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MULTICLASS CLASSIFICATION, INFORMATION, DIVERGENCE
AND SURROGATE RISK

BY JOHN DUCHI1, KHASHAYAR KHOSRAVI AND FENG RUAN1

Stanford University

We provide a unifying view of statistical information measures, multiway
Bayesian hypothesis testing, loss functions for multiclass classification prob-
lems and multidistribution f -divergences, elaborating equivalence results be-
tween all of these objects, and extending existing results for binary outcome
spaces to more general ones. We consider a generalization of f -divergences
to multiple distributions, and we provide a constructive equivalence between
divergences, statistical information (in the sense of DeGroot) and losses for
multiclass classification. A major application of our results is in multiclass
classification problems in which we must both infer a discriminant function
γ —for making predictions on a label Y from datum X—and a data repre-
sentation (or, in the setting of a hypothesis testing problem, an experimental
design), represented as a quantizer q from a family of possible quantizers
Q. In this setting, we characterize the equivalence between loss functions,
meaning that optimizing either of two losses yields an optimal discriminant
and quantizer q, complementing and extending earlier results of Nguyen et
al. [Ann. Statist. 37 (2009) 876–904] to the multiclass case. Our results pro-
vide a more substantial basis than standard classification calibration results
for comparing different losses: we describe the convex losses that are consis-
tent for jointly choosing a data representation and minimizing the (weighted)
probability of error in multiclass classification problems.

1. Introduction. Consider the multiclass classification problem: a decision
maker receives a pair of random variables (X,Y ) ∈ X ×{1, . . . , k}, where Y is un-
observed, and wishes to assign the variable X to one of the k classes {1,2, . . . , k}
to minimize the probability of a misclassification. We represent the decision
maker via a discriminant function γ : X → Rk , where each component γy(x),
y = 1, . . . , k, represents the margin (or a score or perceived likelihood) the de-
cision maker assigns to class y for datum x. The goal is then to minimize the
expected loss, or L-risk,

(1) RL(γ ) := E
[
L
(
γ (X),Y

)]
,

where L(γ (x), y) measures the loss of margins γ (x) ∈ Rk when the true label of
x is y and the expectation (1) is taken jointly over (X,Y ). When L is the 0–1 loss,
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L(γ (x), y) = 1{γy(x) ≤ γi(x) for some i �= y}, the formulation (1) is the misclas-
sification probability P(argmaxy γy(X) �= Y). We may also consider the classical
k-category Bayesian experiment: given a random variable X ∈ X drawn according
to one of the k hypotheses

H1 : X ∼ P1, H2 : X ∼ P2, . . . , Hk : X ∼ Pk

with prior probabilities π1, . . . , πk , we wish to choose γ minimizing the expected
E[L(γ (X),Y )] or posterior

∑
y P(Y = y | X = x)L(γ (x), y) loss.

We briefly note that often in decision theory, one has L : A × Y → R, where
Y = [k] and the action space A = Y or is the probability simplex over Y (for
prediction of distributions on Y [12, 13]); as we restrict ourselves to margin-based
loss functions the action space Rk is most natural. For some margin-based losses,
such as hinge-type losses, there is no straightforward probabilistic interpretation
or link function mapping predictions to probability vectors. It is, of course, often
the case that γy(x) is a transformation of some hypothesized class-conditional
probabilities, in which case if the action space A = Y the natural decision is to
map γ (x) to δ(x) = argmaxy γy(x).

In many applications, making decisions based on the raw X is undesirable—
the vector X may be high-dimensional, carry useless information impinging on
statistical efficiency or we may need to store or communicate the sample using
limited memory or bandwidth. If all we wish to do is to classify a person as being
taller or shorter than 160 centimeters, it makes little sense to track his or her blood
type and eye color. With the increase in the number and variety of measurements
we collect, such careful design choices are important for maintaining statistical
power, interpretability, efficient downstream use and mitigating false discovery
[3]. This desire to give “better” representations of data X has led to a rich body of
work in statistics, machine learning and engineering, highlighting the importance
of careful measurement, experimental design and data representation strategies [9,
23, 25, 29].

As Nguyen et al. [20] note in the binary case, one thus frequently extends the
classical formulation (1) to include a stage in which a (data-dependent) q : X → Z
maps the vector X into a vector Z. A number of situations suggest such an ap-
proach. In most practical classification scenarios [26], an equivalent feature se-
lection reduces the dimension of X or increases its interpretability. As a second
motivation, consider the decentralized detection problem [20, 30] in communica-
tion applications in engineering, where remote sensors communicate data X ∼ Pi

through limited bandwidth or memory. In this case, the central processor can infer
the distribution Pi only after communication of the transformed vector Z = q(X),
and one chooses a quantizer q from a family Q of (low complexity) quantizers.
In fuller abstraction, we may treat the problem as a Bayesian experimental design
problem, where the mapping q : X → Z may be stochastic and is chosen from a
family Q of possible experiments (observation channels). In each of the preceding
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examples, the incorporation of a quantizer q into the classification procedure poses
a more complex problem, as one must simultaneously find a data representation q
and discriminant γ . The goal, paralleling that for the risk (1), thus becomes joint
minimization of the quantized L-risk

(2) RL(γ | q) := E
[
L
(
γ
(
q(X)

)
, Y

)]
over a prespecified family Q of quantizers q : X → Z , where γ :Z →Rk .

Often—for example, in the zero-one error case—the loss functions L(·, y) are
nonconvex (even discontinuous), so population or empirical minimization is in-
tractable. It is thus common to replace the loss with a convex surrogate and min-
imize this surrogate instead. A surrogate is Fisher consistent if its minimization
yields a Bayes optimal discriminant γ for the original loss L [for any distribution
P on (X,Y )]; researchers have characterized the Fisher consistency of convex sur-
rogates for binary and multiclass classification [2, 19, 28, 33]. A weakness of such
results is that they rely strongly on using the unrestricted class of all measurable
discriminants γ : X → Rk , and thus most “natural” convex losses are consistent
[2, 33]. In this context, a major difficulty is to understand the consequences of
using various surrogate losses, and requiring a restricted quantizer class Q is one
approach to discovering nuanced properties of the relationship between surrogate
and Bayes risk. Nguyen et al. [20] tackle this in the binary case, considering the
problem of joint selection of the discriminant function γ : Z → R and quantizer
q : X → Z . They exhibit a precise correspondence between binary margin-based
loss functions and f -divergences—measures of the similarity between two prob-
ability distributions developed in information theory and statistics [1, 8, 31]—to
give a general characterization of loss equivalence through classes of divergences.
An interesting consequence of their results is that, in spite of positive results for
Fisher consistency in binary classification problems [2, 19, 33], essentially only
hinge-like losses are consistent for the 0–1 loss. We provide the extension of these
results to the multiclass case.

Outline and discussion of our contributions. We build on this prior work to
provide a unifying framework that relates statistical information measures, loss
functions and generalized notions of entropy in the context of multiclass classifica-
tion. To begin, we recall a generalization of f -divergences that applies to multiple
distributions [11, 14], enumerating analogues of the positivity properties, data-
processing inequalities and discrete approximation available in the binary case,
as multiway f -divergences may be unfamiliar and they motivate our approach
(Section 2). We begin our main contributions in Section 3, where we establish a
correspondence between loss functions L, generalized entropy on discrete distri-
butions [13] and multi-way f -divergences. To make this precise, define the proba-
bility simplex �k := {p ∈ Rk+ | 1T p = 1}. Let π ∈ �k be a prior distribution on the
class label Y and π̃(x) ∈ �k be the posterior probabilities for Y conditional on the
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observation X = x. For concave H : �k →R, DeGroot [9] defines the information
associated with the experiment (X,Y ) as

(3) IH (X;π) := H(π) −E
[
H

(
π̃(X)

)]
.

The notion of H as a generalized entropy is clear here, as I is the gap between
prior and posterior entropy and is always nonnegative. In this context, the value
H(π) measures the uncertainty of the experimenter (in some appropriate units)
about the unknown class label y when his or her prior belief over y is π , so I is
the gap between prior and posterior uncertainty [9].

To relate this type of entropy to loss functions, recall the well-known result [9,
13] that any loss L :Rk ×[k] →R∪{+∞} induces an entropy HL : �k →R, also
called the pointwise Bayes risk [11, 13, 24, 32], via

(4) HL(π) = inf
α∈Rk

{
k∑

i=1

πiL(α, i)

}
− I{π ∈ �k},

where I{·} is +∞ if its argument is false (we drop this indicator in the future, defin-
ing HL implicitly on �k). We show an inverse construction, providing an explicit
and constructable mapping from any concave function H to a loss L inducing H

as the pointwise Bayes risk (4), where for each y the loss α 	→ L(α,y) is convex.
In Section 3.2, we also develop the natural connections between these generalized
entropies H and classification calibration [2, 19, 28, 33], in that our explicit L is
generally calibrated.

