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We extend the principal component analysis (PCA) to second-order sta-
tionary vector time series in the sense that we seek for a contemporaneous
linear transformation for a p-variate time series such that the transformed
series is segmented into several lower-dimensional subseries, and those sub-
series are uncorrelated with each other both contemporaneously and serially.
Therefore, those lower-dimensional series can be analyzed separately as far
as the linear dynamic structure is concerned. Technically, it boils down to an
eigenanalysis for a positive definite matrix. When p is large, an additional
step is required to perform a permutation in terms of either maximum cross-
correlations or FDR based on multiple tests. The asymptotic theory is es-
tablished for both fixed p and diverging p when the sample size n tends to
infinity. Numerical experiments with both simulated and real data sets indi-
cate that the proposed method is an effective initial step in analyzing multiple
time series data, which leads to substantial dimension reduction in modelling
and forecasting high-dimensional linear dynamical structures. Unlike PCA
for independent data, there is no guarantee that the required linear transforma-
tion exists. When it does not, the proposed method provides an approximate
segmentation which leads to the advantages in, for example, forecasting for
future values. The method can also be adapted to segment multiple volatility
processes.

1. Introduction. Modelling multiple time series, also called vector time se-
ries, is always a challenge, even when the vector dimension p is moderately large.
While most inference methods and the associated theory for univariate autoregres-
sive and moving average (ARMA) processes have found their multivariate coun-
terparts [Lütkepohl (2005)], vector autoregressive and moving average (VARMA)
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models are seldom used directly in practice when p ≥ 3. This is partially due to the
lack of identifiability for VARMA models in general. More fundamentally, those
models are overparametrized, leading to flat likelihood functions which cause in-
nate difficulties in statistical inference. Therefore, finding an effective way to re-
duce the number of parameters is particularly felicitous in modelling and forecast-
ing multiple time series. The urge for doing so is more pertinent in this modern
information age, as it has become commonplace to access and to analyze high-
dimensional time series data with dimension p in the order of hundreds or more.
Big time series data arise from, among others, panel study for economic and nat-
ural phenomena, social network, healthcare and public health, financial market,
supermarket transactions, information retrieval and recommender systems.

Available methods to reduce the number of parameters in modelling vector time
series can be divided into two categories: regularization and dimension reduction.
The former imposes some conditions on the structure of a VARMA model. The
latter represents a high-dimensional process in terms of several lower-dimensional
processes. Various regularization methods have been developed in literature. For
example, Jakeman, Steele and Young (1980) adopted a two-stage regression strat-
egy based on instrumental variables to avoid using moving average explicitly. Dif-
ferent canonical structures are imposed on VARMA models [Chapter 3 of Reinsel
(1993), Chapter 4 of Tsay (2014), and references within]. Structural restrictions are
imposed in order to specify and to estimate some reduced forms of vector autore-
gressive (VAR) models [Chapter 9 of Lütkepohl (2005), and references within].
Davis, Zang and Zheng (2016) proposed a VAR model with sparse coefficient
matrices based on partial spectral coherence. Under different sparsity assump-
tions, VAR models have been estimated by LASSO regularization [Shojaie and
Michailidis (2010), Song and Bickel (2011)], or by the Dantzig selector [Han,
Lu and Liu (2015)]. Guo, Wang and Yao (2016) considered high-dimensional au-
toregression with banded coefficient matrices. The dimension reduction methods
include the canonical correlation analysis of Box and Tiao (1977), the independent
component analysis (ICA) of Back and Weigend (1997), the principal component
analysis (PCA) of Stock and Watson (2002), the scalar component analysis of
Tiao and Tsay (1989) and Huang and Tsay (2014), the dynamic orthogonal com-
ponents analysis of Matteson and Tsay (2011). Another popular approach is to
represent multiple time series in terms of a few latent factors defined in various
ways. There is a large body of literature in this area published in the outlets in
statistics, econometrics and signal processing. An incomplete list of the publica-
tions includes Anderson (1963), Peña and Box (1987), Bai and Ng (2002), Theis,
Meyer-Baese and Lang (2004), Stock and Watson (2005), Forni et al. (2005), Pan
and Yao (2008), Lam, Yao and Bathia (2011), Lam and Yao (2012) and Chang,
Guo and Yao (2015).

A new dimension reduction method is proposed in this paper. We seek for a con-
temporaneous linear transformation such that the transformed series is segmented
into several lower-dimensional subseries, and those subseries are uncorrelated with
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each other both contemporaneously and serially. Therefore, they can be modelled
or forecasted separately, as far as linear dependence is concerned. This reduces the
number of parameters involved in depicting linear dynamic structure substantially.
While the basic idea is not new, which has been explored with various methods in-
cluding some aforementioned references, the method proposed in this paper (i.e.,
the new PCA for time series) is new, simple and effective. Technically, the pro-
posed method boils down to an eigenanalysis for a positive definite matrix, which
is a quadratic function of the cross correlation matrix function for the observed
process. Hence it is easy to implement and the required computation can be car-
ried out with, for example, an ordinary personal computer or laptop for the data
with dimension p in the order of thousands.

