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LOCAL ROBUST ESTIMATION OF THE PICKANDS
DEPENDENCE FUNCTION1
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We consider the robust estimation of the Pickands dependence function
in the random covariate framework. Our estimator is based on local esti-
mation with the minimum density power divergence criterion. We provide
the main asymptotic properties, in particular the convergence of the stochas-
tic process, correctly normalized, towards a tight centered Gaussian process.
The finite sample performance of our estimator is evaluated with a simulation
study involving both uncontaminated and contaminated samples. The method
is illustrated on a dataset of air pollution measurements.

1. Introduction. Modelling dependence among extremes is of primary im-
portance in practical applications where extreme phenomena occur. To this aim,
the copula function can be used as a margin-free description of the dependence
structure. Indeed, according to the well-known result of Sklar (1959), the distribu-
tion function of a pair (Y (1), Y (2)) can be represented in terms of the two margins
F1 and F2 of Y (1) and Y (2), respectively, and a copula function C as follows:

P
(
Y (1) ≤ y1, Y

(2) ≤ y2
)= C

(
F1(y1),F2(y2)

)
.

This function C characterizes the dependence between Y (1) and Y (2) and is called
an extreme value copula if and only if it admits a representation of the form

C(y1, y2) = exp
(

log(y1y2)A

(
log(y2)

log(y1y2)

))
,

where A: [0,1] → [1/2,1] is the Pickands dependence function, which is convex
and satisfies max{t,1 − t} ≤ A(t) ≤ 1; see Pickands (1981). Statistical inference
on the bivariate function C is therefore equivalent to the statistical inference on the
one-dimensional function A. Estimating this function A has been extensively stud-
ied in the literature. We can mention, among others, Capéraà, Fougères and Genest
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(1997), Fils-Villetard, Guillou and Segers (2008) or Bücher, Dette and Volgushev
(2011).

In this paper, we extend the above framework to the case where the pair
(Y (1), Y (2)) is recorded along with a random covariate X ∈ R

p . In that context, the
copula function together with the marginal distribution functions depend on the
covariate X. In the sequel, we denote by Cx , F1(·|x) and F2(·|x) the conditional
copula function and the continuous conditional distribution functions of Y (1) and
Y (2) given X = x. Our model can thus be written as

(1.1) P
(
F1
(
Y (1)|x)≤ y1,F2

(
Y (2)|x)≤ y2|X = x

)= Cx(y1, y2),

where Cx admits a representation of the form

Cx(y1, y2) = exp
(

log(y1y2)A

(
log(y2)

log(y1y2)

∣∣∣x)),
with A(·|·) : [0,1] ×R

p → [1/2,1] is the conditional Pickands dependence func-
tion which is again a convex function satisfying max{t,1 − t} ≤ A(t |x) ≤ 1 for
all x ∈R

p . From a practical point of view, the considered family of extreme value
distributions has sufficiently large potential for data analysis. First, the family of
extreme value distributions is very rich, and includes among others the logistic, the
asymmetric logistic, the negative logistic, the Hüsler–Reiss, the t extreme value
and Dirichlet model. Second, multivariate extreme value distributions arise natu-
rally as the limiting distributions of properly normalised component-wise maxima,
making them a useful approximation to the true, but typically unknown, distribu-
tion of these component-wise maxima in practice. We refer to Kotz and Nadarajah
(2000) and Gudendorf and Segers (2010) for further motivation and discussion of
this class of distributions and additional examples. As a possible application, we
consider modelling extremal dependence between air pollutants, like ground-level
ozone and particulate matter, conditional on location and time; see Section 5 for
more details.

Moreover, in addition to the covariate context, we consider the case of contam-
ination and we propose a robust estimator of the conditional Pickands dependence
function A(·|x). To reach this goal, we use the density power divergence method
introduced by Basu et al. (1998). In particular, the density power divergence be-
tween two density functions g and h is defined as follows:

�α(g,h) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R

[
h1+α(y) −

(
1 + 1

α

)
hα(y)g(y) + 1

α
g1+α(y)

]
dy, α > 0,∫

R

log
g(y)

h(y)
g(y) dy, α = 0.

Here, the density function h is assumed to depend on a parameter vector θ , and if
Z1, . . . ,Zn is a sample of independent and identically distributed random variables
according to the density function g, then the minimum density power divergence



2808 M. ESCOBAR-BACH, Y. GOEGEBEUR AND A. GUILLOU

estimator (MDPDE) of θ is the point θ̂ minimizing the empirical version (up to a
constant independent of θ )

�̂α(θ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
R

h1+α(y) dy −
(

1 + 1

α

)
1

n

n∑
i=1

hα(Zi), α > 0,

−1

n

n∑
i=1

logh(Zi), α = 0.

We can observe that for α = 0 one recovers the log-likelihood function, up to
the sign. A large value of α allows us to increase the robustness of the estimator,
whereas a smaller value implies more efficiency. This parameter α can thus be
selected in order to ensure a trade-off between these two antagonist concepts.

The nonparametric estimation of extremal dependence in presence of random
covariates is still in its infancy, despite the huge potential of such methods for
practical data analysis. Gardes and Girard (2015) introduce an estimator for the
tail copula based on a random sample from a distribution in the max-domain of
attraction of an extreme value distribution, and provide a finite dimensional con-
vergence result for their estimator, when properly normalised. Portier and Segers
(2017) considered model (1.1) but under the simplifying assumption that the de-
pendence between Y (1) and Y (2) does not depend on the value taken by the co-
variate, that is, Cx = C [see also Gijbels, Omelka and Veraverbeke (2015)]. In the
present paper, we introduce a nonparametric and robust estimator for A(·|x) which
is obtained by an adjustment of the above introduced density power divergence es-
timation criterion to the situation of local estimation, and we study the asymptotic
properties of the obtained estimator in terms of stochastic process convergence. To
the best of our knowledge, nonparametric and robust estimation of the conditional
Pickands dependence function has not been considered in the literature.

The remainder of the paper is organized as follows. In Section 2, we simplify the
situation to the case where the two marginal distributions are known, we propose
a robust estimator for A(·|x) and prove its convergence in terms of a stochastic
process. Then, in Section 3, we extend this result to the case of unknown margins.
The efficiency and robustness of the estimator are examined with a simulation
study, described in Section 4. Finally, in Section 5 we illustrate the practical appli-
cability of the method for modelling extremal dependence between air pollution
measurements. Additional simulation results are available in the online Supple-
mentary Material [Escobar-Bach, Goegebeur and Guillou (2018)]. All the proofs
are postponed to the Appendix.

2. Case of known margins. We denote by f the density function of the co-
variate X and by x0 a reference position such that x0 ∈ Int(SX), the interior of
the support SX of f . In this section, we restrict our interest to the case where
the marginals F1(·|x) and F2(·|x) are known, and we denote by A0(·|x) the true
conditional Pickands dependence function associated to the pair (Y (1), Y (2)).
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2.1. Construction of the estimator. For convenience, we reformulate the
model (1.1) into standard exponential margins. After applying the transforma-
tions Ỹ (j) = − logFj (Y

(j)|x), j = 1,2, we obtain the following bivariate survival
function:

G(y1, y2|x) := P
(
Ỹ (1) > y1, Ỹ

(2) > y2|X = x
)

= exp
(
−(y1 + y2)A0

(
y2

y1 + y2

∣∣∣x))
for all y1, y2 > 0. Let t ∈ [0,1]. Considering the univariate random variable

Zt := min
(

Ỹ (1)

1 − t
,
Ỹ (2)

t

)
,

it is clear that

P(Zt > z|X = x) = e−zA0(t |x) ∀z > 0 and x ∈R
p.

Consequently, the conditional distribution of Zt given X = x is an exponential
distribution with parameter A0(t |x).

Let (Zt,i,Xi), i = 1, . . . , n, be independent copies of the random pair (Zt ,X).
In the present paper, we will develop a nonparametric robust estimator for A0(t |x0)

by fitting this exponential distribution function locally to the variables Zt,i ,
i = 1, . . . , n, by means of the MDPD criterion, adjusted to locally weighted es-
timation, that is, we minimize for α > 0

�̂α,x0,t (a) := 1

n

n∑
i=1

Kh(x0 − Xi)

{∫ ∞
0

(
ae−az)1+α

dz −
(

1 + 1

α

)(
ae−aZt,i

)α}
(2.1)

= aα

n

n∑
i=1

Kh(x0 − Xi)

{
1

1 + α
−
(

1 + 1

α

)
e−αaZt,i

}
.

Here, Kh(·) := K(·/h)/hp where K is a joint density on R
p and h = hn is a posi-

tive non-random sequence satisfying hn → 0 as n → ∞. The MDPDE Âα,n(t |x0)

for A0(t |x0) satisfies the estimating equation

(2.2) �̂
(1)
α,x0,t

(
Âα,n(t |x0)

)= 0,

where �̂
(j)
α,x0,t

(·) denotes the derivative of order j of �̂α,x0,t (·). The minimization
of �̂α,x0,t is here performed without constraints, which means that Âα,n(·|x0) does
not automatically satisfy the conditions of the Pickands dependence function. In
fact, this is the case for several of the estimators proposed in the literature; see,
for example, Pickands (1981), Deheuvels (1991) or Capéraà, Fougères and Gen-
est (1997). To overcome this, one could follow the idea of Fils-Villetard, Guillou
and Segers (2008), and project the obtained estimator onto the space of Pickands
dependence functions.
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Our aim in this paper is to show the weak convergence of the stochastic process

(2.3)
{√

nhp
(
Âα,n(t |x0) − A0(t |x0)

)
, t ∈ [0,1]},

in the space of all continuous functions on [0,1], denoted as C([0,1]), when
n → ∞.

Our starting point is the estimating equation (2.2). By applying a Taylor series
expansion around the true value A0(t |x0), we get

0 = �̂
(1)
α,x0,t

(
A0(t |x0)

)+ (Âα,n(t |x0) − A0(t |x0)
)
�̂

(2)
α,x0,t

(
A0(t |x0)

)
+ 1

2

(
Âα,n(t |x0) − A0(t |x0)

)2
�̂

(3)
α,x0,t

(
Ã(t |x0)

)
,

where Ã(t |x0) is a random value between A0(t |x0) and Âα,n(t |x0). A straightfor-
ward rearrangement of the above display gives

√
nhp
(
Âα,n(t |x0) − A0(t |x0)

)
= −√

nhp�̂
(1)
α,x0,t

(A0(t |x0))

�̂
(2)
α,x0,t

(A0(t |x0)) + 1
2�̂

(3)
α,x0,t

(Ã(t |x0))(Âα,n(t |x0) − A0(t |x0))
.

(2.4)

Consequently, in order to obtain the convergence of the stochastic process (2.3),
we need to study the properties of the derivatives �̂

(j)
α,x0,t

, j = 1,2,3. According
to Appendix A.5, these can be expressed as a linear combination of a key statistic
Tn, defined as

(2.5) Tn(K,a, t, λ,β, γ |x0) := aγ

n

n∑
i=1

Kh(x0 − Xi)Z
β
t,ie

−λaZt,i

for a ∈ [1/2,1], t ∈ [0,1], λ,β ≥ 0 and γ ∈ R.

