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We study the nonparametric estimation of a decreasing density function
g0 in a general s-sample biased sampling model with weight (or bias) func-
tions wi for i = 1, . . . , s. The determination of the monotone maximum like-
lihood estimator ĝn and its asymptotic distribution, except for the case when
s = 1, has been long missing in the literature due to certain nonstandard struc-
tures of the likelihood function, such as nonseparability and a lack of strictly
positive second order derivatives of the negative of the log-likelihood func-
tion. The existence, uniqueness, self-characterization, consistency of ĝn and
its asymptotic distribution at a fixed point are established in this article. To
overcome the barriers caused by nonstandard likelihood structures, for in-
stance, we show the tightness of ĝn via a purely analytic argument instead
of an intrinsic geometric one and propose an indirect approach to attain the√

n-rate of convergence of the linear functional
∫

wiĝn.

1. Introduction.

1.1. Background and problem formulation. The estimation of a density func-
tion is a fundamental problem in nonparametric statistics. A monotone constraint
may arise naturally and is often assumed. Grenander (1956) showed the maxi-
mum likelihood estimator (MLE) of a decreasing density function is the derivative
of the least concave majorant of the empirical distribution. Its theoretical proper-
ties are studied by Prakasa Rao (1969), Barlow et al. (1972), Groeneboom (1985)
and Dümbgen, Wellner and Wolff (2016), among others. Nonparametric estima-
tion under monotone constraints in various statistical problems has been studied.
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For instance, Huang and Wellner (1995b) studied monotone density and hazard
estimation for right censored survival data, and Groeneboom and Wellner (1992)
studied interval censoring data. A comprehensive survey of nonparametric esti-
mation problems under shape constraints can also be found in Groeneboom and
Jongbloed (2014).

Existing methods mostly require that the observed data be a simple random
sample from the underlying population. Biased sampling, however, often arises in
practice when a unit is preferentially sampled based on its value. This is often due
to the method of selection such that units in the study population do not have equal
chances of being recorded. Many examples exist in the literature. For instance,
a large herd is more likely to be sampled in wildlife [Cook and Martin (1974)],
a more long-lived survivor is more likely to appear in a prevalent cohort [Wang
(1991)], a long textile fiber is more likely to be picked from a bulk of fibers in
intersect sampling [Cox (1968)]. Other examples are given in Patil and Rao (1978)
and Drummer and McDonald (1987) among others.

Suppose s ≥ 1 sampling methods are adopted, each resulting in a different form
of sampling bias. This is called a s-sample biased sampling model and the cor-
responding estimation of a distribution function was studied by Vardi (1985) and
Gill, Vardi and Wellner (1988). Our primary goal is to study the estimation of a
decreasing density function under a s-sample biased sampling model. It is note-
worthy that if only one set of biased samples is available, that is, s = 1, the prob-
lem of the monotone density estimation can be carried out via the classical method
[Grenander (1956)] based on properly transformed samples, which has been stud-
ied by El Barmi and Nelson (2002). This is feasible due to an invariance principle
which allows a one-to-one mapping between the two densities. This approach,
however, cannot be directly extended to s > 1 as such an invariant structure is no
longer available. To the best of our knowledge, a general solution to this prob-
lem has long been missing due to several nonstandard features of the likelihood
function, which will be discussed in Section 1.3.

More precisely, we consider the following estimation problem. Let G0 be a
fixed but unknown distribution function with a decreasing density g0 supported on
a bounded interval [a, b], where 0 ≤ a < b < ∞. Assume that there are s known
positive weight (or bias) functions wi (i = 1, . . . , s). Suppose we obtain s inde-
pendent samples Xi1, . . . ,Xini

(i = 1, . . . , s), each Xij independently follows the
biased distribution Fi (i = 1, . . . , s, j = 1, . . . , ni), such that

Fi(x) �
∫ x
a wi(y)g0(y) dy∫ b
a wi(y)g0(y) dy

for x ∈ [a, b],

where 0 <
∫ b
a wi(y)g0(y) dy < ∞ for i = 1, . . . , s. Let G be the class of all de-

creasing densities on [a, b]. For any g ∈ G, the likelihood evaluated at this g of the
s-sample is proportional to

(1.1) Ln(g) �
s∏

i=1

∏ni

j=1 g(Xij )

(
∫ b
a wi(x)g(x) dx)ni

.
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From now on, without ambiguity, we also regard Ln as the likelihood function. The
monotone MLE ĝn ∈ G is then defined such that Ln(ĝn) ≥ Ln(g) for all g ∈ G. Our
goal of this article is to characterize the properties of and to establish the limiting
distribution of ĝn at a fixed point t0 ∈ (a, b). We shall prove the following theorem.

THEOREM 1.1. Under Assumptions 2.1, we have

n1/3

(
s∑

i=1

λiwi(t0)∫ b
a wi(x)g0(x) dx

)1/3∣∣∣∣1

2
g′

0(t0)g0(t0)

∣∣∣∣−1/3(
ĝn(t0) − g0(t0)

) D→ 2Y,

where Y� arg maxt {W(t)− t2}, W(t) (t ∈ R), is the standard two-sided Brownian
motion with W(0) = 0, n = ∑s

i=1 ni and λi = limn ni/n > 0.

1.2. Examples of applications. Multisample selection bias often arises when
data are collected from multiple sampling plans. Examples include outcome de-
pendent enriched sampling in medical studies [Wang and Zhou (2006), Kang, Nel-
son and Vahl (2010)] and endogenous stratified sampling in economics [Hausman
and Wise (1981), Imbens and Lancaster (1996)]. In these cases, biased samples are
collected in addition to a random sample. Such sampling designs are often consid-
ered more focused and economical than random samples from a population. Multi-
sample selection bias also occurs frequently in combining different data sources.
For example, an unbiased sample and a duration-biased sample are formed when
the Surveillance, Epidemiology and End Results (SEER) data are linked to the
Medicare data [Chan and Wang (2012)]. Since Medicare data are only available
from 1986 but SEER data are available from 1973, the linked data excludes the
SEER subjects who died before 1986. Hence, subjects with cancer diagnosis be-
fore 1986 forms a duration-biased cohort in the combined data while subjects with
cancer diagnosis on or after 1986 forms an unbiased cohort. Patil (1984) combined
travel survey data collected from hotels and frontier stations in Morocco, where the
samples collected from hotels are biased toward longer sojourn times. Other ex-
amples of multiple-sample selection bias include the measurement of velocities
of moving vehicles by multiple moving observes traveling at different velocities
[Smith and Parnes (1994)], the sampling of time from a disease incidence to a
failure event from multiple prevalent cohorts with different time trends of disease
incidence [Wang (1991)] and the collection of survival data from multiple study
sites with different reporting delay distributions [Wang (1992)].

1.3. An overview of our approach. We first show that the maximizer of Ln

must be a step function. We then show that the monotone MLE exists uniquely,
and can be evaluated via a self-induced characterization through the use of an
isotonic regression problem, in which we need to choose a diagonal matrix with
positive entries. In particular, we choose the first term of the second-order deriva-
tive of the negative of the log-likelihood function, which is always positive and is
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also the dominating term for a large enough n. There is a special feature of the
presence of the linear functional

∫
wiĝn in the log-likelihood function making it

nonseparable; hence, we aim to establish that | ∫ wiĝn − ∫
wig0| = Op(n−1/2) so

that we can essentially replace
∫

wiĝn with
∫

wig0 in most of the calculations for
deriving various estimates. To this end, we have a set of preparatory lemmas. More
specifically, we first show that ĝn is bounded in probability and use this to obtain
a L2-rate of convergence of ĝn from its rate of convergence in Hellinger distance.
Unlike the one-sample unbiased case where the maximum likelihood estimator can
be characterized as the left-continuous slope of the least concave majorant of the
empirical distribution, such a geometric interpretation is lacking here. We cannot
directly extend the tightness results of Woodroofe and Sun (1993) to the s-sample
case, which will be needed for our proofs, as they use the geometric configuration
of the Grenander estimator in their proof. Thus, we seek an alternative analytic
argument to show the tightness of the monotone MLE. After obtaining this crucial
rate of convergence of

∫
wiĝn, the local consistency of ĝn, and hence the asymp-

totic distribution of ĝn at a fixed interior point can then be obtained. More detailed
explanations and relevant connections with the existing literature are provided in
each section. An additional comparison with the interval censoring problem (case
2) studied in Groeneboom (1996) is given in the discussion, where his proposed
problem and ours both possess the nonseparability in the log-likelihood function.