The method can be viewed as an extension of the standard PCA for multiple
time series, therefore, is abbreviated as TS-PCA. However the segmented sub-
series are not guaranteed to exist as those subseries must not correlate with each
other across all times. This is a marked difference from the standard PCA. The
real data examples in Section 4 indicate that it is often reasonable to assume that
the segmentation exists. Furthermore, when the assumption is invalid, the pro-
posed method provides some approximate segmentations which ignore some weak
though significant correlations, and those weak correlations are of little practi-
cal use for modelling and forecasting. Thus the proposed method can be used as
an initial step in analyzing multiple time series, which often transforms a multi-
dimensional problem into several lower-dimensional problems. Chang, Yao and
Zhou (2017) demonstrates that such an initial transformation increases the power
in testing for high-dimensional white noise. Furthermore, the results obtained for
the transformed subseries can be easily transformed back to the original multi-
ple time series. Illustration with real data examples indicates clearly the advan-
tages in post-sample forecasting from using the proposed TS-PCA. The R-package
PCA4TS, available from CRAN project, implements the proposed methodol-
ogy.

The proposed TS-PCA can be viewed as a version of ICA. In fact, our goal is
the same in principle as the ICA using autocovariances presented in Section 18.1
of Hyvärinen, Karhunen and Oja (2001). However, the nonlinear optimization al-
gorithms presented there are to search for a linear transformation such that all the
off-diagonal elements of the autocovariance matrices for the transformed vector
time series are minimized; see also Tong, Xu and Kailath (1994) and Belouchrani
et al. (1997). To apply those algorithms to our setting, we need to know exactly the
block diagonal structure of autocovariances of the transformed vector process (i.e.,
the number of blocks and the sizes of all the blocks), which is unknown in practice.
Furthermore, our method is simple and fast and, therefore, is applicable to high-
dimensional cases. Cardoso (1998) extends the basic idea of ICA to the so-called
multivariate ICA, which requires the transformed random vector to be segmented
into several independent groups with possibly more than one component in each
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group. But Cardoso (1998) does not provide a pertinent algorithm for multivari-
ate ICA. Furthermore, it does not consider the dependence across different time
lags. TS-PCA is also different from the dynamic PCA proposed in Chapter 9 of
Brillinger (1975), which decomposes each component time series as the sum of
moving averages of several uncorrelated white noise processes. In our TS-PCA,
no lagged variables enter the decomposition.

The rest of the paper is organized as follows. The methodology is spelled out in
Section 2. Section 3 presents the associated asymptotic properties of the proposed
method. Numerical illustration with real data are reported in Section 4. Section 5
extends the method to segmenting a multiple volatility process into several lower-
dimensional volatility processes. Some final remarks are given in Section 6. All
technical proofs and numerical illustration with simulated data are relegated to the
supplementary material [Chang, Guo and Yao (2018)]. We always use the follow-
ing notation. For any m × k matrix H = (hi,j )m×k , let ‖H‖2 = λ

1/2
max(HHT) and

‖H‖F = (
∑m

i=1
∑k

j=1 h2
i,j )

1/2, where λmax(HHT) denotes the largest eigenvalue

of HHT.

2. Methodology.

2.1. Setting and method. Let yt be observable p × 1 weakly stationary time
series. We assume that yt admits a latent segmentation structure:

(2.1) yt = Axt ,

where xt is an unobservable p × 1 weakly stationary time series consisting of
q(> 1) both contemporaneously and serially uncorrelated subseries, and A is an
unknown constant matrix. Hence all the autocovariances of xt are of the same
block-diagonal structure with q blocks. Denote the segmentation of xt by

(2.2) xt = {(
x(1)
t

)T
, . . . ,

(
x(q)
t

)T}T

with Cov{x(i)
t ,x(j)

s } = 0 for all t, s and i �= j . Therefore, x(1)
t , . . . ,x(q)

t can be
modelled or forecasted separately as far as their linear dynamic structure is con-
cerned.

EXAMPLE 1. Before we spell out how to find the segmentation transfor-
mation A in general, we consider the monthly temperatures of 7 cities (Nanjing,
Dongtai, Huoshan, Hefei, Shanghai, Anqing and Hangzhou) in Eastern China from
January 1954 to December 1998. Figure 1(a) plots the cross correlations of these 7
temperature time series. Both the autocorrelation of each component series and the
cross correlation between any two component series are dominated by the annual
temperature fluctuation; showing the strong periodicity with the period 12. Now
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(a) Cross correlogram of the 7 original temperature time series

(b) Cross correlogram of the 7 transformed time series

FIG. 1. Cross correlograms for Example 1.
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we apply the linear transformation xt = Byt with

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.244 −0.066 0.019 −0.050 −0.313 −0.154 0.200
−0.703 0.324 −0.617 0.189 0.633 0.499 −0.323
0.375 1.544 −1.615 0.170 −2.266 0.126 1.596
3.025 −1.381 −0.787 −1.691 −0.212 1.188 −0.165

−0.197 −1.820 −1.416 3.269 0.301 −1.438 1.299
−0.584 −0.354 0.847 −1.262 −0.218 −0.151 1.831
1.869 −0.742 0.034 0.501 0.492 −2.533 0.339

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

See Section 4 for how B is calculated. Figure 1(b) shows that the first two trans-
formed component series are significantly correlated both concurrently and seri-
ally, and there are also small but significant correlations in the (3,2)th panel; indi-
cating the linear dependence between the 2nd and the 3rd transformed component
series. Apart from these, there is little significant cross correlation among all the
other pairs of component series. This visual observation suggests to segment the 7
transformed series into 5 uncorrelated groups: {1,2,3}, {4}, {5}, {6} and {7}.

This example indicates that the segmentation transformation transfers the prob-
lem of analyzing a 7-dimensional time series into the five lower-dimensional prob-
lems: four univariate time series and one 3-dimensional time series. Those five
time series can and should be analyzed separately as there are no cross corre-
lations among them at all time lags. The linear dynamic structure of the origi-
nal series is deduced by those of the five transformed series, as Cov(yt+k,yt ) =
A Cov(xt+k,xt )AT.

