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University of Rochester

Statistical methods with empirical likelihood (EL) are appealing and ef-
fective especially in conjunction with estimating equations for flexibly and
adaptively incorporating data information. It is known that EL approaches en-
counter difficulties when dealing with high-dimensional problems. To over-
come the challenges, we begin our study with investigating high-dimensional
EL from a new scope targeting at high-dimensional sparse model parame-
ters. We show that the new scope provides an opportunity for relaxing the
stringent requirement on the dimensionality of the model parameters. Moti-
vated by the new scope, we then propose a new penalized EL by applying
two penalty functions respectively regularizing the model parameters and the
associated Lagrange multiplier in the optimizations of EL. By penalizing the
Lagrange multiplier to encourage its sparsity, a drastic dimension reduction
in the number of estimating equations can be achieved. Most attractively,
such a reduction in dimensionality of estimating equations can be viewed as
a selection among those high-dimensional estimating equations, resulting in
a highly parsimonious and effective device for estimating high-dimensional
sparse model parameters. Allowing both the dimensionalities of model pa-
rameters and estimating equations growing exponentially with the sample
size, our theory demonstrates that our new penalized EL estimator is sparse
and consistent with asymptotically normally distributed nonzero components.
Numerical simulations and a real data analysis show that the proposed penal-
ized EL works promisingly.

1. Introduction. Statistical approaches using estimating equations are widely
applicable to solve a broad class of practical problems. The most influential cases
of estimating equations include the fundamental maximum likelihood score equa-
tions and those from the popular generalized method of moments (GMM, here-
inafter) [Hansen (1982)]. The estimating equation approaches are particularly
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appealing in practice with merits from requiring less stringent distributional as-
sumptions on the data model, yet being adaptable to flexibly incorporate suitable
information and conditions extracted from practical features in various scenarios
of interests.

Empirical likelihood (EL, hereinafter) [Owen (2001)] coupled with estimating
equations has been demonstrated successful since the seminal work of Qin and
Lawless (1994). It is particularly appealing that the EL estimator asymptotically
achieves the semiparametric efficiency bound [Qin and Lawless (1994)]. The prop-
erties of EL are also desirable through some higher order analyses [Chen and Cui
(2006, 2007), Newey and Smith (2004)]. Moreover, the Wilks’ theorems [Owen
(1988, 1990), Qin and Lawless (1994)] for EL ensure that EL ratio is asymptoti-
cally χ2-distributed when evaluated at the truth. Hence, EL provides an analogous
device to the conventional fully parametric likelihood for statistical inferences, but
without requiring more stringent distributional assumptions.

In recent years, high data dimensionality in practice has attracted increasing at-
tention and brought unprecedented challenges to approaches based on estimating
equations and EL. Studies in Chen, Peng and Qin (2009), Hjort, McKeague and
Van Keilegom (2009), Tang and Leng (2010), Leng and Tang (2012) and Chang,
Chen and Chen (2015) reveal that with no further structural restrictions, the con-
ventional EL generally only works when both the dimensionality of the model
parameters p and the number of the estimating equations r diverge at some rate
slower than the sample size n. Practically, challenges due to high-dimensionality
require a capacity to deal with cases where p, r � n. Tang and Leng (2010), Leng
and Tang (2012) and Chang, Chen and Chen (2015) attempt to utilize the sparsity
of the model parameters by applying penalty functions on those parameters, and
show that sparse estimators with good properties are achievable. However, the re-
striction from the data dimensionality is not alleviated by using penalized EL in
their works.

The challenges for EL from high data dimensionality are well documented in
the literature. Tsao (2004) found that for fixed n with moderately large fixed p,
the probability that the truth is contained in the EL based confidence region can be
substantially smaller than the nominal level, resulting in the under-coverage prob-
lems. As remedies, Tsao and Wu (2013, 2014) propose extended EL to address
the under-coverage problems due to the constraints on the parameter space. With
a modification avoiding equality constraints, Bartolucci (2007) propose a penal-
ized EL method via optimizing products of probability weights penalized by a loss
function depending on the model parameters. Lahiri and Mukhopadhyay (2012)
propose a different type of loss from that in Bartolucci (2007) and study its prop-
erties with high-dimensional model parameters and dependent data. To our best
knowledge, no estimation problems have been investigated with the EL formula-
tions of Bartolucci (2007) and Lahiri and Mukhopadhyay (2012).

In this paper, we study the properties of EL by carefully examining the impacts
from the data dimensionality, and explore the opportunity from targeting at the
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sparse model parameters. We find that consistently estimating high-dimensional
sparse model parameters by a penalized EL is feasible even with r < p. This mo-
tivates us to propose a new penalized EL approach to tackle high-dimensional sta-
tistical problems where both p and r can grow at exponential rates of n. We solve
the problem by employing two penalty functions when constructing the EL with
high-dimensional estimating equations. Specifically, the first penalty function is
on the magnitude of the model parameters to obtain sparse estimator. The second
penalty function is imposed on the Lagrange multiplier to encourage its sparsity
when optimizing the EL. We also observe that obtaining a sparse Lagrange multi-
plier in EL is equivalent to reducing the dimensionality r via an effective selection
among those estimating equations, which itself is an interesting problem and a new
scope; see our discussions in Sections 2 and 3.

Here, we note that the effect of the penalty on the Lagrange multiplier relates
to the moments selection in the GMM, a problem that has been extensively stud-
ied in the econometrics literature; see, among others, Cheng and Liao (2015) and
references therein. Recently, Cheng and Liao (2015) propose to treat the sample
averages of the moment conditions as additional parameters to be optimized, and
to apply the L1 penalty on them to encourage sparsity so that effective moment
selection can be achieved. In a recent related work to ours, Shi (2016) proposes
a new EL formulation by relaxing the equality constraints in the estimating equa-
tions to inequality ones in light of the Dantzig selector [Candes and Tao (2007)].
Shi (2016) shows that for fixed dimensional model parameters, the relaxed EL can
handle high-dimensional moment conditions with r = o{exp(n1/3)} under appro-
priate conditions, and the dual form of the relaxed EL can be viewed as penalizing
the Lagrange multiplier. Nevertheless, none of Cheng and Liao (2015) and Shi
(2016) consider diverging number of model parameters that can be sparse, which
is the foundation of our new scope in this paper.

Our investigation contributes to the area of EL with high-dimensional statistical
problems from a new scope. Our approach successfully extends the EL approach
with estimating functions to scenarios allowing both p and r growing exponen-
tially with n. New results for high-dimensional penalized EL are established in
Sections 2 and 3, and many of them are interesting in both areas of EL and esti-
mating equations. Our analysis first reveals a result of its own interests that sub-
stantially broadens the understanding of the relationship between the number of
estimating equations r and the number of model parameters p with penalized EL.
Surprisingly, we find that with an appropriate penalization, a consistent and sparse
estimator of the model parameters actually does not require r ≥ p, thanks to the
new scope from estimating sparse model parameters. In particular, we show that
a sparse estimator for the p-dimensional parameter with s nonzero components
technically may only require r ≥ s. Such a result crucially supports the motivation
in our new penalized EL approach for the second penalty function imposed on the
Lagrange multiplier to reduce the effective number of estimating equations actu-
ally involved in the high-dimensional penalized EL. That is, the resulting sparse
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Lagrange multiplier from the penalization is equivalent to a selection among avail-
able estimating equations for the model parameters. Our theory shows that the
new penalized EL estimator is consistent which estimates the zero components
of the model parameters as zero with probability tending to one. Additionally, the
nonzero components of the new penalized EL estimator is asymptotically normally
distributed.

The rest of this paper is organized as follows. The new scope with high-
dimensional sparse model parameters on EL and penalized EL is studied in Sec-
tion 2. The new penalized EL with an additional penalty function on the Lagrange
multiplier and its properties for estimating high-dimensional sparse model param-
eters are given in Section 3. An algorithm using coordinate descent is stated in
Section 4. Numerical studies are shown in Section 5. Some discussions are given
in Section 6. All technical details are provided in Section 7. The Supplementary
Material [Chang, Tang and Wu (2018)] contains more technical proofs and an ex-
ample of real data analysis.

2. Empirical likelihood and penalized empirical likelihood.

2.1. An overview of EL with diverging dimensionality. We define some nota-
tion first. For a matrix B = (bij )s1×s2 , let |B|∞ = max1≤i≤s1,1≤j≤s2 |bij |, ‖B‖1 =
max1≤j≤s2

∑s1
i=1 |bij |, ‖B‖∞ = max1≤i≤s1

∑s2
j=1 |bij | and ‖B‖2 = λ

1/2
max(BBT)

where λmax(BBT) denotes the largest eigenvalue of BBT. Specifically, if s2 = 1,
we use |B|1 = ∑s1

i=1 |bi1| and |B|2 = (
∑s1

i=1 b2
i1)

1/2 to denote the L1-norm and
L2-norm of the s1-dimensional vector B, respectively.

Let X1, . . . ,Xn be d-dimensional i.i.d. observations and θ = (θ1, . . . , θp)T be a
p-dimensional parameter with support �. For an r-dimensional estimating func-
tion g(X; θ) = {g1(X; θ), . . . , gr(X; θ)}T, the information for the model parameter
θ is collected by the unbiased moment condition

(2.1) E
{
g(Xi; θ0)

} = 0,

where θ0 ∈ � is the unknown truth. When n grows, following Hjort, McKeague
and Van Keilegom (2009) and Chang, Chen and Chen (2015), the observations
{g(Xi; θ)}ni=1 can be viewed as a triangular array where r , p, d , Xi , θ and g(X; θ)

may all depend on n. Qin and Lawless (1994) investigate an EL with estimating
equations:

(2.2) L(θ) = sup

{
n∏

i=1

πi : πi > 0,

n∑
i=1

πi = 1,

n∑
i=1

πig(Xi; θ) = 0

}
.

The so-called EL estimator is defined as θ̂ = arg maxθ∈� L(θ), which is equivalent
to solve the corresponding dual problem:

(2.3) θ̂ = arg min
θ∈�

max
λ∈�̂n(θ)

n∑
i=1

log
{
1 + λTg(Xi; θ)

}
,
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where �̂n(θ) = {λ ∈ R
r : λTg(Xi; θ) ∈ V, i = 1, . . . , n} for θ ∈ � and V is an open

interval containing zero.
In a conventional setting where p and r are fixed as n → ∞, r ≥ p is required

to ensure all components of θ0 are identifiable. In high-dimensional cases, how-
ever, it is documented in the literature that accommodating a diverging r is a key
difficulty for EL; see, among others, Hjort, McKeague and Van Keilegom (2009),
Chen, Peng and Qin (2009), Leng and Tang (2012) and Chang, Chen and Chen
(2015). The reason is that the Lagrange multiplier λ in (2.3) is of the same high-
dimensionality r . Since |λ|2 is required to be op(1) in theoretical analyses of EL,
high-dimensional r is clearly cumbersome. A direct consequence is that dimen-
sionality p and r for EL in (2.2) can only be accommodated at some polynomial
rate of the sample size n. To explore EL with high-dimensional problems, we first
present a general result for θ̂ with r estimating equations.

PROPOSITION 1. Write V̂(θ) = n−1 ∑n
i=1 g(Xi; θ)g(Xi; θ)T and ḡ(θ) =

n−1 ∑n
i=1 g(Xi; θ). Assume that there are uniform constants C1 > 0, C2 > 1 and

γ > 2 such that

(2.4) max
1≤j≤r

E

{
sup
θ∈�

∣∣gj (Xi; θ)
∣∣γ }

≤ C1,

and

(2.5) P

[
C−1

2 ≤ inf
θ∈�

λmin
{
V̂(θ)

} ≤ sup
θ∈�

λmax
{
V̂(θ)

} ≤ C2

]
→ 1.

If r = o(n1/2−1/γ ), then θ̂ defined in (2.3) satisfies |ḡ(̂θ)|2 = Op(r1/2n−1/2).

Conditions for Proposition 1 are standard. Condition (2.4) ensures that some
moments with order larger than 2 exist for the estimating functions, and (2.5) says
that the sample covariance matrices of the estimating functions should behave rea-
sonably well. Consistent with the finding in Hjort, McKeague and Van Keilegom
(2009) and Chen, Peng and Qin (2009), the higher the order of the moment γ is,
the more estimating functions can be accommodated. When the estimating func-
tions are bounded, γ = ∞, r is allowed to be o(n1/2). The key implication of
Proposition 1 is that the sample mean of the estimating functions is well behaving,
regardless the number of the model parameters p is. With r estimating functions,
|ḡ(̂θ)|2 is Op(r1/2n−1/2). Hence, the impact on the behavior of the estimating
function is the dimensionality r , which cannot grow faster than n1/2 as n → ∞.

Clearly, the impact from p on the EL estimator is on the identifiability of the
model parameters: θ̂ is not uniquely defined when r < p without further con-
straints, rendering ambiguity and inapplicability for estimating high-dimensional
model parameters. An example of the situation is that the identifiability issue hap-
pens in the classic linear models if the design matrix is not of full column rank, so
that the minimum of the least squares criterion function well exists but the ordinary



3190 J. CHANG, C. Y. TANG AND T. T. WU

least squares estimator is not uniquely defined in that case. To solve the problem,
our next objective is to illustrate that identifying a sparse p-dimensional model
parameter is still feasible.