1.4. Organization. The remainder of this paper is structured as follows: Sec-
tion 2 describes the notation and some relevant technical assumptions. Discussions
on the existence, uniqueness and characterization of the monotone MLE are in-
cluded in Section 3. Section 4 establishes the consistency of the monotone MLE.
Section 5 studies the rates of convergence of the monotone MLE and its linear
functionals, and contains the majority of our notable methodologies. Those results
are then used for establishing the asymptotic distribution of the monotone MLE
in Section 6. Concluding remarks are given in Section 7. Numerical demonstra-
tions and part of the technical details and proofs of our theoretical results will be
relegated to the supplementary material [Chan et al. (2018)].

2. Notation and assumptions. Consider the biased sampling model intro-
duced in Section 1.1. Denote n � ∑s

i=1 ni . For i = 1, . . . , s, the empirical mea-
sures from Xi1, . . . ,Xini

∼ Fi will be denoted as Fi,ni
, where the measure Fi has

a density fi with respect to Lebesgue measure. In the rest of this article (including
the supplementary material [Chan et al. (2018)]), if clarity of the dependence of
ĝn on an element ω of the sample space � is demanded, we shall explicitly write
ĝn(x,ω); otherwise, we shall only write ĝn(x) for simplicity. For other functions,
we shall follow the same custom. The indicator for a set A will be denoted by
1(A).

Before we proceed further, we shall state the regularity conditions adopted in
the whole article.
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ASSUMPTIONS 2.1. (A) The sampling fraction ni

n
→ λi > 0, for all i =

1, . . . , s.
(B) The true unbiased decreasing density g0 is differentiable on the interior of

its support (a, b), with 0 < inft∈(a,b) |g′
0(t)| ≤ supt∈(a,b) |g′

0(t)| < ∞.
(C) There exist constant bounds 0 < m < M < ∞ such that for all i = 1, . . . , s,

m ≤ g0,wi ≤ M .
(D) For each i = 1, . . . , s, wi , wi ◦ g−1

0 are Lipschitz continuous.

Our main theorem concerns the asymptotic distribution of ĝn at a fixed point
t0 ∈ (a, b). The conditions on g0 in Assumptions (B) and (C) are similar to As-
sumptions (A1) and (A2) imposed in Theorem 1.1 in Groeneboom, Hooghiemstra
and Lopuhaä (1999), which assists in deriving the asymptotic normality of a suit-
ably rescaled version of the L1 error of the Grenander estimator; while the lower
boundedness condition on wi in Assumption (C) is also used in El Barmi and
Nelson (2002). Assumption (D) is used to ensure the permanence of the Donsker
property after Lipschitz transformation and the rate of convergence of certain inte-
grals in connection to the L2-convergence

∫
(ĝn − g0)

2 in Lemma 5.6.
For any function H on [0,∞) with H(0) = 0, we define the least concave ma-

jorant (LCM) Ĥ of H to be the smallest concave function that dominates H over
[0,∞) with Ĥ (0) = 0. Clearly, as Ĥ is concave, its derivative is nonincreasing.
Given points {(xi, yi)}ni=0 with x0 = y0 = 0 and x0 < x1 < · · · < xn, consider
the right-continuous step function P such that P(xi) = yi and it remains con-
stant on each interval [xi, xi+1) for i = 0, . . . , n − 1. Denote the R

n-vector of left-
derivatives of the least concave majorant of P computed at the points (x1, . . . , xn)

by slolcm{(xi, yi)}ni=0.

3. Existence, uniqueness and characterization of the monotone MLE ĝn.
Since the observations are from a continuous distribution, we assume that there
are no ties. Let a = T0 < T1 < · · · < Tn be the order statistics of all Xij ’s. As in
many other nonparametric estimation problems with monotone shape constraints,
the monotone MLE in the current problem must be a step function with jumps only
at the observations as shown below.

PROPOSITION 3.1. For any g ∈ G, there exists a left continuous decreasing
step function ḡ with jumps only at the order statistics Ti (not necessarily all) for all
i = 1, . . . , n, and it takes value 0 whenever x /∈ [T0, Tn] such that Ln(ḡ) ≥ Ln(g).

PROOF. See the details provided in Section 8 of the supplementary material
[Chan et al. (2018)]. �

3.1. Existence and uniqueness of the monotone MLE ĝn. For a given sequence
of T0 < T1 < · · · < Tn, define GT to be the (samplewise-) set of all left continuous
decreasing piecewise constant densities with jumps only at the order statistics Ti’s.
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Define also cjk �
∫ Tk

Tk−1
wj(y) dy > 0. Proposition 3.1 suggests that we only have

to look for the maximizer of Ln in GT , which is equivalent to the resolution of the
following maximization problem with the objective function

(3.1) Ln(z1, . . . , zn)�
n∏

i=1

zi

s∏
j=1

(
n∑

k=1

cjkzk

)−nj

,

subject to

(3.2)

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

zi(Ti − Ti−1) = 1,

z1 ≥ · · · ≥ zn ≥ 0.

Let

Kn �
{
z ∈ R

n : z1 ≥ · · · ≥ zn ≥ 0 and
n∑

i=1

zi(Ti − Ti−1) = 1

}
.

Then, for each n ∈ N, with probability one, Kn is compact. The original problem
can be recovered through the transformation zi = g(Ti) and cjk = ∫ Tk

Tk−1
wj(y) dy.

The constraint
∑n

i=1 zi(Ti − Ti−1) = 1 ensures at least one of the zi ’s is positive
(nonvanishing), and hence

∑n
k=1 zkcjk > 0 as wj > 0. Therefore, (3.1) is well

defined.
Note that the log-likelihood function of (3.1) is neither concave nor convex in

z. We define pi � log zi for zi > 0, otherwise if zi = 0, pi � −∞, for i = 1, . . . , n

and

L̃n(p1, . . . , pn)

�

⎧⎪⎪⎨⎪⎪⎩
n∑

j=1

pj −
s∑

i=1

ni log

(
n∑

k=1

cike
pk

)
if all pi ∈ (−∞,∞),

−∞ if some pi is equal to −∞.

(3.3)

Note that at least one of the zi’s is positive and so pi ’s cannot be all equal to −∞,
and hence L̃n is well defined. Then it can be shown that L̃n is concave in p =
(p1, . . . , pn) (as shown in Proposition 8.1 in the supplementary material [Chan
et al. (2018)], see also Davidov and Iliopoulos (2009)). With the concavity of L̃n,
it can also be shown that, with probability one, the monotone MLE ĝn for the
true unbiased density g0 uniquely exists for each n ∈ N; see Proposition 8.2 in the
supplementary material [Chan et al. (2018)] for details.

3.2. Characterization of the monotone MLE ĝn via theory of isotonic regres-
sion. Self-induced characterization in the estimation of monotone function has
become prevalent since the work of Groeneboom and Wellner (1992). One of the
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developments is to connect isotonic regression problems with self-induced charac-
terization; this approach relies on a suitable choice of a diagonal positive definite
matrix in a quadratic programming problem that closely links to the original max-
imization problem.

To tackle our present problem, we here advocate the approach in Banerjee
(2007) and Groeneboom and Wellner (1992). However, due to the nonseparate-
ness of the arguments in the log-likelihood function, we propose an alternative
function ψn which is the negative log-likelihood function of all the data instead of
just one single datum. That is,

(3.4) ψn(z1, . . . , zn)�−
n∑

j=1

log zj +
s∑

i=1

ni log

(
n∑

k=1

zkcik

)
.

However, ψn is not necessarily strictly convex (also see Proposition 8.1 in the sup-

plementary material [Chan et al. (2018)]), and ∂2ψn

∂z2
j

(ẑ) may not always be strictly

positive therefore ∂2ψn

∂z2
j

(ẑ)’s cannot immediately serve as the diagonal entries in the

positive definite matrix mentioned above. A proper choice of matrix plays a critical
role so that the methodologies in Banerjee (2007) and Groeneboom and Wellner
(1992) can be implemented in our setting. We therefore note that the cumulative
sums of these diagonal elements of the matrix are essentially the first coordinates
of the corresponding isotonic regression problem (Proposition 3.2); its increasing
structure results in a natural geometry of the solution of that regression problem.
Therefore, to maintain this plausible approach, alternative candidates other than
∂2ψn

∂z2
j

(ẑ)’s have to be suggested in order to keep this monotonic structure. In partic-

ular, we here choose 1
ẑ2
j

, which is always positive and is actually the first term of
∂2ψn

∂z2
j

(ẑ), to form that positive definite matrix.

PROPOSITION 3.2. The maximizer ẑ of (3.1) subject to (3.2) satisfies

(3.5) (ẑ1, . . . , ẑn) = slolcm

{
i∑

j=1

1

ẑ2
j

,

i∑
j=1

(
1

ẑj

− ∂ψn

∂zj

(ẑ)

)}n

i=0

.

