then the results of Theorem 4(b) carry
over to this particular convolution setting.

(c) Suppose furthermore that hi = (hi, hi) for all i ∈ IN , that (16) holds true
with 0 < δ < 
 ≤ 1 and that the grids of positions t and scales h are sufficiently
fine, that is, satisfy (17) and (18). If in addition, ϕ is (2a + 1)-times differentiable
in L2(Rd), let ϕααα = ∑a

k=0
(a
k

)
∂2k+α1,2(a−k)+α2ϕ, ααα ∈ {0,1}2, |ααα| = 1. Then, for

ω(K,1 + d) with

K = b4a log(
/δ)(2π)−
3
2 ‖�̃‖−1

2

√
‖ϕ0,1‖2

2‖ϕ1,0‖2
2 − 〈ϕ0,1ϕ1,0〉(37)

[see (8) and Remark 2(b)], we obtain limn→∞P0[S(Y ) ≤ λ] = e−e−λ
.
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4.1. 2-dimensional support inference. In the Supplementary Material
[Proksch, Werner and Munk (2018)], we present detailed simulations to infer on
the support of a testfunction of size 512 × 512, that is, n = 512 with a kernel
ka,b as in (32). This setting is close to our subsequent data example. We apply
MISCAT using 196 different scales defined by boxes consisting of kx × ky pix-
els, kx, ky = 4,6, . . . ,30. Concerning the positions t we use again all possible
upper left points of boxes fitting in the image, which results in 48,219,136 local
tests in total. To implement MISCAT, we first fix ϕ as in (31), and then com-
pute the 196 functions �hi

as in (30) by using the Fourier convolution theorem,
that is, �hi

= F−1
d (

Fdϕ
Fdka,b(·/hi )

) as in (30). This can be done explicitly exploiting
the structure of ka,b, and is efficiently implemented using FFT, which results in
O(196 · 5122 log(5122)) flops. Similarly, all local statistics 〈Y,�i,n〉n with fixed
scale h ≡ hi can also be computed by two FFTs using the Fourier convolution
theorem. Consequently, MISCAT for deconvolution problems can be performed
in general in O(#scales · #pixels log(#pixels)), and in the setting here the evalua-
tion of the roughly 50 million local test statistics takes less than one minute on a
standard laptop. Finally, to perform MISCAT, the (asymptotic) quantiles of the ap-
proximating Gaussian test statistic S(W) can be pre-computed, which corresponds
to many evaluations of the maximum in (10) and is costly.

Let us now briefly conclude the findings in the Supplementary Material
[Proksch, Werner and Munk (2018)]. First of all, our simulations suggest a nonde-
generated behavior of the distribution of the penalized maximum statistic.

Concerning support inference we observe that MISCAT with correctly specified
degree of ill-posedness [this is β1 = β2 = 2a in (31) with a as in (32)] is able to de-
tect large objects even in a large noise regime, and for sufficiently small amount of
noise it is even able to separate objects which have a distance of 9 pixels, which is
even less than the FWHM (see the Supplementary Material [Proksch, Werner and
Munk (2018)]). We furthermore find that misspecification of ill-posedness does
not provide false detections, but loss in detection power, where underspecifica-
tion of the ill-posedness [β1 = β2 = 1 in (31)] has less severe effects to MISCAT
than overspecification [β1 = β2 = 10 in (31)]. This can also be seen from Fig-
ure 3 where a synthetic testfunction, simulated data from a homogeneous Gaussian
model with noise level σ = 0.05 and significance maps of the three corresponding
tests (correctly specified, overspecified and underspecified ill-posedness) is shown.
The significance map color-codes for each pixel the smallest scale on which it
was significant; for details, see the Supplementary Material [Proksch, Werner and
Munk (2018)].