In Section 4, we address the comparison of loss functions—building off of
Nguyen et al.’s approach in the binary case [20]—and present our main results on
consistency of joint selection of quantizer (data representation) q and discriminant
γ . Using our correspondence between concave H , losses L, and f -divergences,
we characterize the pairs of losses L(1) and L(2) for which equivalent quantiz-
ers and discriminants minimize the quantized risk (2) in the sense that there is a
continuous concave h with h(0) = 0 such that

RL(2) (γ | q) − inf
γ,q∈Q

RL(2) (γ | q) ≤ h
(
RL(1) (γ | q) − inf

γ,q∈Q
RL(1) (γ | q)

)
for any γ and q ∈ Q. Another way to understand our results is as providing in-
sight into classification calibration when the Bayes act (i.e., optimal discriminant
γ ) does not belong to the class of functions the statistician may choose in a clas-
sification problem. A substantial challenge for and criticism of the line of work
on classification calibration and surrogate risk consistency [2, 19, 28, 33] is that
the results say little for restricted families of classifiers. In this context, a corol-
lary of our main contribution is as follows. The loss L(1) is calibrated [2, 28,
33] for L(2) if for any distribution P on X × Y and sequence γn : X → Rk ,
RL(1) (γn) → infγ RL(2) (γ ) implies RL(1) (γn) → infγ RL(2) (γ ). Now, consider a
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collection Q of functions q : X → Z for some set Z , and then define the class
of functions

G(Q) := {
γ ◦ q | q ∈ Q and γ : Z →Rk is measurable

}
.

Translated to this scenario, our main results—Theorems 1 and 2—imply the fol-
lowing.

COROLLARY 1. Assume that the loss L(1) is calibrated for L(2) and let Hi =
HL(i) denote the associated pointwise Bayes risk (4). Then

(5) RL(1) (gn) → inf
g∈G(Q)

RL(1) (g) implies RL(2) (gn) → inf
g∈G(Q)

RL(2) (g)

for any collection Q of mappings X → Z , any set Z , any distribution P on X ×
{1, . . . , k}, and sequence gn ∈ G(Q) if and only if there exist a > 0, b ∈ Rk , and
c ∈ R such that H1(π) = aH2(π) + bT π + c for all π ∈ �k .

This corollary reposes on the connections we develop between losses, uncer-
tainty measures and generalized f -divergences. Such measures of statistical in-
formation and divergence have been central to the design of communication and
quantization schemes in signal processing [16, 18, 22, 30]; we characterize the di-
vergence measures that, when optimized, yield optimal quantizers and detectors.
We also provide a result showing when empirical minimization of a surrogate risk
is consistent for the desired (original) risk.

A number of researchers have studied the connections between divergence mea-
sures and risk for binary and multicategory experiments; these point to the results
we present. Indeed, [6] shows that if a quantizer q1 induces class-conditional dis-
tributions with larger divergence than those induced by q2, then there are prior
probabilities such that q1 allows tests with lower probability of error than q2. Liese
and Vajda [17] give a broad treatment of f -divergences, using their representation
as the difference between prior and posterior risk in a binary experiment [21] to
derive a number of their properties; see also the paper [24]. García-García and
Williamson [11] show how multidistribution f -divergences [14] arise naturally in
the context of multiclass classification problems as the gap between prior and pos-
terior risk in classification, as in the work [17]. In the binary case, these results
elucidate Nguyen et al.’s characterization of Fisher consistency for quantization
and binary classification [20]. We pursue this line of research to draw the connec-
tions between Fisher consistency, information measures, multiclass classification,
surrogate losses and divergences.

NOTATION. We let 0 and 1 denote the all-zeros and all-ones vectors, respec-
tively. For a vector or collection of objects, we define t1:m = {t1, . . . , tm}. The
indicator function I{·} is +∞ if its argument is false, 0 otherwise, while 1{·}
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is 1 if its argument is true, 0 otherwise. We let �k = {v ∈ Rk+ : 1T v = 1} de-
note the probability simplex in Rk . For m ∈ N, we set [m] = {1, . . . ,m}. We let
affA = {∑m

i=1 λixi | λT 1 = 1, xi ∈ A,m ∈ N} denote the affine hull of a set A,
and rel intA denotes the interior of A relative to affA. We let R = R ∪ {+∞}
and R = R ∪ {−∞}. For f : Rk → R, we let epif = {(x, t) : f (x) ≤ t} denote
the epigraph of f . We say a convex function f is closed if epif is a closed set,
though we abuse notation and say that a concave f is closed if epi(−f ) is closed.
For a convex function f : Rk → R, we say that f is strictly convex at a point
t ∈ Rk if for all λ ∈ (0,1) and t1, t2 �= t such that t = λt1 + (1 − λ)t2 we have
f (t) < λf (t1) + (1 − λ)f (t2). The (Fenchel) conjugate of a function f : Rk → R

is

(6) f ∗(s) = sup
t∈Rk

{
sT t − f (t)

}
.

For any f , the conjugate f ∗ is closed convex (see [15], Chapter X). For measures
ν and μ, we let dν/dμ denote the Radon–Nikodym derivative of ν with respect to

μ. For random variables Xn, we say Xn

Lp→ X∞ if E[|Xn − X∞|p] → 0.

2. Multidistribution f -divergences. Divergence measures for probability
distributions have significant statistical, decision- and information-theoretic ap-
plications, including in optimal testing, minimax rates of convergence and the
design of communication schemes [1, 8, 16, 22]. Central to this work is the f -
divergence, introduced by Ali and Silvey [1] and Csiszár [8] (see [17] for an
overview). Given distributions P,Q defined on a common set X , a closed con-
vex function f : [0,∞) → R satisfying f (1) = 0, and any measure μ dominating
P and Q, the f -divergence between P and Q is

(7) Df(P‖Q) :=
∫
X

f

(
p(x)

q(x)

)
q(x) dμ(x) =

∫
f

(
dP

dQ

)
dQ.

Here, p = dP
dμ

and q = dQ
dμ

denote the densities of P and Q, respectively, and the
value uf (t/u) is defined appropriately for t = 0 and u = 0 (e.g., [17]). A number of
classical divergence measures arise out of the f -divergence; taking f (t) = t log t ,
f (t) = 1

2(
√

t − 1)2 or f (t) = |t − 1| yields (resp.) the KL-divergence, squared
Hellinger distance or total variation distance.

Central to our study of multiway hypothesis testing and classification is an un-
derstanding of relationships between multiple distributions. We use the following
generalization [11, 14] of the f -divergence to multiple distributions.

DEFINITION 2.1. Let P1, . . . ,Pk be probability distributions on a common σ -
algebra F over a set X . Let f : Rk−1+ → R be a closed convex function satisfying
f (1) = 0. Let μ be any σ -finite measure such that Pi � μ for all i, and let pi =
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dPi/dμ. The f -divergence between P1, . . . ,Pk−1 and Pk is

(8) Df(P1, . . . ,Pk−1‖Pk) :=
∫

f

(
p1(x)

pk(x)
, . . . ,

pk−1(x)

pk(x)

)
pk(x) dμ(x).

We must specify the value of the integrand (8) when pk(x) = 0. In this case, the
function f̃ : Rk+ → R defined, for an arbitrary t ′ ∈ rel int domf , by

(9) f̃ (t, u) =

⎧⎪⎪⎨⎪⎪⎩
uf (t/u) if u > 0,

lim
s→0

sf
(
t ′ − t + t/s

)
if u = 0,

+∞ otherwise,

is a closed convex function with value independent of t ′; f̃ is the closure of the
perspective function R+ × Rk � (u, t) 	→ uf (t/u) of f (see [15], Proposition
IV.2.2.2). Any time we consider the perspective we implicitly treat it as its clo-
sure (9).

We now enumerate a few properties of multiway f -divergences, showing how
they naturally generalize classical binary f -divergences. We focus on basic prop-
erties that are useful for our further results on Bayes risk, classification and hypoth-
esis testing and that parallel results in the binary case (7): they are well defined,
have continuity properties with respect to discrete approximations and satisfy data-
processing inequalities. While Györfi and Nemetz’s original work [14] essentially
contains the results, we carefully address infinite values [the closure (9)] and strict
convexity, and we use them as definitional building blocks; we provide all proofs
in the supplement [10], Section 10.

As our first step, we note that Definition 2.1 is independent of the base measure
μ. (See [10], Section 10.1, for a proof generalizing [14], Corollary 1.)

LEMMA 2.1. In expression (8), the value of the divergence does not depend
on the choice of the dominating measure μ. Moreover,

Df(P1, . . . ,Pk−1‖Pk) ≥ 0.

The inequality is strict if f is strictly convex at 1 and the Pi are not identical.

Given the importance of quantization to come, we now consider discrete ap-
proximations to the divergence. For an at most countable partition P of X into
measurable sets A, we define the partitioned f -divergence

Df(P1, . . . ,Pk−1‖Pk |P) = ∑
A∈P

f

(
P1(A)

Pk(A)
, . . . ,

Pk−1(A)

Pk(A)

)
Pk(A).

As in the binary case [17, 31], we have the following approximability result gener-
alizing [14], Theorem 6, to possibly infinite integrands: quantizers give arbitrarily
good approximations to f -divergences (see [10], Section 10.2, for a proof).
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PROPOSITION 1. If f is a closed convex function with f (1) = 0, then

Df(P1, . . . ,Pk−1‖Pk) = sup
P

Df(P1, . . . ,Pk−1‖Pk | P)

where the supremum is over finite partitions of X .