PROOF. See Section 8 of the Supplementary Material [Chan et al. (2018)] for
details. �

Without ambiguity, we shall use ẑi and ĝn(Ti) interchangeably depending on
the actual context. Following Proposition 3.2, we consider some processes G̃n,ĝn

,
G̃n,g0 Ũn,ĝn

and Ũn,g0 , which will be defined next. Our main theorem concerns the
asymptotic distribution of ĝn at a fixed interior point t0 in the support of g0. Define
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λ� ∑s
i=1 λifi(t0)/g

2
0(t0) and

Gn,ĝn
(t) � 1

n

n∑
j=1

1

ĝ2
n(Tj )

1(Tj ≤ t),

Un,ĝn
(t) � 1

n

n∑
j=1

(
1

ĝn(Tj )
− ∂ψn

∂zj

(ẑ)

)
1(Tj ≤ t).

Then, from Proposition 3.2,{
ĝn(T1), . . . , ĝn(Tn)

} = slolcm
{
Gn,ĝn

(Ti),Un,ĝn
(Ti)

}n
i=0.

Define the normalized and localized version of Gn,ĝn
(t) and Un,ĝn

(t) as follows:

G̃n,ĝn
(t) � n1/3

λ

[
Gn,ĝn

(
t0 + tn−1/3) − Gn,ĝn

(t0)
]

= n1/3

λ

1

n

n∑
j=1

1

ĝ2
n(Tj )

(
1
(
Tj ≤ t0 + tn−1/3) − 1(Tj ≤ t0)

)
,

Ũn,ĝn
(t) � n2/3

λ

[
Un,ĝn

(
t0 + tn−1/3) − Un,ĝn

(t0)

− g0(t0)
(
Gn,ĝn

(
t0 + tn−1/3) − Gn,ĝn

(t0)
)]

= n2/3

λ

1

n

n∑
j=1

(
ĝn(Tj ) − g0(t0)

ĝ2
n(Tj )

+ 1

ĝn(Tj )
−

s∑
i=1

nicij∑n
k=1 ĝn(Tk)cik

)

· (
1
(
Tj ≤ t0 + tn−1/3) − 1(Tj ≤ t0)

)
.

Finally, we define the theoretical counterpart process Ũn,g0 as Ũn,ĝn
and G̃n,g0

as G̃n,ĝn
, respectively, with ĝn being replaced by g0, that is,

G̃n,g0(t) �
n1/3

λ

1

n

n∑
j=1

1

g2
0(Tj )

(
1
(
Tj ≤ t0 + tn−1/3) − 1(Tj ≤ t0)

)
,

Ũn,g0(t) �
n2/3

λ

1

n

n∑
j=1

(
g0(Tj ) − g0(t0)

g2
0(Tj )

+ 1

g0(Tj )
−

s∑
i=1

nicij∑n
k=1 g0(Tk)cik

)

· (
1
(
Tj ≤ t0 + tn−1/3) − 1(Tj ≤ t0)

)
.

Following established approaches, the determination of the asymptotic distribution
of the monotone ĝn relies on the asymptotic distribution of G̃n,ĝn

and Ũn,ĝn
, both

of which can be determined via the establishment of the asymptotic equivalence
of G̃n,ĝn

and G̃n,g0 and that of Ũn,ĝn
and Ũn,g0 , and then through the finding of
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the asymptotic distributions of G̃n,g0 and Ũn,g0 . However, in showing the asymp-

totic equivalence of Ũn,ĝn
and Ũn,g0 , the choice of 1

ẑ2
j

instead of ∂2ψn

∂z2
j

(ẑ), and the

nonseparability of the arguments in the log-likelihood function require additional
analytic treatment that involves techniques beyond those illustrated in Banerjee
(2007); see Section 5 for a more detailed discussion. Essentially, we develop a no-
table approach on first obtaining the

√
n-convergence of

∫
wiĝn in Proposition 5.8

in order to establish the asymptotic equivalence of Ũn,ĝn
and Ũn,g0 .

4. Consistency of the monotone MLE ĝn. Following the same notation as in
van de Geer (2000), denote Hp,B(δ,I,Q) as the δ-entropy with bracketing for the
Lp(Q)-metric of I , where I is a class of suitable functions and Q is a measure on a
measurable space (M,B). Consistency of the monotone MLE can be established
by using the notion of Hellinger distance and the theory of empirical processes.
Define f̂i,n � wiĝn∫

wiĝn
and fi � wig0∫

wig0
for ĝn, g0 ∈ G. For clarity, we shall write all

the integrals, except for
∫

wig0 and
∫

wiĝn, in the form
∫ b
a f (x) dx, where the

argument of the integrand and the domain of integration are written out explicitly.
For any density functions q1, q2 ∈ G with support on [a, b], their Hellinger distance
h is defined as

h(q1, q2)�
(

1

2

∫ b

a

(
q

1/2
1 (x) − q

1/2
2 (x)

)2
dx

)1/2
.

To obtain the consistency of ĝn with the appropriate rate of convergence, we
show item (iv) in the following proposition, which is a consequence of items (i)
to (iii).

PROPOSITION 4.1. Under Assumptions 2.1, for each i = 1, . . . , s:

(i) h(f̂i,n, fi) → 0 a.s.
(ii)

∫
wiĝn → ∫

wig0 a.s.
(iii) For any 0 < δ < b − a, lim supn ĝn(a + δ) ≤ 1

δ
and there exists constants

C(δ) such that P(lim supn
1

ĝn(b−δ)
≤ C(δ)) = 1.

(iv) For any closed subinterval [σ, τ ] ⊂ (a, b), supx∈[σ,τ ] |ĝn(x) − g0(x)| → 0
a.s.

PROOF. See the details provided in Section 9 of the supplementary material
[Chan et al. (2018)]. �

5. Rates of convergence of the linear functional
∫

wiĝn and the monotone
MLE ĝn.

5.1. Rate of convergence of the linear functional
∫

wiĝn. To establish the
asymptotic equivalence of Ũn,ĝn

and Ũn,g0 , the minimum order op(n−1/3) of the
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term
∑n

k=1 g0(Tk)cik − ∫
wiĝn is necessary. In this subsection, the main result to

be obtained is the fact that
∫

wiĝn −∫
wig0 = Op(n−1/2), which is given in Propo-

sition 5.8. The proof of this result requires several intermediate lemmas, and we
here briefly describe the crux of their arguments. By invoking two noncanonical
rudimentary results related to order statistics (Lemma 5.1 and Corollary 5.2), we
develop a new purely analytic approach to establish the boundedness in probability
of ĝn instead of using the geometric configuration of the Grenander estimator in
the existing literature; see Lemma 5.3. The multisample and the self-induced char-
acterization nature of ĝn make ĝn substantially different from the Grenander esti-
mator, ĝGE

n , corresponding to the 1-sample unbiased case, in which the Grenander
estimator ĝGE

n can be characterized as the left-continuous slope of the least con-
cave majorant of the empirical distribution. By using this geometric interpretation
of ĝGE

n , Woodroofe and Sun (1993) showed that if 0 < g0(0+) < ∞, then

(5.1)
ĝGE

n (0+)

g0(0+)

D→ sup
1≤k<∞

k


k

,

where 
1,
2, . . . are partial sums of i.i.d. standard exponential random variables.
In our present situation, such a geometric connection is absent and we therefore uti-
lize some pure analytic arguments that lead to a similar bound in the spirit of (5.1),
yet allow more room for further generalization; see Lemma 5.1, Corollary 5.2 and
Lemma 5.3.

From (9.1) in the proof of Proposition 4.1, we can also obtain a rough rate
of Hellinger distance h(f̂i,n, fi). Together with the boundedness in probabil-
ity of ĝn, we can establish a rough, but fast enough for our later development,
L2-rate of convergence of f̂i,n, and hence that of ĝn; see Lemma 5.4 for de-
tails. We next implement the approach from Huang and Wellner (1995a), by us-
ing Karush–Kuhn–Tucker conditions, we can “insert” any function γ such that∑n

i=1
∂ψn

∂zi
(ẑ)γ (ĝn(Ti)) = 0 (Lemma 5.5). Using suitable choices of γ , together

with the L2-rate of convergence of ĝn and the Donsker class property of a class
of modified version of ĝn, we obtain the key equation (5.5) in order to deduce the
desired

√
n-convergence of

∫
wiĝn (Lemma 5.6). The form of (5.5) motivates us to

consider a linear system by suitably choosing a number of γ ’s for which s linearly
independent equations involving

∫
wiĝn will then result. Direct matrix inversion

immediately gives
√

n(
∫

wiĝn − ∫
wig0) = Op(1) as desired (Proposition 5.8). To

the best of our knowledge, methods for handling s linear functionals of this kind
simultaneously are rare in the literature.