2.2. High-dimensional sparse model parameters. The intuition here is that if
one concerns a sparse θ0 such that most of its components are zeros, then iden-
tification and estimation of such θ0 are feasible with fewer estimating functions
by EL with appropriate penalization. Specifically, write θ0 = (θ0

1 , . . . , θ0
p)T and let

S = {1 ≤ k ≤ p : θ0
k 	= 0} with s = |S|. Here, S is unknown, and s 
 p. Without

loss of generality, let θ0 = (θT
0,S, θT

0,Sc )T where θ0,S ∈ R
s is the nonzero com-

ponents and θ0,Sc = 0 ∈ R
p−s . For identification of θ0, we impose the following

condition.

CONDITION 1. Assume that

(2.6) inf
θ∈{θ=(θT

S ,θT
Sc )T∈�:|θS−θ0,S |∞>ε,θSc=0}

∣∣E{
g(Xi; θ)

}∣∣∞ ≥ 	(ε)

for any ε > 0, where 	(·) is a function satisfying lim infε→0+ ε−β	(ε) ≥ K1 for
some uniform constants K1 > 0 and β > 0.

The identification condition (2.6) can be viewed as a dedicated one for esti-
mating sparse model parameters. Condition 1 is not stringent, and it ensures iden-
tifying the nonzero components of θ0 locally. Studying local optimums in high-
dimensional statistical problems is common in the literature with reasonable tech-
nical conditions; see, for example, Lv and Fan (2009) and Zhang (2010). Con-
dition 1 means that the expected values of the estimating functions at the truth
adequately differ from those outside a small neighborhood of the sparse support of
θ0. Here, β is some generic constant related to the consistency result in Proposi-
tion 2. For estimating a high-dimensional mean parameter with g(X; θ) = X − θ ,
we can choose 	(ε) = ε. For linear models, g(X; θ) = Z(Y − ZTθ) with Z and
Y being the covariates and response variable, respectively, and X = (Y,ZT)T, we
can select 	(ε) = ε‖�−1

Z,S‖−1∞ with �Z,S = E(ZSZT
S). More generally, if there is a

subset E ⊂ {1, . . . , r} with |E | = s and [E{∇θSgE(Xi; θ)}]−1 exists, where gE(·; ·)
collects the set of estimating functions indexed by E , then we can select 	(ε) =
ε infθ∈{θ=(θT

S ,θT
Sc )T:θSc=0} ‖[E{∇θSgE(Xi; θ)}]−1‖−1∞ . Intuitively, Condition 1 en-

sures the identifiability of the s nonzero components of θ0 so that a consistent
sparse estimator is possible, provided that r ≥ s and conditions in Proposition 2.
As a special case when Sc is empty, Condition 1 becomes a global identification
for the dense model parameter θ0. Similar global identification conditions can be
found in Chen (2007) and Chen and Pouzo (2012) for some other models.
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To estimate sparse θ0, we consider a penalized EL estimator as

(2.7) θ̃n = arg min
θ∈�

max
λ∈�̂n(θ)

[
n∑

i=1

log
{
1 + λTg(Xi; θ)

} + n

p∑
k=1

P1,π

(|θk|)
]
,

where θ = (θ1, . . . , θp)T, and P1,π (·) is a penalty function with tuning param-
eter π . For any penalty function Pτ (·) with tuning parameter τ , take ρ(t; τ) =
τ−1Pτ (t) for any t ∈ [0,∞) and τ ∈ (0,∞). Let P1,π (·) belong to the class as
considered in Lv and Fan (2009):

(2.8)

P = {
Pτ (·) : ρ(t; τ) is increasing in t ∈ [0,∞) and has continuous

derivative ρ′(t; τ) for any t ∈ (0,∞) with

ρ′(0+; τ ) ∈ (0,∞), where ρ′(0+; τ )
is independent of τ

}
.

The class P is broad and general, which includes the commonly used L1 penalty,
SCAD penalty [Fan and Li (2001)] and MCP penalty [Zhang (2010)]. To establish
the consistency of θ̂n, we also assume the following condition.

CONDITION 2. For any X and j = 1, . . . , r , gj (X; θ) is continuously differ-
entiable with respect to θ ∈ �, and satisfies the conditions

(2.9) max
1≤j≤r

max
k /∈S E

{
sup
θ∈�

∣∣∣∣∂gj (Xi; θ)

∂θk

∣∣∣∣} ≤ K2

for some uniform constant K2 > 0, and

(2.10) sup
θ∈�

max
1≤j≤r

max
k /∈S

{
1

n

n∑
i=1

∣∣∣∣∂gj (Xi; θ)

∂θk

∣∣∣∣
}

= Op(ϕn)

for some ϕn > 0, which may diverge with n.

Condition 2 is on the continuity of the estimating function with respect to θ .
Typically, smooth estimating functions can be assumed to have bounded deriva-
tives so that Condition 2 is easily satisfied. At the sample level, considering
the high-dimensionality of the problem, we can accommodate diverging ϕn in
(2.10) so that our results hold in broad situations. If there are functions Bn,jk(·)
such that |∂gj (X; θ)/∂θk| ≤ Bn,jk(X) for any θ ∈ �, j = 1, . . . , r and k /∈ S ,
and |E{Bm

n,jk(Xi)}| ≤ Km!Hm−2 for any m ≥ 2, j = 1, . . . , r and k /∈ S , where
K and H are uniform positive constants independent of j and k, Theorem 2.8
of Petrov (1995) implies sup1≤j≤r supk /∈S n−1 ∑n

i=1 Bn,jk(Xi ) = Op(1) provided
that max{log r, logp} = o(n). Thus, (2.10) holds with ϕn = 1, accommodating ex-
ponentially growing r and p. Since the identification condition (2.6) only provides
a lower bound for |E{g(Xi; θ)}|∞ when θ = (θT

S, θT
Sc )T satisfies |θS − θ0,S |∞ > ε

and θSc = 0, we use (2.9) to derive a lower bound for |E{g(Xi; θ)}|∞ when
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θ = (θT
S, θT

Sc )T satisfies θSc 	= 0 but |θSc |1 is small, and then θ0 is a local min-
imizer of |E{g(Xi; θ)}|∞. For special case with sparse linear regressions, Condi-
tion (2.9) becomes one similar to the well-known crucial irrepresentable condition
[Zhao and Yu (2006)] at the population level. We have the following proposition
on the properties of the penalized EL estimator θ̃n as in (2.7).

PROPOSITION 2. Let P1,π (·) ∈ P for P defined in (2.8). Define an =∑p
k=1 P1,π (|θ0

k |) and bn = max{rn−1, an}. Assume (2.4), (2.5), Conditions 1 and
2 hold, and

(2.11) max
k∈S sup

0<t<|θ0
k |+cn

P ′
1,π (t) = O(χn)

for some χn → 0 and cn → 0 with b
1/(2β)
n c−1

n → 0. If r = o(n1/2−1/γ ), max{bn,

rsχnb
1/(2β)
n } = o(n−2/γ ) and r1/2ϕn max{r1/2n−1/2, s1/2χ

1/2
n b

1/(4β)
n } = o(π),

then there is a local minimizer θ̃n ∈ � for (2.7) satisfying |̃θn,S − θ0,S |∞ =
Op{b1/(2β)

n } and P(̃θn,Sc = 0) → 1 as n → ∞.

In Proposition 2, an depends on the true parameter θ0 and the tuning parameter
π in the penalty function. For a typical P1,π (·) ∈ P and θ0 with s nonzero compo-
nents, it is the case that an = O(sπ). Condition (2.11) is used to control the bias
introduced by P1,π (·) on θ̂n. See (7.3) in Section 7.2 for details. With the assump-
tion bn = o(mink∈S |θ0

k |2β) that the signal strength of the nonzero components of
θ0 does not diminish to zero too fast, (2.11) can be replaced by

(2.12) max
k∈S sup

c|θ0
k |<t<c−1|θ0

k |
P ′

1,π (t) = O(χn)

for some constant c ∈ (0,1). For those asymptotically unbiased penalties like
SCAD and MCP, χn = 0 in (2.12) for n sufficiently large if bn = o(mink∈S |θ0

k |2β);
see also Fan and Li (2001). Thus, with β = 1 in Condition 1, |̃θn,S − θ0,S |∞ =
Op(b

1/2
n ). Further, if π is chosen as O{(n−1 logp)1/2}, a common one in the liter-

ature, then |̃θn,S − θ0,S |∞ = Op{s1/2(n−1 logp)1/4}, a conservative convergence
rate of θ̂n,S .

Let Fn(θ) = maxλ∈�̂n(θ) n
−1 ∑n

i=1 log{1 +λTg(Xi; θ)}+∑p
k=1 P1,π (|θk|). The

rationale of Proposition 2 is that for any θ = (θT
S, θT

Sc )T in a small neighborhood
of θ0 such that |θS − θ0,S |∞ > εn, where εn → 0 at some slow enough rate, Fn(θ)

will take value larger than ξnFn(θ0) for some diverging ξn with probability tending
to 1; see also Chang, Tang and Wu (2013, 2016) for such a phenomenon of EL.
Then with the penalty P1,π (·) encouraging sparsity of θ̂n, we are able to establish
the consistency of θ̃n to the sparse θ0.

Proposition 2 shows that the penalized EL can consistently estimate the high-
dimensional sparse model parameter with p growing exponentially with n, though
still requires r diverging at some slower rate than n1/2. The development of
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Proposition 2 is fundamentally facilitated by our motivation: to estimate a high-
dimensional sparse model parameter. With the new identification condition (2.6),
sparse and consistent estimator can be obtained by using penalized EL. The in-
tuition of our results is clear: to identify s nonzero components of a sparse p-
dimensional model parameter, one essentially requires r (r ≥ s) informative esti-
mating functions for those s components. The practical interpretation is also clear:
given fewer estimating functions than the model parameters, a reasonable direction
is to identify and estimate a sparse model parameter. Such an observation is con-
sistent with the ones found in Gautier and Tsybakov (2014) for high-dimensional
instrumental variables regression with endogenity where the number of instrumen-
tal variables may be less than the model parameters in the regression problems.

3. A new penalized empirical likelihood. With the penalized EL estimator
θ̂n in (2.7) capable of handling high-dimensional model parameter with fewer
number of estimating functions, our next goal is to accommodate a more gen-
eral situation: allowing both r and p to grow exponentially with n. For such a
purpose, we propose to update the penalized EL estimator with an extra penalty
encouraging sparsity in the Lagrange multiplier λ:

(3.1)

θ̂n = arg min
θ∈�

max
λ∈�̂n(θ)

[
n∑

i=1

log
{
1 + λTg(Xi; θ)

} − n

r∑
j=1

P2,ν

(|λj |)

+ n

p∑
k=1

P1,π

(|θk|)
]
,

where θ = (θ1, . . . , θp)T, λ = (λ1, . . . , λr)
T, and P1,π (·) and P2,ν(·) are two

penalty functions with tuning parameters π and ν, respectively. Our motivation
is that with appropriately chosen penalty function P2,ν(·) and tuning parameter ν,
the estimator θ̂n is associated with a sparse Lagrange multiplier λ. Since sparse λ
effectively uses a subset of the estimating functions g(·; ·), r can be large as long as
the number of nonzero components in λ is small, essentially satisfying the require-
ment in Proposition 2. Hence, one expects analogous properties of (3.1) to those in
Proposition 2, but now being capable of accommodating high-dimensional p and
r simultaneously.

Not surprisingly, involving P2,ν(·) makes the technical analysis much more
challenging, especially when handling exponentially diverging p and r . For any
θ and λ ∈ �̂n(θ), let f (λ; θ) = n−1 ∑n

i=1 log{1 + λTg(Xi; θ)} − ∑r
j=1 P2,ν(|λj |)

and Sn(θ) = maxλ∈�̂n(θ) f (λ; θ)+∑p
k=1 P1,π (|θk|). Here, f (λ; θ) is a function of

λ upon given θ . Let λ̂(θ) = arg maxλ∈�̂n(θ) f (λ; θ) be the Lagrange multiplier
defined at θ . For any subset A ⊂ {1, . . . , r}, denote by gA(Xi; θ) the subvec-
tor of g(Xi; θ) with elements indexed by A. Write ḡA(θ) = n−1 ∑n

i=1 gA(Xi; θ),
V̂A(θ) = n−1 ∑n

i=1 gA(Xi; θ)gA(Xi; θ)T and VA(θ) = E{gA(Xi; θ)gA(Xi; θ)T}.
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For any θ ∈ � and j = 1, . . . , r , define ḡj (θ) = n−1 ∑n
i=1 gj (Xi; θ). We first char-

acterize the properties of λ̂(θ) for θ near the truth θ0. To do this, we assume the
following condition for the existence of higher order moments.

CONDITION 3. There exist some K3 > 0 and γ > 4 such that

max
1≤j≤r

E

{
sup
θ∈�

∣∣gj (Xi; θ)
∣∣γ }

≤ K3.

Let ρ2(t;ν) = ν−1P2,ν(t). We also take P2,ν(·) ∈ P for P as in (2.8), so that
ρ′

2(0
+;ν) is independent of ν. Write it as ρ ′

2(0
+) for simplicity and define Mθ =

{1 ≤ j ≤ r : |ḡj (θ)| ≥ νρ′
2(0

+)} for any θ ∈ �. Proposition 3 shows that for any
θ near the truth θ0, the support of the Lagrange multiplier λ̂(θ) is a subset of Mθ

with probability approaching one.