Finally, we also investigate robustness of MISCAT to the noise distribution in
the Supplementary Material [Proksch, Werner and Munk (2018)]. We investigate
empirical levels under the student’s t distribution t (ν), which has ν − 1 moments,
and hence does not satisfy (M1) for any ν. Nevertheless, for sufficiently large
parameter ν we still obtain an empirical level close to our theoretical value α.
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FIG. 3. (a) Synthetic test function, (b) simulated data from a homogeneous Gaussian model with
noise level σ = 0.05, (c) 90%-significance map of MISCAT with correctly specified ill-posed-
ness [β1 = β2 = 4 in (31)], (d) 90%-significance map of MISCAT with overspecified ill-posedness
[β1 = β2 = 10 in (31)], (e) 90%-significance map of MISCAT with underspecified ill-posedness
[β1 = β2 = 1 in (31)]. The color-coding shows the smallest scale (in pixels) on which the corre-
sponding pixel was significant.

Furthermore, we investigate a model mimicking data coming from CCD sensors,
which consists of Poissonian observations which are additionally corrupted by ad-
ditive Gaussian noise. This model satisfies (M1), and our simulations suggest that
MISCAT keeps its level quite stable over a large range of parameters. Only in
the situation of a low Poisson intensity, the heavier tail behavior of the Poisson
distribution dominates and the empirical level deteriorates.

4.2. Locating fluorescent markers in STED super-resolution microscopy.
Based on the results from Section 4.1, we are now able to rigorously treat the real
world application from Section 1.2 from 2-dimensional STED (stimulated emis-
sion depletion) super-resolution microscopy [Hell and Wichmann (1994), Klar and
Hell (1999), Hell (2007)]. A brief overview over the experimental setup is al-
ready given in the Introduction, and for a detailed mathematical model we refer
to the Supplementary Material [Proksch, Werner and Munk (2018)], where we
argue there that our measurements are described reasonably by

Yj
independent∼ Bin

(
t, (k2,0.016 ∗ f )(xj)

)
, j ∈ {1, . . . ,600}2.

Here, Bin(t,p) denotes the Binomial distribution with parameters t ∈ N and p ∈
[0,1], observations are obtained on the grid {xj | j ∈ {1, . . . ,600}2} and f (x) is the
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probability that a photon emitted at grid point x is recorded at the detector in a
single excitation pulse. The kernel k2,0.016 is as in (32), and in actual experiments
t is roughly 103.

With this kernel, we design a test using the optimal probe function ϕ in (31)
(i.e., β1 = β2 = 4) and a set of scales defined by boxes of size kx × ky pixels,
kx, ky = 4,6, . . . ,20, resulting in 28,100,601 local tests. The variances σ 2

i in (7)
used in the test statistic are estimated from the data point-wise using a maximum
likelihood estimator. Furthermore, we ease the problem by neglecting all boxes
in which no photons where observed, that is, we drop all pairs (ti ,hi) such that
Yj = 0 for all xj ∈ [ti − hi , ti]. Even though this choice is data dependent, and
hence random, the uniformity over all pairs (ti ,hi) of our confidence statements
ensures that those stay valid.

With this test, we analyze the data shown in Figure 1; cf. Section 1.2 for de-
tails. In total, MISCAT marks 94,141 out of 28,100,601 boxes as significant. For
a comparison, we also use two different tests, namely an analog of MISCAT us-
ing only one single scale of size 4 × 6 pixels [these are the smallest boxes found
by MISCAT, see Remark 2(b)], and the multiscale scanning test ignoring the de-
convolution (T = id), boiling down to the test statistic of Dümbgen and Spokoiny
(2001):

max
i

√
log(3/h1

i )

log(log(3/h1
i ))

[
1√
h1

i

∑
xj∈[ti−hi ,ti ]

Yj −
√

2 log
(
3/h1

i

)]
.

For all tests, we again use empirical quantiles computed in 104 runs of the test
statistics applied to Gaussian white noise.