In the binary case, f -divergences satisfy data processing inequalities [7, 8, 17],
which state that processing or transforming an observation X drawn from the dis-
tributions P1,P2, decreases the divergence between them. To formalize this, recall
that Q is a Markov kernel from a set X to Z if Q(· | x) is a probability distribution
on Z for each x ∈ X , and for each measurable A ⊂ Z , the mapping x 	→ Q(A | x)

is measurable. The following general data processing inequality shows that this
holds in the multidistribution case as well, generalizing [14], Theorem 4, to possi-
bly infinite f and the closure (9); we provide a proof in [10], Section 10.3.

PROPOSITION 2. Let f be closed convex with f (1) = 0, Q be a Markov ker-
nel from X to Z , and define the marginals QP (A) = ∫

X Q(A | x)dP (x). Then

Df(QP1, . . . ,QPk−1‖QPk
) ≤ Df(P1, . . . ,Pk−1‖Pk).

This proposition is related to the relationships between risk, information and
quantization we develop in Sections 3 and 4. Defining a quantizer q to be a mea-
surable mapping q : X → Z between measurable spaces X and Z , the quantized
f divergence is

Df(P1, . . . ,Pk−1‖Pk | q) := sup
P

∑
A∈q−1(P)

f

(
P1(A)

Pk(A)
, . . . ,

Pk−1(A)

Pk(A)

)
Pk(A),

where P ranges over finite partitions of Z and q−1(P) = {q−1(B) | B ∈ P}. Propo-
sition 2 immediately yields that quantization reduces information: the indicator
Q(A | x) = 1{q(x) ∈ A} defines a Markov kernel, yielding the following.

COROLLARY 2. Let f be closed convex, satisfy f (1) = 0 and q be a quantizer
of X . Then

Df(P1, . . . ,Pk−1‖Pk | q) ≤ Df(P1, . . . ,Pk−1‖Pk).

We also see that if q1 and q2 are quantizers of X , and q1 induces a finer parti-
tion of X than q2, meaning that for x, x′ ∈ X the equality q1(x) = q1(x

′) implies
q2(x) = q2(x

′), we have

Df(P1, . . . ,Pk−1‖Pk | q2) ≤ Df(P1, . . . ,Pk−1‖Pk | q1).

This type of ordering is central to this work: any multiclass loss L induces a unique
f -divergence, and consistency of discriminants γ : X → Rk for a loss L after
quantization is intimately tied to the preservation (and relative ordering) of infor-
mation as related to the quantized risk (2).
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3. Risks, information measures and f -divergences. Having reviewed the
basic properties of f -divergences, we turn to a more detailed look at their re-
lationships with multiway hypothesis tests, multiclass classification, generalized
entropies and statistical information relating multiple distributions. We build a cor-
respondence between these that parallels that for binary experiments and classifi-
cation problems [17, 20, 24].

We first recapitulate the probabilistic model for classification and Bayesian hy-
pothesis testing problems from the Introduction. We have a prior π ∈ �k and prob-
ability distributions P1, . . . ,Pk defined on a set X . The coordinate Y ∈ [k] is drawn
according to a multinomial with probabilities π , and conditional on Y = y, we
draw X ∼ Py . Following DeGroot [9], we refer to this as an experiment. Associated
with any experiment is a family of information as follows. Let π̃ be the posterior
distribution on Y given observation X = x, π̃i(x) = πi dPi(x)/(

∑k
j=1 πj dPj (x)).

Given any closed concave H : Rk+ → R, which we refer to as generalized entropy
(see [13], Section 3.3; DeGroot [9] calls H an uncertainty function), the informa-
tion associated with the experiment is the reduction of entropy (uncertainty) from
prior to posterior (3),

IH (X;π) = H(π) −E
[
H

(
π̃(X)

)]
.

The expectation is taken over X ∼ ∑k
i=1 πiPi . That IH (X;π) ≥ 0 is immediate

by concavity; DeGroot [9], Theorem 2.1, shows that IH (X;π) ≥ 0 for all distri-
butions P1, . . . ,Pk and priors π if and only if H is concave on �k .

In this section, we develop equivalence results between multiclass classification
losses and risk, multiway f -divergences and entropy measures. Concretely, con-
sider L :Rk ×[k] →R, and recall the risk (1), defined as RL(γ ) = E[L(γ (X),Y )],
where γ ∈ 
, the set of measurable functions γ : X → Rk . As in equation (4)
in the Introduction, each loss L induces the entropy HL on �k via HL(π) =
infα∈Rk

∑k
i=1 πiL(α, i), also called the pointwise Bayes risk [11, 13, 24, 32].

In Section 3.1, we give an explicit inverse mapping showing how each gener-
alized entropy H is induced by (at least one) convex loss function L, that is,
L(·, i) is convex for each i. In Section 3.2, we illustrate consistency properties
the entropy H implies about the convex loss L inducing it. We connect these
results in Section 3.3 with multiway f -divergences. For any loss L and asso-
ciated entropy/Bayes risk HL, for all π ∈ �k there exists a convex function
fL,π : Rk−1+ → R with fL,π (1) = 0 such that the gap between the prior Bayes
L-risk—the best expected loss attainable without observing X—and the posterior
Bayes risk infγ RL(γ ) is

HL(π) − inf
γ∈


RL(γ ) = HL(π) −E
[
HL

(
π̃(X)

)] = DfL,π
(P1, . . . ,Pk−1‖Pk)

(see [11, 13]). The inverse direction is new, and given any closed convex function
f : Rk−1+ → R with f (1) = 0, we construct convex losses L(·, i), an associated
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generalized entropy HL, and prior π = 1/k ∈ �k satisfying

Df(P1, . . . ,Pk−1‖Pk) = inf
α∈Rk

k∑
i=1

πiL(α, i) − inf
γ∈


RL(γ ).

3.1. Generalized entropies and losses. We construct a natural bidirectional
mapping between losses and generalized entropies, giving a few examples to illus-
trate. For any loss L :Rk ×[k] → R, the construction (4) of HL yields a closed con-
cave function, as HL is the infimum of linear functionals of π . It is thus a general-
ized entropy [13] (or uncertainty function [9]), and the gap HL(π)−E[HL(π̃(X))]
between prior and posterior entropy is nonnegative. The following two examples
with zero-one loss are illustrative.

EXAMPLE 1 (Zero-one loss). Consider the zero one loss

Lzo(α, y) = 1{αy ≤ αj for some j �= y},
where y ∈ [k]. Then we have

HLzo(π) = inf
α

{
k∑

i=1

πi1{αi ≤ αj for some j �= i}
}

= 1 − max
j

πj .

This generalized entropy is concave, nonnegative and satisfies HLzo(π) = 0 if and
only if π = ei for a standard basis vector ei .

EXAMPLE 2 (Cost-weighted classification). In some scenarios, we allow dif-
ferent costs for classifying certain classes y as others; for example, it may be less
costly to misclassify a benign tumor as cancerous than the opposite. In this case,
we use a matrix C = [cyi]ky,i=1 ∈ Rk×k+ , where cyi ≥ 0 is the cost for classifying
an observation of class y as class i (i.e., assigning X ∼ Pi instead of Py in the
experiment). We assume cyy = 0 for each y and define

(10) Lcw(α, y) = max
i

{
cyi | αi = max

j
αj

}
, α ∈ Rk,

the maximal loss for those indices of α attaining maxj αj . Let C = [c1 · · · ck] be
the column representation of C. If cT

y π = minl c
T
l π , then by choosing any α such

that αy > αj for all j �= y, we have

HLcw(π) = inf
α

{
k∑

y=1

πy max
i

{
cyi | αi = max

j
αj

}}
= min

l
πT cl.

The entropy HLcw is concave, nonnegative and satisfies HLcw(ei) = 0 for standard
basis vectors ei ; Example 1 corresponds to C = 11T − Ik×k .



3256 J. DUCHI, K. KHOSRAVI AND F. RUAN

The forward mapping (4) from losses L to entropy HL is straightforward,
though it is many-to-one. Using convex duality and conjugacy arguments, we can
show an inverse mapping. This construction is new, though precursors for proper
scoring rules and predictions in the probability simplex exist (cf. [13] or [12], The-
orem 2); these characterize proper scoring rules, but it is not always clear how
to generate convex losses from these. Before stating the proposition, we recall the
definition (6) of the Fenchel conjugate f ∗(s) = supt {sT t − f (t)}.

PROPOSITION 3. For any closed concave H : �k →R, the losses

(11) L(·, i) :Rk →R, L(α, i) = −αi + (−H)∗(α),

i ∈ {1, . . . , k}, are closed, convex and satisfy the equality (4) that H ≡ HL.

PROOF. Standard Fenchel conjugacy relationships [15] imply

H(π) = inf
α∈Rk

{−πT α + (−H)∗(α)
}

where (−H)∗(α) = sup
π∈�k

{
αT π +H(π)

}
.