2.2. Asymptotic properties of Tn. Due to the regression context, we need some
Hölder-type conditions on the density function f and on the conditional Pickands
dependence function A0. Let ‖ · ‖ be some norm on R

p , and denote by Bx(r) the
closed ball with respect to ‖ · ‖ centered at x and radius r > 0.

ASSUMPTION (D). There exist Mf > 0 and ηf > 0 such that |f (x)−f (z)| ≤
Mf ‖x − z‖ηf , for all (x, z) ∈ SX × SX .

ASSUMPTION (A0). There exist MA0 > 0 and ηA0 > 0 such that |A0(t |x) −
A0(t |z)| ≤ MA0‖x − z‖ηA0 , for all (x, z) ∈ Bx0(r) × Bx0(r), r > 0 and t ∈ [0,1].

Also a usual condition is assumed on the kernel K .

ASSUMPTION (K1). K is a bounded density function on R
p with support SK

included in the unit ball of Rp with respect to the norm ‖ · ‖.
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As a preliminary result, in Lemma 2.1 we prove the convergence in probability
of the key statistic Tn.

LEMMA 2.1. Assume that for all t ∈ [0,1], x → A0(t |x) and the density func-
tion f are both continuous at x0 ∈ Int(SX) nonempty. Under Assumption (K1), if
h → 0 and nhp → ∞, then for a ∈ [1/2,1], λ,β ≥ 0, γ ∈ R and x0 such that
f (x0) > 0, we have

Tn(K,a, t, λ,β, γ |x0)
P−→ aγ 	(β + 1)

A0(t |x0)

(λa + A0(t |x0))β+1 f (x0)

as n → ∞, where 	 is the gamma function defined as 	(r) := ∫∞0 t r−1e−t dt,

∀r > 0.

Now, our interest is in the rate of convergence in Lemma 2.1 when a is re-
placed by A0(t |x0). More precisely, we want to show the weak convergence of the
stochastic process{√

nhp

(
Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)− 	(β + 1)
[A0(t |x0)]γ−β

(λ + 1)β+1 f (x0)

)
,

t ∈ [0,1]
}
.

To establish such a result, we use empirical processes arguments based on the
theory of Vapnik–Červonenkis classes (VC-classes) of functions as formulated in
van der Vaart and Wellner (1996). This allows us to show the following theorem.

THEOREM 2.1. Let γ ∈ R and (λ,β) ∈ (0,∞) × R+ or (λ,β) = (0,0).
Under the assumptions of Lemma 2.1 and if (D) and (A0) hold with√

nhphmin(ηf ,ηA0 ) → 0, then the process{√
nhp

(
Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)− 	(β + 1)
[A0(t |x0)]γ−β

(λ + 1)β+1 f (x0)

)
,

t ∈ [0,1]
}

weakly converges in C([0,1]) towards a tight centered Gaussian process {Bt,

t ∈ [0,1]} with covariance structure given by

Cov(Bt ,Bs) = [A0(t |x0)A0(s|x0)
]γ ‖K‖2

2f (x0)

×
{∫

R
2+

g(u, v)Gt,s(u, v|x0) dudv + 1 − λ

1 + λ
δ0(β)

}
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for all (s, t) ∈ [0,1]2, where δ0 is the Dirac measure on 0, and

g(u, v) := uβ−1(β − λA0(t |x0)u
)
e−λA0(t |x0)u

× vβ−1(β − λA0(s|x0)v
)
e−λA0(s|x0)v,

Gt,s(u, v|x0) := G
(
max
(
(1 − t)u, (1 − s)v

)
,max(tu, sv)|x0

)
.

We now derive the limiting distribution of a vector of statistics of the form (2.5),
when properly normalized. Let Tn be a (m × 1) vector defined as

Tn := (Tn

(
K,A0(t1|x0), t1, λ1, β1, γ1|x0

)
, . . . ,

Tn

(
K,A0(tm|x0), tm,λm,βm,γm|x0

))T
for some positive integer m and let � be a (m × m) covariance matrix with ele-
ments (σj,k)1≤j,k≤m defined as

σj,k := [A0(tj |x0)
]γj
[
A0(tk|x0)

]γk‖K‖2
2f (x0)

×
{∫

R
2+

gj,k(u, v)Gtj ,tk (u, v|x0) dudv

(2.6)

+ δ0(βj )
	(βk + 1)

[λk + 1]βk+1[A0(tk|x0)]βk

+ δ0(βk)
	(βj + 1)

[λj + 1]βj+1[A0(tj |x0)]βj
− δ0(βj )δ0(βk)

}
,

where

gj,k(u, v) := uβj−1[βj − λjA0(tj |x0)u
]
e−λjA0(tj |x0)u

× vβk−1[βk − λkA0(tk|x0)v
]
e−λkA0(tk |x0)v.

The aim of next theorem is to provide the finite dimensional convergence result
which will, together with the tightness, allow us to establish the joint convergence
of several processes related to the statistic Tn.

THEOREM 2.2. Under the assumptions of Lemma 2.1, we have
√

nhp
(
Tn −E[Tn])� Nm(0,�),

where Nm denotes a m-dimensional normal distribution.

We have now all the needed ingredients for proving the asymptotic properties
of the MDPDE Âα,n(t |x0).
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2.3. Asymptotic properties of Âα,n(t |x0). The first result states the existence
and uniform consistency of a sequence of solutions to the estimating equation
(2.2).

THEOREM 2.3. Let α > 0. Under the assumptions of Theorem 2.1, with prob-
ability tending to 1, there exists a sequence (Âα,n(t |x0))n∈N of solutions for the
estimating equation (2.2) such that

sup
t∈[0,1]
∣∣Âα,n(t |x0) − A0(t |x0)

∣∣= oP(1).

Now, we come back to our final goal which is the weak convergence of the
stochastic process (2.3).

THEOREM 2.4. Let (Âα,n(t |x0))n∈N be the consistent sequence defined in
Theorem 2.3. Under the assumptions of Theorem 2.1, the process{√

nhp
(
Âα,n(t |x0) − A0(t |x0)

)
, t ∈ [0,1]}

weakly converges in C([0,1]) towards a tight centered Gaussian process {Nt,

t ∈ [0,1]} with covariance structure given by

Cov(Nt ,Ns) = ‖K‖2
2A0(t |x0)A0(s|x0)

f (x0)

(1 + α)2

(1 + α2)2 vT
α �(t, s)vα,

where

vα :=

⎛⎜⎜⎝
α

1 + α−(1 + α)

1 + α

⎞⎟⎟⎠ and �(t, s) :=
⎛⎜⎝(1 + α)2 1 + α 1

1 + α �2,2(t, s) �2,3(t, s)

1 �2,3(s, t) �3,3(t, s)

⎞⎟⎠
with

�2,2(t, s) := (1 − α)(1 + α) + α2(1 + α)2A0(t |x0)A0(s|x0)

×
∫
R

2+
e−α[A0(t |x0)u+A0(s|x0)v]Gt,s(u, v|x0) dudv,

�2,3(t, s) := 1 − α(1 + α)2A0(t |x0)A0(s|x0)

×
∫
R

2+

(
1 − αA0(s|x0)v

)
e−α[A0(t |x0)u+A0(s|x0)v]Gt,s(u, v|x0) dudv,

�3,3(t, s) := (1 + α)2A0(t |x0)A0(s|x0)

×
∫
R

2+

(
1 − αA0(t |x0)u

)(
1 − αA0(s|x0)v

)
× e−α[A0(t |x0)u+A0(s|x0)v]Gt,s(u, v|x0) dudv.
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In particular, for all t ∈ [0,1], we have
√

nhp
(
Âα,n(t |x0) − A0(t |x0)

)
� N1

(
0,

‖K‖2
2[A0(t |x0)]2

f (x0)

(1 + α)2(1 + 4α + 9α2 + 14α3 + 13α4 + 8α5 + 4α6)

(1 + 2α)3(1 + α2)2

)
as n → ∞.

The asymptotic standard deviation is shown as a function of α in Figure S1 of
the Supplementary Material. As is clear from this plot, the asymptotic standard
deviation is increasing in α. Note that our results could also be obtained under
different assumptions by using the local empirical process results of Stute (1986)
and Einmahl and Mason (1997), combined with the functional delta method.

3. Case of unknown margins. In this section, we consider the general frame-
work where both F1(·|x) and F2(·|x) are unknown conditional distribution func-
tions. We want to mimic what has been done in the previous section and transform
to standard exponential margins. To this aim, we consider the triplets(− log

(
Fn,1
(
Y

(1)
i |Xi

))
,− log

(
Fn,2
(
Y

(2)
i |Xi

))
,Xi

)
, i = 1, . . . , n

for suitable estimators Fn,j of Fj , j = 1,2, and we compute the univariate random
variables

Žn,t,i := min
(− log(Fn,1(Y

(1)
i |Xi))

1 − t
,
− log(Fn,2(Y

(2)
i |Xi))

t

)
, i = 1, . . . , n.

Then, similarly as in Section 2, the statistic

(3.1) Ťn(K,a, t, λ,β, γ |x0) := aγ

n

n∑
i=1

Kh(x0 − Xi)Ž
β
n,t,ie

−λaŽn,t,i

is the cornerstone for the MDPDE, denoted Ǎα,n(t |x0), which satisfies the estimat-
ing equation

(3.2) �̌
(1)
α,x0,t

(
Ǎα,n(t |x0)

)= 0,

where �̌
(1)
α,x0,t

(·) is the first derivative of �̌α,x0,t (·) and

�̌α,x0,t (a) := aα

n

n∑
i=1

Kh(x0 − Xi)

{
1

1 + α
−
(

1 + 1

α

)
e−αaŽn,t,i

}
.

The final goal is still the same, that is the weak convergence of the stochastic
process

(3.3)
{√

nhp
(
Ǎα,n(t |x0) − A0(t |x0)

)
, t ∈ [0,1]}.
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Again this result relies essentially on the asymptotic properties of the statistic Ťn,
and so the idea will be to decompose√

nhp
(
Ťn −E[Ťn])(K,a, t, λ,β, γ |x0),

into the two terms{√
nhp
(
Tn −E[Tn])(K,a, t, λ,β, γ |x0)

}
+ {√nhp

([Ťn − Tn] −E[Ťn − Tn])(K,a, t, λ,β, γ |x0)
}
.

(3.4)

The first term can be dealt with using the results of Section 2.2, whereas we have
to show that the second term is uniformly negligible.

To achieve this objective, let us introduce the following empirical kernel esti-
mator of the unknown conditional distribution functions:

Fn,j (y|x) :=
∑n

i=1 Kc(x − Xi)1{Y (j)
i ≤y}∑n

i=1 Kc(x − Xi)
, j = 1,2,

where c := cn is a positive non-random sequence satisfying cn → 0 as n → ∞.
Here, we kept the same kernel K as in the previous section, but of course any
other kernel function can be used.

Before stating our main results, we need to impose again some assumptions, in
particular a Hölder-type condition on each marginal conditional distribution func-
tion Fj similar to the one imposed on the density function of the covariate.