The full result is depicted in Figure 4. As mentioned in the Introduction, MIS-
CAT is able (at least for some of the single DNA origamis) to infer on position and
rotation as indicated in the first panel in Figure 4. Remarkably, this information is
not visible by eye; cf. Figure 2.

5. Multiscale extreme value theory. In this section, we state the results that
are the core of the proofs of our theorems from the previous sections. The follow-
ing theorem guarantees that the Gaussian approximation S(W) is asymptotically
bounded from above almost surely.

Let Zt,h := 1/
√

h1
∫

�( t−z
h )dWz.

THEOREM 6 (MISCAT: a.s. boundedness). Let � be a normed function, that
is, ‖�‖2 = 1, supported on [0,1]d such that (AHC) holds. Let (t,h) ∈ H × Th ⊂
[hmin,hmax] × [h,1], where hmax ≤ n−δ . There exists a function F which is inde-
pendent of n, such that limλ→∞ F(λ) = 0 and for λ > 0:

P

(
sup
h∈H

sup
t∈Th

ωh(Zt,h − ωh) > λ

)
≤ F(λ).
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FIG. 4. 90% significance maps and excerpts for different tests computed from the data in Figure 1.
From top to bottom: MISCAT, a single scale test with deconvolution, and the standard multiscale test
without deconvolution.
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This implies in particular that S(W) is almost surely bounded. Furthermore, there
exists a positive constant Dγ such that for any fixed λ ∈ R,

e−Dγ e−λ ≤ lim
n→∞P

(
sup
h∈H

sup
t∈Th

ωh(Zt,h − ωh) ≤ λ

)
.

The following theorem yields a weak limit for multiscale statistics of the type
S(W).

THEOREM 7 (A general multiscale Gumbel limit theorem). Let � be a normed
function, that is, ‖�‖2 = 1, supported on [0,1]d such that (15) holds. Let K > 0
be a fixed, positive constant. If furthermore (16) holds true with 0 < δ < 
 ≤ 1,

lim
n→∞P

(
sup

h∈[hmin,hmax]d
sup

t∈[h,1]
ωh(Zt,h − ωh) ≤ λ

)
= e

−e−λ·H2γ |detD−1
�

|Id (δ,
)√
2πK ,

where ωh and Id(δ,
) are defined as in (8) and (20), respectively.

Corollary 1 below follows immediately from the proofs of the previous Theo-
rems. Two special cases are discussed in Remark 2.

COROLLARY 1. Suppose that the assumptions of Theorem 6 hold. Assume
that hi ∈ H1 × · · · × Hd , where possibly Hi �= Hj for i �= j . Let for P :=
{�log(1/hmax)� − 2, �log(1/hmax)� − 1, . . . , �log(1/hmin)�}, and j ∈ {1, . . . , d}

Pj := {
p ∈ P | ∃hi,j ∈ Hj : hi,j ∈ [

e−(p+1), e−p)}
.

Choose the constant Cd in (8) such that there exist positive constants d and D such
that

d ≤ log(n)−
Cd−d/γ+1

2 |P1 × · · · ×Pd | ≤ D.

(a) The results of Theorem 6 remain valid.
(b) If, in addition, the grid of positions t is sufficiently fine, that is, (17) holds

and for each j , the sets Pj = Pj,n are increasing sets with respect to n ∈ N, that is,
|Pj,n| ≤ |Pj,n+1| and

∑
pj,n∈Pj,n

pj,n is increasing, there exists a constant CP > 0
such that

lim
n→∞P

(
sup

h∈H1×···×Hd

sup
t∈Th

ωh(Zt,h − ωh) ≤ λ

)
= e

−e−λ·H2γ |detD−1
�

|CP√
2πK .
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6. Proofs. This section contains only the key ideas and main steps of the proof
of our key result, Theorem 7. A complete version of this proof can be found in the
Supplementary Material [Proksch, Werner and Munk (2018)].