Defining L(α, i) = −αi + (−H)∗(α) for i = 1, . . . , k, we can write

H(π) = inf
α∈Rk

{−πT α + (−H)∗(α)
}

= inf
α∈Rk

{−πT α + πT 1 · (−H)∗(α)
}

= inf
α∈Rk

{
k∑

i=1

πiL(α, i)

}
.

�

Proposition 3 shows that associated with every concave entropy defined on the
simplex, there is at least one set of convex loss functions L(·, i) generating the
entropy via the infimal representation (4), and there is thus a mapping from loss
functions to entropies and from entropies to convex losses: given any loss L, we
may construct a convex loss Lcvx with HL = HLcvx . The mapping from entropies
H to loss functions generating H as in (4) is one-to-many, as any losses L(1) and
L(2) with the same range satisfy HL(1) = HL(2) .

3.2. Surrogate risk consistency and generalized entropies. Our construction
(11) of loss functions is a somewhat privileged construction, as it often yields de-
sirable properties of the convex loss function itself, especially as related to the
nonconvex zero-one loss. Indeed, it is often the case that the convex loss L so gen-
erated is Fisher consistent; to make this explicit, we recall the following definition
[28, 33].
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DEFINITION 3.1. Let L : Rk × [k] → R. Then L is classification calibrated
for the zero-one loss if for any π ∈ �k and i∗ such that πi∗ < maxj πj ,

(12) inf
α∈Rk

{
k∑

i=1

πiL(α, i)

}
< inf

α∈Rk

{
k∑

i=1

πiL(α, i) : αi∗ ≥ max
j

αj

}
.

Given a matrix C ∈ Rk×k+ as in Example 2, L is classification calibrated for the
cost matrix C if for any π ∈ �k and any i∗ with cT

i∗π > minj cT
j π ,

(13) inf
α∈Rk

{
k∑

i=1

πiL(α, i)

}
< inf

α∈Rk

{
k∑

i=1

πiL(α, i) : αi∗ ≥ max
j

αj

}
.

Tewari and Bartlett [28], Theorem 2, and Zhang [33], Theorem 3, show the
importance of Definition 3.1: let R(γ ) be the zero-one or cost-weighted risk (Ex-
amples 1–2). If L is lower-bounded, then it is classification calibrated (with respect
to zero-one or the cost-weighted loss) if and only if for any sequence γn : X →Rk

and distribution P on X × Y we have Fisher consistency, that is,

RL(γn) → inf
γ∈


RL(γ ) implies R(γn) → inf
γ∈


R(γ ).

That is, classification calibration (with respect to zero-one-risk or the cost-
weighted risk) is equivalent to surrogate risk consistency of the loss L. Because of
the predominance of the zero-one loss in the literature, we use “classification cali-
bration” without any qualification to mean “classification calibration with respect
to zero-one loss.”

We now show how—under minor restrictions on the generalized entropy func-
tion H—the construction (11) yields classification calibrated losses.

DEFINITION 3.2. A convex function f : Rk → R is (λ, κ,‖ · ‖)-uniformly
convex over C ⊂ Rk if it is closed and for all t ∈ [0,1] and x1, x2 ∈ C,

f
(
tx1 + (1 − t)x2

)
≤ tf (x1) + (1 − t)f (x2) − λ

2
t (1 − t)‖x1 − x2‖κ [(1 − t)κ−1 + tκ−1].

We say, without qualification, that f is uniformly convex on C if domf ⊃ C

and there exist λ > 0, a norm ‖ · ‖, and constant κ < ∞ such that Definition 3.2
holds; we say f is uniformly concave if −f is uniformly convex. Definition 3.2 is
an extension of the usual notion of strong convexity, which holds when κ = 2, and
is essentially a quantified notion of strict convexity.

With this definition, we have the following two propositions. These two proposi-
tions, whose proofs we provide in [10], Section 7, show that generalized entropies
naturally give rise to classification calibrated loss functions; we provide examples
of these results in Section 3.4 to come.
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PROPOSITION 4. Assume that H is closed concave, symmetric and has
domH = �k , and let L have definition (11). Additionally, assume that (a) H is
strictly concave, and infα

∑k
i=1 πiL(α, i) is attained for all π ∈ �k , or (b) H is

uniformly concave. Then L is classification calibrated.

Even when H is not strictly concave, we can give classification calibration re-
sults. Indeed, recall Example 1, which showed that for the zero-one-loss, we have
HL(π) = 1 − maxj πj .

PROPOSITION 5. Let H(π) = 1−maxj πj . The loss (11) defined by L(α, i) =
−αi + (−H)∗(α) is classification calibrated. Moreover, we have for any π ∈ �k

and α ∈Rk that

k∑
i=1

πiL(α, i) − inf
α

k∑
i=1

πiL(α, i) ≥ 1

k

(
k∑

i=1

πiL
zo(α, i) − inf

α

k∑
i=1

πiL
zo(α, i)

)
.

3.3. Divergences, risk and generalized entropies. In this section, we show that
f -divergences as in Definition 2.1 have a precise correspondence with generalized
entropies and losses; [11] establish the correspondence between f -divergences
and entropy/pointwise Bayes risk H ; our results show the important link from
f directly to the loss L. We begin as in equation (4) with a concave generalized
entropy H and loss L satisfying H(π) = infα∈Rk

∑k
i=1 πiL(α, i); by Proposition 3

it is no loss of generality to assume this correspondence. Let 
 be the collection of
measurable functions γ : X →Rk . The posterior Bayes risk for L is

HL(π,P1:k) := inf
γ∈


∫
X

k∑
i=1

πiL
(
γ (x), i

)
dPi(x) = E

[
HL

(
π̃(X)

)]
,(14)

where π̃(x) is the posterior distribution on Y conditional on X = x. The infor-
mation measure (3) is thus the gap between the prior Bayes L-risk and posterior
Bayes L-risk. We may then write

inf
α∈Rk

k∑
i=1

πiL(α, i) − inf
γ∈


RL(γ )

= HL(π) − HL(π,P1:k)
= IHL

(X;π)

=
∫
X

sup
α

(
HL(π) −

k−1∑
i=1

πiL(α, i)
dPi

dPk

− πkL(α, k)

)
dPk

= DfL,π
(P1:k−1‖Pk),
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where the closed convex function fL,π : Rk−1+ → R has definition

(15) fL,π (t) := sup
α∈Rk

(
HL(π) −

k−1∑
i=1

πiL(α, i)ti − πkL(α, k)

)
.

As fL,π is the supremum of affine functions of its argument t , it is closed convex
and fL,π (1) = HL(π) − HL(π) = 0. That is, equation (15) shows that given any
loss L or generalized entropy H , the information measure IHL

(X;π), gap between
prior and posterior L-risk and fL,π -divergence between distributions P1, . . . ,Pk−1
and Pk are identical.

We can also give a converse result that shows that every f -divergence can be
written as the gap between prior and posterior risks for a convex loss function. We
first recall the result that Df(P1:k−1‖Pk) is a statistical information (3) based on
an generalized entropy H associated with f . Except for the closure operation, this
result is known (see [11], Theorem 3).

PROPOSITION 6. For closed convex f :Rk−1 → R with f (1) = 0, let

H(t1, . . . , tk) = −ktkf

(
t1

tk
, . . . ,

tk−1

tk

)
,

where we implicitly use the closure of the perspective [Definition (9)]. Then

Df(P1, . . . ,Pk−1‖Pk) = H(1/k) −E
[
H

(
π̃(X)

)]
,

where the prior π = 1/k and the expectation is taken according to
∑

i πiPi .

By combining Propositions 3 and 6 with the infimal representation (4) of HL,
we immediately obtain the following corollary, which is our explicit construction
of a closed convex loss from an f -divergence.

COROLLARY 3. Let π0 = 1/k. For any closed and convex function f :
Rk−1 → R such that f (1) = 0, the convex losses defined by

L(α, i) = −αi + sup
π∈�k

{
πT α − kπkf

(
π1

πk

, . . . ,
πk−1

πk

)}

satisfy f (t) = supα{HL(π0)−∑k−1
i=1 π0

i L(α, i)ti −π0
k L(α, k)}, equation (15). Ad-

ditionally,

Df(P1:k−1‖Pk) = inf
α∈Rk

k∑
i=1

π0
i L(α, i) − inf

γ
E
[
L
(
γ (X),Y

)]
,

where the expectation is over Y ∼ π0 and X ∼ Py conditional on Y = y.



3260 J. DUCHI, K. KHOSRAVI AND F. RUAN

For binary classification problems, Nguyen et al. [20], Theorem 1, provide
an explicit construction of a closed convex margin-based loss inducing the f -
divergence as in equation (15); the binary case allows a complete characterization
of all such convex functions, which appears difficult in the multiclass case.

Corollary 3, coupled with the information representation given by the f -
divergence (15), shows the complete equivalence between f -divergences, loss
functions L and entropies H . For any f -divergence, there exists a loss function L

and prior π = 1/k such that Df(P1:k−1‖Pk) = HL(π) − HL(π,P1:k). Conversely,
for any loss function L and prior π , there exists a multiway f -divergence such that
the gap HL(π) − HL(π,P1:k) = Df(P1:k−1‖Pk).