ASSUMPTION (F). There exist MFj
> 0 and ηFj

> 0 such that |Fj (y|x) −
Fj (y|z)| ≤ MFj

‖x − z‖ηFj , for all y ∈R and all (x, z) ∈ SX × SX , and j = 1,2.

Concerning the kernel K a stronger assumption than (K1) is needed.

ASSUMPTION (K2). K satisfies Assumption (K1), there exists δ,m > 0 such
that B0(δ) ⊂ SK and K(u) ≥ m for all u ∈ B0(δ), and K belongs to the linear span
(the set of finite linear combinations) of functions k ≥ 0 satisfying the following
property: the subgraph of k, {(s, u) : k(s) ≥ u}, can be represented as a finite num-
ber of Boolean operations among sets of the form {(s, u) : q(s, u) ≥ ϕ(u)}, where
q is a polynomial on R

p ×R and ϕ is an arbitrary real function.

The latter assumption has already been used in Giné and Guillou (2002) or Giné,
Koltchinskii and Zinn (2004). In particular, it allows us to measure the discrepancy
between the conditional distribution function Fj and its empirical kernel version
Fn,j .

LEMMA 3.1. Assume that there exists b > 0 such that f (x) ≥ b,∀x ∈ SX ⊂
R

p , f is bounded, and (K2) and (F) hold. Consider a sequence c tending to 0 as
n → ∞ such that for some q > 1

| log c|q
ncp

−→ 0.
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Also assume that there exists an ε > 0 such that for n sufficiently large

(3.5) inf
x∈SX

λ
({

u ∈ B0(1) : x − cu ∈ SX

})
> ε,

where λ denotes the Lebesgue measure. Then, for any 0 < η < min(ηF1, ηF2), we
have

sup
(y,x)∈R×SX

∣∣Fn,j (y|x) − Fj (y|x)
∣∣= oP

(
max
(√ | log c|q

ncp
, cη

))
for j = 1,2.

Note that the assumption f (x) ≥ b,∀x ∈ SX , for some b > 0, is similar to
the one already used in Gijbels, Omelka and Veraverbeke (2015) and Portier and
Segers (2017).

We are now able to study the second term in (3.4).

THEOREM 3.1. Assume that there exists b > 0 such that f (x) ≥ b,∀x ∈ SX ⊂
R

p , f is bounded, and (K2), (D) and (F) hold together with condition (3.5).
Consider two sequences h and c tending to 0, such that for nhp → ∞ and for
some q > 1 and any 0 < η < min(ηF1, ηF2)

√
nhprn := √

nhp max
(√ | log c|q

ncp
, cη

)
−→ 0

as n → ∞. Then, for all γ ∈ R and (λ,β) ∈ (0,∞) × R+ or (λ,β) = (0,0), we
have

sup
t∈[0,1],a∈[1/2,1]

√
nhp
∣∣Ťn − Tn −E[Ťn − Tn]

∣∣(K,a, t, λ,β, γ |x0) = oP(1).

Finally, the decomposition (3.4) combined with Theorem 3.1 and the results
from Section 2.2, yields the desired theoretical result of this paper.

THEOREM 3.2. Let α > 0. Under the assumptions of Theorem 3.1 and (A0),
with probability tending to 1, there exists a sequence (Ǎα,n(t |x0))n∈N of solutions
for the estimating equation (3.2) such that

sup
t∈[0,1]
∣∣Ǎα,n(t |x0) − A0(t |x0)

∣∣= oP(1).

Moreover, for this consistent sequence, if
√

nhphmin(ηf ,ηA0 ) → 0, the process{√
nhp
(
Ǎα,n(t |x0) − A0(t |x0)

)
, t ∈ [0,1]}

weakly converges in C([0,1]) towards the tight centered Gaussian process {Nt,

t ∈ [0,1]} defined in Theorem 2.4.
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4. Simulation study. Our aim in this section is to illustrate the efficiency of
the proposed robust estimator for the conditional Pickands dependence function
with a simulation study. We assume that the conditional distribution function of
(Y (1), Y (2)) given X = x is a mixture model of the form

Fε(y1, y2|x) = (1 − ε)F�(y1, y2|x) + εFc(y1, y2|x),

where ε ∈ [0,1] represents the fraction of contamination in the dataset. The main
distribution F� is the logistic distribution given by

F�(y1, y2|x) := exp
{−(y−1/x

1 + y
−1/x
2

)x} for y1, y2 ≥ 0

and

A0(t |x) = (t1/x + (1 − t)1/x)x,
where the covariate X is a uniformly distributed random variable on [0,1]. For
this model, complete dependence is obtained in the limit as x ↓ 0, whereas inde-
pendence can be reached for x = 1. Note also that the conditional marginal distri-
butions of Y (j) given X, j = 1,2, under this logistic model are unit Fréchet dis-
tributions. Moreover, we can check that this model satisfies conditions (D), (A0)

and (F). Two completely different types of distributions Fc will be considered
throughout the paper and additional examples will be given in the online Supple-
mentary Material.

• First type of contamination: Given X = x, the distribution function Fc is

Fc(y1, y2|x) = 1

2

{
e−y−1

1 + e−y−1
2
}
1{y1≥0,y2≥0}.

The mixture based on this distribution Fc is illustrated in Figure S2 of the Supple-
mentary Material. For this mixture, the contaminated points are on the axes.

• Second type of contamination: The distribution function Fc has completely de-
pendent unit exponential margins. Figure S3 in the Supplementary Material shows
an example of a simulated dataset from this model. This time, the contaminated
points are on the diagonal.

To compute the estimator Ǎα,n, two sequences h and c have to be chosen. Both
are determined by a cross validation criterion. Because of the very high com-
putational burden of the cross validations for sample sizes n ≥ 1000, a random
selection of size nr := n ∧ 1000 from the original observations is obtained, de-
noted {(Y (1)

i,r , Y
(2)
i,r ,Xi,r )}i=1,...,nr , and the cross validations are implemented on

these random subsamples. Concerning c, we can use the following cross valida-
tion criterion, already used in an extreme value context by Daouia et al. (2011):

cj := arg min
c̃j∈C

nr∑
i=1

nr∑
k=1

[
1{Y (j)

i,r ≤Y
(j)
k,r } − F̃nr ,−i,j

(
Y

(j)
k,r |Xi,r

)]2
, j = 1,2,

where C is a grid of values of c̃j and F̃nr ,−i,j (y|x) :=
∑nr

k=1,k �=i Kc̃j
(x−Xk,r )1{Y(j)

k,r
≤y}∑nr

k=1,k �=i Kc̃j
(x−Xk,r )

.
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Also the bandwidth parameter h is selected using a cross validation criterion. In
particular,

h := arg min
h̃∈H

1

nrM

nr∑
i=1

M∑
j=1

Ǎα,n,(−i)(tj |Xi,r )
α

×
(

1

1 + α
−
(

1 + 1

α

)
e
−αǍα,n,(−i)(tj |Xi,r )Žn,tj ,i,r

)
for α > 0,

h := arg min
h̃∈H

1

nrM

×
nr∑

i=1

M∑
j=1

− log
(
Ǎ0,n,(−i)(tj |Xi,r)e

−Ǎ0,n,(−i)(tj |Xi,r )Žn,tj ,i,r
)

for α = 0,

where Ǎα,n,(−i)(t |x) denotes the estimator of A0(t |x) obtained on all but observa-

tion i, Žn,tj ,i,r is as Žn,tj ,i but now calculated for (Y
(1)
i,r , Y

(2)
i,r ,Xi,r ), and

Ǎ0,n(t |x) :=
∑n

i=1 Kh̃(x − Xi)∑n
i=1 Kh̃(x − Xi)Žt,i

.

This criterion can be seen as a generalisation of a commonly used cross valida-
tion from the context of local likelihood estimation [see, e.g., Abegaz, Gijbels and
Veraverbeke (2012)] to the context of local MDPD estimation.

After extensive simulation studies, we have chosen the grids C = {0.06,

0.12, . . . ,0.3} and H = {0.02,0.03, . . . ,0.06}. These choices provide a reason-
able trade off between stability of the estimates and accuracy of approximation by
asymptotic results.

Concerning the kernel, each time we use the bi-quadratic function

K(x) := 15

16

(
1 − x2)21[−1,1](x).

As an indicator of efficiency, we compute over a grid the L2-error in the esti-
mation of the Pickands dependence function A(·|x) as a function of x, that is,

MISE(ε,α|x) := 1

NM

N∑
i=1

M∑
m=1

[
Ǎ(i)

α,ε,n(tm|x) − A0(tm|x)
]2

.

Here, Ǎ
(i)
α,ε,n(tm|x) is our estimator of A0(tm|x) obtained with the ith sample when

the contamination is ε. We set tm = m/50, m = 1, . . . ,49. Our simulations are
based on datasets of sizes n = 1000 and n = 5000, and the procedure is repeated
N = 200 times.

Figure 1 represents the MISE(ε,α|x) as a function of ε ∈ {0,0.025,0.05, . . . ,

0.2} for the two types of contamination (rows 1 and 2, and 3 and 4, respectively).
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From the left to the right, three positions have been considered: x = 0.1,0.3 and
0.5 for the first type of contamination and x = 0.5,0.7 and 0.9 for the second
type. Also, four different values of α have been reported: 0 (black), 0.1 (blue), 0.5
(green) and 1 (red), and two sample sizes: n = 1000 and n = 5000. Based on these
simulations, we can draw the following conclusions:

• As expected, the MISE curves show less variability for n = 5000 compared
to n = 1000.

• If the percentage of contamination ε is very small (in the range 0–0.025), the
MISE indicators are typically very similar, whatever the value of α. This result is
a nice feature of our method, because if there is almost no contamination then in
principle one does not need a robust procedure, but as is clear from these figures,
the MDPDE performs similar to the maximum likelihood method (corresponding
to α = 0), which is efficient (but not robust).

• If we increase the percentage of contamination ε, then it is crucial to increase
the value of α to 0.5 or 1 in order to have good results. Indeed, for increasing ε a
small value of α implies a drastic increase of the MISE.

• The MISE values are almost constant for α = 0.5 and 1, whatever the percent-
age of contamination. This illustrates again the robustness of our method, since it
means that the methodology can handle a quite large percentage of contamination
without deterioration of the results.

• For the first type of contamination, the gain in MISE by taking α = 0.5 or
1 over α = 0 or 0.1 is more important for small x than for large x. In this case,
the contamination is on the axes (independently), and this is less disturbing for x

close to 1, which corresponds also to independence, than for x close to 0, which
corresponds to complete dependence. For the second type of contamination, one
can observe the opposite effect. The gain of taking α = 0.5 or 1 over α = 0 or 0.1
is more important for x close to 1 than for x close to zero. Indeed, the perfectly
dependent contamination is less disturbing for small x than for large x.

• Figure 1 gives us also some indications about the breakdown point of our
estimator, which is a common concept in the robust framework. Indeed the break-
down point can be interpreted as the smallest ε where the MISE indicator starts to
increase. For α small, in the range 0–0.1, the breakdown point is very small, say ε

around 0.025, while for α = 0.5 and 1, one can go to ε = 0.15 or a larger value, de-
pending on the type of contamination, which illustrates again the nice robustness
property of our method.