PROOF OF THEOREM 7. Recall that with a slight abuse of notation, we denote
hααα = h

α1
1 · . . . · hαd

d ,hp = (h1, . . . , hd)T ,1/hp = (1/h1, . . . ,1/hd)T and inequali-
ties between vectors or multi-indices are meant component-wise.

Step I: Proof for scales on a dyadic grid. We show later in Step II.3 that the

supremum over [hmin, hmax] and the supremum over [hmin/ log(n)
1
γ log log(n),

hmax] are asymptotically equivalent and consider first the supremum over the

slightly enlarged set. Define a dyadic grid Hdyad ⊂ [hmin/ log(n)
1
γ log log(n),

hmax] as follows:

Hdyad := {
2−p | p ∈ P

}
, P = {⌈

bγ (hmax)
⌉
, . . . ,

⌊
bγ (hmin)

⌋}
,

where bγ (h) := log(
log(n)

1
γ log log(n)

h
)/ log(2). Here and below, log denotes the nat-

ural logarithm. Define pmin := minP and pmax := maxP . Let

max
h∈Hd

dyad

sup
t∈[h,1]

ωh

(
1√
h1

∫
�

(
t − z

h

)
dWz − ωh

)
D= max

h∈Hd
dyad

sup
t∈[1,1/h]

ωh

(∫
�(t − z)dWz − ωh

)
=: Mn,

(38)

by stationarity of Zt,h for fixed h. We now consider the term Mn.
Step I.1: Partition of the parameter set. The form of Mn in (38) reveals a redun-

dancy pattern that we will exploit later on. Observe that the suprema with respect
to t of the rescaled version Mn are taken over subsets of the rectangle [1,1/hmin].
For smaller scales, the supremum with respect to t is taken over larger sets. Obvi-
ously, for p ∈ Pd ,

[1/hp,1/hp+1] ⊂ [1,1/hs] ∀s > p + 1.

In order to exploit this fact, we partition the parameter set [1,1/hmin] into
suitable blocks, that is, into blocks Bp+1,q+1 that are approximately equal to
[1/hp,1/hp+1] in order to split the suprema with respect to t into suitable sub-
suprema. To achieve that those sub-suprema are independent, we separate the
blocks by small bands of width 1. This ensures independence, since supp(�) ⊂
[0,1]d . The bands only yield a contribution which is asymptotically negligible,
which we will show in Step I.3 below.

To be precise, we define subsets of [1,1/hmin] as follows:

Bp :=
[

1
hp−1

,
1

hp
− 1

]
and Rp =

[
1

hp−1
,

1
hp

]
\ Bp,(39)



MULTISCALE SCANNING IN INVERSE PROBLEMS 3597

where hpmin−1 := 1. The large blocks Bp yield the main contributions. The sets Rp
are asymptotically negligible (see Step I.3 below). Define further for q ∈ Pd

Bq := ⋃
p∈Pd ,p≤q

Bp and MB := max
p∈Pd

ωhp(MBp − ωhp).

Write

MB = max
q∈Pd

max
p≤q

sup
t∈Bp

ωhq

(∫
�(t − z)dWz − ωhq

)

= max
p∈Pd

max
q≥p

sup
t∈Bp

ωhq

(∫
�(t − z)dWz − ωhq

)
.

Fix λ ∈ R. Since the blocks Bp are constructed such that the sub-maxima over
different blocks are independent, we find

P(MB ≤ λ) = ∏
p∈Pd

P

(
max
p≤q

sup
t∈Bp

ωhq

(∫
�(t − z)dWz − ωhq

)
≤ λ

)

= ∏
p∈Pd

P

(
sup
t∈Bp

∫
�(t − z)dWz ≤ �min,p

)
,

where �min,p := minp≤q( λ
ωhq

+ ωhq). Now we have broken the proof down into

|P|d “one-scale” extreme value problems and use results for those. Let Leb(Bp)

denote the Lebesgue-measure of Bp and let �p denote

�p := λ/ωhp + ωhp .(40)

For any fixed λ ∈ R, we have that �min,p = �p, for sufficiently large n. Thus,

P(MB ≤ λ) = ∏
p∈Pd

(
1 − P

(
sup
t∈Bp

∫
�(t − z)dWz > �p

))
.