3.4. Examples of generalized entropies and loss correspondences. To com-
plement our general results, we illustrate the correspondence between (concave)
generalized entropies and the loss construction (11) through several examples, us-
ing Propositions 4 and 5 to guarantee classification calibration.

EXAMPLE 3 (Zero-one loss, Example 1, continued). We use the generalized
entropy H(π) = 1 − maxj πj generated by the zero-one loss to derive a convex
loss function L that gives the same entropy via the representation (4). The conju-
gate to −H is

(16) (−H)∗(α) = 1 + max
{
α(1) − 1,

α(1) + α(2)

2
− 1

2
, . . . ,

∑k
i=1 α(i)

k
− 1

k

}
,

where α(1) ≥ α(2) ≥ · · · are the entries of α ∈ Rk in sorted order (see [10], Sec-
tion 7.5, for a proof). Then the convex “family-wise” loss, named for its similarity
to family-wise error control in hypothesis tests,

Lfw(α, i) = 1 − αi + max
l∈{1,...,k}

{
1

l

l∑
j=1

α(j) − 1

l

}
generates the same entropy HLfw and associated f -divergence as the zero-one loss.
Moreover, Proposition 5 guarantees that Lfw is classification calibrated (Defini-
tion 3.1). It appears that the loss Lfw is a new convex classification-calibrated loss
function.

Rather than reconsidering Example 2, which we do later in the context of show-
ing that distinct convex losses can yield the same generalized entropy, we now
consider the multiclass logistic loss. The loss does not correspond to the zero-one
loss, but it generates Shannon entropy and information.

EXAMPLE 4 (Logistic loss and entropy). For 1 ≤ i ≤ k, define pi(α) =
eαi /

∑k
j=1 eαj . The multiclass logistic loss is then

L(α, i) = − logpi(α) = log

(
k∑

j=1

eαj−αi

)
for 1 ≤ i ≤ k.
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The entropy associated with the loss is the familiar Shannon entropy,

(17) HL(π) = inf
α∈Rk

{
−

k∑
i=1

πi logpi(α)

}
= −

k∑
i=1

πi logπi.

The conjugacy calculation (11) (i.e., our inverse construction from H to loss L)
to generate L also yields the multiclass logistic loss. That the multiclass logistic
loss is calibrated for the zero-one loss [33], Section 4.4, is now immediate: the
negative Shannon entropy is strongly convex over the simplex �k (this is Pinsker’s
inequality [7], Chapter 17.3), so the fact that logistic loss and Shannon entropy
are dual via equation (11) and Proposition 4 yield calibration. The information
measure (3) associated with the logistic loss is the mutual information between the
observation X and label Y . Indeed, we have

IH (X;π) = H(π) −E
[
H

(
π̃(X)

)]
= H(Y) −

∫
X

H(Y | X = x)dP (x)

= H(Y) − H(Y | X) = I (X;Y),

where H denotes the Shannon entropy, P = ∑k
i=1 πiPi and I (X;Y) is the usual

(Shannon) mutual information between X and Y .

We include one final example to show that in some instances, many different
convex losses can yield the same generalized entropy H .

EXAMPLE 5 (Hinge losses). Define the pairwise multiclass hinge loss

Lhin(α, i) = ∑
j �=i

[1 + αj ]+ + I
{
1T α = 0

}
.

We also consider the slight extension to weighted loss functions to address asym-
metric losses of the form (10) from Example 2. In this case, given the loss matrix
C ∈ Rk×k+ , we set

Lhin(α, i) =
k∑

j=1

cij [1 + αj ]+ + I
{
1T α = 0

}
.

The loss L(α, i) = ∑
j �=i cij [1 + αj − αi]+ yields a completely identical set of

calculations without the restriction 1T α = 0, as it is invariant to shifts. A calcu-
lation (see [10], Section 7.6, for completeness) shows the generalized entropy (4)
associated with the hinge loss with loss matrix C = [c1 · · · ck] is

(18) HLhin(π) = inf
α∈Rk

{
k∑

i=1

πiL
hin(α, i)

}
= k min

l
πT cl.
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Such losses satisfy a number of classification calibration guarantees; we note
one, essentially due to Zhang [33], Theorem 8. For completeness, we provide a
proof in [10], Section 7.4.

OBSERVATION 1. Let φ : R → R be any bounded below convex function,
differentiable on (−∞,0], with φ′(0) < 0. Then L(α,y) = ∑k

i=1 cyiφ(−αi) is
classification calibrated for the cost matrix C [Definition 3.1, equation (13)].

Taking C = 11T − Ik×k , we see that the hinge loss is calibrated for the zero-one
loss (Example 1); taking arbitrary C ∈ Rk×k+ , the weighted hinge loss is calibrated
for the cost matrix C. Even more, we have the following quantitative calibration
guarantee in analogy with Proposition 5:

k∑
i=1

πiL
hin(α, i) − inf

α′

k∑
i=1

πiL
hin(α′, i

)

≥
k∑

i=1

πiL
cw(α, i) − inf

α′

k∑
i=1

πiL
cw(

α′, i
)

for all π ∈ �k and α ∈ Rk , strengthening Observation 1. (We prove this as
Lemma 7.9 [10], Section 7.7.) In the binary case, similar quantitative guarantees
hold for any margin-based classification calibrated loss L for which HL = HLzo

(cf. [20], Lemma 2); we do not know if this extends to the multiclass case.

4. Comparison of loss functions. In Section 3, we demonstrated the corre-
spondence between loss functions, generalized entropies, statistical information,
f -divergences and (in restricted cases) classification calibration. These correspon-
dences assume that decision makers have access to the entire observation X, which
is often not the case; as noted in the Introduction, it is often beneficial to pre-
process data to make it lower dimensional, communicate or store it efficiently or
to improve statistical behavior. Thus, we now explore the impact quantization has
on these concepts.

To motivate this further, consider that each of the family-wise loss Lfw of Exam-
ple 3, logistic loss (Example 4) and any loss of the form L(α,y) = ∑

i �=y φ(−αi)

for φ convex and decreasing with φ′(0) < 0 (Example 5, Observation 1) is classi-
fication calibrated. This relates to one of the major criticisms of classification cali-
bration: if the Bayes classifier (minimizer of risk over all functions X →Rk) does
not belong to the class of functions considered, classification calibration says little.
In this context, we shed light on this issue by identifying losses that are consistent
(calibrated) even with the additional selection of quantizer or data representation—
a restriction of the class of possible functions as in the implication (5) in the Intro-
duction.
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4.1. A model of quantization and experimental design. We extend Nguyen et
al.’s approach in the binary case [20] to the multiclass case by treating the design
of an experiment or choice of data representation as a quantization problem, where
a quantizer q maps the space X to a measurable space Z . Then, for a loss L, prior
π ∈ �k on the label Y , and discriminant γ : Z → Rk , we consider the quantized
risk (2), which we recall is

RL,π(γ | q) := E
[
L
(
γ
(
q(X)

)
, Y

)]
.

Given class-conditional distributions P1:k (equivalently, hypotheses Hi : Pi in the
Bayesian testing setting) and collection Q of quantizers, our criterion is to choose
the quantizer q that allows the best attainable risk. That is, we consider the quan-
tized Bayes L-risk, defined as the infimum of the risk (2) over discriminants

 = {γ : Z →Rk},

(19) inf
γ∈


RL,π(γ | q) =
∫
Z

inf
α

k∑
i=1

πiL(α, i) dP
q
i (z),

where P q(A) = P(q−1(A)) denotes the push-forward measure. The risk (19) mea-
sures the best attainable risk for a fixed choice of q ∈ Q; one thus seeks the design
q giving the lowest quantized Bayes L-risk.

Whether for computational or analytic reasons, minimizing the loss (19) is of-
ten intractable; the zero-one loss Lzo (Example 1), for example, is non-convex
and discontinuous. It is thus of interest to understand the asymptotic consequences
of using a surrogate loss L in place of the desired loss (say Lzo) [2, 19, 28, 33],
including the setting in which one incorporates further dimension reduction via
the choice q ∈ Q. [20] introduce and study this problem for binary classification,
giving a correspondence between f -divergences, loss functions and surrogate con-
sistency with quantization. The consequences of using a surrogate for consistency
of the resulting quantization and classification procedure in the multiclass case are
a-priori unclear: we do not know when using such a surrogate can be done without
penalty. To that end, we now characterize when two loss functions L(1) and L(2)

provide equivalent criteria for choosing quantizers (experimental designs or data
representations) according to the Bayes L-risk (19).

4.2. Universal equivalence of loss functions. Recalling our arguments in Sec-
tion 3.3 that statistical information (the gap between prior and posterior risks) is
a multiway f -divergence between distributions P1, . . . ,Pk−1 and Pk , we give a
quantized version of this construction. In analogy with the results of Section 3.3,
the quantized statistical information is

IHL
(X;π | q) := HL(π) −E

[
HL

(
π̃
(
q(X)

))]
= inf

α∈Rk

k∑
i=1

πiL(α, i) − inf
γ

RL,π (γ | q)

= DfL,π
(P1, . . . ,Pk−1‖Pk | q),

(20)
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where HL(π) = infα∈Rk

∑k
i=1 πiL(α, i) as in (4), the convex function fL,π is de-

fined as in expression (15) and does not depend on the quantizer q, and π̃(q(X))

denotes the posterior distribution on Y ∈ [k] conditional on observing q(X). We
extend Nguyen et al.’s notion of universal equivalence from the binary case, defin-
ing losses as equivalent if they induce the same ordering of quantizers q under the
information measure (20).