Next to the above mentioned MISE indicators, we also used our simulated data
to compute the empirical coverage probabilities of 90% confidence intervals based
on the limiting distribution given in Theorem 2.4. These are given in Tables 1 and 2
for the first and second type of contamination, respectively. From these tables, we
can see that:
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FIG. 1. MISE(ε,α|x) as a function of ε ∈ {0,0.025,0.05, . . . ,0.2} with α = 0 (black), α = 0.1
(blue), α = 0.5 (green) and α = 1 (red). First type of contamination: rows 1 (n = 1000) and
2 (n = 5000), x = 0.1,0.3,0.5 from the left to the right. Second type of contamination: rows 3
(n = 1000) and 4 (n = 5000), x = 0.5,0.7,0.9 from the left to the right.
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TABLE 1
First type of contamination—coverage probabilities of 90% confidence intervals

t = 0.3 t = 0.5 t = 0.7

α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

x = 0.1
n = 1000 ε = 0.0 0.95 0.95 0.96 0.98 0.95 0.96 0.96 0.97 0.95 0.96 0.96 0.98

ε = 0.1 0.69 0.77 0.92 0.93 0.50 0.64 0.88 0.91 0.67 0.78 0.92 0.93
ε = 0.2 0.26 0.41 0.83 0.91 0.11 0.17 0.64 0.79 0.24 0.42 0.81 0.90

n = 5000 ε = 0.0 0.98 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.95 0.96 0.97 0.97
ε = 0.1 0.14 0.28 0.84 0.90 0.06 0.12 0.69 0.82 0.13 0.29 0.84 0.90
ε = 0.2 0.02 0.05 0.55 0.83 0.00 0.01 0.16 0.51 0.01 0.03 0.56 0.80

x = 0.3
n = 1000 ε = 0.0 0.97 0.98 0.93 0.93 0.96 0.96 0.95 0.93 0.94 0.95 0.95 0.94

ε = 0.1 0.70 0.80 0.93 0.96 0.71 0.80 0.93 0.94 0.70 0.82 0.95 0.95
ε = 0.2 0.29 0.45 0.86 0.94 0.20 0.40 0.78 0.85 0.27 0.47 0.84 0.92

n = 5000 ε = 0.0 0.96 0.95 0.94 0.94 0.94 0.94 0.93 0.94 0.96 0.95 0.94 0.94
ε = 0.1 0.14 0.33 0.87 0.93 0.15 0.35 0.81 0.86 0.17 0.41 0.85 0.92
ε = 0.2 0.01 0.04 0.57 0.83 0.01 0.02 0.41 0.63 0.01 0.03 0.55 0.83

x = 0.5
n = 1000 ε = 0.0 0.97 0.99 0.98 0.97 0.97 0.97 0.97 0.95 0.96 0.97 0.97 0.98

ε = 0.1 0.77 0.85 0.91 0.95 0.76 0.84 0.91 0.94 0.79 0.83 0.95 0.94
ε = 0.2 0.51 0.69 0.93 0.95 0.53 0.66 0.89 0.92 0.47 0.65 0.92 0.96

n = 5000 ε = 0.0 0.93 0.95 0.95 0.96 0.90 0.92 0.91 0.94 0.94 0.96 0.94 0.94
ε = 0.1 0.30 0.53 0.91 0.95 0.39 0.56 0.90 0.91 0.31 0.54 0.93 0.94
ε = 0.2 0.04 0.10 0.70 0.87 0.06 0.11 0.66 0.80 0.05 0.08 0.69 0.86

• When ε = 0, then the empirical coverage probabilities are generally larger
than 0.90, meaning that the confidence interval based on the limiting distribution
is conservative;

• For increasing ε, the coverage probabilities generally decrease when α is
small (0 or 0.1), while for larger α, especially for α = 1, the coverage probabilities
do not seem to be as much affected by the contamination.

Since the main objective of this paper is to estimate the conditional Pickands
dependence function A(·|x), we also provide in the online Supplementary Mate-
rial the boxplots of our estimator Ǎα,n(·|x) based on 200 replications for the two
examples of contamination introduced above and two additional examples. These
figures emphasize again the robustness properties of our estimator.

5. Application to air pollution data. In this section, we illustrate the practi-
cal applicability of our method on a dataset of air pollution measurements. Extreme
temperature and high levels of pollutants like ground-level ozone and particu-
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TABLE 2
Second type of contamination—coverage probabilities of 90% confidence intervals

t = 0.3 t = 0.5 t = 0.7

α 0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

x = 0.5
n = 1000 ε = 0.0 0.96 0.96 0.97 0.96 0.94 0.93 0.96 0.96 0.96 0.97 0.96 0.96

ε = 0.1 0.97 0.96 0.96 0.95 0.91 0.93 0.94 0.93 0.96 0.97 0.98 0.96
ε = 0.2 0.99 0.99 0.96 0.96 0.80 0.88 0.92 0.94 0.99 0.99 0.96 0.95

n = 5000 ε = 0.0 0.93 0.94 0.95 0.96 0.93 0.93 0.95 0.97 0.95 0.96 0.95 0.96
ε = 0.1 0.93 0.98 0.96 0.96 0.48 0.69 0.94 0.96 0.95 0.99 0.99 0.98
ε = 0.2 0.92 0.98 0.96 0.95 0.20 0.33 0.88 0.96 0.87 0.97 0.96 0.94

x = 0.7
n = 1000 ε = 0.0 0.97 0.97 1.00 1.00 0.94 0.94 0.96 0.99 0.94 0.96 1.00 1.00

ε = 0.1 0.98 0.98 1.00 1.00 0.76 0.84 0.96 0.98 0.96 0.95 1.00 1.00
ε = 0.2 0.98 0.98 1.00 1.00 0.55 0.70 0.94 0.99 0.98 0.98 1.00 1.00

n = 5000 ε = 0.0 0.92 0.93 0.94 0.94 0.92 0.94 0.95 0.95 0.94 0.95 0.95 0.96
ε = 0.1 0.81 0.89 0.95 0.96 0.24 0.54 0.94 0.95 0.79 0.88 0.95 0.95
ε = 0.2 0.57 0.67 0.90 0.94 0.06 0.11 0.77 0.90 0.60 0.69 0.91 0.93

x = 0.9
n = 1000 ε = 0.0 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.99

ε = 0.1 0.91 0.95 0.99 0.99 0.64 0.81 0.97 0.99 0.91 0.93 0.99 0.99
ε = 0.2 0.89 0.92 0.98 1.00 0.40 0.63 0.96 0.98 0.89 0.93 0.99 1.00

n = 5000 ε = 0.0 0.98 0.98 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.98 0.98
ε = 0.1 0.61 0.77 0.97 0.98 0.15 0.39 0.95 0.97 0.60 0.82 0.98 0.99
ε = 0.2 0.26 0.44 0.92 0.95 0.01 0.09 0.74 0.91 0.24 0.42 0.91 0.96

late matter pose a major threat to human health. We consider the data collected
by the United States Environmental Protection Agency (EPA), publicly avail-
able at https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html. The
dataset contains daily measurements on, among others, maximum temperature,
and ground-level ozone, carbon monoxide and particulate matter concentrations,
for the time period 1999 to 2013. These data are collected at stations spread over
the U.S. We focus the analysis on the ground-level ozone and particulate matter
concentrations. In order to estimate the extremal dependence between these, we
calculate the component-wise monthly maximum of daily maximum concentra-
tions, and estimate the Pickands dependence function conditional on the covari-
ates time and location, where the latter is expressed by latitude and longitude. The
estimation method was implemented with the same cross validation criteria as in
the simulation section, including the same choices for C and H, after standardising
the covariates to the interval [0,1]. As kernel function K∗, we use the following

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
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generalisation of the bi-quadratic kernel K :

K∗(x1, x2, x3) :=
3∏

i=1

K(xi),

where x1, x2, x3, refer to the covariates time, latitude and longitude, respectively,
in standardised form. Note that K∗ has as support the unit ball with respect to the
max-norm on R

3. We report here only the results for the city of Houston. Sim-
ilar results can though be obtained for other cities or regions in the U.S. In the
left panel of Figure 2, we show the time plot of the estimates for the conditional
extremal coefficient over the observation period. The conditional extremal coeffi-
cient is defined as η(x) = 2A0(0.5|x), and is often used as a summary measure
of extremal dependence. Its range is [1,2], where 1 corresponds with perfect de-
pendence and 2 with independence. The time plot shows a seasonal pattern in the
extremal dependence, and moreover, the extremal dependence seems to decrease
with time. We also observe that the estimates for α = 0 and 0.1 are similar, but dif-
ferent from those obtained with α = 0.5 and 1 (which are also similar), indicating
that the dataset contains contamination with respect to the dependence structure.
In order to get a better idea about the extremal dependence, we show in the right
panel of Figure 2 the estimate of A0(t |x) for a particular month (April 2002). This
plot shows again estimates which are similar for α = 0 and 0.1, but different from
those obtained with α = 0.5 and 1 (which are similar), confirming our earlier ob-
servation that there are observations which are contaminating with respect to the
dependence structure.

FIG. 2. Air pollution data: time plot of the estimate for the conditional extremal coefficient (left)
and estimate for the conditional Pickands dependence function in April 2002 (right), α = 0 (black),
α = 0.1 (blue), α = 0.5 (green) and α = 1 (red).
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APPENDIX: PROOFS OF THE RESULTS

A.1. Proof of Lemma 2.1. Using the fact that for any x ∈ R
p the conditional

distribution function of Zt given X = x is an exponential distribution with param-
eter A0(t |x) and since λa + A0(t |x) > 0, we have

(A.1) E
[
Z

β
t e−λaZt |X = x

]= 	(β + 1)
A0(t |x)

(λa + A0(t |x))β+1 .

Then

E
[
Kh(x0 − X)Z

β
t e−λaZt

]
= E

[
Kh(x0 − X)	(β + 1)

A0(t |X)

(λa + A0(t |X))β+1

]

= 	(β + 1)

∫
Rp

Kh(x0 − y)
A0(t |y)

(λa + A0(t |y))β+1 f (y) dy

= 	(β + 1)

∫
SK

K(z)
A0(t |x0 − zh)

(λa + A0(t |x0 − zh))β+1 f (x0 − hz)dz

= 	(β + 1)
A0(t |x0)

(λa + A0(t |x0))β+1 f (x0)
(
1 + o(1)

)
.

(A.2)

The last transition in the above display follows since z ∈ SK and for n large
enough, using the continuity of A0(t |·) and f at x0 ∈ Int(SX) nonempty, we have
boundedness in a neighborhood of x0, allowing us to use Lebesgue’s dominated
convergence theorem. Consequently,

E
[
Tn(K,a, t, λ,β, γ |x0)

]= aγ 	(β + 1)
A0(t |x0)

(λa + A0(t |x0))β+1 f (x0)
(
1 + o(1)

)
.

Also, similar arguments yield

Var
(
Tn(K,a, t, λ,β, γ |x0)

)= 1

nhp

‖K‖2
2A0(t |x0)a

2γ 	(2β + 1)f (x0)

(2λa + A0(t |x0))2β+1

(
1 + o(1)

)
= o(1),

from which the convergence in probability simply follows.