PROPOSITION 3. Let {θn} be a sequence in � and P2,ν(·) ∈ P be convex for P
as in (2.8). For some C ∈ (0,1), take M∗

θn
= {1 ≤ j ≤ r : |ḡj (θn)| ≥ Cνρ ′

2(0
+)}.

Assume Condition 3 hold. Further, we assume the eigenvalues of V̂Mθn
(θn) are

uniformly bounded away from zero and infinity with probability approaching
one, and |ḡMθn

(θn) − νρ′
2(0

+) sgn{ḡMθn
(θn)}|2 = Op(un) for some un → 0.

Let max1≤j≤r n−1 ∑n
i=1 |gj (Xi; θn)|2 = Op(ςn) for some ςn > 0 that may di-

verge with n. If m
1/2
n unςn = o(ν) and m

1/2
n unn

1/γ = o(1) with mn = |M∗
θn

|,
then with probability approaching one there is a sparse local maximizer λ̂(θn) =
(̂λn,1, . . . , λ̂n,r )

T for f (λ; θn) satisfying the three results: (i) |̂λ(θn)|2 = Op(un),
(ii) supp{λ̂(θn)} ⊂ Mθn

and (iii) sgn(̂λn,j ) = sgn{ḡj (θn)} for any j ∈ Mθn
with

λ̂n,j 	= 0.

The sequence {θn} can be taken as one that approaches the truth θ0 as
n → ∞. Then ḡMθn

(θn) will be small when n is large. As shown in Section 7.3,
νρ′

2(0
+) sgn{ḡMθn

(θn)} is the asymptotically leading term of ḡMθn
(θn). The rea-

son is that the tuning parameter ν typically diminishes to 0 at some slower rate than
n−1/2, so that νρ′

2(0
+) sgn{ḡMθn

(θn)} leads to a nonnegligible contribution, and
our analysis shows that it leads to a correctable bias term in θ̂n. Upon removing the
leading order term, we assume |ḡMθn

(θn) − νρ′
2(0

+) sgn{ḡMθn
(θn)}|2 = Op(un)

with un → 0, which can be easily satisfied. Requirement on the eigenvalues of
V̂Mθn

(θn) is natural so that we can characterize the limiting behavior of the es-
timator θ̂n. Furthermore, mn is taken to be an upper bound of the size of Mθn

,

the generic description such as m
1/2
n unςn = o(ν) and m

1/2
n unn

1/γ = o(1) can be
viewed as characterizing the capacity of the penalized EL under which it is reli-
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able for consistent estimators, depending on the behavior of the estimating function
g(·; ·) on its continuity and tail probabilistic properties.

Proposition 3 implies that when θ is approaching θ0, the sparse λ in (3.1)
effectively conducts a moment selection by choosing the estimating functions
such that ḡj (θ) has large absolute deviation from 0. Let μj(θ) = E{gj (Xi; θ)},
then we know that μj(θ0) = 0 and ḡj (θ) →p μj (θ) as n → ∞. If θ is in the
neighborhood of θ0, then Taylor expansion gives that μj(θ) = μj(θ) − μj(θ0) =
{∇θμj(θ

∗)}T(θ − θ0) for some θ∗ between θ and θ0. Hence, those components
of the estimating functions with large magnitude in the derivative of their ex-
pected value with respect to θ will be selected. Since larger derivative indicates
a steeper direction toward the truth θ0, making it easier and more informative to
find the optimum. Therefore, selecting components in Mθ is seen sensible. How-
ever, we note that without further strong and likely to be unrealistic conditions
on the shape of the estimating functions, Mθ cannot be controlled as a fixed set
even at the limiting case when n → ∞, so that it will depend on the value of
the parameter θ . Instead of requiring Mθ to be fixed, we show in the follow-
ing that for any choice of its subset satisfying some reasonable conditions, the
resulting penalized EL estimator is consistent and asymptotically normally dis-
tributed.

Let

(3.2) �n = max
θ∈{θ=(θT

S ,θT
Sc )T∈�:|θS−θ0,S |∞≤cn,θSc=0}

|Mθ |

for some cn → 0 satisfying b
1/(2β)
n c−1

n → 0 where bn is more clearly specified
in Condition 6 below. Based on Proposition 3, we know the support of Lagrange
multiplier λ̂(θ) is a subset of Mθ with probability approaching one when θ is in
a small neighborhood of θ0. Here, �n is a technical device controlling the max-
imum number of effective estimating functions when applying the new penal-
ized EL, and it can be viewed as a cap of the r in Proposition 2. Though �n is
a technical device, we remark that, practically, one can always achieve the control
of the nonzero components of λ by appropriately choosing the tuning parame-
ter ν.

To establish the consistency of the penalized EL estimator θ̂n as in (3.1), we
need the following extra regularity conditions on the continuity and probabilistic
behavior of the estimating functions.

CONDITION 4. There exist uniform constants 0 < K4 < K5 such that K4 <

λmin{VF (θ0)} ≤ λmax{VF (θ0)} < K5 for any F ⊂ {1, . . . , r} with |F | ≤ �n, where
�n is as in (3.2).
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CONDITION 5. Assume that

sup
θ∈�

max
1≤j≤r

max
k /∈S

{
1

n

n∑
i=1

∣∣∣∣∂gj (Xi; θ)

∂θk

∣∣∣∣2
}

= Op(ξn),

sup
θ∈�

max
1≤j≤r

max
k∈S

{
1

n

n∑
i=1

∣∣∣∣∂gj (Xi; θ)

∂θk

∣∣∣∣2
}

= Op(ωn),

sup
θ∈�

max
1≤j≤r

{
1

n

n∑
i=1

∣∣gj (Xi; θ)
∣∣4}

= Op(�n)

for some ξn > 0, ωn > 0 and �n > 0 that may diverge with n.

CONDITION 6. Let bn = max{an, ν
2} with an = ∑p

k=1 P1,π (|θ0
k |). There exist

χn → 0 and cn → 0 with b
1/(2β)
n c−1

n → 0 for β defined in Condition 1 such that
maxk∈S sup0<t<|θ0

k |+cn
P ′

1,π (t) = O(χn).

Here, Condition 4 is actually weaker than that in (2.5) in the sense that it only
requires the population covariance matrices of subsets of estimating functions to
well behave at the truth θ0, requiring them to be nondegenerate. The first two
bounds in Condition 5 are used to characterize the behavior of the eigenvalues of
V̂F (θ) when θ in a small neighborhood of θ0; see Lemma 1 in Section 7.4. We
do not impose explicit rates on ξn, ωn, and �n, so that the conditions are generally
not restrictive. Similar to our earlier discussion for ϕn in (2.10) in Condition 2,
we can actually choose ξn = ωn = �n = 1 under some additional mild conditions
provided that max{log r, logp} = o(n). Condition 6 is similar to (2.11) in Propo-
sition 2 with a differently defined bn. Similar to that in Proposition 2, Condition 6
can be replaced by (2.12) if the minimal signal strength condition is satisfied for
appropriately chosen tuning parameter π . Then χn = 0 when n is large for those
asymptotically unbiased penalties like SCAD and MCP. We now present the fol-
lowing theorem for the consistency of θ̂n.

THEOREM 1. Let P1,π (·),P2,ν(·) ∈ P for P defined in (2.8), and P2,ν(·)
be convex with bounded second derivative around 0. Assume Conditions 1–6
hold. Let bn = max{an, ν

2} with an = ∑p
k=1 P1,π (|θ0

k |), and κn = max{�1/2
n n−1/2,

s1/2χ
1/2
n b

1/(4β)
n }. If log r = o(n1/3), �n = o(n2), s2�nωnb

1/β
n = o(1),

�2
nn

−1�n log r = o(1), max{bn, �nκ
2
n} = o(n−2/γ ), �

1/2
n �

1/2
n κn = o(ν) and

�
1/2
n ξ

1/2
n max{�nν, s1/2χ

1/2
n b

1/(4β)
n } = o(π), then there is a local minimizer θ̂n ∈ �

for (3.1) such that |̂θn,S − θ0,S |∞ = Op{b1/(2β)
n } and P(̂θn,Sc = 0) → 1 as

n → ∞.

Theorem 1 establishes the consistency of θ̂n under L∞-norm with a conserva-
tive convergence rate Op{b1/(2β)

n }. Under some additional regularity conditions,
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the rate can be improved as Op(ν). Theorem 1 holds for broad situations accom-
modating various cases of the estimating functions. In reasonable cases that we
discussed earlier, χn = 0 by choosing asymptotically unbiased penalty function,
and ξn = ωn = �n = 1 for smooth estimating functions with bounded fourth mo-
ment, Theorem 1 holds provided that log r = o(n1/3), �n = o(min{n1/2(log r)−1/2,

n1/2−1/γ }), an = o(min{s−2β�
−β
n , n−2/γ }), and the tuning parameters ν and π sat-

isfy �nn
−1/2 = o(ν), ν = o(min{s−β�

−β/2
n , n−1/γ }) and �

3/2
n ν = o(π). Noticing

that an � sπ , choosing π = o(min{s−2β−1�
−β
n , s−1n−2/γ }) can ensure the re-

sult. Additionally, note that s ≤ �n. Thus, by letting log r � nτ and �n � nδ for
some τ ∈ [0,1/3) and δ ∈ [0,min{(γ − 4)/(7γ ),1/(6β + 7)}), θ̂n satisfies The-
orem 1 if ν � n−φ1 and π � n−φ2 with φ1 ∈ (max{3βδ/2,1/γ },1/2 − δ) and
φ2 ∈ (max{(3β + 1)δ,2/γ + δ}, φ1 − 3δ/2), which are reasonable choices for the
tuning parameters. To further establishing the limiting distribution of θ̂n,S , we
need the following two additional conditions.

CONDITION 7. For any X and j = 1, . . . , p, gj (X; θ) is twice continuously
differentiable with respect to θ ∈ �, and

sup
θ∈�

max
1≤j≤r

max
k1,k2∈S

{
1

n

n∑
i=1

∣∣∣∣∂2gj (Xi; θ)

∂θk1 ∂θk2

∣∣∣∣2
}

= Op(�n)

for some �n ≥ 0 that may diverge with n.

CONDITION 8. Let QF = [E{∇θSgF (Xi; θ0)}]T[E{∇θSgF (Xi; θ0)}] for any
F ⊂ {1, . . . , r}. There exist uniform constants 0 < K6 < K7 such that K6 <

λmin(QF ) ≤ λmax(QF ) < K7 for any F with s ≤ |F | ≤ �n.

Following similar discussion for Condition 5, �n = 1 in Condition 7 for rea-
sonable models in practice. Write λ̂(̂θn) = (̂λ1, . . . , λ̂r )

T. Let Rn = supp{λ̂(̂θn)}
and define

(3.3)
ĴRn = {∇θS ḡRn (̂θn)

}TV̂−1
Rn

(̂θn)
{∇θS ḡRn (̂θn)

}
,

ψ̂Rn
= Ĵ−1

Rn

{∇θS ḡRn (̂θn)
}TV̂−1

Rn
(̂θn)̂ηRn

,

where η̂ = (η̂1, . . . , η̂r )
T with η̂j = νρ′

2(|̂λj |;ν) sgn(̂λj ) for λ̂j 	= 0 and η̂j ∈
[−νρ′

2(0
+), νρ′

2(0
+)] for λ̂j = 0.

THEOREM 2. Let P1,π (·),P2,ν(·) ∈ P for P defined in (2.8), and P2,ν(·)
be convex with bounded second derivative around 0. Assume Conditions 1–8
hold. Let bn = max{an, ν

2} with an = ∑p
k=1 P1,π (|θ0

k |), and κn = max{�1/2
n n−1/2,

s1/2χ
1/2
n b

1/(4β)
n }. If log r = o(n1/3), �n = o(n2), bn = o(n−2/γ ), nsχ2

n = o(1),

�2
n�

1/2
n (log r)max{s2(ωn + s�n)b

1/β
n , n−1(sωn + �n�n) log r} = o(1),
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n�nκ
4
n max{sωn,n

2/γ } = o(1), n�ns
2�n max{�2

nν
4, s2χ2

nb
1/β
n } = o(1),

�
1/2
n �

1/2
n κn = o(ν) and �

1/2
n ξ

1/2
n max{�nν, s1/2χ

1/2
n b

1/(4β)
n } = o(π), then the local

minimizer θ̂n ∈ � for (3.1) specified in Theorem 1 satisfies

(3.4) n1/2αTĴ1/2
Rn

(̂θn,S − θ0,S − ψ̂Rn
)

d−→ N(0,1)

for any α ∈ R
s with |α|2 = 1, as n → ∞, where ĴRn and ψ̂Rn

are defined in (3.3).

Theorem 2 shows that subject to a bias correction, the new penalized EL estima-
tor for nonzero components is asymptotically normal in the sense of (3.4). The bias
term ψ̂Rn

in (3.4) is due to the penalty function P2,ν(·) used in (3.1); see also our
discussion after the Proposition 3. Similar to that in Theorem 1, with reasonable
cases χn = 0 and ξn = ωn = �n = �n = 1, descriptions on the dimensionality in
Theorem 2 can be simplified. If �n � s, Theorem 2 holds provided that log r =
o(n1/3), s = o(min{n1/3(log r)−2/3, n1/(10β+7)(log r)−2β/(10β+7), n(γ−4)/(7γ )}),
and ν and π satisfying sn−1/2 = o(ν), ν = o(min{n−1/γ , s−5β/2(log r)−β/2,

n−1/4s−5/4}), s3/2ν = o(π) and π = o(min{n−2/γ s−1, s−5β−1(log r)−β}). Gen-
erally speaking, conditions in Theorem 2 is stronger than those in Theorem 1,
which can be viewed as the expense for the stronger asymptotic normality results.
In summary, we have shown that the new penalized EL estimator θ̂n as in (3.1) has
desirable properties including consistency in estimating nonzero components and
identifying zero components of θ0, and asymptotic normality for the estimator of
the nonzero components of θ0.