Step I.2: Derivation of the weak limit on the dyadic grid. Next, we estimate

Pn,p(λ) := P

(
sup
t∈Bp

∫
�(t − z)dWz ≤ �p

)
using Theorem 7.2 in Piterbarg (1996). In the Supplementary Material [Proksch,
Werner and Munk (2018)], we give the explicit calculations which show that the
following holds:

Pn(λ) = exp
(
−e−λ H2γ |detD−1

� |
K

√
2π

∑
p∈Pd

(
log

(
K

h1
p

))−d)(
1 + o(1)

)
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for some δe > 0. Notice that∑
p∈Pd

(
log

(
K

h1
p

))−d

∼
∫
[δ log(n),
 log(n)]d

(
1

log(K) + z1 + · · · + zd

)d

dz =: In,d .

By induction with respect to d ∈ N, we show in the Supplementary Material that

(d − 1)!
(−1)d

In,d = log
( ∏

j even

(
kδ + (d − k)


)(d
j)

)
− log

( ∏
j odd

(
kδ + (d − k)


)(d
j)

)
.

Hence, the statement of the theorem holds true for scales on the dyadic grid.
Step I.3: Negligibility of the remainder terms. In the Supplementary Material,

we first show that, asymptotically, the slight enlargement of the domain of the
scales from the beginning of Step I does not have an impact. Then, we show that the
contribution of the separating regions, Rp,p ∈ Pd are asymptotically negligible.

Step II: Show that the dyadic grid is sufficiently dense. We now show


γ,n =
∣∣∣ max

h∈Hd
dyad

sup
t∈T

ωh(Zt,h − ωh) − sup
h∈[hmin,hmax]d

sup
t∈T

ωh(Zt,h − ωh)
∣∣∣ = oP(1).

Let ε > 0.

P(
n,γ > ε) ≤ P

(
max
p∈Pd

∣∣∣ωhp

(
sup
t∈T

|Zt,hp − Zt,h| + max
h∈[hp,hp+1]

|ωh − ωhp |
)∣∣∣ > ε

)
.

Step II.1: Fineness of the dyadic grid I. Let h ∈ [hmin, hmax]. Set p =
�log(log(n)

1
γ log log(n)/h)� and assign the element hdyad of the dyadic grid to h:

hdyad = argmin
{|g − h| ∣∣ g ∈ {

2−p, . . . ,2−pmin
}}

.(41)

We show in the Supplementary Material that |ωh − ωhdyad | = o(1/
√

log(n)).
Step II.2: Estimation of the covering numbers. We show in detail in the Supple-

mentary Material that there exists a constant Ccov, depending only on the dimen-
sion d and the function � via the constants L� and γ from condition (AHC) such
that for ε ∈ (0, d),

N (T ×H, ρ, ε) ≤ Ccov

(
1

ε

) 2d
γ

(
1

hmin
− 1

hmax

)d

,(42)

where ρ2((t,h), (s, l)) = E|Zt,h −Zs,l|2 and N (T ×H, ρ, ε) denotes the covering
numbers of T ×H with respect to ρ.

Step II.3: Fineness of the dyadic grid II. By an application of Dudley’s theorem,
using the estimates from Step II.2, we show in the Supplementary Material that

max
p∈Pd

ωhp

∣∣∣ sup
t∈T

Zt,hp − sup
h∈[hp,hp+1]

sup
t∈T

Zt,h

∣∣∣ = o(1).

Hence, the supremum over the dyadic grid and the supremum over the full range
[hmin, hmax]d have the same limit. �
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of the full width at half maximum (FWHM), a detailed mathematical model for
super-resolution STED microscopy, a detailed simulation study for 2-dimensional
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