A.2. Asymptotic covariance matrix of the finite dimensional vector Tn.
Our aim in this section is to compute the explicit expression of the elements of
the covariance matrix � = (σj,k)1≤j,k≤m given in (2.6). In this section, we work
under the assumptions of Lemma 2.1. According to (A.2), we have

E
[
Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

]= f (x0)	(βj + 1)

[λj + 1]βj+1[A0(tj |x0)]βj

(
1 + o(1)

)



LOCAL ROBUST ESTIMATION OF TAIL DEPENDENCE 2825

for 1 ≤ j ≤ m. In order to compute the cross expectation, we need to derive the
conditional distribution function of the pair (Ztj ,Ztk ) given X = x. Let u, v > 0

P(Ztj > u,Ztk > v|X = x)

= P
(
Y (1) > max

(
(1 − tj )u, (1 − tk)v

)
, Y (2) > max(tju, tkv)|X = x

)
= G
(
max
(
(1 − tj )u, (1 − tk)v

)
,max(tju, tkv)|x).

Hence, for j, k ∈ {1, . . . ,m}2, we have

E
[
Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj Kh(x0 − X)Z

βk
tk

e−λkA0(tk |x0)Ztk
]

= E
[
K2

h(x0 − X)E
[
Z

βj

tj
e
−λjA0(tj |x0)Ztj Z

βk
tk

e−λkA0(tk |x0)Ztk |X]].(A.3)

We focus now on the conditional expectation. Using (A.1) and the fact that

(A.4) zβe−aλz − δ0(β) =
∫
R+

1{z>u}uβ−1(β − aλu)e−aλu du,

we have

E
[
Z

βj

tj
e
−λjA0(tj |x0)Ztj Z

βk
tk

e−λkA0(tk |x0)Ztk |X]
= E
[(

Z
βj

tj
e
−λjA0(tj |x0)Ztj − δ0(βj )

)(
Z

βk
tk

e−λkA0(tk |x0)Ztk − δ0(βk)
)|X]

− δ0(βj )δ0(βk)
(A.5)

+ δ0(βj )E
[
Z

βk
tk

e−λkA0(tk |x0)Ztk |X]+ δ0(βk)E
[
Z

βj

tj
e
−λjA0(tj |x0)Ztj |X]

=
∫
R

2+
gj,k(u, v)Gtj ,tk (u, v|X)dudv − δ0(βj )δ0(βk)

+ δ0(βj )
	(βk + 1)

[λk + 1]βk+1[A0(tk|X)]βk
+ δ0(βk)

	(βj + 1)

[λj + 1]βj+1[A0(tj |X)]βj
.

Combining the continuity at x0 and boundedness of the functions f , A0(t |·) and
G(u,v|·), the expression of σj,k in (2.6) follows.

A.3. Proof of Theorem 2.1. First, remark that to show Theorem 2.1, it is
sufficient to look at the weak convergence of the process{√

nhp
(
Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)−E
[
Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)])
,

t ∈ [0,1]},(A.6)

since

lim
n→∞ sup

t∈[0,1]

√
nhp

∣∣∣∣E[Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)]
− 	(β + 1)

[A0(t |x0)]γ−β

(λ + 1)β+1 f (x0)

∣∣∣∣= 0.
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Indeed, according to (A.2), we have∣∣∣∣E[Tn

(
K,A0(t |x0), t, λ,β, γ |x0

)]− 	(β + 1)
[A0(t |x0)]γ−β

(λ + 1)β+1 f (x0)

∣∣∣∣
≤ 	(β + 1)A

γ
0 (t |x0)

×
∫
SK

K(y)

∣∣∣∣ A0(t |x0 − yh)

(λA0(t |x0) + A0(t |x0 − yh))β+1 f (x0 − hy)

− A
−β
0 (t |x0)

(λ + 1)β+1 f (x0)

∣∣∣∣dy.

Now, using Assumptions (D) and (A0), we deduce that∣∣∣∣ A0(t |x0 − yh)

(λA0(t |x0) + A0(t |x0 − yh))β+1 f (x0 − hy) − A
−β
0 (t |x0)

(λ + 1)β+1 f (x0)

∣∣∣∣
≤ A0(t |x0 − yh)

(λA0(t |x0) + A0(t |x0 − yh))β+1

∣∣f (x0 − yh) − f (x0)
∣∣

+
∣∣∣∣ A0(t |x0 − yh)

(λA0(t |x0) + A0(t |x0 − yh))β+1 − A
−β
0 (t |x0)

(λ + 1)β+1

∣∣∣∣f (x0)

= O
(
hmin(ηf ,ηA0 ))

for n large enough such that h ≤ 1, with a bound which is uniform in t .
Then, to show the weak convergence of the stochastic process (A.6), we will

use Theorem 19.28 in van der Vaart (1998). To apply this result, we need to intro-
duce some notation. Define the covering number N(F,L2(Q), τ ) as the minimal
number of L2(Q)-balls of radius τ needed to cover the class of functions F and
the uniform entropy integral as

J (δ,F,L2) :=
∫ δ

0

√
log sup

Q
N
(
F,L2(Q), τ‖F‖Q,2

)
dτ,

where Q is the set of all probability measures Q for which 0 < ‖F‖2
Q,2 :=∫

F 2 dQ < ∞ and F is an envelope function of the class F .
Let P denote the law of the vector (Y (1), Y (2),X) and define the expectation

under P , the empirical version and empirical process as follows:

Pf :=
∫

f dP,

Pnf := 1

n

n∑
i=1

f
(
Y

(1)
i , Y

(2)
i ,Xi

)
, Gnf := √

n(Pn − P)f

for any real-valued measurable function f .
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For any γ ∈ R and (λ,β) ∈ (0,∞) × R+ or (λ,β) = (0,0), we introduce our
sequence of classes Fn as

Fn := {(y1, y2, z) → fn,t (y1, y2, z), t ∈ [0,1]}
:= {(y1, y2, z)

→ √
hpKh(x0 − z)

[
A0(t |x0)

]γ−β[
A0(t |x0)Zt (y1, y2)

]β
× e−λA0(t |x0)Zt (y1,y2), t ∈ [0,1]},

where Zt(y1, y2) := min(
y1

1−t
,

y2
t
). Remark that Zt = Zt(Ỹ

(1), Ỹ (2)). Denote now
by Fn an envelope function of the class Fn and for any y ∈ SX , define the bivariate
function ρy : [0,1]2 →R+ as

ρy(t, s) := E
[(

A
γ
0 (t |x0)Z

β
t e−λA0(t |x0)Zt − A

γ
0 (s|x0)Z

β
s e−λA0(s|x0)Zs

)2|X = y
]
.

Naturally, ρy defines a semi-metric on [0,1]2 and since it is bi-continuous, it makes
[0,1] totally bounded.

Now, according to Theorem 19.28 in van der Vaart (1998), the weak conver-
gence of the stochastic process (A.6) follows from the four following conditions:

sup
ρx0 (t,s)≤δn

P (fn,t − fn,s)
2 −→ 0 for every δn ↘ 0,(A.7)

PF 2
n = O(1),(A.8)

PF 2
n {Fn > ε

√
n} −→ 0 for every ε > 0,(A.9)

J (δn,Fn,L2) −→ 0 for every δn ↘ 0.(A.10)

We start to prove (A.7). By definition, we have

P(fn,t − fn,s)
2 =
∫
Rp

h−pK2
(

x0 − u

h

)
ρu(t, s)f (u) du

=
∫
SK

K2(u)ρx0−hu(t, s)f (x0 − hu)du

= ‖K‖2
2f (x0)ρx0(t, s)

+
∫
SK

K2(u)f (x0 − hu)
[
ρx0−hu(t, s) − ρx0(t, s)

]
du

+ ρx0(t, s)

∫
SK

K2(u)
[
f (x0 − hu) − f (x0)

]
du.

By the Assumptions (D), (K1) and since ρx0 is bounded, it remains to show that

(A.11) sup
ρx0 (t,s)≤δn

∣∣ρx0−hu(t, s) − ρx0(t, s)
∣∣→ 0.
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Recall that

ρy(t, s) = [A0(t |x0)
]2γ

E
[
Z

2β
t e−2λA0(t |x0)Zt |X = y

]
+ [A0(s|x0)

]2γ
E
[
Z2β

s e−2λA0(s|x0)Zs |X = y
]

− 2
[
A0(t |x0)A0(s|x0)

]γ
E
[
Z

β
t e−λA0(t |x0)Zt Zβ

s e−λA0(s|x0)Zs |X = y
]
.

Such expectations have been computed in (A.1) and (A.5). Using the mean value
theorem combined with the boundedness of A0(·|·) and Assumption (A0), we can
easily infer that for all (y, y′) ∈ Bx0(r) × Bx0(r), we have

sup
(t,s)∈[0,1]2

∣∣ρy(t, s) − ρy′(t, s)
∣∣≤ C
∥∥y − y′∥∥ηA0

for some positive constant C. This implies (A.11), and thus (A.7) is established.
Now, we move to the proof of (A.8) and (A.9). Since the function x → xβe−λx

is bounded over R+ by (β/λ)βe−β and A0(t |x0) ∈ [1/2,1], Fn admits the natural
envelope function

(A.12) (y1, y2, z) → Fn(y1, y2, z) := √
hpKh(x0 − z)M,

where M := (
β
λ
)βe−β max(1,2β−γ ). Consequently,

PF 2
n = M2

∫
Rp

h−pK2
(

x0 − u

h

)
f (u)du

= M2
∫
SK

K2(u)f (x0 − hu)du = M2‖K‖2
2f (x0)

(
1 + o(1)

)
,

PF 2
n {Fn > ε

√
n} = M2

∫
{K(u)>M−1ε

√
nhp}

K2(u)f (x0 − hu)du = 0

for all ε > 0 and n sufficiently large, since nhp → ∞, K satisfies Assumption (K1)

and f is continuous.
Finally, it remains to prove (A.10). First, we introduce the class of functions

W := {(y1, y2) → A0(t |x0)Zt (y1, y2), t ∈ [0,1]} and its subgraph σt in R
2+ ×R as

σt := {(u, v,w) : A0(t |x0)Zt (u, v) > w
}

=
{
(u, v,w) : A0(t |x0)

1 − t
u > w

}
∩
{
(u, v,w) : A0(t |x0)

t
v > w

}
.

We can show that {σt : t ∈ [0,1]} is a VC-class of sets. Indeed, if we look more
generally, at the collection of sets C := {{(x, y) : δx > y}, δ > 0} in R+ × R and
if we define two points (x1, y1) and (x2, y2) such that, without loss of general-
ity, y1

x1
≤ y2

x2
. Then, for any δ > 0, δx2 ≥ y2 implies that δx1 ≥ y1. Thus, C can-

not shatter the set {(x1, y1), (x2, y2)} and by consequence it is a VC-class of sets.
Now, the collection of one set R+ is naturally a VC-class of sets. According to
Lemma 2.6.17(vii) in van der Vaart and Wellner (1996), C × R+ is a VC-class of
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sets as well. Invoking Lemma 2.6.17(ii), {σt : t ∈ [0,1]} belongs to a VC-class and
as such is VC. Define now for all z ∈R+

φλ,β(z) := zβe−λz.