DEFINITION 4.1. Loss functions L(1) and L(2) are universally equivalent for
the prior π , denoted L(1) u≡π L(2), if for any distributions P1, . . . ,Pk on X and
quantizers q1 and q2:

I (X,π;HL(1) | q1) ≤ I (X,π;HL(1) | q2) if and only if

I (X,π;HL(2) | q1) ≤ I (X,π;HL(2) | q2).

Definition 4.1 evidently is equivalent to the ordering condition

inf
γ

RL(1),π (γ | q1) ≤ inf
γ

RL(1),π (γ | q2) if and only if

inf
γ

RL(2),π (γ | q1) ≤ inf
γ

RL(2),π (γ | q2),
(21)

for all distributions P1, . . . ,Pk , on the quantized Bayes L-risk (19). This defini-
tion is somewhat stringent: losses are universally equivalent only if they induce
the same quantizer ordering for all population distributions. If a quantizer q1 is
finer than q2, all losses yield I (X,π;HL | q2) ≤ I (X,π;HL | q1) by the data pro-
cessing inequality (Corollary 2 of Section 2). The stronger equivalence notion is
important for nonparametric classification settings in which the underlying distri-
bution on (X,Y ) is only weakly constrained and neither of a pair of quantizers
q1,q2 ∈ Q is finer than the other.

Definition 4.1 and the representation (20) suggest that the entropy function
HL associated with the loss L through the infimal representation (4) and the f -
divergence associated with L via the construction (15) are important for the equiv-
alence of two loss functions. This is indeed the case. First, we have the follow-
ing result on universal equivalence of loss functions based on their associated en-
tropies.

THEOREM 1. Let L(1) and L(2) be bounded below losses and HL(1) and HL(2)

be the associated generalized entropies as in the construction (4). Then L(1) and
L(2) are universally equivalent with respect to all priors π if and only if there exist
a > 0, b ∈ Rk , and c ∈R such that for all π ∈ �k ,

HL(1) (π) = aHL(2) (π) + bT π + c.

We can also characterize universal equivalence for a prior π .



MULTICLASS CLASSIFICATION, INFORMATION AND SURROGATE RISK 3265

THEOREM 2. Let π ∈ �k and as in Theorem 1 and let L(1) and L(2) be
bounded below loss functions, with f

(1)
π and f

(2)
π the associated f -divergences

as in the construction (15). Then L(1) and L(2) are universally equivalent with
respect to the prior π if and only if there exist a > 0, b ∈ Rk−1, and c ∈ R such
that

(22) f (1)
π (t) = af (2)

π (t) + bT t + c for all t ∈Rk−1+ .

Nguyen et al. [20] prove Theorem 2 for binary classification problems (k =
2), using convex-conjugacy arguments. We outline our proofs (which apply for
arbitrary k and so require a different set of tools) in Section 5.

4.3. Consistency of empirical risk minimization. A major application of these
theorems is to show that certain nonconvex loss functions (such as the zero-one
loss) are universally equivalent to convex loss functions, including variants of the
hinge loss, by showing that their associated entropies are scalar multiples. As a
first application of Theorems 1 and 2, however, we consider the Bayes consis-
tency of empirical risk minimization for selecting a discriminant γ and quan-
tizer q (in analogy with [20], Theorem 2). In this case, we receive a sample
{(X1, Y1), . . . , (Xn,Yn)} and define the empirical risk

R̂L,n(γ | q) := 1

n

n∑
i=1

L
(
γ
(
q(Xi)

)
, Yi

)
.

Now, let Q1 ⊂ Q2 ⊂ · · · ⊂ Q be a nondecreasing collection of quantizers, indexed
by sample size n, and similarly let 
1 ⊂ 
2 ⊂ · · · ⊂ 
 be a nondecreasing collec-
tion of discriminant functions, where we assume the collections satisfy the estima-
tion and approximation error conditions

E
[

sup
γ∈
n,q∈Qn

∣∣R̂L,n(γ | q) − RL(γ | q)
∣∣] ≤ εest

n ,

inf
γ∈
n,q∈Qn

RL(γ | q) − inf
γ∈
,q∈Q

RL(γ | q) ≤ εapp
n ,

(23)

where εest
n → 0 and ε

app
n → 0 as n → ∞. Additionally, let R be the risk functional

for the cost-weighted misclassification loss Lcw (Example 2), where Lcw(α, y) =
maxi{cyi | αi = maxj αj }. Then we have the following result.

THEOREM 3. Assume the conditions (23) and that γn and qn are approximate
empirical L-risk minimizers satisfying

εopt
n := E

[
R̂L,n(γn | qn) − inf

γ∈
n,q∈Qn

R̂L,n(γ | q)
]
→ 0 as n → ∞.

Let R�(Q) = infγ∈
,q∈Q R(γ | q). If the loss L is classification calibrated and uni-
versally equivalent to the cost-weighted loss Lcw, then

R(γn | qn) − R�(Q)
L1→ 0.
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Theorem 3 guarantees that under the estimation and approximation conditions
(23), empirical risk minimization is consistent for minimizing the quantized Bayes
risk whenever the loss L is classification calibrated and equivalent to the desired
loss. The proof of Theorem 3 reposes on the following risk inequality, which may
be of independent interest. The lemma is a consequence of the results on surrogate
risk consistency for classification calibration [27, 28, 33] and our universal equiv-
alence guarantees that exhibits the power of calibration and universal equivalence.

LEMMA 4.1. Assume L is classification-calibrated and universally equivalent
to the weighted misclassification loss Lcw with cost matrix C ∈ Rk×k+ . Then there
exists a continuous concave function h with h(0) = 0 such that

R(γ | q) − inf
γ∈
,q∈Q

R(γ | q) ≤ h
(
RL(γ | q) − inf

q∈Q
R�

L(q)
)
.

With the choice L(α,y) = ∑k
i=1 cyi[1 + αi]+ + I{1T α = 0} or L(α,y) =∑k

i=1 cyi[1 + αi − αy]+, we may take h(ε) = (1 + 1
k
)ε, that is,

R(γ | q) − inf
γ∈
,q∈Q

R(γ | q) ≤
(

1 + 1

k

)[
RL(γ | q) − inf

γ∈
,q∈Q
RL(γ | q)

]
.

Lemma 4.1 shows that the gap in surrogate risk provides a guaranteed upper
bound on the true cost-weighted risk; in the case of the modified hinge losses of
Example 5, this gap is linear. In the binary case, even stronger results are pos-
sible [20]—one may take h(ε) = aε (for some a < ∞) in Lemma 4.1 for any
margin-based classification-calibrated loss universally equivalent to the 0–1 loss.
This relies on the specific form any such binary convex loss must take (see equa-
tion (9) of [20]); our Examples 3 (the family-wise loss) and 5 show that fairly
different-looking losses can be classification calibrated and universally equivalent
to zero-one loss. We provide the proof of Lemma 4.1 in [10], Section 9.1. Theo-
rem 3, which we prove in [10], Section 9.2, is then a consequence of this lemma
and Theorem 1.

4.4. Examples of universal equivalence. In this section, we give several ex-
amples that build off of Theorems 1 and 2, showing that there exist convex losses
that allow optimal joint design of quantizers (or measurement strategies) and dis-
criminant functions, opening the way for potentially efficient convex optimization
strategies. To that end, we give two hinge-like loss functions that are universally
equivalent to the zero-one loss for all prior distributions π . We also give exam-
ples of classification calibrated loss functions that are not universally equivalent to
the zero-one loss, although minimizing them without quantization yields Bayes-
optimal classifiers.

EXAMPLE 6 (Cost-weighted losses). We return to Example 5, where we have
Lhin(α, i) = ∑

j �=i cij [1 + αj ]+ + I{1T α = 0}. In this case, we have HLhin(π) =
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k minl π
T cl = kHLcw(π), where Lcw denotes the cost-weighted misclassification

error as in Example 2. Theorem 1 immediately guarantees that the (weighted)
hinge loss is universally equivalent to the (weighted) 0–1 loss. The weighted hinge
loss Lhin is also, as in Example 5, calibrated for the cost-weighted misclassification
error.

EXAMPLE 7 (Max-type losses and zero-one loss). We return to Example 3
and let Lfw(α, i) = 1 − αi + max{α(1) − 1,

α(1)+α(2)

2 − 1
2 , . . . , 1T α

k
− 1

k
}, the con-

vex family-wise loss. By Example 3, the associated entropy is HLfw(π) = 1 −
maxj πj = HLzo for π ∈ �k , and Proposition 5 shows that Lfw is classification
calibrated. We thus have that Lfw and the zero-one loss Lzo are universally equiv-
alent by Theorems 1 and 2.