Now we spell out how to find the segmentation transformation under (2.1) and
(2.2). Without the loss of generality, we may assume

(2.3) Var(yt ) = Ip and Var(xt ) = Ip,

where Ip denotes the p × p identity matrix. This first equation in (2.3) amounts
to replace yt by V̂−1/2yt as a preliminary step in practice, where V̂ is a consistent
estimator for Var(yt ). As both A and xt are unobservable, the second equation
in (2.3) implies that we view (A{Var(xt )}1/2, {Var(xt )}−1/2xt ) as (A,xt ) in (2.1).
More importantly, the latter perspective will not alter the block-diagonal structure
of the autocovariance matrices of xt . Now it follows from (2.1) and (2.3) that Ip =
Var(yt ) = A Var(xt )AT = AAT. Thus, A in (2.1) is an orthogonal matrix under
(2.3).

Let pj be the length of x(j)
t . Write A = (A1, . . . ,Aq), where Aj has pj columns.

Since xt = ATyt , it follows from (2.2) that

(2.4) x(j)
t = AT

j yt , j = 1, . . . , q.

Let Hj be any pj × pj orthogonal matrix, and H = diag(H1, . . . ,Hq). Then
(A,xt ) in (2.1) can be replaced by (AH,HTxt ) while the block structure as in
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(2.2) still holds. Hence A and xt are not uniquely identified in (2.1), even with
the additional assumption (2.3). In fact, under (2.3), only M(A1), . . . ,M(Aq) are
uniquely defined by (2.1), where M(Aj ) denotes the linear space spanned by the

columns of Aj . Consequently, �T
j yt can be taken as x(j)

t for any p ×pj matrix �j

as long as �T
j �j = Ipj

and M(�j ) = M(Aj ).
To discover the latent segmentation, we need to estimate A = (A1, . . . ,Aq),

or more precisely, to estimate linear spaces M(A1), . . . ,M(Aq). To this end, we
introduce some notation first. For any integer k, let �y(k) = Cov(yt+k,yt ) and
�x(k) = Cov(xt+k,xt ). For a prescribed positive integer k0, define

(2.5)

Wy =
k0∑

k=0

�y(k)�y(k)T = Ip +
k0∑

k=1

�y(k)�y(k)T,

Wx =
k0∑

k=0

�x(k)�x(k)T = Ip +
k0∑

k=1

�x(k)�x(k)T.

Then both �x(k) and Wx are block-diagonal, and

(2.6) Wy = AWxAT.

Note that both Wy and Wx are positive definite matrices. Let

(2.7) Wx�x = �xD,

that is, �x is a p × p orthogonal matrix with the columns being the orthonormal
eigenvectors of Wx , and D is a diagonal matrix with the corresponding eigenvalues
as the elements on the main diagonal. Then (2.6) implies that WyA�x = A�xD.
Hence the columns of �y ≡ A�x are the orthonormal eigenvectors of Wy . Conse-
quently,

(2.8) �T
y yt = �T

x ATyt = �T
x xt ,

the last equality follows from (2.1). Put

(2.9) Wx = diag(Wx,1, . . . ,Wx,q).

Then Wx,j is a pj × pj positive definite matrix, and the eigenvalues of Wx,j

are also the eigenvalues of Wx . Suppose that Wx,i and Wx,j do not share the
same eigenvalues for any i �= j . Then if we line up the eigenvalues of Wx (i.e.,
the eigenvalues of Wx,1, . . . ,Wx,q combining together) in the main diagonal of D
according to the order of the blocks in Wx , �x must be a block-diagonal orthog-
onal matrix of the same shape as Wx ; see Proposition 1(i). However, the order of
the eigenvalues is latent, and any �x defined by (2.7) is nevertheless a column-
permutation (i.e., a matrix consisting of the same column vectors but arranged in a
different order) of such a block-diagonal orthogonal matrix; see Proposition 1(ii).
Hence each component of �T

x xt is a linear transformation of the elements in one of
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the q subseries only, that is, the p components of �T
y yt = �T

x xt can be partitioned
into the q groups such that there exist neither contemporaneous nor serial correla-
tions across different groups. Thus �T

y yt can be regarded as a permutation of xt ,
and �y can be viewed as a column-permutation of A; see the discussion below
(2.4). This leads to the following two-step estimation for A and xt :

Step 1. Let Ŝ be an estimator for Wy . Calculate a p × p orthogonal matrix �̂y

with the columns being the orthonormal eigenvectors of Ŝ.
Step 2. The columns of Â = (Â1, . . . , Âq) are a permutation of the columns of

�̂y such that x̂t = ÂTyt is segmented into q uncorrelated subseries x̂(j)
t = ÂT

j yt ,
j = 1, . . . , q .

Step 1 is the key, as it provides an estimator for A except that the columns of
the estimator are not grouped together according to the latent segmentation. The
estimator Ŝ should be consistent, and will be constructed under various scenarios
in Section 3 below. The permutation in Step 2 above can be carried out in principle
by visual observation: plot cross correlogram of ẑt ≡ �̂

T
y yt (using, e.g., R-function

acf); see Figure 1(b). We then put those components of ẑt together when there
exist significant cross-correlations (at any lags) between those component series.
Then Â is obtained by rearranging the order of the columns of �̂y accordingly.