We can easily check that φλ,β is of bounded variation. This implies that φλ,β can

be decomposed as the sum of two monotone functions, say φ
(1)
λ,β and φ

(2)
λ,β . Thus,

according to Lemma 2.6.18(viii) in van der Vaart and Wellner (1996), φ(1)
λ,β ◦W and

φ
(2)
λ,β ◦ W are VC. Now, according to Theorem 2.6.7 in van der Vaart and Wellner

(1996), there exists a universal constant C such that for any j = 1,2 and 0 < τ < 1

sup
Q

N
(
φ

(j)
λ,β ◦W,L2(Q), τ‖Wj‖Q,2

)≤ CVj(16e)Vj

(
1

τ

)2(Vj−1)

,

where Vj is the VC-index of φ
(j)
λ,β ◦W and Wj its envelope function. Now, consider

the sequence of class of functions

Fn,j := {z → √
hpKh(x0 − z)

}⊗ φ
(j)
λ,β ◦W

for j = 1,2, where ⊗ denotes the direct product between the two classes involved.
Since we only update the previous sets with one single function and only one ball
is needed to cover the class {z → √

hpKh(x0 − z)} whatever the measure Q, we
have

sup
Q

N
(
Fn,j ,L2(Q), τ‖κFn‖Q,2

)≤ CVj (16e)Vj

(
1

τ

)2(Vj−1)

,

where κ is a suitable constant. Moreover since supt∈[0,1][A0(t |x0)]γ−β =
max(1,2β−γ ), for any 0 < τ < 1, the minimal number of balls of radius
τ max(1,2β−γ ) needed to cover the interval [0,max(1,2β−γ )] is �1/2τ�. Hence

sup
Q

N
({[

A0(t |x0)
]γ−β

, t ∈ [0,1]},L2(Q), τ max
(
1,2β−γ ))= ⌈ 1

2τ

⌉
≤ 3

2

(
1

τ

)2
.

Consequently, we have

sup
Q

N
({[

A0(t |x0)
]γ−β

, t ∈ [0,1]}⊗Fn,j ,L2(Q), τ max
(
1,2β−γ )‖κFn‖Q,2

)
≤ 3C

2
Vj (16e)Vj

(
1

τ

)2Vj

.

Finally, since our class of interest Fn is included in the class of functions

F̃n := {[A0(t |x0)
]γ−β

, t ∈ [0,1]}⊗Fn,1 + {[A0(t |x0)
]γ−β

, t ∈ [0,1]}⊗Fn,2
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with envelope function 2 max(1,2β−γ )κFn, using Lemma 16 in Nolan and Pollard
(1987), we have

sup
Q

N
(
Fn,L2(Q),2τ max

(
1,2β−γ )‖κFn‖Q,2

)
≤ sup

Q
N
(
F̃n,L2(Q),2τ max

(
1,2β−γ )‖κFn‖Q,2

)
≤ 9C2

4
V1V2(16e)V1+V2

(
4

τ

)2(V1+V2)

=: L
(

1

τ

)V

.

Thus, (A.10) is established since for any sequence δn ↘ 0 and n large enough, we
have

J (δn,Fn,L2) ≤
∫ δn

0

√
log
([

2κ max
(
1,2β−γ

)]V
L
)− V log(τ ) dτ = o(1).

This achieves the proof of Theorem 2.1 since the covariance structure follows from
(2.6).

A.4. Proof of Theorem 2.2. To prove this theorem, we will make use of the
Cramér–Wold device [see, e.g., Severini (2005), page 337], according to which it
is sufficient to show that

�n := ξT
√

nhp
(
Tn −E[Tn])� N1

(
0, ξT �ξ

)
for all ξ ∈R

m. A straightforward rearrangement of the terms leads to

�n = 1

n

n∑
i=1

√
nhp

{
m∑

j=1

ξj

[
A0(tj |x0)

]γj Kh(x0 − Xi)Z
βj

tj ,ie
−λjA0(tj |x0)Ztj ,i

−E

[
m∑

j=1

ξj

[
A0(tj |x0)

]γj Kh(x0 − Xi)Z
βj

tj ,ie
−λjA0(tj |x0)Ztj ,i

]}

=: 1

n

n∑
i=1

Wi.

Since W1, . . . ,Wn are independent and identically distributed random variables,
Var(�n) = Var(W1)

n
with

Var(W1) = nhp
m∑

j=1

m∑
k=1

ξj ξkCj,k,
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where

Cj,k := E
[(

A0(tj |x0)
)γj
(
A0(tk|x0)

)γkK2
h(x0 − X)Z

βj

tj

× e
−λjA0(tj |x0)Ztj Z

βk
tk

e−λkA0(tk |x0)Ztk
]

−E
[(

A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

]
×E
[(

A0(tk|x0)
)γkKh(x0 − X)Z

βk
tk

e−λkA0(tk |x0)Ztk
]
.

According to the computations in Appendix A.2, Var(�n) = ξT �ξ(1 + o(1)).
Hence, to ensure the convergence in distribution of �n to a normal random vari-
able, we have to verify the Lyapounov condition for triangular arrays of random
variables [Billingsley (1995), page 362]. In the present context, this simplifies to
verifying 1

n2E(|W1|3) → 0. We have

E
(|W1|3) ≤ n3/2h3p/2

{
E

[(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)3]

+ 3E

[(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)2]

×E

[
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

]

+ 4

[
E

(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)]3}
.

A similar treatment as for (A.3) yields for all positive integer q

E

[(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)q]

= E

(
E

[(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)q ∣∣∣∣X
])

=: E[Kq
h (x0 − X)Q(X)

]
,

where the explicit expression of Q(X) can be obtained similarly as for (A.5).
Hence

E

[(
m∑

j=1

|ξj |(A0(tj |x0)
)γj Kh(x0 − X)Z

βj

tj
e
−λjA0(tj |x0)Ztj

)q]

= 1

hqp

∫
Rp

Kq

(
x0 − u

h

)
Q(u)f (u)du
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= (hp)1−q
∫
SK

Kq(z)Q(x0 − zh)f (x0 − zh)dz

= O
((

hp)1−q)
by continuity and boundedness of the functions. Consequently,

1

n2E
(|W1|3)=O

((√
nhp
)−1)= o(1).

A.5. The derivatives of ̂�α,x0,t and their asymptotic properties. Straight-
forward computations for a ∈ [1/2,1], α > 0, give

�̂
(1)
α,x0,t

(a) = αa−1�̂α,x0,t (a) + aα(1 + α)
1

n

n∑
i=1

Kh(x0 − Xi)Zt,ie
−αaZt,i ,

�̂
(2)
α,x0,t

(a) = αa−1�̂
(1)
α,x0,t

(a) − αa−2�̂α,x0,t (a)

+ α(α + 1)aα−1 1

n

n∑
i=1

Kh(x0 − Xi)(1 − aZt,i)Zt,ie
−αaZt,i ,

�̂
(3)
α,x0,t

(a) = α
(
2a−3�̂α,x0,t (a) + a−1�̂

(2)
α,x0,t

(a) − 2a−2�̂
(1)
α,x0,t

(a)
)

+ (α − 1)α(α + 1)
aα−2

n

n∑
i=1

Kh(x0 − Xi)(1 − aZt,i)Zt,ie
−αaZt,i

− α(α + 1)
aα−1

n

n∑
i=1

Kh(x0 − Xi)
(
α(1 − aZt,i) + 1

)
Z2

t,ie
−αaZt,i .

The convergence in probability of the two first derivatives of �̂α,x0,t is therefore a
direct application of Lemma 2.1, which yields as n → ∞

�̂
(1)
α,x0,t

(
A0(t |x0)

) P−→ �
(1)
α,x0,t

(
A0(t |x0)

) := 0,

�̂
(2)
α,x0,t

(
A0(t |x0)

) P−→ �
(2)
α,x0,t

(
A0(t |x0)

) := 1 + α2

(1 + α)2

[
A0(t |x0)

]α−2
f (x0).

Now the rate of convergence of �̂
(j)
α,x0,t

(A0(t |x0)), j ∈ {1,2}, to its limit is also
useful to study (2.4), and thus to reach our final goal. The aim of the next corollary
is to provide such a rate.

COROLLARY A.1. Under the assumptions of Theorem 2.1, then for any j ∈
{1,2}, the process{√

nhp
(
�̂

(j)
α,x0,t

(
A0(t |x0)

)− �
(j)
α,x0,t

(
A0(t |x0)

))
, t ∈ [0,1]}
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weakly converges in C([0,1]) towards a tight centered Gaussian process. In par-
ticular, we have

sup
t∈[0,1]
∣∣�̂(j)

α,x0,t

(
A0(t |x0)

)− �
(j)
α,x0,t

(
A0(t |x0)

)∣∣= oP(1).

PROOF OF COROLLARY A.1. As usual, it is sufficient to show the fi-
nite dimensional convergence and the tightness of the process. Using Theorem
2.2, we directly solve the finite dimensional convergence issue. Next, Theorem
2.1 combined with (A.6) implies tightness for any process t → √

nhp(Tn −
E[Tn])(K,A0(t |x0), t, λ,β, γ |x0) and similarly as in Lemma 1 in Bai and Taqqu
(2013), we have tightness for any multivariate process with similar coordinates.
Corollary A.1 then follows. �

A.6. Proof of Theorem 2.3. To prove the theorem, we will adjust the ar-
guments used to prove existence and consistency of solutions of the likelihood
estimating equation; see, for example, Theorem 3.7 and Theorem 5.1 in Chap-
ter 6 of Lehmann and Casella (1998), to the MDPD framework. Let ζ, b > 0,
C(·|·) : [0,1]×SX → [1/2−ζ,1+ζ ] and ∀t ∈ [0,1], r(t) := |A0(t |x0)−C(t |x0)|.
Define in addition the b-level of r as

Tb := {t ∈ [0,1], r(t) > b
}
.

We first show that for any b > 0

(A.13) P
(∀t ∈ Tb, �̂α,x0,t

(
A0(t |x0)

)
< �̂α,x0,t

(
C(t |x0)

))→ 1

as n → ∞, for any function C(·|x0) different from but close enough to A0(·|x0).
By applying a Taylor series expansion, we have

�̂α,x0,t

(
C(t |x0)

)− �̂α,x0,t

(
A0(t |x0)

)= (C(t |x0) − A0(t |x0)
)
�̂

(1)
α,x0,t

(
A0(t |x0)

)
+ 1

2

(
C(t |x0) − A0(t |x0)

)2
�̂

(2)
α,x0,t

(
A0(t |x0)

)
+ 1

6

(
C(t |x0) − A0(t |x0)

)3
�̂

(3)
α,x0,t

(
C̃(t |x0)

)
,

where C̃(t |x0) is an intermediate value between C(t |x0) and A0(t |x0). According
to Appendix A.5, as n → ∞,

sup
t∈[0,1]
∣∣�̂(1)

α,x0,t

(
A0(t |x0)

)∣∣= sup
t∈[0,1]
∣∣�̂(1)

α,x0,t

(
A0(t |x0)

)− �
(1)
α,x0,t

(
A0(t |x0)

)∣∣ P−→ 0.