4. Algorithms for implementations. For ease and stability in implementa-
tions, we calculate the new penalized EL estimator θ̂n by minimizing the following
slightly modified objective function:

(4.1)

θ̂n = arg min
θ∈�

max
λ∈�̂n(θ)

[
n∑

i=1

log�

{
1 + λTg(Xi; θ)

} − n

r∑
j=1

P2,ν

(|λj |)

+ n

p∑
k=1

P1,π

(|θk|)
]
,

where log�(z) is a twice differentiable pseudo-logarithm function with bounded
support adopted from Owen (2001):

log�(z) =
{

log(z) if z ≥ ε;
log(ε) − 1.5 + 2z/ε − z2/

(
2ε2)

if z ≤ ε;
where ε is chosen as n−1 in our implementations. In the optimization, we apply
the quadratic approximation [Fan and Li (2001)] to the penalty functions P1,π (·)
and P2,ν(·). More specifically, for a penalty function Pτ (·), the quadratic approx-
imation states Pτ (|t |) ≈ Pτ (|t0|) + 2−1P ′

τ (|t0|)|t0|−1(t2 − t2
0 ) for t being in a
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small neighborhood of t0. The first and second derivatives are approximated by
P ′

τ (|t |) ≈ t |t0|−1P ′
τ (|t0|) and P ′′

τ (|t |) ≈ |t0|−1P ′
τ (|t0|).

The computation of EL is challenging, especially with high-dimensional p

and r . To compute θ̂n, we propose to apply a modified two-layer coordinate decent
algorithm extending the one in Tang and Wu (2014). The inner layer of the algo-
rithm solves for λ with given θ by maximizing f (λ; θ) as given in Section 3. This
layer only involves maximizing a concave function, and hence is stable. The outer
layer of the algorithm searches for the optimizer θ̂n. Both layers can be solved
using coordinate descent by cycling through and updating each of the coordinates;
see Tang and Wu (2014).

In the inner layer, λ is solved at a given θ , which can be done by optimizing (4.1)
with respect to λ using coordinate descent. Let λ start at an initial value λ̂

(0). With
the other coordinates fixed, the (m + 1)th Newton’s update for λj (j = 1, . . . , r),
the j th component of λ, is given by

(4.2) λ̂
(m+1)
j = λ̂

(m)
j −

∑n
i=1 log′

�(ti,m)gj (Xi; θ) − nP ′
2,ν{|̂λ(m)

j |}∑n
i=1 log′′

�(ti,m){gj (Xi; θ)}2 − nP ′′
2,ν{|̂λ(m)

j |} ,

where ti,m = 1 + g(Xi; θ)Tλ̂
(m) with λ̂

(m) = {̂λ(m)
1 , . . . , λ̂

(m)
r }T. The procedure cy-

cles through all the r components of λ and is repeated until convergence. During
this process, the objective function needs to be checked to ensure it gets optimized
in each step. If not, the step size continues to be halved until the objective function
gets driven in the right direction. The iterative updating procedure (4.2) can be
viewed as sequential univariate optimizations. The convergence rate and stability
are studies in the optimization literature; see Friedman et al. (2007) and Wu and
Lange (2008).

The outer layer of the algorithm is to optimize (4.1) with respect to θ , the main
interest of the new penalized EL, using the coordinate descent algorithm. At a
given λ, the algorithm updates θk (k = 1, . . . , p), by minimizing Sn(θ) defined in
Section 3 with respect to θk with other θl (l 	= k) fixed. Let θ start at an initial value

θ̂
(0)

. The (m + 1)th update for θk is given by

(4.3)

θ̂
(m+1)
k

= θ̂
(m)
k −

∑n
i=1 log′

�(si,m)wik,m + nP ′
1,π {|θ̂ (m)

k |}∑n
i=1{log′′

�(si,m)w2
ik,m + log′

�(si,m)zik,m} + nP ′′
1,π {|θ̂ (m)

k |} ,

where si,m = 1 + λTg{Xi; θ̂ (m)}, wik,m = λT∂g{Xi; θ̂ (m)}/∂θk and zik,m =
λT∂2g{Xi; θ̂ (m)}/∂θ2

k with θ̂
(m) = {θ̂ (m)

1 , . . . , θ̂
(m)
p }T. Since quadratic approxima-

tions are applied in the algorithms, we follow Fan and Li (2001) and set a com-
ponent λ̂

(m)
j or θ̂

(m)
k as zero when it is less than a threshold level say 10−3 in an

iteration.



3200 J. CHANG, C. Y. TANG AND T. T. WU

We summarize the computation procedure for θ and λ in the following pseu-
docode. Suppose ξ is a predefined small number, say, ξ = 10−4.

1. Set the iteration counter m = 0, and initialize θ̂
(0) and λ̂

(0);
2. Define the g(Xi; θ) function;
3. (Outer layer) For k = 1, . . . , p,

(a) Calculate θ̂
(m+1)
k as in (4.3);

(b) (Inner layer) For j = 1, . . . , r , update λ̂
(m)
j as λ̂

(m+1)
j defined in (4.2);

4. If max1≤k≤p |θ̂ (m+1)
k − θ̂

(m)
k | < ξ , then stop;

5. Otherwise repeat steps 3 through 4.

5. Numerical examples. The SCAD penalty [Fan and Li (2001)] is used for
both P1,π (·) and P2,ν(·) in (4.1) for all the numerical experiments in this paper.
Since local quadratic approximation is applied in the algorithms, the convexity re-
quirements of the results in Sections 2 and 3 are met. Three information criteria for
choosing the tuning parameters π and ν in the penalty functions—BIC [Schwarz
(1978)], BICC [Wang, Li and Leng (2009)], and EBIC [Chen and Chen (2008)]—
are used.

5.1. Estimating high-dimensional mean parameter. The first simulation study
is to calculate the mean of a multivariate normal distribution in R

p . Let X =
(X1, . . . ,Xp)T ∼ N(θ0,�). Suppose only three elements, X1,X2 and X5, have
nonzero means and the rest p − 3 elements have zero means, that is, θ0 =
(5,4,0,0,1,0, . . . ,0)T. The covariance matrix � = (σkl)p×p is set as σkk = 1 for
each k = 1, . . . , p and σkl = 0.9 for any k 	= l. The estimating function is simply
g(X; θ) = X−θ . In this case, the number of parameters p is equal to the number of
estimating equations r . We consider the underdetermined case where p = r > n.
Table 1 summarizes the results for (n,p) = (50,100), (100,200) and (100,500).
The proposed penalized EL with two penalties (namely, PEL2) is compared to
the single penalty approach (PEL) discussed in Tang and Leng (2010). In general,
all the three BIC-type criteria work similarly, with BICC and EBIC yield slightly
fewer nonzero parameters. The results from MLE for all p variables and the three
true variables (i.e., MLE-Oracle) are also considered. We also report the model er-
ror (ME) defined by ME = |̂θ − θ0|22 for a given estimator θ̂ . A smaller ME means
a better estimation and prediction. Obviously, in the single penalty approach, all
equating equations are used since no moment selection is performed. In each cell,
standard error appears in the parentheses.

It is clear from the table that the double-penalty approach outperforms the
single-penalty approach, as expected. A much smaller subset of variables get se-
lected with almost all the three true predictors identified by the double-penalty
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TABLE 1
Simulation results for mean of a normal distribution based on 100 replicates. Here, θnonzeros is the

average number of selected nonzero components, θ true is the average number of true nonzero
components that are selected, ME reports the model error and No. EE’s reports the number of

estimating equations selected

(n,p, r) Method θnonzeros θ true ME No. EE’s

(50,100,200) MLE-Oracle 3 (0) NA 0.062 (0.009) NA
MLE 100 (0) 3 (0) 2.096 (0.287) NA
PEL-BIC 24.06 (4.13) 0.72 (0.12) 33.276 (1.507) 100 (0)
PEL-BICC 23.15 (4.08) 0.69 (0.12) 33.635 (1.483) 100 (0)
PEL-EBIC 23.15 (4.08) 0.69 (0.12) 33.635 (1.483) 100 (0)
PEL2-BIC 3.41 (0.17) 2.81 (0.04) 0.332 (0.041) 5.11 (0.34)
PEL2-BICC 3.29 (0.15) 2.80 (0.04) 0.302 (0.041) 6.13 (0.33)
PEL2-EBIC 3.15 (0.13) 2.76 (0.05) 0.341 (0.052) 8.20 (0.21)

(100,200,400) MLE-Oracle 3 (0) NA 0.024 (0.003) NA
MLE 200 (0) 3 (0) 1.743 (0.179) NA
PEL-BIC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)
PEL-BICC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)
PEL-EBIC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)
PEL2-BIC 6.41 (1.84) 2.84 (0.04) 0.333 (0.091) 6.67 (0.23)
PEL2-BICC 6.18 (1.84) 2.82 (0.04) 0.352 (0.092) 6.64 (0.23)
PEL2-EBIC 5.82 (1.86) 2.80 (0.04) 0.372 (0.094) 6.69 (0.24)

(100,500,1000) MLE-Oracle 3 (0) NA 0.031 (0.005) NA
MLE NA NA NA NA
PEL-BIC 85.71 (22.69) 0.51 (0.14) 37.585 (1.193) 500 (0)
PEL-BICC 0 (0) 0 (0) 42 (0) 500 (0)
PEL-EBIC 0 (0) 0 (0) 42 (0) 500 (0)
PEL2-BIC 2.88 (0.11) 2.70 (0.06) 0.356 (0.057) 6.40 (0.36)
PEL2-BICC 2.82 (0.09) 2.70 (0.06) 0.376 (0.058) 6.53 (0.35)
PEL2-EBIC 2.83 (0.09) 2.71 (0.06) 0.369 (0.058) 6.97 (0.32)

method. That says, the double-penalty approach yields lower false positives and
higher true positives. While in the single-penalty approach, fewer true predictors
are chosen in the larger set of selected variables or nothing can be picked out if
p > n. What is the most interesting is that a small number (on average 5–8) of
estimating equations are selected in the double-penalty approach. As a result, the
double-penalty method yields a much smaller ME than the single-penalty method.

5.2. Linear regression. In this simulation study, we consider a linear regres-
sion model Yi = ZT

i θ0 + εi , where θ0 = (3,1.5,0,0,2,0, . . . ,0)T, Zi ∈ R
p are

generated from N(0,�) with σkk = 1 for any k = 1, . . . , p and σkl = 0.5 for
any k 	= l in � = (σkl)p×p , and εi is a standard normal distributed random vari-
able. Write Xi = (Yi,ZT

i )T. The estimating function is g(X; θ) = Z(Y −ZTθ) with
p = r .
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TABLE 2
Simulation results for linear regression based on 100 replicates. Here, θnonzeros is the average

number of selected nonzero components, θ true is the average number of true nonzero components
that are selected, ME reports the model error and No. EE’s reports the number of estimating

equations selected

(n,p, r) Method θnonzeros θ true ME No. EE’s

(50,100,100) MLE-Oracle 3 (0) NA 0.069 (0.005) NA
LASSO 15.21 (0.88) 3 (0) 0.439 (0.034) NA
PEL-BIC 0 (0) 0 (0) 28.75 (0) 100 (0)
PEL-BICC 0 (0) 0 (0) 28.75 (0) 100 (0)
PEL-EBIC 0 (0) 0 (0) 28.75 (0) 100 (0)
PEL2-BIC 6.39 (0.52) 2.98 (0.02) 0.497 (0.069) 10.46 (0.46)
PEL2-BICC 6.33 (0.52) 2.98 (0.02) 0.498 (0.069) 10.49 (0.46)
PEL2-EBIC 6.06 (0.52) 2.97 (0.02) 0.531 (0.070) 10.43 (0.47)

(100,200,200) MLE-Oracle 3 (0) NA 0.047 (0.005) NA
LASSO 17.79 (0.87) 3 (0) 0.374 (0.019) NA
PEL-BIC 0 (0) 0 (0) 28.75 (0) 200 (0)
PEL-BICC 0 (0) 0 (0) 28.75 (0) 200 (0)
PEL-EBIC 0 (0) 0 (0) 28.75 (0) 200 (0)
PEL2-BIC 9.22 (1.27) 3 (0) 0.647 (0.118) 5.38 (0.17)
PEL2-BICC 9.28 (1.28) 3 (0) 0.651 (0.119) 5.39 (0.17)
PEL2-EBIC 8.38 (1.03) 3 (0) 0.632 (0.119) 5.34 (0.17)

(100,500,500) MLE-Oracle 3 (0) NA 0.039 (0.003) NA
LASSO 23.79 (1.23) 3 (0) 0.507 (0.028) NA
PEL-BIC 0 (0) 0 (0) 28.75 (0) 500 (0)
PEL-BICC 0 (0) 0 (0) 28.75 (0) 500 (0)
PEL-EBIC 0 (0) 0 (0) 28.75 (0) 500 (0)
PEL2-BIC 6.28 (1.31) 3 (0) 0.601 (0.083) 5.48 (0.16)
PEL2-BICC 5.96 (1.31) 3 (0) 0.593 (0.085) 5.38 (0.17)
PEL2-EBIC 6.04 (1.32) 3 (0) 0.602 (0.086) 5.41 (0.16)

The model error (ME) in the regression setting is defined by ME = |�1/2(̂θ −
θ0)|22 for a given estimator θ̂ . The results for (n,p) = (50,100), (100,200) and
(100,500) are reported in Table 2. Similar to the previous example, the single-
penalty approach (PEL) of Tang and Leng (2010) is compared with the double-
penalty approach (PEL2). We also compare our method with LASSO. Since the
number of parameters p doubles the number of subjects n, the MLE method does
not work in this example. We only report the results from MLE-Oracle (i.e., the
MLE method using the true predictors), which gives the smallest model error. In
all the three settings, the single-penalty method fails to select any predictor when
using all r estimating equations. The double-penalty method identifies all true pre-
dictors from a handful of selected ones in most cases by using only a few esti-
mating equations. With the default tuning parameter selection method in LASSO,
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we clearly see that the number of false inclusion of the predictors is high. Hence,
compared with LASSO, we observe that our method has better performance in
recovering a sparse model.