REMARK 1. (i) Appropriate precaution should be exercised in the visual ob-
servation stated above. First, the visual observation become impractical when p is
large. Furthermore, most correlogram plots produced by statistical packages (in-
cluding R) use the confidence bounds at ±1.96/

√
n for sample cross-correlations

of two time series. Unfortunately, those bounds are only valid if at least one of the
two series is white noise. In general, the confidence bounds depend on the auto-
correlations of the two series. See Theorem 7.3.1 of Brockwell and Davis (1996).
In Section 2.2, we will describe how the permutation can be performed without
the benefit of visual observation for the cross correlogram of ẑt . Ledoit and Wolf
(2004) and Paparoditis and Politis (2012) provide more modern approaches to view
correlations.

(ii) Wy defined in (2.5) combines the information over different time lags to-
gether. In practice, we need to specify the integer k0. Note that all terms on the
right-hand side of (2.5) are nonnegative definite. Hence there is no information
cancellation over different lags. This makes the method insensitive to the choice of
k0. In practice, a small k0 is often sufficient, as long as the first k0 lags carry suffi-
cient information on the latent block diagonal structure even when the auto/cross-
correlations beyond lag k0 are still significant. The examples in Section 4 lend
further support to this assertion.

PROPOSITION 1. (i) The orthogonal matrix �x in (2.7) can be taken as a
block-diagonal orthogonal matrix with the same block structure as Wx .



2102 J. CHANG, B. GUO AND Q. YAO

(ii) An orthogonal matrix �x satisfies (2.7) if and only if its columns are a
permutation of the columns of a block-diagonal orthogonal matrix described in
(i), provided that any two different blocks Wx,i and Wx,j do not share the same
eigenvalues.

Proposition 1(ii) requires that the q blocks of Wx do not share the same eigen-
value(s). However, it does not rule out the possibility that each block Wx,j may
have multiple eigenvalues. When different blocks share the same eigenvalue(s),
Proposition 1 still holds with Wx replaced by W�

x which is also a block diago-
nal matrix with fewer than q blocks obtained by combining together those Wx,j ’s
sharing at least one common eigenvalue into one larger block. This means that the
proposed method will not be able to separate, for example, x(1)

t and x(2)
t if Wx,1

and Wx,2 share at least one common eigenvalue.

2.2. Permutation.

2.2.1. Permutation rule. The columns of Â are a permutation of the columns
of �̂y . The permutation is determined by grouping the components of ẑt = �̂

T
y yt

into q groups, where q and the cardinal numbers of those groups are unknown.
Write ẑt = (̂z1,t , . . . , ẑp,t )

T. Let ρi,j (h) denote the cross correlation between the
two component series ẑi,t and ẑj,t at lag h. We say ẑi,t and ẑj,t connected if the
multiple null hypothesis

(2.10) H0 : ρi,j (h) = 0 for any h = 0,±1,±2, . . . ,±m

is rejected, where m ≥ 1 is a prescribed integer. Thus there exists significant ev-
idence indicating nonzero correlations between two connected component series.
Hence those components should be put in the same group. We may take m = 20,
or m sufficiently large but smaller than n/4, in the spirit of the rule of thumb
proposed by Box and Jenkins [(1970), page 30], as we exclude long memory pro-
cesses in this paper. Note that the autocorrelations of stationary (causal) VARMA
processes decay exponentially fast. The permutation in Step 2 in Section 2.1 can
be performed as follows:

i. Start with the p groups with each group containing one component of ẑt

only.
ii. Combine two groups together if one connected pair are split over the two

groups.
iii. Repeat Step ii above until all connected pairs are within one group.

We introduce below two methods for identifying the connected pair components
of ẑt = �̂

T
y yt .
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2.2.2. Maximum cross correlation method. One natural way to test hypothesis
H0 in (2.10) is to use the maximum cross correlation over the lags between −m

and m:

(2.11) L̂n(i, j) = max|h|≤m

∣∣ρ̂i,j (h)
∣∣,

where ρ̂i,j (h) is the sample cross correlation between ẑi,t and ẑj,t at lag h. We
would reject H0 for the pair (̂zi,t , ẑj,t ) if L̂n(i, j) is greater than an appropriate
threshold value.

Instead of conducting multiple tests for each of the p0 ≡ p(p − 1)/2 pairs com-
ponents of ẑt , we propose a ratio-based statistic to single out those pairs for which
H0 will be rejected. To this end, we rearrange the p0 obtained L̂n(i, j)’s in the
descending order: L̂1 ≥ · · · ≥ L̂p0 . Define

(2.12) r̂ = arg max
1≤j<c0p0

L̂j /L̂j+1,

where c0 ∈ (0,1) is a prescribed constant. In all the numerical examples in Sec-
tion 4 and the supplementary material [Chang, Guo and Yao (2018)], we use
c0 = 0.75. We reject H0 for the pairs corresponding to L̂1, . . . , L̂r̂ .

The intuition behind this approach is as follows. Suppose among in total p0
pairs of the components of xt there are r connected pairs only. Arrange the true
maximum cross correlations in the descending order: L1 ≥ · · · ≥ Lp0 . Then Lr > 0
and Lr+1 = 0, and the ratio Lj/Lj+1 takes value ∞ for j = r . This motivates the
estimator r̂ defined in (2.12) in which we exclude some minimum L̂j in the search
for r̂ as c0 ∈ (0,1). This is to avoid the fluctuations due to the ratios of extremely
small values. This causes little loss in information as, for example, 0.75p0 con-
nected pairs would likely group most, if not all, component series together; see,
for example, Example 2 in Section 4. The similar idea has been used in defining
the factor dimensions in Lam and Yao (2012) and Chang, Guo and Yao (2015).