This convergence implies, that for all 0 < ε ≤ b2

P
(∀t ∈ Tb, r(t)

∣∣�̂(1)
α,x0,t

(
A0(t |x0)

)∣∣≤ r3(t)
)

≥ P

(
∀t ∈ Tb,

∣∣�̂(1)
α,x0,t

(
A0(t |x0)

)∣∣≤ r2(t), sup
t∈[0,1]
∣∣�̂(1)

α,x0,t

(
A0(t |x0)

)∣∣≤ ε
)

= P

(
sup

t∈[0,1]
∣∣�̂(1)

α,x0,t

(
A0(t |x0)

)∣∣≤ ε
)

−→ 1
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as n → ∞. Now, concerning �̂
(2)
α,x0,t

(A0(t |x0)), we have

sup
t∈[0,1]
∣∣�̂(2)

α,x0,t

(
A0(t |x0)

)− �
(2)
α,x0,t

(
A0(t |x0)

)∣∣ P−→ 0

as n → ∞. Consequently, there exists δ1 > 0 such that

∀t ∈ [0,1], r2(t)

2
�̂

(2)
α,x0,t

(
A0(t |x0)

)
> δ1r

2(t)

with probability tending to 1.
Finally, since x → xλe−x is bounded ∀λ ≥ 1 on R

+ and by Lemma 2.1

Tn(K,a, t,0,0,0|x0) = 1

n

n∑
i=1

Kh(x0 − Xi)
P−→ f (x0)

as n → ∞, we have for any ε > 0, n−1∑n
i=1 Kh(x0 − Xi) ≤ f (x0) + ε with prob-

ability tending to 1. This implies that

(A.14) sup
a∈[1/2−ζ,1+ζ ],t∈[0,1]

∣∣�̂(3)
α,x0,t

(a)
∣∣=: M < ∞

with probability tending to 1. We can therefore conclude that

∀t ∈ [0,1], r3(t)

6

∣∣�̂(3)
α,x0,t

(
C̃(t |x0)

)∣∣≤ M

6
r3(t)

with probability tending to 1.
Overall, we have shown that

P

(
∀t ∈ Tb, �̂α,x0,t

(
C(t |x0)

)− �̂α,x0,t

(
A0(t |x0)

)
> δ1r

2(t) −
(

1 + M

6

)
r3(t)

)
−→ 1

as n → ∞, where the right-hand side of the inequality is positive for r(t) <

δ1/(1 + M/6). Thus, setting

sup
t∈[0,1]

r(t) < δ1/(1 + M/6),

(A.13) follows.
To complete the proof, we adjust the line of argumentation of Theorem 3.7 in

Chapter 6 of Lehmann and Casella (1998). Take 0 < δ < ζ and define the event

Sn(δ) := {∀t ∈ [0,1], �̂α,x0,t

(
A0(t |x0)

)
< �̂α,x0,t

(
A0(t |x0) ± δ

)}
.

For υ ∈ Sn(δ), since �̂α,x0,t (a) is differentiable with respect to a, there exists
Ãα,n,δ(t |x0) ∈ (A0(t |x0)− δ,A0(t |x0)+ δ) where �̂α,x0,t (a) achieves a local min-

imum, so �̂
(1)
α,x0,t

(Ãα,n,δ(t |x0)) = 0.
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By (A.13), P(Sn(δ)) → 1 for any small enough δ, and hence there exists a
sequence δn ↓ 0, such that P(Sn(δn)) → 1, as n → ∞. Now, let Âα,n(t |x0) :=
Ãα,n,δn(t |x0) if υ ∈ Sn(δn) and arbitrary otherwise. Since υ ∈ Sn(δn) implies
�̂

(1)
α,x0,t

(Âα,n(t |x0)) = 0, we have that

P
(
�̂

(1)
α,x0,t

(
Âα,n(t |x0)

)= 0
)≥ P
(
Sn(δn)

)→ 1

as n → ∞, which establishes the existence part. Note that the measurability of the
local minimum can be verified in the same way as it is done in the framework of
maximum likelihood estimation [see, e.g., Serfling (1980), page 147].

Concerning now the uniform consistency of the solution sequence, note that for
any ε > 0 and n large enough such that δn ≤ ε, we have

P

(
sup

t∈[0,1]
∣∣Âα,n(t |x0) − A0(t |x0)

∣∣≤ ε
)

≥ P

(
sup

t∈[0,1]
∣∣Âα,n(t |x0) − A0(t |x0)

∣∣≤ δn

)
≥ P
(
Sn(δn)

)→ 1

as n → ∞, whence the uniform consistency of the estimator sequence.

A.7. Proof of Theorem 2.4. The starting point is (2.4). According to Corol-
lary A.1, {√nhp�̂

(1)
α,x0,t

(A0(t |x0)), t ∈ [0,1]} weakly converges, as n → ∞, to-
wards a tight centered Gaussian process and

{
�̂

(2)
α,x0,t

(
A0(t |x0)

)
, t ∈ [0,1]} P−→ {�(2)

α,x0,t

(
A0(t |x0)

)
, t ∈ [0,1]}.

Combining these results with (A.14), we have, as n → ∞,{[
�̂

(2)
α,x0,t

(
A0(t |x0)

)+ 1

2
�̂

(3)
α,x0,t

(
Ã(t |x0)

)(
Âα,n(t |x0) − A0(t |x0)

)]−1
, t ∈ [0,1]

}
P−→ {[�(2)

α,x0,t

(
A0(t |x0)

)]−1
, t ∈ [0,1]}.

Concerning the covariance structure, it follows from Theorem 2.2 and the fact
that

�̂
(1)
α,x0,t

(
A0(t |x0)

)= vT
α T (3)

n (t |x0),

where

T (3)
n (t |x0) :=

⎛⎝Tn

(
K,A0(t |x0), t,0,0, α − 1|x0

)
Tn

(
K,A0(t |x0), t, α,0, α − 1|x0

)
Tn

(
K,A0(t |x0), t, α,1, α|x0

)
⎞⎠ .
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A.8. Proof of Lemma 3.1. We use the following decomposition:

Fn,j (y|x) − Fj (y|x)

= 1

f̂n(x)

{
1

n

n∑
i=1

Kc(x − Xi)1{Y (j)
i ≤y} −E

[
Kc(x − X)1{Y (j)≤y}

]}

− 1

f̂n(x)

{
1

n

n∑
i=1

Kc(x − Xi)E[1{Y (j)
i ≤y}|Xi] −E

[
Kc(x − X)1{Y (j)≤y}

]}

+ 1

f̂n(x)

{
1

n

n∑
i=1

Kc(x − Xi)
[
Fj (y|Xi) − Fj (y|x)

]}

=: 1

f̂n(x)

{
T1(y|x) − T2(y|x) + T3(y|x)

}
,

where

f̂n(x) := 1

n

n∑
i=1

Kc(x − Xi)

denotes the kernel density estimator of f .
We start by showing that, for some q > 1,

sup
(y,x)∈R×SX

∣∣∣∣∣n−1
n∑

i=1

Kc(x − Xi)1{Y (j)
i ≤y} −E

[
Kc(x − X)1{Y (j)≤y}

]∣∣∣∣∣
(A.15)

= oP

(√ | log c|q
ncp

)
,

sup
x∈SX

∣∣∣∣∣n−1
n∑

i=1

Kc(x − Xi) −E
[
Kc(x − X)

]∣∣∣∣∣= oP

(√ | log c|q
ncp

)
,(A.16)

sup
(y,x)∈R×SX

∣∣∣∣∣n−1
n∑

i=1

Kc(x − Xi)E[1{Y (j)
i ≤y}|Xi] −E

[
Kc(x − X)1{Y (j)≤y}

]∣∣∣∣∣
(A.17)

= oP

(√ | log c|q
ncp

)
.

To this aim, let us introduce the class:

G :=
{
(u, v) → K

(
x − v

d

)
1{u≤y};y ∈ R, x ∈ SX,d > 0

}
=
{
K

(
x − ·

d

)
;x ∈ SX,d > 0

}
⊗ {1{·≤y};y ∈R}

=: G1 ⊗ G2.
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Under Assumption (K2), G1 is a uniformly bounded VC-class of measurable func-
tions [see, e.g., Giné and Guillou (2002)]. Next, since the collection of all cells
{(−∞, a], a ∈ R} is a VC-class of sets, it follows that G2 is also a uniformly
bounded VC-class of measurable functions. Now, using the fact that the cover-
ing number of the direct product of two VC-classes is bounded by the product of
the respective covering numbers,

Gn :=
{
(u, v) → K

(
x − v

c

)
1{u≤y};y ∈ R, x ∈ SX, c = cn > 0

}
,

admits the same bound for the covering number as G, that is,

N
(
Gn,L2(Q), τ‖K‖∞

)≤ CVG(16e)VG
(

1

τ

)2(VG−1)

=:
(

AG
τ

)νG
,

where C is a universal constant, τ ∈ (0,1) and VG is the VC-index of G [see Theo-
rem 2.6.7 in van der Vaart and Wellner (1996)]. Now, according to Proposition 2.1
in Giné and Guillou (2001) [see also Theorem 2.1 in Giné and Guillou (2002)] for
σ 2 ≥ supg∈Gn

Var(g), U ≥ ‖K‖∞ and 0 < σ ≤ U , there exists a universal constant
B such that

E

[
sup

(y,x)∈R×SX

∣∣∣∣∣n−1
n∑

i=1

Kc(x − Xi)1{Y (j)
i ≤y} −E

[
Kc(x − X)1{Y (j)≤y}

]∣∣∣∣∣
]

≤ [ncp]−1
B

[
UνG log

(
UAG

σ

)
+
√

νGnσ 2 log
(

UAG
σ

)]
.

Since

Var
(
K

(
x − X

c

)
1{Y (j)≤y}

)
≤ cp
∫
SK

K2(u)f (x − cu)du ≤ cp‖f ‖∞‖K‖2
2,

the choices σ 2 = σ 2
n := cp‖f ‖∞‖K‖2

2 and U = ‖K‖∞ imply that σ 2
n ≤ U2 for n

large enough. This yields (A.15). Similar arguments can be used in order to show
(A.16). Also (A.17) can be shown similarly, though with a refinement as used in
Portier and Segers (2017), page 23.

As for f̂n(x), we use (A.16), and obtain f̂n(x) = E(f̂n(x)) +
oP(

√| log c|q/(ncp)), where the oP term is uniform in x ∈ SX . By using the as-
sumptions on K , f and (3.5) we derive, for n sufficiently large, the following
uniform lower bound:

E
(
f̂n(x)

)= ∫
{z∈SK :x−cz∈SX}

K(z)f (x − zc) dz

≥ b

∫
{z∈B0(δ):x−cz∈SX}

K(z)dz

≥ bmλ
({

z ∈ B0(δ) : x − cz ∈ SX

})
≥ bmδpε.
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Whence {T1(y|x)−T2(y|x)}/f̂n(x) = oP(
√| log c|q/(ncp)), uniformly in (y, x) ∈

R× SX .
Concerning T3(y|x), we obtain for x ∈ SX the following direct bound:

|T3(y|x)|
f̂n(x)

≤ 1

f̂n(x)

{
1

n

∑
i:‖x−Xi‖≤c

Kc(x − Xi)
∣∣Fj (y|Xi) − Fj (y|x)

∣∣}

≤ MFj
c
ηFj .