Next, we then show that
∑n

j=1 g0(Tj )cij − ∫
wig0 = Op(n−1/2) in Lemma 5.9.

Hence, as a direct consequence of Proposition 5.8 and Lemma 5.9, we obtain∑n
j=1 g0(Tj )cij − ∫

wiĝn = Op(n−1/2) as claimed before.

LEMMA 5.1. Suppose that W1, . . . ,Wn
i.i.d.∼ F with a density function f sup-

ported on a finite interval [c, d] ⊂ R so that f is bounded above and below from
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zero on [c, d]: there exists 0 < mf ≤ Mf < ∞ such that mf ≤ f (x) ≤ Mf for all
x ∈ [c, d]. Let W(h) be the hth order statistic of W1, . . . ,Wn. Then:

(i) maxh=1,...,n
n(W(h)−c)

h
= Op(1);

(ii) (minh=1,...,n
n(W(h)−c)

h
)−1 = Op(1).

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

COROLLARY 5.2. (i) maxh=1,...,n
n(Tn−Tn−h)

h
= Op(1);

(ii) (minh=1,...,n
n(Th−a)

h
)−1 = Op(1).

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

LEMMA 5.3. The monotone MLE ĝn is bounded above in probability, that is,

ĝn(a) � ĝn(a+) = ẑ1 = Op(1).

Remark: we also have supx∈[a,b] f̂i,n(x) = Op(1) for i = 1, . . . , s.

PROOF. In the Supplementary Material [Chan et al. (2018)], we show that

(5.2) ẑ1 ≤ ẑn

M2

m2

maxh=1,...,n
n(Tn−Tn−h)

h

minj=1,...,n
n(Tj−a)

j

+ 1

Tn−1 − a
.

Note that since ẑn = ĝn(Tn), Tn
a.s.→ b, and Proposition 4.1(iii) implies that ĝn(b −

δ) ≤ ĝn(a +δ) = O(1) for a small enough δ > 0, we have ẑn = Op(1). As Tn−1
a.s.→

b, 1
Tn−1−a

= Op(1). In light of Corollary 5.2, we have ẑ1 = Op(1). �

To prepare for the proof of Lemma 5.6, we provide the first batch of rough
estimates of the rate of convergence.

LEMMA 5.4. For each i = 1, . . . , s:

(i) h(f̂i,n, fi) = Op(n−1/4);
(ii) | ∫ wiĝn − ∫

wig0| = Op(n−1/4);
(iii)

∫ b
a (f̂i,n(x) − fi(x))2 dx = Op(n−1/2);

(iv)
∫ b
a (ĝn(x) − g0(x))2 dx = Op(n−1/2).

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �
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LEMMA 5.5. For any function γ , we have

(5.3)
n∑

j=1

(
− 1

nĝn(Tj )
+

s∑
i=1

ni

n

cij∫
wiĝn

)
γ

(
ĝn(Tj )

) = 0.

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

Next, we choose a particular form of function γ to facilitate the subsequent
proof. For some constants αi ’s and β , define γ α,β : (0,∞) × [λ1

2 ,1] × · · · ×
[λs

2 ,1] → R by

γ α,β(x, r1, . . . , rs)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[∑s
i=1 αifi(b) + βg0(b)]∑s

j=1 rjfj (b)
for 0 < x < g0(b),

x[∑s
i=1 αifi(g

−1
0 (x)) + βx]∑s

j=1 rjfj (g
−1
0 (x))

for g0(b) ≤ x ≤ g0(a),

x[∑s
i=1 αifi(a) + βg0(a)]∑s

j=1 rjfj (a)
for x > g0(a).

(5.4)

Note that 0 <
λj

2 ≤ rj ≤ 1 for each j , therefore, the denominator in the def-
inition of γ α,β for all values of x is bounded away from zero with a lower
bound

∑s
j=1

λj

2 fj (b) > 0. In addition, as wi ◦ g−1
0 is assumed to be Lipschitz

and bounded above and below, it is straightforward to see that:

(i) The mapping (x, r1, . . . , rs) → γ α,β(x, r1, . . . , rs)/x is bounded and Lips-
chitz continuous on (0,∞) × [λ1

2 ,1] × · · · × [λs

2 ,1];
(ii) The families of functions {x → γ α,β(x, r1, . . . , rs)/x : rj ∈ [λj

2 ,1], j =
1, . . . , s} and {x → γ α,β(x, r1, . . . , rs) : rj ∈ [λj

2 ,1], j = 1, . . . , s} are uniformly
and globally Lipschitz such that for any x1, x2 ∈ (0,∞),

sup
rj∈[ λj

2 ,1],j=1,...,s

∣∣γ α,β(x1, r1, . . . , rs)/x1 − γ α,β(x2, r1, . . . , rs)/x2
∣∣ ≤ C|x1 − x2|,

and

sup
rj∈[ λj

2 ,1],j=1,...,s

∣∣γ α,β(x1, r1, . . . , rs) − γ α,β(x2, r1, . . . , rs)
∣∣ ≤ C|x1 − x2|,

where C is a constant that depends only on λ1, . . . , λs .

Denote γ
α,β
n (·) � γ α,β(·, n1

n
, . . . , ns

n
). Note that for small n, γ

α,β
n is not well

defined if some ni

n
< λi

2 . However, since ni

n
→ λi as n → ∞, γ

α,β
n is then well
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defined for large enough n and this observation is used in the following Lemma 5.6.
Note that we are only concerned with the asymptotic behaviors of ĝn and the linear
functional

∫
wiĝn, and so it suffices to consider γ α,β for large enough n.

LEMMA 5.6. For all large enough n, γ
α,β
n is a well-defined function and

s∑
i=1

ni

n

1

(
∫

wig0)2

∫ b

a
wi(x)γ α,β

n

(
g0(x)

)
dx

∫
wi(g0 − ĝn)

=
∫ b

a

(
s∑

i=1

ni

n

wi(x)∫
wig0

)
γ

α,β
n (g0(x))

g0(x)

(
g0(x) − ĝn(x)

)
dx + Op

(
n−1/2)

.

(5.5)

PROOF. For notational simplicity, we shall write γn for γ
α,β
n in this proof.

Consider all enough large n such that ni

n
≥ λi/2 > 0 for each i so that γ

α,β
n is well

defined. From (5.3), by separating the terms in the first sum into s-sample, we have

(5.6)
s∑

i=1

ni

n

1

ni

ni∑
j=1

(
−γn(ĝn(Xij ))

ĝn(Xij )

)
+

s∑
i=1

ni

n

∑n
j=1 cij γn(ĝn(Tj ))∫

wiĝn

= 0.

Note that ∣∣∣∣∣
∫ b

a
wi(x)γn

(
ĝn(x)

)
dx −

n∑
j=1

cij γn

(
ĝn(Tj )

)∣∣∣∣∣
=

∣∣∣∣∫ b

Tn

wj (x)γn

(
ĝn(x)

)
dx

∣∣∣∣
≤ M

∫ b

Tn

ĝn(x)(
∑s

i=1 |αi | supx∈[a,b] fi(x) + |β|g0(a))∑s
j=1

λj

2 infx∈[a,b] fj (x)
dx

≤ MC′(b − Tn)ĝn(0+) = Op

(
n−1)

,

where C′ �
∑s

i=1 |αi | supx∈[a,b] fi(x)+|β|g0(a)∑s
j=1

λj
2 infx∈[a,b] fj (x)

and the last equality follows from the

fact that b − Tn = Op(n−1) and Lemma 5.3. To see that b − Tn = Op(n−1), let
T 1

j , j = 1, . . . , n1, be the order statistics from the first sample X1j , j = 1, . . . , n1.
Observe that, for some universal constant L,

P
(
n1

(
b − T 1

n1

)
> M̃

) =
(

1 − P

(
X11 ∈

[
b − M̃

n1
, b

]))n1 ≤
(

1 − LM̃

n1

)n1

.

Hence, b − Tn ≤ b − T 1
n1

= Op(n−1
1 ) = Op(n−1). Also, note that 1/

∫
wiĝn =

Op(1) by Proposition 4.1(ii) together with the latest result that | ∫ b
a wi(x) ×
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γn(ĝn(x)) dx − ∑n
j=1 cij γn(ĝn(Tj ))| = Op(n−1), by writing (5.6) in terms of em-

pirical measures Fi , we obtain

s∑
i=1

ni

n

∫ b
a wi(x)γn(ĝn(x))∫

wiĝn

dx =
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

ĝn(x)
dFi,ni

(x) + Op

(
n−1)

.