To state the asymptotic property of the above approach, we use a graph repre-
sentation. Let the graph contain p vertexes V̂ = {1, . . . , p}, representing p com-
ponent series of ẑt . Define an edge connecting vertexes i and j if H0 in (2.10) for
(̂zi,t , ẑj,t ) is rejected by the above ratio method. Let Ên be the set consisting all
those edges. Let V = {1, . . . , p} represent the p component series of zt = �T

y yt

defined in (2.8), and write zt = (z1,t , . . . , zp,t )
T. Define

E =
{
(i, j) : max|h|≤m

∣∣Corr(zi,t+h, zj,t )
∣∣ > 0,1 ≤ i < j ≤ p

}
.

Each (i, j) ∈ E can be reviewed as an edge. The graph (V̂ , Ên) is a consistent
estimate for the graph (V ,E); see Proposition 2 below. To avoid the technical
difficulties in dealing with “0/0”, we modify (2.12) as follows:

(2.13) r̂ = arg max
1≤j<p0

(L̂j + δn)/(L̂j+1 + δn),
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where δn > 0 is a small constant. Assume

min
(i,j)∈E

max|h|≤m

∣∣Corr(zi,t+h, zj,t )
∣∣ ≥ εn

for some εn > 0 and nε2
n → ∞. Write

(2.14) �n = min
1≤i<j≤q

min
λ∈σ(Wx,i ),μ∈σ(Wx,j )

|λ − μ|,

where Wx,i is defined in (2.9), σ(Wx,i) denotes the set consisting of all the eigen-
values of Wx,i . Here, εn denotes the weakest signal to be identified in E, and �n

is the minimum difference between the eigenvalues from the different diagonal
blocks in Wx . Arrange the true maximum cross correlations of zt in the descend-
ing order L1 ≥ · · · ≥ Lp0 and define

χn = max
1≤j<r−1

Lj/Lj+1,

where r = |E|. Recall that Ŝ is the estimator for Wy used in Step 1 in Section 2.1.
Let

(2.15) �̂y(h) = 1

n

n−h∑
t=1

(yt+h − ȳ)(yt − ȳ)T and ȳ = 1

n

n∑
t=1

yt .

Now we state the consistency in Proposition 2, which requires �n > 0 [see Propo-
sition 1(ii)]. The proof of Proposition 2 is similar to that of Theorem 2.4 of Chang,
Guo and Yao (2015), and is therefore omitted.

PROPOSITION 2. Let χnδn = o(εn) and �−1
n ‖Ŝ − Wy‖2 = op(δn). Let the

singular values of �̂y(h) be uniformly bounded away from ∞ for all |h| ≤ m.
Then for r̂ defined in (2.13), it holds that P(Ên = E) → 1.

REMARK 2. (i) The inserting of δn in the definition of r̂ in (2.13) is to avoid
the undetermined “0/0” cases. In practice, we use r̂ defined by (2.12) instead, but
with the search restricted to 1 ≤ j ≤ c0p0, as δn subscribed in Proposition 2 is
unknown. The simulation results reported in the supplementary material [Chang,
Guo and Yao (2018)] indicate that (2.12) works reasonably well. See also Lam and
Yao (2012) and Chang, Guo and Yao (2015).

(ii) The uniform boundedness for the singular values of �̂y(h) was used to
simplify the presentation. If max|h|≤m ‖�̂y(h)‖2 = Op(νn) for some diverging νn,
we require the condition �−1

n νn‖Ŝ − Wy‖2 = op(δn).
(iii) The finite sample performance can be improved by prewhitening each

component series ẑi,t first. Then the asymptotic variance of ρ̂i,j (h) is 1/n as
long as Corr(zi,t+h, zj,t ) = 0; see Corollary 7.3.1 of Brockwell and Davis (1996).
This makes the maximum cross correlations for different pairs more compara-
ble. Note that two weakly stationary time series are correlated if and only if their
prewhitened series are correlated.
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2.2.3. FDR based on multiple tests. Alternatively, we can identify the con-
nected pair components of ẑt by a false discovery rate (FDR) procedure built on
the multiple tests for cross correlations of each pair series.

In the same spirit of Remark 2(iii), we first prewhiten each component series of
ẑt separately, and then look into the cross correlations of the prewhitened series
which are white noise. Thus we only need to test hypothesis (2.10) for two white
noise series.

To fix the idea, let ξt and ηt denote two white noise series. Let ρ(h) =
Corr(ξt+h, ηt ) and ρ̂(h) be its sample analogue. By Theorem 7.3.1 of Brockwell
and Davis (1996), ρ̂(h1) and ρ̂(h2), for any h1 �= h2, are asymptotically indepen-
dent as n → ∞, provided that ρ(h) = 0 for all h, and the underlying processes
are Gaussian. Hence the P -value for testing a simple null hypothesis ρ(h) = 0
based on statistic ρ̂(h) is approximately equal to ph = 2�{−√

n|ρ̂(h)|}, where
�(·) denotes the distribution function of N(0,1). Let p(1) ≤ · · · ≤ p(2m+1) be the
order statistics of {ph : h = 0,±1, . . . ,±m}. As these P -values are approximately
independent for large n, a multiple test at the significant level α ∈ (0,1) rejects
H0, defined in (2.10), if p(j) ≤ jα/(2m + 1) for at least one 1 ≤ j ≤ 2m + 1; see
Simes (1986) for details. Sarkar and Chang (1997) showed that it is still a valid test
at the level α if ρ̂(h), for different h, are positive-dependent. Hence the P -value for
this multiple test for the null hypothesis H0 is P = min1≤j≤2m+1 p(j)(2m + 1)/j .
The prewhitening is necessary in conducting the multiple test above, as otherwise
ρ̂(h1) and ρ̂(h2) (h1 �= h2) are not asymptotically independent.