Combining the above results establishes the lemma.

A.9. Proof of Theorem 3.1. Let

In := {gθ,δ,n : θ ∈ �, δ ∈ H },
where for θ := (t, a) ∈ � := [0,1] × [1/2,1], and δ ∈ H := {δ = (δ1, δ2);
δ :R×R× SX →R

2},
gθ,δ,n(y1, y2, u) := √

hpKh(x0 − u)qθ,δ(y1, y2, u)

:= √
hpKh(x0 − u)aγ [Zθ,δ(y1, y2, u)

]β exp
(−λaZθ,δ(y1, y2, u)

)
with

Zθ,δ(y1, y2, u) := min
(− log(|δ1(y1, y2, u)|)

1 − t
,
− log(|δ2(y1, y2, u)|)

t

)
.

For convenience, denote δn := (Fn,1,Fn,2) and δ0 := (F1,F2). According to
Lemma 3.1, r−1

n |δn − δ0| converges in probability towards the null function H0 :=
{0} in H , endowed with the norm ‖δ‖H := ‖δ1‖∞ +‖δ2‖∞ for any δ ∈ H . In order
to apply Theorem 2.3 in van der Vaart and Wellner (2007), we have now to show

ASSERTION 1: supθ∈�

√
nPGn(θ, bn) −→ 0 for every bn → 0

and

ASSERTION 2: supθ∈� |GnGn(θ, b)| P−→ 0 for every b > 0,

where Gn(θ, b) is the minimal envelope function for the class

En(θ, b) := {gθ,δ0+rnδ,n − gθ,δ0,n : δ ∈ H,‖δ‖H ≤ b
}
,

that is,

Gn(θ, b) := sup
‖δ‖H ≤b

|gθ,δ0+rnδ,n − gθ,δ0,n|

= √
hpKh(x0 − ·) sup

‖δ‖H ≤b

|qθ,δ0+rnδ − qθ,δ0 |.
(A.18)

Now, remark that ∀(y1, y2, u) ∈R×R× SX

sup
‖δ‖H ≤b

|qθ,δ0+rnδ − qθ,δ0 |(y1, y2, u)

= sup
(δ1(y1,y2,u),δ2(y1,y2,u))∈B

|qθ,δ0+rnδ − qθ,δ0 |(y1, y2, u),
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where B := {(x, y) ∈ R
2 : |x| + |y| ≤ b}. Since B is compact and δ →

qθ,δ(y1, y2, u) is continuous, (A.18) reaches its supremum on at least one posi-
tion δ∗

θ,b(y1, y2, u) = (δ∗
1,θ,b(y1, y2, u), δ∗

2,θ,b(y1, y2, u)) in B . Thus, according to
Theorem 18.19 in Aliprantis and Border (2006), one can find a measurable func-
tion δ∗

θ,b bounded by b in H such that

Gn(θ, b) = |gθ,δ0+rnδ∗
θ,b,n

− gθ,δ0,n|.
PROOF OF ASSERTION 1. For any positive sequence bn → 0, we have√

nPGn(θ, bn)

= √
nhp

∫
SK

K(u)E
[|qθ,δ0+rnδ∗

θ,bn
− qθ,δ0 |

∣∣X = x0 − hu
]
f (x0 − hu)du.

Note that for any (δ, δ′) ∈ H × H , using (A.4)

|qθ,δ − qθ,δ′ | ≤ aγ
∫ +∞

0
|β − λas|sβ−1

× e−λas1{s∈[min(Zθ,δ,Zθ,δ′ ),max(Zθ,δ,Zθ,δ′ )]} ds.

(A.19)

Consequently,

E
[|qθ,δ0+rnδ∗

θ,bn
− qθ,δ0 |

∣∣X = x0 − hu
]

≤ aγ
∫ +∞

0
|β − λas|sβ−1

× e−λas
P
(
s ∈ [min(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0),max(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0)

]|
X = x0 − hu

)
ds.

Remark now that{
s ∈ [min(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0),max(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0)

]}
= {e−s ∈ [min

(
max
(∣∣F1 + rnδ

∗
1,θ,bn

∣∣ 1
1−t ,
∣∣F2 + rnδ

∗
2,θ,bn

∣∣ 1t ),max
(
F

1
1−t

1 ,F
1
t

2

))
,

max
(
max
(∣∣F1 + rnδ

∗
1,θ,bn

∣∣ 1
1−t ,
∣∣F2 + rnδ

∗
2,θ,bn

∣∣ 1t ),max
(
F

1
1−t

1 ,F
1
t

2

))]}
⊂ {e−s ∈ [min

(∣∣F1 + rnδ
∗
1,θ,bn

∣∣ 1
1−t , F

1
1−t

1

)
,max
(∣∣F1 + rnδ

∗
1,θ,bn

∣∣ 1
1−t , F

1
1−t

1

)]}
∪ {e−s ∈ [min

(∣∣F2 + rnδ
∗
2,θ,bn

∣∣ 1t , F 1
t

2

)
,max
(∣∣F2 + rnδ

∗
2,θ,bn

∣∣ 1t , F 1
t

2

)]}
⊂ {e−(1−t)s ∈ [min

(∣∣F1 + rnδ
∗
1,θ,bn

∣∣,F1
)
,max
(∣∣F1 + rnδ

∗
1,θ,bn

∣∣,F1
)]}

∪ {e−ts ∈ [min
(∣∣F2 + rnδ

∗
2,θ,bn

∣∣,F2
)
,max
(∣∣F2 + rnδ

∗
2,θ,bn

∣∣,F2
)]}

⊂ {e−(1−t)s ∈ [F1 − rnbn,F1 + rnbn]}∪ {e−ts ∈ [F2 − rnbn,F2 + rnbn]}
=: An,1(s) ∪ An,2(s).
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Since for any subsets A and B , we have 1{A∪B} ≤ 1{A} + 1{B}, we can deduce
that

P
(
s ∈ [min(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0),max(Zθ,δ0+rnδ∗

θ,bn
,Zθ,δ0)

]|X = x0 − hu
)

≤ P
(
An,1(s)|X = x0 − hu

)+ P
(
An,2(s)|X = x0 − hu

)
(A.20)

=
∫ 1

0
1{e−(1−t)s∈[v−rnbn,v+rnbn]} dv +

∫ 1

0
1{e−ts∈[v−rnbn,v+rnbn]} dv

≤ 2rnbn + 2rnbn = 4rnbn.

This implies that√
nhpE

[|qθ,δ0+rnδ∗
θ,bn

− qθ,δ0 |
∣∣X = x0 − hu

]
≤ 4

√
nhprnbn sup

a∈[1/2,1]

∫ ∞
0

aγ |β − λas|sβ−1e−λas ds.

This achieves the proof of Assertion 1 since K is bounded, supa∈[1/2,1]
∫∞

0 aγ ×
|β − λas|sβ−1e−λas ds < +∞,

√
nhprn → 0 and bn → 0.

PROOF OF ASSERTION 2. The idea is to apply Lemma 2.2 in van der Vaart
and Wellner (2007). To this aim, first observe that the class En(θ, b) admits an
envelope function En of the same form as Fn in (A.12), for some suitable constant
M > 0. Thus En satisfies the conditions (A.8) and (A.9), with Fn replaced by En.
Consequently, it remains to show the two following convergences

sup
θ∈�

PG2
n(θ, b) −→ 0,(A.21)

J
(
dn,
{
Gn(θ, b) : θ ∈ �

}
,L2
)−→ 0 for all dn ↘ 0.(A.22)

We start to show (A.21). Since

PG2
n(θ, b) =

∫
SK

K2(u)E
(|qθ,δ0+rnδ∗

θ,b
− qθ,δ0 |2

∣∣X = x0 − hu
)
f (x0 − hu)du,

and (A.19), (A.21) follows from the proof of Assertion 1.

Now, to deal with the uniform entropy integral, we can adjust the lines of proof
of Theorem 2.1 by considering the classes of functions defined on R×R× SX

φ
(j)
λ,β ◦W ◦ �, j = 1,2,

where � is either the function

(y1, y2, u) → (− log
(
F1(y1|u)

)
,− log

(
F2(y2|u)

))
or

(y1, y2, u) → (− log
(∣∣F1(y1|u) + rnδ

∗
1,θ,b(y1, y2, u)

∣∣),
− log
(∣∣F2(y2|u) + rnδ

∗
2,θ,b(y1, y2, u)

∣∣)),
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which are VC-classes. This allows us to prove that there exist positive constants C

and V such that

sup
Q

N
({

Gn(θ, b) : θ ∈ �
}
,L2(Q), τ‖En‖Q,2

)≤ C

(
1

τ

)V

,

from which (A.22) follows. This achieves the proof of Theorem 3.1.

A.10. Proof of Theorem 3.2. One can check that the proof of Theorems 2.3
and 2.4 are mainly due to the asymptotic properties of �̂

(j)
α,x0,t

, j = 1,2 and 3.

Thus, if we are able to prove that the two key statistics Tn and Ťn are sufficiently
close enough, in the sense that

(A.23) sup
t∈[0,1],a∈[1/2,1]

√
nhp|Ťn − Tn|(K,a, t, λ,β, γ |x0) = oP(1),

and

(A.24) sup
t∈[0,1],a∈[1/2,1]

√
nhpE

[|Ťn − Tn|](K,a, t, λ,β, γ |x0) = o(1),

then we can swap �̂
(j)
α,x0,t

by �̌
(j)
α,x0,t

, j = 1,2 and 3. According to Theorem 3.1,
(A.23) is a direct consequence of (A.24). So it remains to prove (A.24). Note that√

nhpE
[|Ťn − Tn|](K,a, t, λ,β, γ |x0)

= √
nE

[∣∣∣∣∣1n
n∑

i=1

[√
hpKh(x0 − Xi)a

γ Ž
β
n,t,ie

−λaŽn,t,i

− √
hpKh(x0 − Xi)a

γ Z
β
t,ie

−λaZt,i
]∣∣∣∣∣
]

≤ √
nE
[∣∣gθ,δn,n

(
Y (1), Y (2),X

)− gθ,δ0,n

(
Y (1), Y (2),X

)∣∣]
≤ √

nPGn(θ, b),

since δn ∈ δ0 + rnB(0, b) where B(0, b) := {δ : ‖δ‖H ≤ b}. This implies that

sup
t∈[0,1],a∈[1/2,1]

√
nhpE

[|Ťn − Tn|](K,a, t, λ,β, γ |x0)

≤ sup
t∈[0,1],a∈[1/2,1]

√
nPGn(θ, b) = o(1)

by Assertion 1 since it is clear from its proof that bn → 0 can be replaced by any
fixed value b in (A.20) without changing the conclusion. This achieves the proof
of Theorem 3.2.
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SUPPLEMENTARY MATERIAL

Supplementary material to “Local robust estimation of the Pickands de-
pendence function” (DOI: 10.1214/17-AOS1640SUPP; .pdf). This document
contains additional simulation results.
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