5.3. Regression model with repeated measures. This is an example with over-
identification (r > p). Consider a repeated measures model such that yij = zT

ijθ0 +
εij (i = 1, . . . , n; j = 1,2), where θ0 = (3,1.5,0,0,2,0, . . . ,0)T ∈ R

p , zij are
generated from N(0,�) with σkl = 0.5|k−l| in � = (σkl)p×p . The random errors
(εi1, εi2)

T are generated from a two-dimensional normal distribution with mean
zero and unit marginal compound symmetry covariance matrix with ρ = 0.7.

Let Yi = (yi1, yi2)
T and Zi = (zT

i1, zT
i2)

T, respectively, collect the response and
predictor variables, and write Xi = (YT

i ,ZT
i )T. To incorporate the dependence

among the repeated measures from the same subject when estimating θ0, we
use the quadratic estimating equations proposed by Qu, Lindsay and Li (2000):

g(Xi; θ) = {(Yi − ZT
i θ)Tv−1/2

i M1v−1/2
i Zi , . . . , (Yi − ZT

i θ)Tv−1/2
i Mmv−1/2

i Zi}T

where vi is a diagonal matrix of the conditional variances of subject i, and Mj

(j = 1, . . . ,m) are working correlation matrices. Note that when m = 1, that is,
using only one working correlation matrix M1, the model becomes the one in
Liang and Zeger (1986) and we have r = p. Here, we choose two sets of basis
matrices with M1 being the identity matrix of size ni and M2 being the compound
symmetry with the diagonal elements of 1 and off-diagonal elements of ρ. In our
setting, m = 2 and, therefore, r = 2p estimating equations to estimate p param-
eters. We obtain the same quantities as those in the example of Section 5.2, and
report them in Table 3. In comparison of the single-penalty method, we can con-
clude from Table 3, with the columns defined in the same way as those in Table 2,
that the proposed double-penalty method has much better performance. This con-
firms the efficacy and efficiency of adding the additional penalty on the Lagrange
multiplier λ, which performs the selection of estimating equations by reducing the
number of estimating equations to less than 10.

6. Discussion. We study a new penalized EL approach with two penalties,
with one encouraging sparsity of the estimator and the other encouraging sparsity
of the Lagrange multiplier in the optimizations associated with the EL. Such an ap-
proach utilizes sparsity in the target parameters and effectively achieves a moment
selection procedure for estimating the sparse parameter. Both theory and numeri-
cal examples confirm the merits of the new approach. One interesting extension is
to explore inferences with estimating equations after the variable selection proce-
dure. Such direction is a suitable stage for EL method with estimating equations
which takes advantage of adaptivity to various moment conditions with less strin-
gent distributional assumptions. The other interesting and challenging problem is
to explore the optimality of the sparse estimator using estimating equations with
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TABLE 3
Simulation results for regression model for longitudinal data with repeated measures based on 100

replicates. Here, θnonzeros is the average number of selected nonzero components, θ true is the
average number of true nonzero components that are selected, ME reports the model error and No.

EE’s reports the number of estimating equations selected

(n,p, r) Method θnonzeros θ true ME No. EE’s

(50,100,200) MLE-Oracle 3 (0) NA 0.023 (0.002) NA
MLE 100 (0) 3 (0) 3.446 (0.106) NA
PEL-BIC 0 (0) 0 (0) 15.25 (0) 200 (0)
PEL-BICC 0 (0) 0 (0) 15.25 (0) 200 (0)
PEL-EBIC 0 (0) 0 (0) 15.25 (0) 200 (0)
PEL2-BIC 27.92 (2.51) 2.95 (0.04) 5.252 (0.871) 5.29 (0.23)
PEL2-BICC 27.00 (2.69) 2.95 (0.04) 4.532 (0.552) 5.21 (0.24)
PEL2-EBIC 24.80 (2.87) 2.94 (0.04) 4.657 (0.625) 5.26 (0.25)

(100,200,400) MLE-Oracle 3 (0) NA 0.014 (0.001) NA
MLE 200 (0) 3 (0) 3.438 (0.068) NA
PEL-BIC 0 (0) 0 (0) 15.25 (0) 400 (0)
PEL-BICC 0 (0) 0 (0) 15.25 (0) 400 (0)
PEL-EBIC 0 (0) 0 (0) 15.25 (0) 400 (0)
PEL2-BIC 45.46 (4.37) 3 (0) 5.241 (0.793) 5.51 (0.19)
PEL2-BICC 43.00 (4.25) 2.99 (0.01) 4.736 (0.659) 5.50 (0.18)
PEL2-EBIC 42.40 (4.33) 2.99 (0.01) 4.546 (0.649) 5.52 (0.19)

(100,500,1000) MLE-Oracle 3 (0) NA 0.011 (0.001) NA
MLE NA NA NA NA
PEL-BIC 0 (0) 0 (0) 15.25 (0) 1000 (0)
PEL-BICC 0 (0) 0 (0) 15.25 (0) 1000 (0)
PEL-EBIC 0 (0) 0 (0) 15.25 (0) 1000 (0)
PEL2-BIC 30.02 (6.11) 2.93 (0.03) 2.300 (0.359) 6.70 (0.16)
PEL2-BICC 26.73 (6.02) 2.93 (0.03) 2.430 (0.377) 6.62 (0.16)
PEL2-EBIC 25.09 (5.91) 2.93 (0.03) 2.415 (0.377) 6.59 (0.16)

high data dimensionality. Semiparametric efficiency of EL with estimating equa-
tions is shown in Qin and Lawless (1994). However, when the paradigm shifts to
high-dimensional problems, the efficiency of the sparse estimator respecting its
nonzero components remains open for further investigations. We plan to address
the problems in future works.

7. Proofs. In the sequel, we use the abbreviations “w.p.a.1” and “w.r.t” to
denote, respectively, “with probability approaching one” and “with respect to” and
C denotes a generic positive finite constant that may be different in different uses.
For simplicity and when no confusion arises, we use notation hi(θ) as equivalent
to h(Xi; θ) for a generic q-dimensional multivariate function h(·; ·) and denote
by hi,k(θ) the kth component of hi(θ). Let h̄(θ) = n−1 ∑n

i=1 hi (θ), and h̄k(θ) =
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n−1 ∑n
i=1 hi,k(θ) be the kth component of h̄(θ). For a given set L ⊂ {1, . . . , q}, we

denote by hL(·; ·) the subvector of h(·; ·) collecting the components indexed by L.
Analogously, we let hi,L(θ) = hL(Xi; θ) and h̄L(θ) = n−1 ∑n

i=1 hi,L(θ).

7.1. Proof of Proposition 1. Define An(θ ,λ) = n−1 ∑n
i=1 log{1 + λTgi (θ)}

for any θ ∈ � and λ ∈ �̂n(θ). Let λ̃ = arg maxλ∈�̂n(θ0)
An(θ0,λ). Pick δn =

o(r−1/2n−1/γ ) and r1/2n−1/2 = o(δn). Let λ̄ = arg maxλ∈�n An(θ0,λ) where
�n = {λ ∈ R

r : |λ|2 ≤ δn}. By Markov inequality, max1≤i≤n |gi (θ0)|2 =
Op(r1/2n1/γ ). Then max1≤i≤n,λ∈�n |λTgi (θ0)| = op(1). By Taylor expansion,

(7.1)
0 = An(θ0,0) ≤ An(θ0, λ̄) = λ̄

T
ḡ(θ0) − 1

2n

n∑
i=1

λ̄
T

gi (θ0)gi (θ0)
Tλ̄

{1 + cλ̄
T

gi (θ0)}2

≤ |λ̄|2
∣∣ḡ(θ0)

∣∣
2 − C|λ̄|22

{
1 + op(1)

}
.

Notice that |ḡ(θ0)|2 = Op(r1/2n−1/2), (7.1) yields |λ̄|2 = Op(r1/2n−1/2) =
op(δn). Thus, λ̄ ∈ int(�n) w.p.a.1. Since �n ⊂ �̂n(θ0) w.p.a.1, λ̃ = λ̄ w.p.a.1
by the concavity of An(θ0,λ) and �̂n(θ0). Hence, maxλ∈�̂n(θ0)

An(θ0,λ) =
Op(rn−1). For δn specified above, let λ∗ = δnḡ(̂θ)/|ḡ(̂θ)|2, then λ∗ ∈ �n. By
Taylor expansion,

(7.2)
An

(̂
θ ,λ∗) = λ∗,Tḡ(̂θ) − 1

2n

n∑
i=1

λ∗,Tgi (̂θ)gi (̂θ)Tλ∗

{1 + cλ∗,Tgi (̂θ)}2

≥ δn

∣∣ḡ(̂θ)
∣∣
2 − Cδ2

n

{
1 + op(1)

}
.

Since An(̂θ ,λ∗) ≤ maxλ∈�̂n(θ0)
An(θ0,λ) = Op(rn−1), then |ḡ(̂θ)|2 = Op(δn).

Consider any εn → 0 and let λ∗∗ = εnḡ(̂θ), then |λ∗∗|2 = op(δn). We have
εn|ḡ(̂θ)|22 −Cε2

n|ḡ(̂θ)|22{1+op(1)} = Op(rn−1). Then εn|ḡ(̂θ)|22 = Op(rn−1). No-
tice that we can select arbitrary slow εn → 0, following a standard result from
probability theory, we have |ḡ(̂θ)|22 = Op(rn−1).

7.2. Proof of Proposition 2. With An(θ ,λ) defined in Section 7.1, define
Fn(θ) = maxλ∈�̂n(θ) An(θ ,λ) + ∑p

k=1 P1,π (|θk|). Recall an = ∑p
k=1 P1,π (|θ0

k |)
and bn = max{rn−1, an}. Since maxλ∈�̂n(θ0)

An(θ0,λ) = Op(rn−1) as shown

in Section 7.1, then Fn(θ0) = Op(bn). Define �∗ = {θ = (θT
S, θT

Sc )T : |θS −
θ0,S |∞ ≤ ε, |θSc |1 ≤ n−1/2ϕ−1

n } for some fixed ε > 0. Let θ̃n = arg minθ∈�∗ Fn(θ).
As Fn(̃θn) ≤ Fn(θ0), then Fn(̃θn) ≤ Op(bn). We will first show θ̃n ∈ int(�∗)
w.p.a.1. Our proof includes two steps: (i) to show that for any εn → ∞ satisfying
bnε

2β
n n2/γ = o(1), there exists a uniform constant K > 0 independent of θ such

that P{Fn(θ) > Kbnε
2β
n } → 1 as n → ∞ for any θ = (θT

S, θT
Sc )T ∈ �∗ satisfying

|θS − θ0,S |∞ > εnb
1/(2β)
n . Thus, |̃θn,S − θ0,S |∞ = Op{εnb

1/(2β)
n }. Notice that we

can select arbitrary slow diverging εn, then |̃θn,S − θ0,S |∞ = Op{b1/(2β)
n }, (ii) to

show that |̃θn,Sc |1 < n−1/2ϕ−1
n .
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For (i), we will use the technique developed for the proof of Theorem 1 in
Chang, Tang and Wu (2013). For any θ = (θT

S, θT
Sc )T ∈ �∗ satisfying |θS −

θ0,S |∞ > εnb
1/(2β)
n , take θ∗ = (θT

S,0T)T and j0 = arg max1≤j≤r |E{gi,j (θ
∗)}|.