We can calculate the P -value for testing H0 in (2.10) for each pair of the com-
ponents of ẑt , resulting in the total p0 ≡ p(p − 1)/2 P -values. Arranging those
P -values in ascending order: P(1) ≤ · · · ≤ P(p0). Let

(2.16) d = max{k : 1 ≤ k ≤ p0,P(k) ≤ kβ/p0}
for a given small β ∈ (0,1). Then the FDR procedure with the error rate con-
trolled under β rejects the hypothesis H0 for the d pairs of the components of
ẑt corresponding to the P -values P(1), . . . ,P(d), that is, those d pairs of com-
ponents are connected. Since the P -values Pj ’s are no longer independent, the
β in (2.16) no longer admits the standard FDR interpretation. Nevertheless the
P -values P(1), . . . ,P(d) give another way (in addition to the maximum cross cor-
relation) to rank the pairs of the components of ẑt according to the strength of
the cross correlations. In fact, the ranking of the pairs in terms of the correlation
strength matters most as far as the dimension-reduction is concerned; see, for ex-
ample, Table 2 for Example 2 in Section 4. Different segmentations resulting from
using different tuning parameters are caused effectively by how many those small
(maybe still significant) correlations being used in determining a segmentation.
The impact on, for example, post-sample forecasting is almost negligible; see Ta-
ble 1 in Section 4.
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3. Theoretical properties. To gain more appreciation of the new methodol-
ogy, we will show that there exists a permutation transformation which permutes
the column vectors of �̂y , and the resulting new orthogonal matrix, denoted as
Â = (Â1, . . . , Âq), is an adequate estimator for the transformation matrix A in
(2.1) in the sense that M(Âj ) is consistent to M(Aj ) for each j = 1, . . . , q . Note
that the columns of �̂y are the p orthonormal eigenvectors of the estimator Ŝ for
Wy ; see Step 1 of the proposed method in Section 2.1. In this section, we treat
this permutation transformation as an “oracle”. In practice, it is identified either by
a visual observation or by the methods presented in Section 2.2. Our goal here is
to show that �̂y is a valid estimator for A up to a column permutation. We estab-
lish the consistency under three different asymptotic modes: (i) the dimension p

is fixed, (ii) p = o(nc) and (iii) logp = o(nc), as the sample size n → ∞, where
c > 0 is a small constant. The convergence rates derived reflect the asymptotic
orders of the estimation errors when p is in different orders in relation to n.

To measure the errors in estimating M(Aj ), we adopt a metric on the Grass-
mann manifold of r-dimensional subspaces of Rp: for two p × r half orthogonal
matrices H1 and H2 satisfying the condition HT

1 H1 = HT
2 H2 = Ir , the distance

between M(H1) and M(H2) is defined as

D
{
M(H1),M(H2)

} =
√

1 − r−1tr
(
H1HT

1 H2HT
2

)
.

Then D{M(H1),M(H2)} ∈ [0,1]. It is equal to 0 if and only if M(H1) =
M(H2), and to 1 if and only if M(H1) and M(H2) are orthogonal; see, for ex-
ample, Stewart and Sun (1990) and Pan and Yao (2008).

We always assume that the weakly stationary process yt is α-mixing, that is, its
mixing coefficients αk,p → 0 as k → ∞, where

(3.1) αk,p = sup
i

sup
A∈F i−∞,B∈F∞

i+k

∣∣P(A ∩ B) − P(A)P(B)
∣∣,

and F j
i is the σ -field generated by {yt : i ≤ t ≤ j}. In sequel, we denote by σ

(k)
i,j the

(i, j)th element of �y(k) for each i, j = 1, . . . , p and k = 1, . . . , k0. The α-mixing
is a mild condition on “asymptotic independence”. Many time series including
causal ARMA processes with continuously distributed innovations are α-mixing
with exponentially decaying mixing coefficients; see, for example, Section 2.6.1
of Fan and Yao (2003) and the references within. Nevertheless, it rules out, for
example, long memory processes.

We use the notation μ = E(yt ), yt = (y1,t , . . . , yp,t )
T and μ = (μ1, . . . ,μp)T.

3.1. Asymptotics when n → ∞ and p fixed. When the dimension p is fixed,
we estimate Wy defined in (2.5) by the plug-in estimator

(3.2) Ŝ = Ip +
k0∑

k=1

�̂y(k)�̂y(k)T,
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where �̂y(k) is defined in (2.15). We show that the standard
√

n convergence rate
prevails as now p is fixed. We introduce some regularity conditions first.

CONDITION 1. It holds that supt max1≤i≤p E(|yi,t − μi |2γ ) ≤ K1 for some
constants γ > 2 and K1 > 0.

CONDITION 2. The mixing coefficients αk,p defined in (3.1) satisfy the con-

dition
∑∞

k=1 α
1−2/γ
k,p < ∞, where γ > 2 is given in Condition 1.

THEOREM 1. Let Conditions 1 and 2 hold, p be fixed, and �n in (2.14) be
positive. Then max1≤j≤q D{M(Âj ),M(Aj )} = Op(n−1/2), where the columns
of Â = (Â1, . . . , Âq) are a permutation of the p orthonormal eigenvectors of Ŝ
defined in (3.2).