For our final example, we consider the logistic loss, which is classification cali-
brated but not universally equivalent to the zero-one loss.

EXAMPLE 8 (Logistic loss). The loss Llog(α, i) = log(
∑k

j=1 eαj−αi ) has

(Shannon) entropy H(π) = −∑k
i=1 πi logπi , as in Example 4. There are no a, b, c

such that HLzo(π) = 1 − maxj πj = aHLlog(π) + bT π + c for all π ∈ �k . Theo-
rem 1 shows that the logistic loss is not universally equivalent to the zero-one loss.
That is, in spite of its classification calibration, there are distributions P1, . . . ,Pk ,
a collection Q of quantizers X → Z , and a sequence γn : Z → Rk such that
RLlog(γn | qn) → infγ,q∈Q RLlog(γ | q), but RLzo(γn | qn) �→ infγ,q∈Q RLzo(γ | q).

5. Proof of the Theorems 1 and 2. The remainder of the main body of the
paper consists of the major parts of our arguments for Theorems 1 and 2. We divide
the proof of the theorems into two parts. The “if” part is straightforward; the “only
if” is substantially more complex.

Proof (if direction). We give the proof for Theorem 2; that for Theorem 1 is
identical. Assume that domf

(1)
π = domf

(2)
π and there exist a > 0, b ∈ Rk−1, and

c ∈ R such that equation (22) holds. By Definition 2.1 of multiway f -divergences,
for any quantizer q, we have

D
f

(1)
π

(P1, . . . ,Pk−1‖Pk | q) = aD
f

(2)
π

(P1, . . . ,Pk−1‖Pk | q) + bT 1 + c,

as
∫
X dPi = 1. Applying the relationship (20), we obtain

I (X,π;HL(1) | q) = aI (X,π;HL(2) | q) + bT 1 + c.

As a > 0, the universal equivalence of L(1) and L(2) follows immediately.
We turn to the “only if” part of the proofs of Theorems 1 and 2. A roadmap

is as follows: we first define what we call order equivalence of convex functions,
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which is related to the equivalence of f -divergences and generalized entropies
(Definition 5.1). Then, for any two loss functions L(1) and L(2) that are universally
equivalent, we show that the associated entropies HL(1) and HL(2) , as constructed
in the infimal representation (4), and the functions f (1) and f (2) generating the f -
divergences via expression (15), are order equivalent (Lemmas 5.1 and 5.2). After
this, we provide a characterization of order equivalent closed convex functions
(Lemma 5.3), which is the linchpin of our analysis. The lemma shows that for any
two order equivalent closed convex functions f1 and f2 with domf1 = domf2,
there are parameters a > 0, b ∈ Rk , and c ∈ R such that f (1)(t) = af (2)(t)+bT t +
c for all t ∈ domf1 = domf2. This proves the “only if” part of the Theorems 1
and 2, yielding the desired result. We present the main parts of the proof in the
body of the paper, deferring technical nuances to the supplement [10].

5.1. Universal equivalence and order equivalence. By Definition 4.1 [and its
equivalent variant stated (21)], universally equivalent losses L(1) and L(2) induce
the same ordering of quantized information measures and f -divergences. The next
definition captures this ordering slightly differently.

DEFINITION 5.1. Let f1 : � → R and f2 : � → R be closed convex func-
tions, where � ⊂ Rk is closed convex. Let m ∈ N be arbitrary and the matrices
A,B ∈ Rk×m satisfy A1 = B1, where A has columns ai ∈ � and B has columns
bi ∈ �. Then f1 and f2 are order-equivalent if for all m ∈ N and all such matrices
A and B we have

(24)
m∑

j=1

f1(aj ) ≤
m∑

j=1

f1(bj ) if and only if
m∑

j=1

f2(aj ) ≤
m∑

j=1

f2(bj ).

As the above context suggests, order equivalence has strong connections with
universal equivalence of loss functions L and associated f -divergences and gen-
eralized entropies. The next two lemmas make this explicit.

LEMMA 5.1. If losses L(1) and L(2) are lower bounded and universally equiv-
alent, then the associated entropies of the construction (4) are order equivalent
over �k ⊂ Rk+.

PROOF. Let Hi be the entropy (pointwise Bayes risk) associated with L(i),
noting that domH1 = domH2 = �k because infπ∈�k

Hi(π) > −∞. Let the
matrices A = [a1 · · · am] ∈ Rk×m+ and B ∈ Rk×m+ satisfy ai, bi ∈ �k for each
i = 1, . . . ,m, and let v = 1

m
A1 = 1

m
B1 ∈ �k . We show that

∑m
j=1 H1(aj ) ≤∑m

j=1 H1(bj ) if and only if
∑m

j=1 H2(aj ) ≤ ∑m
j=1 H2(bj ), that is, expression (24)

holds, by constructing appropriate distributions P1:k and π , then applying the uni-
versal equivalence of L(1) and L(2).
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Let M0 be any integer large enough that v0 = 1
k
(1 + 1

M0
)1 − 1

M0
v ∈ Rk+, so that

v0 ∈ �k . Then define the vectors ã1 = v0, . . . , ãmM0 = v0, and let

Aext = [
a1 · · · am ã1 · · · ãmM0

] ∈ Rk×M+ and

Bext = [
b1 · · · bm ã1 · · · ãmM0

] ∈ Rk×M+ ,

where M = (M0 + 1)m. These satisfy Aext1 = Bext1 = M
k

1. We let aext and bext

denote the columns of these extended matrices.
Now, let the spaces X = [M] × [M] and Z = [M]. Define quantizers q1,q2 :

X → Z by q1(i, j) = i and q2(i, j) = j . For l = 1, . . . , k, define the distributions
Pl on X by

Pl(i, j) = k2

M2 · aext
il bext

j l , so
M∑

j=1

Pl(i, j) = k

M
aext
il

k

M

M∑
j=1

bext
j l = k

M
aext
il

and similarly
∑

i Pl(i, j) = k
M

bext
j l . Let π = 1

k
1 be the uniform prior distribution

on the label Y ∈ {1, . . . , k}, and note that the posterior probability

π̃
(
q−1

1

({i})) =
[

πl

∑
j Pl(i, j)∑

l′ πl′
∑

j Pl(i, j)

]k

l=1
=

[
aext
il∑

l′ a
ext
il′

]k

l=1
= aext

i ∈ �k,

because Pl(q
−1
1 (i)) = ∑

j Pl(i, j) = k
M

aext
il , and similarly π̃ (q−1

2 ({j})) = bext
j ∈

�k . Taking the expectation over X ∼ ∑k
l=1 πlPl , we have

E
[
HL

(
π̃
(
q−1

1

(
q1(X)

)))] = 1

k

∑
i,l

Pl

(
q−1

1 (i)
)
HL

(
π̃
(
q−1

1 (i)
))

= 1

M

M∑
i=1

HL

(
aext
i

)
,

because
∑

l a
ext
il = 1. Similarly, E[HL(π̃(q−1

2 (q2(X))))] = 1
M

∑M
j=1 Hπ(bext

j ). Re-
calling the definitions (3) and (20) of the (quantized) information associated with
H , we have I (X,π;H | q1) = H(π) − 1

M

∑M
i=1 H(aext

i ) and I (X,π;H | q2) =
H(π) − 1

M

∑M
i=1 H(bext

i ). Then the universal equivalence of losses L(1) and L(2)

immediately implies for π = 1
k
1 that

H1(π) − 1

M

M∑
i=1

H1
(
aext
i

) ≤ H1(π) − 1

M

M∑
i=1

H1
(
bext
i

)
iff

H2(π) − 1

M

M∑
i=1

H2
(
aext
i

) ≤ H2(π) − 1

M

M∑
i=1

H2
(
bext
i

)
.
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Noting that aext
i = bext

i for each i ≥ m + 1, we rearrange the preceding equivalent
statements by adding 1

M

∑
i≥m+1 H(aext

i ) to each side to obtain that the Hi satisfy
inequality (24). �

For f -divergences, a parallel result is possible; as the techniques are similar to
those we use to prove Lemma 5.1 (by constructing an explicit discrete space X
and quantizers q), we defer the proof to [10], Section 8.1.

LEMMA 5.2. If losses L(1) and L(2) are universally equivalent for the prior π

(Definition 4.1) and lower-bounded, the corresponding f -divergences fL(1),π and
fL(2),π of construction (15) are order equivalent.

5.2. Characterization of the order equivalence of convex functions. Lem-
mas 5.1 and 5.2 illustrate the intrinsic relationship between the universal equiv-
alence (Definition 4.1) of losses and the order equivalence (Definition 5.1) of their
associated generalized entropies and f -divergences. Therefore, it is natural to ask
when convex functions are order equivalent. The lemma below characterizes this
order equivalence, and coupled with Lemmas 5.1 and 5.2, it immediately implies
Theorems 1 and 2.

LEMMA 5.3. Let f1, f2 : � → R be closed convex functions, where � ⊂ Rk

is a convex set. Then f1 and f2 are order equivalent on � if and only if there exist
a > 0, b ∈ Rk , and c ∈ R such that for all t ∈ �

(25) f1(t) = af2(t) + bT t + c.