Let μj0 = E{gi,j0(θ)}, μ∗
j0

= E{gi,j0(θ
∗)} and λ̃ = δb

1/2
n ε

β
n ej0 where δ > 0 is a

constant to be determined later, and ej0 is an r-dimensional vector with the j0-
th component being 1 and other components being 0. Without lose of general-
ity, we assume μ∗

j0
> 0. (2.4) and Markov inequality yield max1≤i≤n |gi,j0(θ)| =

Op(n1/γ ) and max1≤i≤n |̃λTgi (θ)| = Op(b
1/2
n ε

β
n n1/γ ) = op(1). Then λ̃ ∈ �̂n(θ)

w.p.a.1. Write θ = (θ1, . . . , θp)T and λ̃ = (̃λ1, . . . , λ̃r )
T. It holds w.p.a.1 that

Fn(θ) ≥ n−1 ∑n
i=1 log{1 + λ̃

Tgi (θ)} + ∑p
k=1 P1,π (|θk|) ≥ n−1 ∑n

i=1 λ̃j0gi,j0(θ) −
n−1 ∑n

i=1{̃λj0gi,j0(θ)}2. Thus, we have P{Fn(θ) ≤ Kbnε
2β
n } ≤ P[ḡj0(θ) − μj0 ≤

b
1/2
n ε

β
n {Kδ−1 + δn−1 ∑n

i=1 g2
i,j0

(θ)} − μj0] + o(1). From (2.4) and Markov in-

equality, there is a uniform constant L > 0 such that P{n−1 ∑n
i=1 g2

i,j0
(θ) > L} →

0 for any θ . With δ = (K/L)1/2, we have P{Fn(θ) ≤ Kbnε
2β
n } ≤ P{ḡj0(θ)−μj0 ≤

2b
1/2
n ε

β
n (KL)1/2 − μj0} + o(1). From (2.6) and (2.9), μ∗

j0
≥ 	(εnb

1/(2β)
n ) ≥

K1ε
β
n b

1/2
n /2 with K1 specified in (2.6) for sufficiently large n, and |μj0 −

μ∗
j0

| ≤ ∑
k /∈S E{supθ∈�∗ |∂gi,j0(θ)/∂θk|}|θk| ≤ K2|θSc |1 = o(b

1/2
n ) for K2 spec-

ified in (2.9). Therefore, μj0 ≥ K1ε
β
n b

1/2
n /3 for sufficiently large n. For suffi-

ciently small K independent of θ , we have 2b
1/2
n ε

β
n (KL)1/2 − μj0 ≤ −cμj0 for

some c ∈ (0,1). Then n1/2{2b
1/2
n ε

β
n (KL)1/2 − μj0} � −ε

β
n b

1/2
n n1/2 → −∞. As

n1/2{ḡj0(θ) − μj0} →d N(0, σ 2) for some positive constant σ , then P{Fn(θ) ≤
Kbnε

2β
n } → 0. We complete the proof for (i). For (ii), if |̃θn,Sc |1 = n−1/2ϕ−1

n , we

will take θ̃
∗
n = (̃θ

T
n,S , τ θ̃

T
n,Sc )T for some τ ∈ (0,1) and show Fn(̃θ

∗
n) < Fn(̃θn)

w.p.a.1. Since θ̃n = arg minθ∈�∗ Fn(θ), it is a contradiction. Thus, |̃θn,Sc |1 <

n−1/2ϕ−1
n . Write θ̃n = (θ̃n,1, . . . , θ̃n,p)T and θ̃

∗
n = (θ̃∗

n,1, . . . , θ̃
∗
n,p)T. By Fn(̃θn) ≤

Fn(θ0), maxλ∈�̂n(̃θn) An(̃θn,λ) ≤ maxλ∈�̂n(θ0)
An(θ0,λ) + ∑p

k=1 P1,π (|θ0
k |) −∑p

k=1 P1,π (|θ̃n,k|). Notice that

(7.3)

p∑
k=1

P1,π

(∣∣θ0
k

∣∣) −
p∑

k=1

P1,π

(|θ̃n,k|)

≤
s∑

k=1

P ′
1,π

{
ck|θ̃n,k| + (1 − ck)

∣∣θ0
k

∣∣}∣∣θ̃n,k − θ0
k

∣∣ = Op

{
sχnb

1/(2β)
n

}
for some ck ∈ (0,1). Since maxλ∈�̂n(θ0)

An(θ0,λ) = Op(rn−1), it holds that

maxλ∈�̂n(̃θn) An(̃θn,λ) = Op(rn−1) + Op{sχnb
1/(2β)
n }. Pick δn = o(r−1/2n−1/γ )

and max{rn−1, sχnb
1/(2β)
n } = o(δ2

n). Same as (7.2), we know that op(δ2
n) =
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maxλ∈�̂n(̃θn) An(̃θn,λ) ≥ δn|ḡ(̃θn)|2 − Cδ2
n{1 + op(1)}, which implies |ḡ(̃θn)|2 =

Op(δn). Following the same arguments below (7.2), we have |ḡ(̃θn)|2 =
Op(r1/2n−1/2) + Op{s1/2χ

1/2
n b

1/(4β)
n }. Notice that |ḡ(̃θ

∗
n)|2 ≤ |ḡ(̃θn)|2 +

|{∇θ ḡ(θ̄)}(̃θ∗
n − θ̃n)|2 for some θ̄ between θ̃n and θ̃

∗
n. Since θ̃n,S = θ̃

∗
n,S , by (2.10),

|{∇θ ḡ(θ̄)}(̃θ∗
n − θ̃n)|2 = Op(r1/2n−1/2). Hence, |ḡ(̃θ

∗
n)|2 = Op(r1/2n−1/2) +

Op{s1/2χ
1/2
n b

1/(4β)
n }. Let λ∗ = arg maxλ∈�̂n(̃θ

∗
n)

An(̃θ
∗
n,λ). With the arguments

for (7.1), |λ∗|2 = Op(r1/2n−1/2) + Op{s1/2χ
1/2
n b

1/(4β)
n }. Since Fn(̃θn) ≥ An(̃θn,

λ∗) + ∑p
k=1 P1,π (|θ̃n,k|), then Fn(̃θ

∗
n) ≤ Fn(̃θn) + [n−1 ∑n

i=1 λ∗,T∇θgi (θ̌){1 +
λ∗,Tgi (θ̌)}−1](̃θ∗

n − θ̃n) + ∑p
k=s+1 P1,π (τ |θ̃n,k|) − ∑p

k=s+1 P1,π (|θ̃n,k|) for some

θ̌ between θ̃n and θ̃
∗
n. Meanwhile, notice that max1≤i≤n |λ∗,Tgi (θ̌)| = op(1), then

we have |[n−1 ∑n
i=1 λ∗,T∇θgi (θ̌){1 + λ∗,Tgi (θ̌)}−1](̃θ∗

n − θ̃n)| ≤ |λ∗|2|[n−1 ×∑n
i=1 ∇θgi (θ̌){1 + λ∗,Tgi (θ̌)}−1](̃θ∗

n − θ̃n)|2 ≤ |λ∗|2 |̃θn,Sc |1Op(r1/2ϕn). On the
other hand, we have

∑p
k=s+1 P1,π (τ |θ̃n,k|) − ∑p

k=s+1 P1,π (|θ̃n,k|) = −(1 − τ) ×∑p
k=s+1 P ′

1,π {(ckτ + 1 − ck)|θ̃n,k|}|θ̃n,k| ≤ −(1 − τ)Cπ
∑p

k=s+1 |θ̃n,k| = −(1 −
τ)Cπ |̃θn,Sc |1 for some ck ∈ (0,1). If r1/2ϕn max{r1/2n−1/2, s1/2χ

1/2
n b

1/(4β)
n } =

o(π), we have Fn(̃θ
∗
n) < Fn(̃θn) w.p.a.1. We complete the proof of (ii).

Next, we will show P(̃θn,Sc = 0) → 1. Let Ĝn(θ ,λ) = n−1 ∑n
i=1 log{1 +

λTgi (θ)} + ∑p
k=1 P1,π (|θk|). Then θ̃n and its associated Lagrange multiplier

λ̂ satisfy ∇λĜn(̃θn, λ̂) = 0. By the implicit theorem [Theorem 9.28 of Rudin
(1976)], for all θ in a | · |2-neighborhood of θ̃n, there is a λ̂(θ) such that
∇λĜn{θ , λ̂(θ)} = 0 and λ̂(θ) is continuously differentiable in θ . By the concavity
of Ĝn(θ ,λ) w.r.t λ, Ĝn{θ , λ̂(θ)} = maxλ∈�̂n(θ) Ĝn(θ ,λ). Write λ̂ = (̂λ1, . . . , λ̂r )

T.

From the envelope theorem, 0 = ∇θĜn{θ , λ̂(θ)}|θ=θ̃n
. Write ĥ = (ĥ1, . . . , ĥp)T =

∇θĜn{θ , λ̂(θ)}|θ=θ̃n
. Then ĥk = n−1 ∑n

i=1
∑r

j=1 λ̂j {1 + λ̂
Tgi (̃θn)}−1∂gi,j (̃θn)/

∂θk + κ̂k with κ̂k = πρ′
1(|θ̃k|;π) sgn(θ̃k) for θ̃k 	= 0 and κ̂k ∈ [−πρ′

1(0
+),πρ′

1(0
+)]

otherwise. Since supk /∈S |n−1 ∑n
i=1

∑r
j=1 λ̂j {1 + λ̂

Tgi (̃θn)}−1∂gi,j (̃θn)/∂θk| ≤
[∑r

j=1 |̂λj | supk /∈S{n−1 ∑n
i=1 |∂gi,j (̃θn)/∂θk|}]{1+op(1)} ≤ Op(ϕn)

∑r
j=1 |̂λj | =

o(π), if θ̃k 	= 0 for some k /∈ S , then πρ′
1(|θ̃k|;π) sgn(θ̃k) will dominates the sign

of ĥk . By the arguments for the proof of Lemma 1 in Fan and Li (2001), we know
θ̃n,Sc = 0 w.p.a.1.

7.3. Proof of Proposition 3. Recall Mθn
= {1 ≤ j ≤ r : |ḡj (θn)| ≥ νρ′

2(0
+)}

and M∗
θn

= {1 ≤ j ≤ r : |ḡj (θn)| ≥ Cνρ′
2(0

+)} for some C ∈ (0,1). Clearly,
Mθn

⊂ M∗
θn

. Recall mn = |M∗
θn

|. Given Mθn
, we select δn satisfying δn =

o(m
−1/2
n n−1/γ ) and un = o(δn). Let λ̄n = arg maxλ∈�n f (λ; θn) where �n = {λ =

(λT
Mθn

,λT
Mc

θn

)T ∈ R
r : |λMθn

|2 ≤ δn and λMc
θn

= 0}. For given Mθn
, by Condi-

tion 3 and Markov inequality, max1≤i≤n |gi,Mθn
(θn)|2 = Op(m

1/2
n n1/γ ), which
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leads to max1≤i≤n |λ̄T
ngi (θn)| = op(1). Write λ̄n = (λ̄n,1, . . . , λ̄n,r )

T. Notice that
P[λmin{V̂Mθn

(θn)} ≥ C] → 1. By the definition of λ̄n and Taylor expansion, not-
ing P2,ν(t) = νρ2(t;ν) and ρ′

2(t;ν) ≥ ρ′
2(0

+) for any t > 0, we have

0 = f (0; θn) ≤ f (λ̄n; θn)

= 1

n

n∑
i=1

λ̄
T
ngi (θn) − 1

2n

n∑
i=1

λ̄
T
ngi (θ0)gi (θn)

Tλ̄n

{1 + cλ̄
T
ngi (θn)}2

−
r∑

j=1

P2,ν

(|λ̄n,j |)
≤ λ̄

T
n,Mθn

[
ḡMθn

(θn) − νρ′
2
(
0+)

sgn
{
ḡMθn

(θn)
}] − C|λ̄n,Mθn

|22
{
1 + op(1)

}
.

Since |ḡMθn
(θn)−νρ′

2(0
+) sgn{ḡMθn

(θn)}|2 = Op(un), then |λ̄n,Mθn
|2 = Op(un)

= op(δn). Write λ̄n,Mθn
= (λ̄1, . . . , λ̄|Mθn |)T. We have w.p.a.1 that

(7.4) 0 = 1

n

n∑
i=1

gi,Mθn
(θn)

1 + λ̄
T
n,Mθn

gi,Mθn
(θn)

− η̂

where η̂ = (η̂1, . . . , η̂|Mθn |)T with η̂j = νρ′
2(|λ̄j |;ν) sgn(λ̄j ) for λ̄j 	= 0 and η̂j ∈

[−νρ′
2(0

+), νρ′
2(0

+)] for λ̄j = 0. (7.4) implies that η̂ = ḡMθn
(θn) + R with

|R|∞ = Op(ς
1/2
n un). Since ς

1/2
n un = o(ν), then w.p.a.1 sgn(λ̄j ) = sgn{ḡj (θn)}

for any λ̄j 	= 0.
We will show that λ̄n is a local maximizer for f (λ; θn) w.p.a.1. We first show

that λ̄n = arg maxλ∈�∗
n(θn) f (λ; θn) w.p.a.1, where �∗

n(θn) = {λ = (λT
M∗

θn

,λT
M∗,c

θn

)T

∈ R
r : |λM∗

θn
|2 ≤ ε,λM∗,c

θn
= 0} for some sufficiently small ε > 0. Since f (λ; θn)

is concave w.r.t λ, it suffices to show that w = λ̄
T
n,M∗

θn
=: (w1, . . . ,wmn)

T

satisfies 0 = n−1 ∑n
i=1 gi,M∗

θn
(θn){1 + wTgi,M∗

θn
(θn)}−1 − η̂∗ w.p.a.1, where

η̂∗ = (η̂∗
1, . . . , η̂

∗
mn

)T with η̂∗
j = νρ′

2(|wj |;ν) sgn(wj ) for wj 	= 0 and η̂∗
j ∈

[−νρ′
2(0

+), νρ′
2(0

+)] for wj = 0. From (7.4), we know 0 = n−1 ∑n
i=1 gi,j (θn){1+

wTgi,M∗
θn

(θn)}−1 − η̂∗
j holds for any j ∈ Mθn

. For each j ∈ M∗
θn

\Mθn
, it

holds that n−1 ∑n
i=1 gi,j (θn){1+wTgi,M∗

θn
(θn)}−1 = ḡj (θn)+Op(ς

1/2
n un) where

Op(ς
1/2
n un) is uniform for any j ∈ M∗

θn
\Mθn

. Since Cνρ′
2(0

+) ≤ |ḡj (θn)| <

νρ′
2(0

+) for j ∈ M∗
θn

\Mθn
, if ς

1/2
n un = o(ν), then |n−1 ∑n

i=1 gi,j (θn){1 +
wTgi,M∗

θn
(θn)}−1| < νρ ′

2(0
+) w.p.a.1 for any j ∈ M∗

θn
\Mθn

. Then there exists

η̂∗
j such that 0 = n−1 ∑n

i=1 gi,j (θn){1 + wTgi,M∗
θn

(θn)}−1 − η̂∗
j holds for any

j ∈ M∗
θn

\Mθn
.