REMARK 3. This result can be extended to a nonstationary case. For p-
dimensional nonstationary time series yt , we assume that yt = Axt where xt

satisfies (2.2). Let �y(k) = (n − k)−1 ∑n−k
t=1 Cov(yt+k,yt ) and �x(k) = (n −

k)−1 ∑n−k
t=1 Cov(xt+k,xt ), which can be viewed as the extension of the conven-

tional autocovariance for stationary process to nonstationary case. Then (2.6) still
holds. Following the same arguments as in Chang, Guo and Yao (2015), it can be
shown that there exists Â = (Â1, . . . , Âq) such that Theorem 1 holds, where the
columns of Â are a permutation of the p orthonormal eigenvectors of Ŝ defined in
(3.2) with �̂y(k) specified in (2.15).

3.2. Asymptotics when n → ∞ and p = o(nc). In the contemporary statistics
dealing with large data, conventional wisdom assumes that p diverges together
with n. Since ‖Ŝ − Wy‖F = Op(pn−1/2) for Ŝ defined in (3.2), it is necessary
that p = o(n1/2) in order to retain the consistency (but with a slower convergence
rate than

√
n). This means that p can only be as large as p = o(n1/2) if we do not

entertain any additional assumptions on the underlying structure. In order to deal
with large p, we impose a sparsity condition on the transformation matrix A first.

CONDITION 3. For A = (ai,j ) in (2.1), max1≤j≤p

∑p
i=1 |ai,j |ι ≤ s1 and

max1≤i≤p

∑p
j=1 |ai,j |ι ≤ s2, for some constant ι ∈ [0,1), where s1 and s2 may

diverge together with p.

When p is fixed, Condition 3 holds for s1 = s2 = p and any ι ∈ [0,1), as A is an
orthogonal matrix. For large p, s1 and s2 control the degree of the sparsity of the
columns and the rows of A, respectively. A small s1 entails that each component
series of xt only contributes to a small fraction of the components of yt . A small s2
entails that each component of yt is a linear combination of a small number of the
components of xt . The sparsity of A is also controlled by constant ι: the smaller ι
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is, the more sparse A is. We will show that the stronger sparsity leads to the faster
convergence for our estimator; see Remark 4(ii) below.

If p diverges faster than n1/2, the sample autocovariance matrix �̂y(k) =
(σ̂

(k)
i,j )p×p , given in (2.15), is no longer a consistent estimator for �y(k). Inher-

iting the spirit of threshold estimator for large covariance matrix by Bickel and
Levina (2008), we employ the following threshold estimator instead:

(3.3) Tu

{
�̂y(k)

} = (
σ̂

(k)
i,j I

{|σ̂ (k)
i,j | ≥ u

})
p×p,

where I(·) is the indicator function, u > 0 sets the threshold level. Lemma 4 of
Chang, Guo and Yao (2018) implies that max1≤i,j≤p |σ̂ (k)

i,j − σ
(k)
i,j | =

Op(max{p2/ln−(l−1)/ l, (n−1 logp)1/2}) for l specified in Conditions 4 and 5 later.
Hence we set the threshold at u = ϑn, where

(3.4) ϑn = M max
{
p2/ln−(l−1)/ l,

(
n−1 logp

)1/2}
,

and M > 0 is a constant. Consequently, we define now

(3.5) Ŝ ≡ Ŵ(thre)
y = Ip +

k0∑
k=1

Tu

{
�̂y(k)

}
Tu

{
�̂y(k)

}T
.

Lemma 7 in Chang, Guo and Yao (2018) shows that Ŵ(thre)
y is a consistent esti-

mator for Wy , which requires a stronger version of Conditions 1 and 2 as now p

diverges together with n.

CONDITION 4. As x → ∞, it holds that supt max1≤i≤p P(|yi,t − μi | > x) =
O{x−2(l+τ)} for some constants l > 2 and τ > 0.

CONDITION 5. The mixing coefficients αk,p given in (3.1) satisfy the con-
dition supp≥1 αk,p = O{k−(l−1)(l+τ)/τ } as k → ∞, where l and τ are given in
Condition 4.

Conditions 4 and 5 ensure the Fuk–Nagaev-type inequalities for α-mixing pro-
cesses; see Rio (2000) and Liu, Xiao and Wu (2013). Put

ρj = min
i �=j

min
λ∈σ(Wx,i ),μ∈σ(Wx,j )

|λ − μ|, j = 1, . . . , q,(3.6)

δ = s1s2 max
1≤j≤q

pj and κ = max
1≤k≤k0

∥∥�x(k)
∥∥

2.(3.7)

THEOREM 2. Let Conditions 3, 4 and 5 hold, p = o{n(l−1)/2}, and
min1≤j≤q ρj > 0 for ρj defined in (3.6). Then

max
1≤j≤q

ρjD
{
M(Âj ),M(Aj )

} = Op

{
κϑ1−ι

n δ + ϑ2(1−ι)
n δ2}

,
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where the columns of Â = (Â1, . . . , Âq) are a permutation of the p orthonormal
eigenvectors of matrix Ŝ defined in (3.5) with the threshold u = ϑn given in (3.4)
in which constant l satisfies Conditions 4 and 5.

REMARK 4. (i) Theorem 2 presents the uniform convergence rate for
ρjD{M(Âj ),M(Aj )}. As ρj measures the minimum difference between the
eigenvalues of Wx,j and those of the other blocks, it is intuitively clear that the
smaller this difference is, more difficult the estimation for M(Aj ) is.

(ii) As �y(k) = A�x(k)AT, the largest block size Smax = max1≤j≤q pj and the
sparsity of A determines the sparsity of �y(k). Lemma 5 of Chang, Guo and Yao
(2018) shows that the sparsity of �y(k) can be evaluated by δ defined in (3.7). A
small value of Smax represents a high degree of sparsity for �x(k), and thus, also
for �y(k), while the sparsity of A is reflected by ι, s1 and s2; see Condition 3 and
the comments immediately below it. The convergence rates specified in Theorem 2
contain factors δ or δ2. Hence the more sparse �y(k) is (i.e., the smaller δ is), the
faster the convergence is.