By applying a change of variable formula fi(x) dx = dFi(x),
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

g0(x)
dFi(x)

∫
wig0∫
wiĝn

=
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

ĝn(x)
dFi,ni

(x) + Op

(
n−1)

.

By telescoping and rearranging the terms, we obtain

(5.7)
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

g0(x)
dFi(x)

∫
wig0 − ∫

wiĝn∫
wiĝn

= A1 + A2 + Op

(
n−1)

,

where

A1 �
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

ĝn(x)
d(Fi,ni

− Fi)(x),

A2 �
s∑

i=1

ni

n

∫ b

a

(
γn(ĝn(x))

ĝn(x)
− γn(ĝn(x))

g0(x)

)
dFi(x).

(i) Let F � {f : R → R : f is decreasing and 0 ≤ f ≤ g0(a)}, and Fi � {f :
R → R : f ≡ C,C ∈ [λi

2 ,1]}, for each i = 1, . . . , s, which is a class of constant

functions. For A1, note that γn(ĝn(x))

ĝn(x)
= γn(g̃n(x))

g̃n(x)
if we define

g̃n(x) �

⎧⎪⎪⎨⎪⎪⎩
g0(b) if ĝn(x) < g0(b),

ĝn(x) if g0(b) ≤ ĝn(x) ≤ g0(a),

g0(a) if ĝn(x) > g0(a).

Clearly, {g̃n} ⊂ F . Define

(5.8) 
∗ �
{
γ α,β(fd, f r

1 , . . . , f r
s )

fd

: fd ∈F, f r
i ∈Fi , i = 1, . . . , s

}
.

As the mapping (x, r1, . . . , rs) → γ α,β(x, r1, . . . , rs)/x is uniformly bounded
and globally Lipschitz continuous on (0,∞)×[λ1

2 ,1]× · · ·× [λs

2 ,1], and the fam-
ilies of functions F,F1, . . . ,Fs are Donsker classes [see Example 2.6.21 in van
der Vaart and Wellner (1996)], where all functions in each family are also uni-
formly bounded, all the conditions in Theorem 2.10.6 in van der Vaart and Wellner
(1996) are satisfied and we can conclude that 
∗ is also a Donsker class.
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Let 
 � {γn(g̃n)
g̃n

}∞n=1. Clearly 
 ⊂ 
∗ and so A1 is Op(n−1/2) as s is finite.
(ii) For A2, by telescoping and rearranging the terms

s∑
i=1

ni

n

∫ b

a

(
γn(ĝn(x))

gn(x)
− γn(ĝn(x))

g0(x)

)
dFi(x)

=
s∑

i=1

ni

n

∫ b

a

γn(ĝn(x))

ĝn(x)g0(x)

(
g0(x) − ĝn(x)

)wi(x)g0(x)∫
wig0

dx

=
s∑

i=1

ni

n

1∫
wig0

∫ b

a
wi(x)

γn(ĝn(x))

ĝn(x)

(
g0(x) − ĝn(x)

)
dx

= I1 + I2,

(5.9)

where

I1 �
s∑

i=1

ni

n

1∫
wig0

∫ b

a
wi(x)

(
γn(ĝn(x))

ĝn(x)
− γn(g0(x))

g0(x)

)(
g0(x) − ĝn(x)

)
dx,

I2 �
s∑

i=1

ni

n

1∫
wig0

∫ b

a
wi(x)

γn(g0(x))

g0(x)

(
g0(x) − ĝn(x)

)
dx.

For I1, note that

|I1| ≤
s∑

i=1

ni

n

1∫
wig0

∫ b

a
wi(x)

∣∣∣∣γn(ĝn(x))

ĝn(x)
− γn(g0(x))

g0(x)

∣∣∣∣∣∣g0(x) − ĝn(x)
∣∣dx

≤
s∑

i=1

ni

n

MC∫
wig0

∫ b

a

(
g0(x) − ĝn(x)

)2
dx = Op

(
n−1/2)

,

by the boundedness of wi , the Lipschitz continuity of x → γn(x)/x and Lem-
ma 5.4. Hence, by (5.7), (5.9), the fact that A1 = Op(n−1/2) and I1 = Op(n−1/2),

s∑
i=1

ni

n

∫ b

a

γn(ĝn(x))

g0(x)
dFi(x)

∫
wig0 − ∫

wiĝn∫
wiĝn

=
s∑

i=1

ni

n

1∫
wig0

∫ b

a
wi(x)

γn(g0(x))

g0(x)

(
g0(x) − ĝn(x)

)
dx + Op

(
n−1/2)

.

Changing the variable dFi(x) = fi(x) dx on the left-hand side, we obtain
s∑

i=1

ni

n

1∫
wig0

∫
wiĝn

∫ b

a
wi(x)γn

(
ĝn(x)

)
dx

∫
wi(g0 − ĝn)

=
∫ b

a

(
s∑

i=1

ni

n

wi(x)∫
wig0

)
γn(g0(x))

g0(x)

(
g0(x) − ĝn(x)

)
dx + Op

(
n−1/2)

.



2140 CHAN, LING, SIT AND YAM

Telescoping the denominator on the left-hand side and using the fact that
∫

wi(g0 −
ĝn) = Op(n−1/4) from Lemma 5.4(ii), and noting that

∫ b
a wi(x)γn(ĝn(x)) dx ≤

MC′(b − a)ĝn(0+) = Op(1), and 1∫
wiĝn

= Op(1) from Proposition 4.1(ii),

s∑
i=1

ni

n

1

(
∫

wig0)2

∫ b

a
wi(x)γn

(
ĝn(x)

)
dx

∫
wi(g0 − ĝn)

=
∫ b

a

(
s∑

i=1

ni

n

wi(x)∫
wig0

)
γn(g0(x))

g0(x)

(
g0(x) − ĝn(x)

)
dx + Op

(
n−1/2)

.

(5.10)

Fix ε > 0. As x → γn(x) is Lipschitz,∣∣∣∣∫ b

a
wi(x)γn

(
ĝn(x)

)
dx −

∫ b

a
wi(x)γn

(
g0(x)

)
dx

∣∣∣∣
≤ M

∫ b

a

∣∣γn

(
ĝn(x)

) − γn

(
g0(x)

)∣∣dx

≤ MC

∫ b

a

∣∣ĝn(x) − g0(x)
∣∣dx

≤ MC(b − a)1/2
(∫ b

a

(
ĝn(x) − g0(x)

)2
dx

)1/2

= Op

(
n−1/4)

,

where the last equality follows from Lemma 5.4(iv). In light of this result, without
changing the overall order, we can replace γn(ĝn(x)) by γn(g0(x)) in the first
integral on the left-hand side of (5.10) to obtain (5.5). �

Denote Sn �
∑s

i=1
ni

n
fi ≥ m, �n be the s × s diagonal matrix with elements ni

n
in order and

(5.11) Wn �
∫ (

f1 · · · fs

)� 1

Sn

(
f1 · · · fs

)
.

Also define S, W and � to be the limiting versions of Sn, Wn and �n, respectively,
such that S � ∑s

i=1 λifi ,

W �
∫ (

f1 · · · fs

)� 1

S

(
f1 · · · fs

)
,

and � is the diagonal matrix diag(λ1, . . . , λs).

LEMMA 5.7. (i) For all large enough n, the rank of the matrix �nWn�n −�n

is s − 1.
(ii) The rank of the matrix �W� − � is also s − 1.
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PROOF. We shall only prove part (i), as part (ii) is completely analogous. Con-
sider all large n such that ni

n
≥ λi

2 > 0 for each i. Using Theorem 5.19 in Perlis
(1991), it suffices to show that �nWn�n−�n is singular and has a (s−1)×(s−1)

nonsingular principal submatrix. Denote 1 � (1, . . . ,1)� and

Wn ��nWn�n =
∫ (

n1

n
f1 · · · ns

n
fs

)� 1

Sn

(
n1

n
f1 · · · ns

n
fs

)
.

Direct computation gives (Wn −�n)1 = 0. Therefore, Wn −�n has eigenvalue 0,
implying that it is singular. Now, let �n,b � diag(n1

n
, . . . ,

ns−1
n

) and

Wn,b �
∫ (

n1

n
f1 · · · ns−1

n
fs−1

)� 1

Sn

(
n1

n
f1 · · · ns−1

n
fs−1

)
.