While the proof of Lemma 5.3 is complex, we provide a partial proof high-
lighting the most important parts of the argument, deferring technical details to
the supplement. The essential idea is that Lemma 5.3 holds for simplices (and so
it certainly holds for HL); we can then cover any convex set � with a number of
overlapping simplices to extend the result to all of �, which we do fully in [10],
Section 8.2. To demonstrate Lemma 5.3 for simplices, we require the following.

DEFINITION 5.2. Vectors u0, u1, . . . , um are affinely independent if

u1 − u0, u2 − u0, . . . , um − u0,

are linearly independent. A set E ⊂ Rk is a simplex if E = Conv{u0, u1, . . . , uk}
where u0, . . . , uk are affinely independent.

Then the essential special case of Lemma 5.3 is the following result.

LEMMA 5.4. Let E = Conv{u0, . . . , uk} ⊂ � where u0, . . . , uk are affinely
independent. If f1 and f2 are order equivalent, then there exist a > 0, b ∈ Rk , and
c ∈ R such that

f1(t) = af2(t) + bT t + c for all t ∈ E.
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The proof of Lemma 5.4 proceeds in a series of intermediate results, which we
provide in turn, with proofs in [10], Section 8.3. Our first step is to argue that we
need only prove equivalence results for convex functions on dense subsets of their
domains.

LEMMA 5.5 ([15], Proposition IV.1.2.5). Let f1, f2 : � →R be closed convex
and satisfy f1(t) = f2(t) for t in a dense subset of �. Then f1 = f2 on �.

The first technical lemma we prove is essentially a direct consequence of the
definition of order equivalence.

LEMMA 5.6. Let u1, . . . , um ∈ �, α ∈ Qm satisfy 1T α = 1, and v ∈ � with
v = ∑m

i=1 αiui . If f1, f2 : � →R are order equivalent, then

m∑
i=1

αif1(ui) ≤ f1(v) if and only if
m∑

i=1

αif2(ui) ≤ f2(v).

Thus if α ∈Qn satisfies 1T α = 1 and u1, . . . , un ∈ �, then

(26) f1

(
n∑

i=1

αiui

)
=

n∑
i=1

αif1(ui) iff f2

(
n∑

i=1

αiui

)
=

n∑
i=1

αif2(ui).

The next lemma shows that we can force equality (25) to hold for the k + 1
extreme points and centroid of any simplex in Rk ; it is intuitive because there are
k + 2 free parameters in the choices of a > 0, b ∈ Rk , and c ∈ R.

LEMMA 5.7. Let f1, f2 : � → R be closed convex and let u0, . . . , uk ∈ � be
affinely independent. There exist a > 0, b ∈ Rk , and c such that f1(u) = af2(u) +
bT u + c for u ∈ {u0, . . . , uk, ucent}, where ucent = 1

k+1
∑k

i=0 ui .

Lastly, we have the following characterization of the linearity of convex func-
tions over convex hulls.

LEMMA 5.8. Let f : � → R be convex with u1, . . . , um ∈ � and ucent =
1
m

∑m
i=1 ui . If f (ucent) = 1

m

∑m
i=1 f (ui), then

f

(
m∑

i=1

λiui

)
=

m∑
i=1

λif (ui) for all λ ∈ Rm+ with 1T λ = 1.

With the four Lemmas 5.5–5.8, we can now prove Lemma 5.4. By rotating with
ui − u0 and shifting by u0, it is no loss of generality to assume that the func-
tions fi are defined on V = {v ∈ Rk+ | 1T v ≤ 1}, so that f1 and f2 are continuous,
defined, convex and order equivalent on V . We make one further reduction. Let
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ei ∈ Rk for 1 ≤ i ≤ k be the standard basis for Rk and e0 = 0 be shorthand for
the all-zeros vector. Further, let ecenter = 1

k+1
∑k

i=0 ei be the centroid of V (so
V = Conv{e0, . . . , ek}). Lemma 5.7 guarantees the existence of a > 0, b ∈ Rk , and
c ∈ R such that

f1(v) = af2(v) + bT v + c for v ∈ {e0, e1, . . . , ek, ecenter}.
Now, let h1(v) = f1(v) and h2(v) = af2(v) + bT v + c, so h1 and h2 are convex,
order equivalent on V , and satisfy h1(v) = h2(v) for v ∈ {e0, . . . , ek, ecenter}. Thus,
Lemma 5.4 is equivalent to showing that if h1, h2 are convex, order equivalent, and
equal on the extreme points and centroid of V , then

(27) h1(v) = h2(v) for v ∈ V = {
v ∈ Rk+ | 1T v ≤ 1

}
.

We divide our discussion into two cases.

Linear case. Suppose that h1(ecenter) = 1
k+1

∑k
i=0 h1(ei). Then by order equiv-

alence of h1 and h2 [equation (26)], we have h2(ecenter) = 1
k+1

∑k
i=0 h2(ei).

Lemma 5.8 thus implies that h1 and h2 are linear on V = Conv{e0, . . . , ek}, equal
on the vertices of V , and hence equal on its interior.

Nonlinear case. By convexity, we have h1(ecenter) < 1
k+1

∑k
i=0 h1(ei), and

order equivalence (Lemma 5.6) implies h2(ecenter) < 1
k+1

∑k
i=0 h2(ei). For v ∈

V = Conv{e0, . . . , ek}, we use v0 = 1 − 1T v for shorthand, so we may write
v = ∑k

i=0 viei and have [v0 v1 · · · vk]T ∈ �k+1. Now, fix an arbitrary v ∈ V ∩Qk .
We wish to show that h1(v) = h2(v). To that end, we consider consider the gaps
due convexity of hj (ecenter) to the values of hj (ei) relative to those from hj (v) to
hj (ei), defining the linear functions ϕj : [0,1] → R by

ϕj (r) := (1 − r)

[
hj (ecenter) − 1

k + 1

k∑
i=0

hj (ei)

]
+ r

[
k∑

i=0

vihj (ei) − hj (v)

]

for j = 1,2. Then

ϕj (0) = hj (ecenter) − 1

k + 1

k∑
i=0

hj (ei) < 0

by assumption, and by convexity,

ϕj (1) =
k∑

i=0

vihj (ei) − hj (v) ≥ 0.

The key is that the order equivalence of h1 and h2 on V implies that

(28) sign
(
ϕ1(r)

) = sign
(
ϕ2(r)

)
for r ∈ [0,1],
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so that ϕ1 and ϕ2 have the same zero crossing r� > 0, that is, there exists 0 < r� ≤ 1
with ϕ1(r

�) = ϕ2(r
�) = 0. [We prove equality (28) presently.] At this r� > 0, we

find

0 = ϕ1
(
r�) − ϕ2

(
r�) = −r�h1(v) + r�h2(v),

where we use that h1(ei) = h2(ei) for i = 0, . . . , k and h1(ecenter) = h2(ecenter).
That is, h1(v) = h2(v), and as v ∈ V ∩Qk is arbitrary and Qk is dense, Lemma 5.5
extends the equality h1 = h2 to all of V . Expression (27) holds.

Returning to the sign equivalence (28), for r > 0, we may divide ϕj (r) by r ,
and we have ϕj (r) ≤ 0 if and only if

1 − r

r

[
hj (ecenter) − 1

k + 1

k∑
i=0

hj (ei)

]
+

k∑
i=0

vihj (ei) ≤ hj (v).

Defining αi = vi − 1−r
r(k+1)

∈ Q for i = 0, . . . , k and αk+1 = 1−r
r

, the inequality

ϕj (r) ≤ 0 is equivalent to
∑k

i=0 αihj (ei) + αk+1hj (ecenter) ≤ hj (v). A calculation
yields 1T α = 1 and

∑k
i=0 αiei + αk+1ecenter = v, and applying Lemma 5.6 imme-

diately yields that ϕ1(r) ≤ 0 if and only if ϕ2(r) ≤ 0 for all r ∈ (0,1] ∩Q. Noting
that ϕ1(0) < 0 and ϕ2(0) < 0, we obtain equality (28).

6. Discussion. Rather than recapitulating our contributions, we point out a
few directions we believe will prove interesting for further study. While Corol-
lary 1 shows that some convex losses are surrogate-risk consistent even with re-
stricted families of classifiers, it does not apply to the practical case in which the
collection of discriminants γ is a (convex subset of a) finite-dimensional vector
space. This longstanding problem certainly deserves further work. Another direc-
tion, a bit further afield, is to investigate the links between this work and objective
Bayesian approaches and reference priors [4, 5]. In this line of work, one has a
family {Pθ }θ∈� of probability models on an observation space X and before per-
forming inference chooses a prior π on θ to maximize Iπ(X; θ), the (Shannon)
information between X ∼ Pθ and θ ∼ π . For tasks other than minimizing log loss,
it may be sensible to use a notion of information and entropy corresponding to
the desired loss. Our notions of loss equivalence, including construction of convex
losses equivalent to nonconvex losses, could provide insight in such situations.
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SUPPLEMENTARY MATERIAL

Proofs of Results (DOI: 10.1214/17-AOS1657SUPP; .pdf). We provide proofs
of all deferred results not included in the main text.
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