Second, we prove λ̄n is a local maximizer for f (λ; θn) over λ ∈ �̃n(θn)

w.p.a.1, where �̃n(θn) = {λ = (λT
M∗

θn

,λT
M∗,c

θn

)T ∈ R
r : |λM∗

θn
− λ̄n,M∗

θn
|2 ≤

o(un), |λM∗,c
θn

|1 = o(r−1/γ n−1/γ )}. Note that max1≤i≤n,λ∈�̃n(θn) |λTgi (θn)| =
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op(1). For any λ ∈ �̃n(θn), we write λ = (λT
M∗

θn

,λT
M∗,c

θn

)T and denote by

λ̃ = (λT
M∗

θn

,0T)T the projection of λ onto the subspace �∗
n(θn). We only

need to show P[supλ∈�̃n(θn){f (λ; θn) − f (λ̃; θn)} ≤ 0] → 1. By Taylor ex-
pansion, supλ∈�̃n(θn){f (λ; θn) − f (λ̃; θn)} = supλ∈�̃n(θn)[n−1 ∑n

i=1 gi (θn)
T(λ −

λ̃){1 + λT∗gi (θn)}−1 − ∑
j∈M∗,c

θn
P2,ν(|λj |)] for some λ∗ between λ and λ̃. We

have |n−1 ∑n
i=1 gi (θn)

T(λ − λ̃){1 + λT∗gi (θn)}−1| ≤ Cνρ′
2(0

+)
∑

j∈M∗,c
θn

|λj | +
Op(m

1/2
n unςn) · ∑

j∈M∗,c
θn

|λj |, where the term Op(m
1/2
n unςn) is uniform for any

λ ∈ �̃n(θn). On the other hand, it holds that
∑

j∈M∗,c
θn

P2,ν(|λj |) ≥
νρ′

2(0
+)

∑
j∈M∗,c

θn
|λj |. Hence, n−1 ∑n

i=1 gi (θn)
T(λ − λ̃){1 + λT∗gi (θn)}−1 −∑

j∈M∗,c
θn

P2,ν(|λj |) ≤ {−(1 − C)νρ ′
2(0

+) + Op(m
1/2
n unςn)}∑

j∈M∗,c
θn

|λj |. No-

tice that m
1/2
n unςn/ν → 0, then −(1 − C)νρ′

2(0
+) + Op(m

1/2
n unςn) ≤ 0 w.p.a.1.

Hence, λ̄n w.p.a.1 is a local maximizer of f (λ; θn).

7.4. Proof of Theorem 1. Let G0 = supp{λ̂(θ0)}. Then it holds that
maxλ∈�̂n(θ0)

f (λ; θ0) ≤ max
η∈�̂

†
n(θ0)

n−1 ∑n
i=1 log{1 + ηTgi,G0(θ0)}, where

�̂†
n(θ0) = {η ∈ R

|G0| : ηTgi,G0(θ0) ∈ V, i = 1, . . . , n} for some open interval
V containing zero. Given G0, since |G0| ≤ �n, following the proof of Propo-
sition 1, max

η∈�̂
†
n(θ0)

n−1 ∑n
i=1 log{1 + ηTgi,G0(θ0)} = Op(�nn

−1) which im-

plies maxλ∈�̂n(θ0)
f (λ; θ0) = Op(�nn

−1). Recall an = ∑p
k=1 P1,π (|θ0

k |), bn =
max{�nn

−1, an, ν
2} and Sn(θ) = maxλ∈�̂n(θ) f (λ; θ) + ∑p

k=1 P1,π (|θk|). Define
�∗ = {θ = (θT

S, θT
Sc )T : |θS − θ0,S |∞ ≤ ε, |θSc |1 ≤ ℵn} for some fixed ε >

0 and ℵn = min{sω1/2
n b

1/(2β)
n ξ

−1/2
n , o(b

1/2
n ), o(ν�

−1/2
n �

−3/2
n ξ

−1/2
n )}. Let θ̂n =

arg minθ∈�∗ Sn(θ). As we have shown above, P{Sn(θ0) ≤ an + Op(�nn
−1)} → 1

as n → ∞. As Sn(̂θn) ≤ Sn(θ0), we have P{Sn(̂θn) ≤ an + Op(�nn
−1)} → 1 as

n → ∞. We will show that θ̂n ∈ int(�∗) w.p.a.1. Same as the proof of Propo-
sition 2, our proof includes two steps: (i) to show that for any εn → ∞ sat-
isfying bnε

2β
n n2/γ = o(1), there exists a uniform constant K > 0 independent

of θ such that P{Sn(θ) > Kbnε
2β
n } → 1 as n → ∞ for any θ = (θT

S, θT
Sc )T ∈

�∗ satisfying |θS − θ0,S |∞ > εnb
1/(2β)
n , which leads to |̂θn,S − θ0,S |∞ =

Op{b1/(2β)
n }. (ii) to show that |̂θn,Sc |1 < ℵn. The proof of (i) is the same as

that stated in Section 7.2, thus we omit its proof and only show (ii) here. We
need the following lemma whose proof is given in the Supplementary Mate-
rial.

LEMMA 1. Let F = {F ⊂ {1, . . . , r} : |F | ≤ �n} and �n = {θ = (θT
S, θT

Sc )T :
|θS − θ0,S |∞ = Op{b1/(2β)

n }, |θSc |1 ≤ ℵn}. Under Conditions 4 and 5, then
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it holds that supθ∈�n
supF∈F ‖V̂F (θ) − VF (θ0)‖2 = Op{s(�nωnb

1/β
n )1/2} +

Op{�n(n
−1�n log r)1/2} provided that log r = o(n1/3), s2�nωnb

1/β
n = o(1) and

�2
nn

−1�n log r = o(1).

We begin to prove (ii) now. If |̂θn,Sc |1 = ℵn, we define θ̂
∗
n = (̂θ

T
n,S, τ θ̂

T
n,Sc )T

for some τ ∈ (0,1) and will show Sn(̂θ
∗
n) < Sn(̂θn) w.p.a.1. Notice that θ̂n =

arg minθ∈�∗ Sn(θ). This will be a contradiction. Thus, |̂θn,Sc |1 < ℵn. Write
θ̂n = (θ̂n,1, . . . , θ̂n,p)T. Since maxλ∈�̂n(̂θn) f (λ; θ̂n) ≤ maxλ∈�̂n(θ0)

f (λ; θ0) +∑p
k=1 P1,π (|θ0

k |) − ∑p
k=1 P1,π (|θ̂n,k|), by (7.3), we have maxλ∈�̂n(̂θn) f (λ; θ̂n) =

Op(�nn
−1) + Op{sχnb

1/(2β)
n }. Pick δn satisfying δn = o(�

−1/2
n n−1/γ ) and

max{�nn
−1, sχnb

1/(2β)
n } = o(δ2

n). Select λ∗ such that λ∗
Mθ̂n

= δn[ḡMθ̂n
(̂θn) −

νρ ′
2(0

+) sgn{ḡMθ̂n
(̂θn)}]/|ḡMθ̂n

(̂θn) − νρ′
2(0

+) sgn{ḡMθ̂n
(̂θn)}|2 and λ∗

Mc
θ̂n

= 0.

Write λ∗ = (λ∗
1, . . . , λ

∗
r )

T. Then

op

(
δ2
n

) = max
λ∈�̂n(̂θn)

f (λ; θ̂n)

≥ λ∗,T
Mθ̂n

ḡMθ̂n
(̂θn)

− 1

2n

n∑
i=1

λ∗,T
Mθ̂n

gi,Mθ̂n
(̂θn)gi,Mθ̂n

(̂θn)
Tλ∗

Mθ̂n

{1 + cλ∗,T
Mθ̂n

gi,Mθ̂n
(̂θn)}2

− ∑
j∈Mθ̂n

P2,ν

(∣∣λ∗
j

∣∣)
≥ λ∗,T

Mθ̂n

{
ḡMθ̂n

(̂θn) − νρ′
2
(
0+)

sgn
(
λ∗
Mθ̂n

)} − Cδ2
n

{
1 + op(1)

}
for some c ∈ (0,1). Notice that sgn(λ∗

Mθ̂n
) = sgn{ḡMθ̂n

(̂θn)}. Thus, it holds that

|ḡMθ̂n
(̂θn) − νρ ′

2(0
+) sgn{ḡMθ̂n

(̂θn)}|2 = Op(δn). Using the technique developed

in Section 7.1, we have |ḡMθ̂n
(̂θn)−νρ′

2(0
+) sgn{ḡMθ̂n

(̂θn)}|2 = Op(�
1/2
n n−1/2)+

Op{s1/2χ
1/2
n b

1/(4β)
n }.

By Lemma 1 and Condition 4, we know λmin{V̂Mθ̂n
(̂θn)} ≥ C w.p.a.1. Thus,

Proposition 3 leads to |̂λ(̂θn)|2 = Op(�
1/2
n n−1/2) + Op{s1/2χ

1/2
n b

1/(4β)
n }. Based

on this property of the Lagrange multiplier λ̂(̂θn), we can follow the same argu-
ments stated in Section 7.2 to construct (ii). Specifically, write λ̂(̂θn) and λ̂(̂θ

∗
n)

as λ̂ = (̂λ1, . . . , λ̂r )
T and λ̂

∗ = (̂λ∗
1, . . . , λ̂

∗
r )

T, respectively. In the sequel, we use θ̌

to denote a generic vector lying on the jointing line between θ̂n and θ̂
∗
n that may

be different in different uses. Write θ̂
∗
n = (θ̂∗

n,1, . . . , θ̂
∗
n,p)T. By Taylor expansion,
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it holds that

(7.5)

Sn

(̂
θ

∗
n

) ≤ Sn(̂θn) +
r∑

j=1

P2,ν

(|̂λj |) −
r∑

j=1

P2,ν

(∣∣̂λ∗
j

∣∣)
︸ ︷︷ ︸

I

+ 1

n

n∑
i=1

λ̂
∗,T∇θSc gi (θ̌)

1 + λ̂
∗,Tgi (θ̌)

(̂
θ

∗
n,Sc − θ̂n,Sc

)
︸ ︷︷ ︸

II

+
p∑

k=s+1

P1,π

(
τ |θ̂n,k|) −

p∑
k=s+1

P1,π

(|θ̂n,k|)︸ ︷︷ ︸
III

.

We will show I + II + III < 0 w.p.a.1 as follows.
For I, we will first specify the convergence rate of |̂λ∗ − λ̂|1. Define Ĥn(θ ,λ) =

n−1 ∑n
i=1 log{1 + λTgi (θ)} + ∑p

k=1 P1,π (|θk|) − ∑r
j=1 P2,ν(|λj |) for any θ =

(θ1, . . . , θp)T and λ = (λ1, . . . , λr)
T. Then θ̂n and its associated Lagrange mul-

tiplier λ̂ satisfy the score equation ∇λĤn(̂θn, λ̂) = 0, that is,

(7.6) 0 = 1

n

n∑
i=1

gi (̂θn)

1 + λ̂
Tgi (̂θn)

− η̂,

where η̂ = (η̂1, . . . , η̂r )
T with η̂j = νρ′

2(|̂λj |;ν) sgn(̂λj ) for λ̂j 	= 0 and η̂j ∈
[−νρ′

2(0
+), νρ′

2(0
+)] for λ̂j = 0. Let Rn = supp{λ̂(̂θn)}. Restricted on Rn, for

any θ ∈ R
p and ζ = (ζ1, . . . , ζ|Rn|)T ∈ R

|Rn| with each ζj 	= 0, define m(ζ , θ) =
n−1 ∑n

i=1 gi,Rn(θ){1 + ζTgi,Rn(θ)}−1 − w, where w = (w1, . . . ,w|Rn|)T with
wj = νρ′

2(|ζj |;ν) sgn(ζj ). Then λ̂Rn and θ̂n satisfy m(λ̂Rn, θ̂n) = 0. By the im-
plicit theorem [Theorem 9.28 of Rudin (1976)], for all θ in a | · |2-neighborhood of

θ̂n, there is a ζ (θ) such that m{ζ (θ), θ} = 0 and ζ (θ) is continuously differentiable

in θ . Since θ̂
∗
n,S = θ̂n,S , we have |ζ (̂θ

∗
n) − λ̂Rn |1 = |{∇θ ζ (θ)|

θ=θ̌
}(̂θ∗

n − θ̂n)|1 ≤
‖∇θSc ζ (θ)|

θ=θ̌
‖1 |̂θ∗

n,Sc − θ̂n,Sc |1. Notice that

∇θSc ζ (θ)|
θ=θ̌

=
[

1

n

n∑
i=1

gi,Rn(θ̌)gi,Rn(θ̌)T

{1 + ζ (θ̌)Tgi,Rn(θ̌)}2
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+ ν diag
[
ρ′′

2
{∣∣ζ1(θ̌)

∣∣;ν}
, . . . , ρ′′

2
{∣∣ζ|Rn|(θ̌)

∣∣;ν}]]−1

×
{

1

n

n∑
i=1

∇θSc gi,Rn(θ̌)

1 + ζ (θ̌)Tgi,Rn(θ̌)
− 1

n

n∑
i=1

gi,Rn(θ̌)ζ (θ̌)T∇θSc gi,Rn(θ̌)

{1 + ζ (θ̌)Tgi,Rn(θ̌)}2

}

=: A(θ̌) × B(θ̌).