Clearly, Wn,b − �n,b is a principal submatrix of Wn − �n. For any 0 �=
u ∈ R

s−1, u��n,bu = ∑s−1
i=1 u2

i
ni

n
. Applying the Cauchy–Schwarz inequality to

(
∑s−1

i=1
ni

n
uifi(x))2, we obtain

u�Wn,bu =
∫ b

a

(
∑s−1

i=1
ni

n
uifi(x))2∑s

k=1
nk

n
fk(x)

dx

≤
∫ b

a

(
∑s−1

i=1
ni

n
u2

i fi(x))(
∑s−1

i=1
ni

n
fi(x))∑s

k=1
nk

n
fk(x)

dx

<

∫ b

a

(
s−1∑
i=1

ni

n
u2

i fi(x)

)
· 1dx

=
s−1∑
i=1

ni

n
u2

i

∫ b

a
fi(x) dx = u��n,bu,

where the strict inequality follows as
∑s−1

i=1
ni

n
u2

i fi �= 0 whenever u �= 0 and∑s−1
i=1

ni

n
fi(x) <

∑s
k=1

nk

n
fk(x) for all x ∈ [a, b] as ns

n
> 0. Therefore, u�(Wn,b −

�n,b)u < 0 whenever u �= 0. Hence, Wn,b − �n,b is negative definite and so it is
of full rank, s − 1. �

PROPOSITION 5.8. For each i = 1, . . . , s, we have

(5.12)
∫

wiĝn −
∫

wig0 = Op

(
n−1/2)

.

PROOF. It suffices to consider all large n such that ni

n
≥ λi/2 > 0 for each i.

For a sequence of matrix Bn, we denote Bn converges to B in the usual matrix
norm by Bn → B . Let ηn � (

∫
w1(g0−ĝn)∫

w1g0
, . . . ,

∫
ws(g0−ĝn)∫

wsg0
)�. We split the proof into

three steps:
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(i) We first provide some useful identities. For some constants αki , k = 1, . . . , s,
i = 1, . . . , s, define γn,k(·)� γ αk,0(·, n1

n
, . . . , ns

n
) for each k = 1, . . . , s. That is,

γn,k(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
∑s

i=1 αkifi(b)∑s
j=1

nj

n
fj (b)

for 0 < x < g0(b),

x
∑s

i=1 αkifi(g
−1
0 (x))∑s

j=1
nj

n
fj (g

−1
0 (x))

for g0(b) ≤ x ≤ g0(a),

x
∑s

i=1 αkifi(a)∑s
j=1

nj

n
fj (a)

for x > g0(a).

Recall that Sn = ∑s
k=1

nk

n
fk . Clearly, we have some systematic representations for

the terms in (5.5) as follows:∫ b

a
wi(x)γn,k

(
g0(x)

)
dx

= αk1

∫ b

a

wi(x)g0(x)f1(x)

Sn(x)
dx + · · · + αks

∫ b

a

wi(x)g0(x)fs(x)

Sn(x)
dx,

(5.13)

and for x ∈ [a, b],

(5.14)

(
s∑

i=1

ni

n

wi(x)∫
wig0

)
γn,k(g0(x))

g0(x)
= αk1

w1(x)∫
w1g0

+ · · · + αks

ws(x)∫
wsg0

.

Note that
∫

wig0 and ni/n are nonzero. Hence, we can find scalar d
(n)
ki ’s such that

(5.15)
∫ b

a
wi(x)γn,k

(
g0(x)

)
dx = d

(n)
ki

∫
wig0

ni/n
for i, k = 1, . . . , s.

Define A� (αki)s×s , Dn � (d
(n)
ki )s×s . From (5.13) and (5.15), we have

(5.16) WnA
� = �−1

n D�
n ,

where Wn = W�
n is defined in (5.11) and �n = diag(n1

n
, . . . , ns

n
).

(ii) Let Vn �Dn − A. Combining (5.5), (5.14) and (5.15), we have

Vnηn =
(
Op

(
n−1/2) · · · Op

(
n−1/2))�

.

If Vn were nonsingular, the result would follow immediately; however, using
(5.16), for a nonsingular choice of A, Vn = A�−1

n (�nWn�n − �n) exactly has
rank s − 1 by Lemma 5.7, therefore, Vn is rank deficient. On the other hand, in the
proof of Lemma 5.7, we know that the principal submatrix obtained by deleting
the last row and last column of �nWn�n − �n is nonsingular. This implies that
the first s − 1 rows of �nWn�n − �n are linearly independent. Choose A to be
the identity matrix, then since �n is diagonal, it follows that the first s − 1 rows of
Vn are also linearly independent. Denote v�

n,1, . . . ,v
�
n,s−1 to be the first s − 1 rows
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of Vn. To complete the proof, we construct a vector that is linearly independent of
(v�

n,1, . . . ,v
�
n,s−1).

(iii) Let γn,0(·)� γ 0,1(·, n1
n

, . . . , ns

n
). That is,

(5.17) γn,0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xg0(b)∑s
j=1

nj

n
fj (b)

for 0 < x < g0(b),

x2∑s
j=1

nj

n
fj (g

−1
0 (x))

for g0(b) ≤ x ≤ g0(a),

xg0(a)∑s
j=1

nj

n
fj (a)

for x > g0(a).

Clearly,

(5.18)
∫ b

a
wi(x)γn,0

(
g0(x)

)
dx =

∫ b

a

wi(x)g2
0(x)

Sn(x)
dx,

and for x ∈ [a, b],

(5.19)

(
s∑

i=1

ni

n

wi(x)∫
wig0

)
γn,0(g0(x))

g0(x)
≡ 1.

Let qn � (n1
n

∫ f1g0
Sn

, . . . , ns

n

∫ fsg0
Sn

)�. Following (5.18), (5.19) and the fact that∫
g0(x) dx = ∫

ĝn(x) dx = 1, (5.5) becomes q�
n ηn = Op(n−1/2). We finally claim

that vn,1, . . . ,vn,s−1,qn form s linearly independent vectors in R
s ; indeed, if

c1vn,1 + · · · cs−1vn,s−1 + csqn = 0,

then, in particular, we have

c1〈vn,1,1〉 + · · · + cs−1〈vn,s−1,1〉 + cs〈qn,1〉 = 0,

where 〈·, ·〉 is the standard inner product on Euclidean space. In the proof of
Lemma 5.7, we know that (�nWn�n − �n)1 = 0. As Vn = A�−1

n (�nWn�n −
�n), hence as row vectors of Vn, 〈vn,i,1〉 = 0 for each i = 1, . . . , s − 1. Fi-
nally, as 〈qn,1〉 = ∑s

i=1
ni

n

∫ b
a

fig0
Sn

≥ ∑s
i=1

λi

2
m
M

> 0, we know cs = 0. Since
vn,1, . . . ,vn,s−1 are linearly independent, we know that c1 = · · · = cs−1 = 0.
Hence, vn,1, . . . ,vn,s−1,qn are linearly independent. Now, consider

(5.20)
(
vn,1 · · · vn,s−1 qn

)�
ηn =

(
Op

(
n−1/2)

. . . Op

(
n−1/2))�

.

Note that Vn = AWn�n − A. As the integrands in Wn are bounded, Wn → W

by bounded convergence theorem. Also, �n → � � diag(λ1, . . . , λs). There-
fore, Vn → A�(�−1W� − �). Similar to the discussion of Vn, we see that
the first s − 1 rows of V are linearly independent. Moreover, qn → q �
(λ1

∫ f1g0
S

, . . . , λs

∫ fsg0
S

)�. Using the same argument for the linear independence
of {vn,1, . . . , vn,s−1, qn}, we see that {v1, . . . , vs−1, q} is also linearly independent.
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In addition, (vn,1 · · · vn,s−1 qn)
� → (v1, . . . , vs−1, q)�. By their nonsingulari-

ties, the convergence of the inverses is warranted:((
vn,1 · · · vn,s−1 qn

)�)−1 → (
(v1, . . . , vs−1, q)�

)−1
.

As a finitely linear combination of terms of the common order Op(n−1/2), each
component of ηn preserves the same order of convergence. Hence, the result fol-
lows. �

LEMMA 5.9. For each i = 1, . . . , s, we have∣∣∣∣∣
n∑

j=1

g0(Tj )cij −
∫

wig0

∣∣∣∣∣ = Op

(
n−1/2)

.

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

COROLLARY 5.10. For each i = 1, . . . , s, we have∣∣∣∣∣
n∑

j=1

g0(Tj )cij −
∫

wiĝn

∣∣∣∣∣ = Op

(
n−1/2)

.

PROOF. The claim follows directly from Proposition 5.8 and Lemma 5.9. �

5.2. Rate of convergence of the monotone MLE ĝn. To establish the asymp-
totic equivalence of G̃n,ĝn

and G̃n,g0 and that of Ũn,ĝn
and Ũn,g0 , the local consis-

tency of ĝn at an appropriate rate, particularly of order around 1/3 if not too less
(see Proposition 5.13), is necessary in addition to the result

√
n(

∑n
j=1 g0(Tj )cij −∫

wiĝn) = Op(1). Essentially, for each target point t0, we want to show that cer-
tain events have arbitrarily small probability. To this end, we first aim to show that
there is an arbitrarily high probability that ĝn has a jump in an interval of the form
(t0 −R, t0 −Cn−1/3] for large enough n. This result can be ensured by the uniform
consistency of ĝn in Proposition 4.1(iv).

Then, by considering a sample point for which ĝn has a jump in that interval,
the key inequality in proving Proposition 5.13 is (10.23) in the Supplementary Ma-
terial [Chan et al. (2018)], which is similar to the one in the proof of Lemma 2.1
in Banerjee (2007) and to (5.20) in Groeneboom and Wellner (1992). All of these
inequalities could actually be obtained by considering Karush–Kuhn–Tucker op-
timality conditions; also see (8.2) and (8.3) in the Supplementary Material [Chan
et al. (2018)]. The inequalities in Banerjee (2007) and Groeneboom and Wellner
(1992) involve expressions that contain estimators ψ̂n(z) and F̂n(Ti), which can
be bounded by the same expression with ψ(z0) and F0(t0) in place of ψ̂n(z) and
F̂n(Ti), respectively. However, we can only replace ĝn(Tj ) by g0(t0) in the first
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term of the corresponding expression in (10.23) as there is no direct comparison
between the magnitudes of

∫
wiĝn and

∫
wig0, in which the former appears in

the second term of that expression. Nevertheless, by using the
√

n-convergence
of

∫
wiĝn as explained before, we are still able to show that the event considered

in (10.24) has an arbitrarily small probability; see Lemma 5.11. The proof of the
local consistency of ĝn with n−1/3-rate then follows from the arguments as that
developed in Groeneboom and Wellner (1992) and Banerjee (2007).

LEMMA 5.11. For any ε > 0, there exist C0 > 0 and R0 > 0 such that for any
C ≥ C0 and 0 < R ≤ R0, we have

P

(
sup
t∈In

∑
j :t≤Tj<t0

(
− 1

ng0(t0)
+

s∑
i=1

ni

n

cij∫
wiĝn

)
≥ 0

)
≤ ε,

for all sufficiently large n; here, In � (t0 − R, t0 − Cn−1/3].
PROOF. See the details provided in Section 10 of the Supplementary Material

[Chan et al. (2018)]. �

LEMMA 5.12. For any ε > 0, there exist C1 > 0 and R1 > 0 such that for any
C ≥ C1 and R ≤ R1, we have

P

(
inf
t∈Ĩn

∑
j :t0−2Cn−1/3≤Tj<t

(
− 1

ng0(t0 − 2Cn−1/3)
+

s∑
i=1

ni

n

cij∫
wiĝn

)
≤ 0

)
≤ ε,

for all sufficiently large n; here Ĩn � [t0 − Cn−1/3, t0 + R).

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

PROPOSITION 5.13. For any K1 > 0, we have

sup
h∈[−K1,K1]

∣∣ĝn

(
t0 + hn−1/3) − g0(t0)

∣∣ = Op

(
n−1/3)

.

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

LEMMA 5.14. Given ε > 0 and C̃ > 0, there exist D̃ > 0 and R̃ > 0 such that
for large enough n,

P

(
sup
t∈Īn

∑
j :t≤Tj<t0−2C̃n−1/3

(
− 1

ng0(t0 − 2C̃n−1/3)
+

s∑
i=1

ni

n

cij∫
wiĝn

)
≥ 0

)
≤ ε;

here Īn � (t0 − R̃, t0 − (2C̃ + D̃)n−1/3].
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PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

LEMMA 5.15. Fix K2 > 0. Consider an interval of the form [t0 − K2n
−1/3,

t0 + K2n
−1/3]. Let τ−

n and τ+
n be the two points corresponding to the last change

of slope of ĝn ≤ t0 − K2n
−1/3 and the first change of slope ĝn ≥ t0 + K2n

−1/3,
respectively. Then τ−

n − t0 = Op(n−1/3) and τ+
n − t0 = Op(n−1/3).

PROOF. See the details provided in Section 10 of the Supplementary Material
[Chan et al. (2018)]. �

6. Asymptotic distribution of the monotone MLE. Let Bloc(R) denote the
space of all locally bounded real functions on R endowed with the topology of
uniform convergence on compacta.

6.1. Asymptotic distributions of G̃n,ĝn
and Ũn,ĝn

. In Lemmas 6.1 and 6.2, we
first establish the asymptotic equivalence of G̃n,ĝn

and G̃n,g0 and the asymptotic
equivalence of Ũn,ĝn

and Ũn,g0 , respectively.

LEMMA 6.1. For every K > 0,

sup
t∈[−K,K]

∣∣G̃n,g0(t) − G̃n,ĝn
(t)

∣∣ P→ 0.

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

LEMMA 6.2. For every K > 0,

sup
t∈[−K,K]

∣∣Ũn,g0(t) − Ũn,ĝn
(t)

∣∣ P→ 0.

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

In showing the asymptotic equivalence of Ũn,ĝn
and Ũn,g0 in Lemma 6.2, the

choice of 1
ẑ2
j

instead of ∂2ψn

∂z2
j

(ẑ) for the diagonal elements of the positive defi-

nite matrix used in the proof of Proposition 3.2 will lead to incomplete cancella-
tion of terms when applying Taylor’s expansion theorem. Therefore, we require
the results in Section 5 in order to complete the proof. In addition, the func-
tion φ(x, ·), which is the negative log-likelihood of a single datum, as previ-
ously mentioned, appears in B̃

n,ψ̂n
and B̃n,ψ of Lemma 2.4 in Banerjee (2007)
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as a function of one variable; while our presently proposed ψn, the negative log-
likelihood function of all the data, appears in Ũn,ĝn

and Ũn,g0 as a function of
n variables. This is because unlike the monotone response model considered in
Banerjee (2007), where separability of the arguments in the log-likelihood func-
tion can be achieved, such a mathematical simplification does not appear in our
present problem. Indeed, in Banerjee (2007), the negative of the log-likelihood
function is

∑n
i=1 φ(Xi,ψ(Zi)) while the corresponding expression in our case

ψn(z1, . . . , zn) = −∑n
j=1 log zj + ∑s

i=1 ni log(
∑n

k=1 zkcik). As a result, unlike
in the proof of Lemma 2.4 in Banerjee (2007), where algebraic cancellation of
some terms could be ensured when applying Taylor’s series expansion theorem,
we are actually confronted with more terms, where the determination of their or-
ders could not be resolved by applying any common approach available in the
literature. More specifically, the minimal possible order op(n−1/3) of the term∑n

k=1 g0(Tk)cik − ∫
wiĝn would be needed. Corollary 5.10 fills this important gap.

In light of the asymptotic equivalence of G̃n,ĝn
and G̃n,g0 and that of Ũn,ĝn

and Ũn,g0 , it suffices to find out the asymptotic distributions of G̃n,g0 and Ũn,g0 ,
which will be established in the following Lemmas 6.3 to 6.5, respectively, by
using arguments as developed in van der Vaart and Wellner (1996).

LEMMA 6.3. The process G̃n,g0(t) converges uniformly in probability to the
identity function on any compact interval [−K,K], for any K > 0.

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

Define

qn,t (x)� n1/6
(

1

g0(x)
+ g0(x) − g0(t0)

g2
0(x)

)[
1
(
x ≤ t0 + tn−1/3) − 1(x ≤ t0)

]
.

Simple calculation leads that λŨn,g0(t) = A1(t) + A2(t) + A3(t), where

A1(t) �
s∑

i=1

ni

n
n1/2

∫
qn,t (x) d(Fi,ni

− Fi)(x),

A2(t) �
s∑

i=1

ni

n
n2/3

∫ t0+tn−1/3

t0

g0(x) − g0(t0)

g2
0(x)

dFi(x),

A3(t) �
s∑

i=1

ni

n
n2/3

∫ 1

g0(x)

(
1
(
x ≤ t0 + tn−1/3) − 1(x ≤ t0)

)
dFi(x)

− n2/3
s∑

i=1

ni

n

∑n
j=1 cij (1(Tj ≤ t0 + tn−1/3) − 1(Tj ≤ t0))∑n

k=1 cikg0(Tk)
.
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Let l∞[−K,K] be the space of uniformly bounded functions on [−K,K]
equipped with the topology of uniform convergence. Let W(t), t ∈ R, be the stan-
dard two-sided Brownian motion with W(0) = 0.