Since max1≤i≤n |ζ (θ̌)Tgi,Rn(θ̌)| = op(1), from Lemma 1, we know ‖A(θ̌)‖1 ≤
|Rn|1/2‖A(θ̌)‖2 = Op(�

1/2
n ). Meanwhile, we have |B(θ̌)|∞ = Op(ξ

1/2
n ) which

implies ‖B(θ̌)‖1 = Op(ξ
1/2
n �n). Then ‖∇θSc ζ (θ)|

θ=θ̌
‖1 ≤ ‖A(θ̌)‖1‖B(θ̌)‖1 =

Op(�
3/2
n ξ

1/2
n ), which implies |ζ (̂θ

∗
n)− λ̂Rn |1 = Op(�

3/2
n ξ

1/2
n )|̂θn,Sc |1. Let λ̃ satisfy

λ̃Rn = ζ (̂θ
∗
n) and λ̃Rc

n
= 0. For any j ∈ Rc

n, we have

1

n

n∑
i=1

gi,j (̂θ
∗
n)

1 + λ̃
Tgi (̂θ

∗
n)

= 1

n

n∑
i=1

gi,j (̂θn)

1 + λ̂
Tgi (̂θn)

+ Op

(
�1/2

n

)|̃λ − λ̂|1

+ Op

(
ξ1/2
n

)∣∣̂θ∗
n,Sc − θ̂n,Sc

∣∣
1

= 1

n

n∑
i=1

gi,j (̂θn)

1 + λ̂
Tgi (̂θn)

+ op(ν),

where the term op(ν) holds uniformly for any j ∈ Rc
n. Write λ̃ = (̃λ1, . . . , λ̃r )

T.
Recall that m{ζ (̂θ

∗
n), θ̂

∗
n} = 0 and (7.6) holds, then it holds w.p.a.1 that 0 =

n−1 ∑n
i=1 gi (̂θ

∗
n){1 + λ̃

Tgi (̂θ
∗
n)}−1 − η̂∗ for η̂∗ = (η̂∗

1, . . . , η̂
∗
r )

T with η̂∗
j =

νρ′
2(|̃λj |;ν) sgn(̃λj ) for λ̃j 	= 0 and η̂∗

j ∈ [−νρ′
2(0

+), νρ′
2(0

+)] for λ̃j = 0. By

the concavity of f (λ; θ) = n−1 ∑n
i=1 log{1 + λTgi (θ)} − ∑r

j=1 P2,ν(|λj |), we

know λ̂
∗ = λ̃ w.p.a.1. Hence, |̂λ∗ − λ̂|1 = Op(�

3/2
n ξ

1/2
n )|̂θn,Sc |1. This implies

I = Op(�
3/2
n ξ

1/2
n ν)|̂θn,Sc |1. Let J∗ = supp(λ̂

∗
). Since max1≤i≤n |̂λ∗,Tgi (θ̌)| =

op(1), then |II| ≤ |̂λ∗|2|[n−1 ∑n
i=1 ∇θSc gi,J∗(θ̌){1 + λ̂

∗,Tgi (θ̌)}−1](̂θ∗
n,Sc −

θ̂n,Sc )|2 ≤ |̂λ∗|2 |̂θn,Sc |1Op(�
1/2
n ξ

1/2
n ) = max{�1/2

n n−1/2, s1/2χ
1/2
n b

1/(4β)
n }|̂θn,Sc |1 ·

Op(�
1/2
n ξ

1/2
n ). Notice that III = −(1 − τ)

∑p
k=s+1 P ′

1,π {(ckτ + 1 − ck)|θ̂n,k|} ×
|θ̂n,k| ≤ −(1 − τ)Cπ |̂θn,Sc |1 for some ck ∈ (0,1). Since max{�3/2

n ξ
1/2
n ν,

�nξ
1/2
n n−1/2, �

1/2
n ξ

1/2
n s1/2χ

1/2
n b

1/(4β)
n } = o(π), then (7.5) implies Sn(̂θ

∗
n) < Sn(̂θn)

w.p.a.1. Hence, we complete the proof of (ii). Together with (i), we know such de-
fined θ̂n is a local minimizer of Sn(θ). Following the same arguments stated in
Section 7.2, we can prove P(̂θn,Sc = 0) → 1.
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7.5. Proof of Theorem 2. Recall Rn = supp{̂λ(̂θn)}. We still write λ̂ =
λ̂(̂θn) = (̂λ1, . . . , λ̂r )

T. From (7.6), we have

0 = 1

n

n∑
i=1

gi,Rn (̂θn) − 1

n

n∑
i=1

gi,Rn (̂θn)gi,Rn (̂θn)
Tλ̂Rn

{1 + cλ̂
T
Rn

gi,Rn (̂θn)}2
− η̂Rn

=: ḡRn (̂θn) − C(̂θn)λ̂Rn − η̂Rn

for some |c| < 1, which implies λ̂Rn = {C(̂θn)}−1{ḡRn (̂θn) − η̂Rn
}. On the other

hand, together with 0 = ∇θ Ĥn{θ , λ̂(θ)}|θ=θ̂n
, it holds that

(7.7)
0 =

{
1

n

n∑
i=1

∇θSgi,Rn (̂θn)

1 + λ̂
T
Rn

gi,Rn (̂θn)

}T{
C(̂θn)

}−1{
ḡRn (̂θn) − η̂Rn

} + κ̂S

=: {
D(̂θn)

}T{
C(̂θn)

}−1{
ḡRn (̂θn) − η̂Rn

} + κ̂S,

where κ̂S = {∑p
k=1 ∇θSP1,π (|θk|)}|θS=θ̂n,S . By Condition 6, |κ̂S |∞ = Op(χn).

We will use (7.7) to derive the limiting distribution of θ̂n,S where the next lemmas
are needed whose proofs are given in the Supplementary Material.

LEMMA 2. Assume the conditions of Theorem 1 hold. Then ‖C(̂θn) −
V̂Rn (̂θn)‖2 = Op(�nn

−1/2+1/γ ) + Op{�1/2
n s1/2χ

1/2
n b

1/(4β)
n n1/γ }, and |{D(̂θn) −

∇θS ḡRn (̂θn)}z|2 = |z|2[Op(�ns
1/2ω

1/2
n n−1/2) + Op{�1/2

n sω
1/2
n χ

1/2
n b

1/(4β)
n }] holds

uniformly for any z ∈R
s .

LEMMA 3. Assume the conditions of Theorem 1 and Condition 7 hold.
For F defined in Lemma 1, then supF∈F |[∇θS ḡF (̂θn) − E{∇θSgi,F (θ0)}]z|2 =
|z|2[Op{s3/2�

1/2
n �

1/2
n b

1/(2β)
n }+Op{(n−1s�nωn log r)1/2}] holds uniformly for any

z ∈ R
s .

LEMMA 4. Let ĴF = {∇θS ḡF (̂θn)}TV̂−1
F (̂θn){∇θS ḡF (̂θn)} for any F ∈ F ,

where F is defined in Lemma 1. Under conditions for Lemma 3 and Condi-

tion 8, if s2�2
nb

1/β
n �

1/2
n max{ωn, s�n} log r = o(1), n−1�2

nsωn�
1/2
n (log r)2 = o(1)

and n−1�3
n�

3/2
n (log r)2 = o(1), we have that for any u ∈ R and α ∈ R

s with

|α|2 = 1, supF∈F |P[n1/2αTĴ−1/2
F {∇θS ḡF (̂θn)}TV̂−1

F (̂θn)ḡF (θ0) ≤ u] − �(u)| →
0, where �(·) is the cumulative distribution function of the standard normal dis-
tribution.

Recall ĴRn = {∇θS ḡRn (̂θn)}TV̂−1
Rn

(̂θn){∇θS ḡRn (̂θn)}. For any α ∈ R
s with unit

L2-norm, let δ = Ĵ−1/2
Rn

α, then it holds that |{∇θS ḡRn (̂θn)}δ|22 ≤ λmax{V̂Rn (̂θn)} ×
|U(UTU)−1/2α|22 = λmax{V̂Rn (̂θn)}, where U = V̂−1/2

Rn
(̂θn){∇θS ḡRn (̂θn)}.
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Therefore, by Lemma 1, |{∇θS ḡRn (̂θn)}δ|2 = Op(1). Since |δ|2 = Op(1), by
Lemma 2, |D(̂θn)δ|2 = Op(1). As shown in Section 7.4, |ḡMθ̂n

(̂θn) − νρ ′
2(0

+) ×
sgn{ḡMθ̂n

(̂θn)}|2 = Op(�
1/2
n n−1/2) + Op{s1/2χ

1/2
n b

1/(4β)
n }. From Proposition 3,

|ḡRn (̂θn) − η̂Rn
|2 = Op(�

1/2
n n−1/2) + Op{s1/2χ

1/2
n b

1/(4β)
n }. From Lemmas 2 and

3, (7.7) leads to δT{∇θS ḡRn (̂θn)}TV̂−1
Rn

(̂θn){ḡRn (̂θn) − η̂Rn
} = Op(s1/2χn) +

Op(�
1/2
n max{�nn

−1, sχnb
1/(2β)
n }max{s1/2ω

1/2
n , n1/γ }). Expanding ḡRn (̂θn) near

θ = θ0, it holds w.p.a.1 that

(7.8)

δT{∇θS ḡRn (̂θn)
}TV̂−1

Rn
(̂θn)

[{∇θS ḡRn (̃θ)
}
(̂θn,S − θ0,S) − η̂Rn

]
= −δT{∇θS ḡRn (̂θn)

}TV̂−1
Rn

(̂θn)ḡRn(θ0) + Op

(
s1/2χn

)
+ Op

(
�1/2
n max

{
�nn

−1, sχnb
1/(2β)
n

}
max

{
s1/2ω1/2

n , n1/γ })
,

where θ̃ is on the line joining θ0 and θ̂n. Notice that |ḡRn (̂θn) − ḡRn(θ0)|2 ≤
|ḡRn (̂θn)|2 + |ḡRn(θ0)|2 = Op(�

1/2
n ν) + Op{s1/2χ

1/2
n b

1/(4β)
n }. By Taylor expan-

sion, |ḡRn (̂θn) − ḡRn(θ0)|2 ≥ λ
1/2
min([∇θS ḡRn(θ̇)]T[∇θS ḡRn(θ̇)])|̂θn,S − θ0,S |2

for some θ̇ lying on the line jointing θ0 and θ̂n. Same as Lemma 3,
λmin([∇θS ḡRn(θ̇)]T[∇θS ḡRn(θ̇)]) is bounded away from zero w.p.a.1, which im-

plies |̂θn,S − θ0,S |2 = Op(�
1/2
n ν) + Op{s1/2χ

1/2
n b

1/(4β)
n }. Together with Condi-

tion 7, we have |{∇θS ḡRn (̃θ)−∇θS ḡRn (̂θn)}(̂θn,S −θ0,S)|2 = Op(�
3/2
n s�

1/2
n ν2)+

Op{�1/2
n s2�

1/2
n χnb

1/(2β)
n }. Therefore, (7.8) leads to

δTĴRn

[̂
θn,S − θ0,S − Ĵ−1

Rn

{∇θS ḡRn (̂θn)
}TV̂−1

Rn
(̂θn)̂ηRn

]
= −αTĴ−1/2

Rn

{∇θS ḡRn (̂θn)
}TV̂−1

Rn
(̂θn)ḡRn(θ0)

+ Op

(
�3/2
n s� 1/2

n ν2) + Op

{
�1/2
n s2� 1/2

n χnb
1/(2β)
n

} + Op

(
s1/2χn

)
+ Op

(
�1/2
n max

{
�nn

−1, sχnb
1/(2β)
n

}
max

{
s1/2ω1/2

n , n1/γ })
.

By Lemma 4, we complete the proof of Theorem 2.
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SUPPLEMENTARY MATERIAL

Supplement to “A new scope of penalized empirical likelihood with high-
dimensional estimating equations” (DOI: 10.1214/17-AOS1655SUPP; .pdf).
Additional technical proofs and a data analysis are given the Supplementary Ma-
terial.

https://doi.org/10.1214/17-AOS1655SUPP
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