LEMMA 6.4. The process A1(t) converges weakly, in Bloc(R), to the process
λ1/2W(t).

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

LEMMA 6.5. Ũn,g0 converges weakly in Bloc(R) to the process U defined by

U(t) � 1

λ1/2 W(t) − |g′(t0)|
2

t2, t ∈R.

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

6.2. Main theorem. Let L2
loc(R) � {φ : ∫ c

−c φ2(t) dt < ∞ for all c > 0}, with
the topology of L2-convergence on compacta. For α,β > 0, define the process
Xα,β(t) � αW(t) − βt2, t ∈ R. Let Gα,β denote the LCM of Xα,β and gα,β the
left derivative of Gα,β . Denote also Xn(t) � n1/3(ĝn(t0 + tn−1/3) − g0(t0)), a∗ �
λ−1/2 and b∗ � |g′

0(t0)|/2.
Our main theorem, Theorem 6.6, can be proven using continuous-mapping ar-

guments for slopes of least concave majorant estimators as illustrated by Banerjee
(2007). The main ingredients of the proof will be the asymptotic distributions of
G̃n,ĝn

and Ũn,ĝn
discussed in Section 6.1. Finally, the asymptotic distribution of ĝn

at t0 ∈ (a, b) is a direct consequence of Theorem 6.6 and follows the argument as
in Banerjee (2007); see Theorem 1.1.

THEOREM 6.6. Under Assumptions 2.1, Xn(t)
D→ ga∗,b∗(t) finite dimension-

ally and also in the space L2
loc(R).

PROOF. See the details provided in Section 11 in the Supplementary Material
[Chan et al. (2018)]. �

As in equations (6.7)–(6.9) in Banerjee and Wellner (2001), it is easy to see that

ga∗,b∗(t) D= a∗(
b∗/a∗)1/3 · g1,1

((
b∗/a∗)2/3

t
)
,

as a processes indexed by t ∈ R. Using switch relationship, we also know that

g1,1(0)
D= 2 arg maxt {W(t) − t2}. Hence, we obtain Theorem 1.1.
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7. Discussion.

7.1. Comparison with Groeneboom (1996). A comprehensive piece of work
that also deals with nonseparated log-likelihoods in monotone function models
is Groeneboom (1996), which studied the estimation of survival functions under
case-2 interval censoring. Here we provide a detailed comparison between the ap-
proach in Groeneboom (1996) and ours:

1. The indicator function 1[0,·) in Lemma 4.4 and g in Corollary 4.3 in
Groeneboom (1996) play similar roles as wi in our Proposition 5.8 in the sense
that they appear in certain linear functionals whose rates of convergence are de-
manded for establishing the asymptotic distribution of the corresponding estima-
tors at a fixed interior point. The 1[0,·) (resp., g) in Groeneboom (1996) are quite
arbitrary and the corresponding statement in Lemma 4.4 (resp., Corollary 4.3) is
valid uniformly in t (resp., g in a suitable class of functions). On the other hand, as
long as Assumptions 2.1 are satisfied, our Proposition 5.8 holds. Therefore, there
is also flexibility for the choices of wi but the problem setting requires them to
be fixed at the first place. In principle,

√
n(

∫
wĝn − ∫

wg0) = Op(1) should also
hold uniformly in w over a suitable class of functions; however, this is not of our
primary concern in this article and, therefore, we do not discuss in details.

2. The proof leading to Lemma 4.4 in Groeneboom (1996) and that for our
Proposition 5.8 are very different. In his case, due to a missing data structure,
integral equation (3.8) is constructed by considering the score operator and its
adjoint, but we do not have such a missing data structure in our present problem.
Instead, we make use of the Karush–Kuhn–Tucker conditions to prove Lemma 5.5
and its more useful corollary Lemma 5.6. In particular, Groeneboom (1996) uses
(4.29) to define θ̃t,F that links the linear functional of interest as indicated in (4.36).
This is similar in spirit to our γ

α,β
n in Lemma 5.6 and γn,k in Lemma 5.8. While

θ̃t,F serves as a transformation of 1[0,t) and g through the solution to the integral
equation (4.29); our γn,k in Lemma 5.8 is defined so that we can form an invertible
matrix transformation to recover the rate of convergence of the linear functional∫

wiĝn due to our multiple samples mechanism.
3. Moreover, in the proof of Lemma 4.4 in Groeneboom (1996), two crucial

estimates are required, namely (4.39) being obtained using the L2-rate of conver-
gence of F̂n and (4.42) being a consequence of Donsker class of the set of functions
involving θ̃t,F . In our case, the corresponding results would be Lemma 5.4(iv) for
(4.39) and the fact that a class of functions related to γ

α,β
n is a Donsker class; see

(5.8), for (4.42). In particular, in deriving the (squared) L2-rate of convergence of
ĝn from its rate of convergence in Hellinger distance in Lemma 5.4, the crucial
fact that ĝn(a+) = Op(1) is required (Lemma 5.3).

4. After proving Lemma 4.4 and Corollary 4.3 in Groeneboom (1996), the re-
maining steps to derive the asymptotic distribution of the estimator at a fixed inte-
rior point are relatively similar to other monotone-constrained estimation problems
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such as that in Groeneboom and Wellner (1992) and Banerjee (2007). In particu-
lar, the proofs of Lemma 4.5, (4.56) and (4.57) are analogous to our proofs of
Lemmas 5.11 and 5.12; Lemma 4.6 in Groeneboom (1996) is analogous to Propo-
sition 5.13; Theorem 4.4 in Groeneboom (1996) corresponds to the derivations in
our Section 6.

7.2. Concluding remarks. In this article, we study nonparametric estimation
of a decreasing density function g0 in a s-sample biased sampling model, and
provide the existence, uniqueness, self-characterization, consistency, rates of con-
vergence and asymptotic distribution of the maximum likelihood estimator at a
fixed interior point. The major challenges come from nonseparability and a lack
of strictly positive second-order derivatives of the negative of the log-likelihood
function. We have developed notable arguments to establish the tightness of the
monotone MLE and the rate of convergence of the linear functionals of the esti-
mator, which are key ingredients to complete the proof of asymptotic distribution.

The self-characterization of the monotone MLE suggests an iterative algorithm
to compute the MLE. An initial estimator can be obtained as the slope of the least
concave majorant of the distribution function estimator of Vardi (1985), and an
update of the estimator is defined as the solution of the right-hand side (3.5). These
updated values will then serve as the initial values for the next iteration and the
procedure will continue iteratively until convergence.

Kernel smoothing is an alternative approach to density estimation. In compari-
son to kernel smoothing, which typically requires selection of a bandwidth param-
eter, an advantage of the monotone MLE is that it can be defined and computed
unambiguously without introducing a smoothing parameter. The price paid is the
monotonicity assumption of the density function. In one-sample estimation with
an unbiased sample, Jankowski (2014) recently developed the asymptotic distri-
bution of the Grenander estimator under misspecification of the monotone density
assumption, and the extension to s-sample biased sampling models will be studied
in the future.

Acknowledgments. The authors thank Professor Ed George, an Associate Ed-
itor and a reviewer for their helpful suggestions that improve various aspects of the
manuscript. We also thank Professor Jon Wellner for his insightful comments and
warm encouragement, Professor El Barmi’s inspiring comments to the preliminary
version and Professor Ian McKeague’s comments to the revised manuscript. The
second author acknowledges the financial supports from the Chinese University
of Hong Kong, the UGC of HKSAR and Columbia University; the present work
constitutes part of his research study leading to his MPhil. thesis in CUHK. The
fourth author, Phillip Yam also expresses his gratitude to the financial support of
Department of Statistics in Columbia University in the City of New York over the
period when he was a visiting faculty member.



MONOTONE DENSITY ESTIMATION IN BIASED SAMPLING MODELS 2151

SUPPLEMENTARY MATERIAL

Supplement to “Estimation of a monotone density in s-sample biased sam-
pling models” (DOI: 10.1214/17-AOS1614SUPP; .pdf). In the supplementary pa-
per, we provide the proofs for Propositions 3.1, 3.2, 4.1 and 5.13, Lemmas 5.1,
5.2, 5.4, 5.5, 5.9, 5.11, 5.12, 5.14, 5.15, 6.1, 6.2, 6.3, 6.4 and 6.5, Theorems 1.1
and 6.6. In addition, we also state and prove the fact that the function L̃n defined in
(3.3) is concave in p in Proposition 8.1, and hence establishes the unique existence
of ĝn in Proposition 8.2.
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