(iii) With the sparsity imposed in Condition 3, the dimension of time series can
be as large as p = o{n(l−1)/2}, where l > 2 is determined by the tail probabilities
described in Condition 4.

(iv) Similar to Theorem 1, the result in Theorem 2 can also be extended to
nonstationary case; see Remark 3.

(v) Instead of Condition 3, we may impose the sparsity condition on each �y(k)

such as max1≤j≤p

∑p
i=1 |σ (k)

i,j |ι ≤ s3 and max1≤i≤p

∑p
j=1 |σ (k)

i,j |ι ≤ s3 for some

ι ∈ [0,1). Then the convergence rate in Theorem 2 changes to Op{κϑ1−ι
n s3 +

ϑ
2(1−ι)
n s2

3}. Under the ideal case κ = O(1), min1≤j≤q ρj  q−1 and s3  pζ for
some ζ ∈ [0,1), we have max1≤j≤q D{M(Âj ),M(Aj )} = Op(pζ qϑ1−ι

n ) pro-
vided that pζϑ1−ι

n = O(1). Therefore, if pζqϑ1−ι
n = o(1), we can estimate each

subspace M(Aj ) consistently.

3.3. Asymptotics when n → ∞ and logp = o(nc). To handle the ultra high-
dimensional cases where p grows at an exponential rate of n, we need following
stronger conditions (than Conditions 4 and 5) on the decays of the tail probabilities
of yt and the mixing coefficients αk,p defined in (3.1).

CONDITION 6. For any x > 0 and ‖v‖2 = 1, supt P{|vT(yt − μ)| > x} ≤
K2 exp(−K3x

r1), where K2,K3 > 0, and r1 ∈ (0,2] are constants.

CONDITION 7. For all k ≥ 1, supp≥1 αk,p ≤ exp(−K4k
r2), where K4 > 0 and

r2 ∈ (0,1] are some constants.

Condition 6 requires the tail probabilities of linear combinations of yt decay
exponentially fast. When r1 = 2, yt is sub-Gaussian. It is also intuitively clear
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that the large r1 and/or r2 would only make Conditions 6 and/or 7 stronger. The
restrictions r1 ≤ 2 and r2 ≤ 1 are introduced only for the presentation convenience,
as Theorem 3 below applies to the ultra high-dimensional cases with

(3.8) logp = o
{
n�/(2−�)} where � = 1/

(
2r−1

1 + r−1
2

)
.

We still use Ŝ = Ŵ(thre)
y defined in (3.5) in Step 1 of our procedure. But now

the threshold value is set at u = M(n−1 logp)1/2 in (3.3), as Lemma 8 in Chang,
Guo and Yao (2018) indicates that max1≤i,j≤p |σ̂ (k)

i,j − σ
(k)
i,j | = Op{(n−1 logp)1/2}

when p is specified by (3.8). Recall that δ and κ are defined in (3.7).

THEOREM 3. Let Conditions 3, 6 and 7 hold, min1≤j≤q ρj > 0 for ρj defined
in (3.6), and p satisfy (3.8). Then

max
1≤j≤q

ρjD
{
M(Âj ),M(Aj )

} = Op

{
κ
(
n−1 logp

)(1−ι)/2
δ + (

n−1 logp
)1−ι

δ2}
,

where the columns of Â = (Â1, . . . , Âq) are a permutation of the p orthonormal
eigenvectors of Ŝ defined in (3.5) with the threshold level u  (n−1 logp)1/2.

Similar to Remark 4(v), we may also impose the sparsity condition on
each �y(k) such as max1≤j≤p

∑p
i=1 |σ (k)

i,j |ι ≤ s3 and max1≤i≤p

∑p
j=1 |σ (k)

i,j |ι ≤
s3 for some ι ∈ [0,1). Then the convergence rate in Theorem 3 changes to
Op{κ(n−1 logp)(1−ι)/2s3 + (n−1 logp)1−ιs2

3}. Under the ideal case κ = O(1)

and min1≤j≤q ρj  q−1, we have max1≤j≤q D{M(Âj ),M(Aj )} =
Op{q(n−1 logp)(1−ι)/2s3} provided that (n−1 logp)1−ιs2

3 = O(1). Therefore, if
q2(n−1 logp)1−ιs2

3 = o(1), we can estimate M(Aj )’s consistently.

4. Numerical properties. Two questions arise with the proposed methodol-
ogy in this paper: (i) Is the segmentation assumption (2.1) and (2.2) of practical
relevance? (ii) What would the proposed method lead to if the assumption does
not hold? To answer these questions, we report below the illustration with four
real data sets from different fields. Chang, Guo and Yao (2018) contains the illus-
tration with simulated data.

We always standardize the data first, that is, to replace yt by {�̂y(0)}−1/2yt ,
where �̂y(0) is the sample covariance matrix (2.15) for Examples 1–3, and is the
truncated one for Example 4 [see (3.3)]. Then the segmentation transformation
is x̂t = B̂yt , where B̂ = �̂

T
y {�̂y(0)}−1/2, and �̂y is the p × p orthogonal matrix

specified in Step 1 in Section 2.1 based on the new time series {�̂y(0)}−1/2yt .
We always prewhiten each transformed component series of x̂t before applying
the permutation methods described in Section 2.2. The prewhitening is carried out
by fitting each series an AR model with the order between 0 and 5 determined
by AIC. The resulting residual series is taken as a prewhitened series. We set the
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upper bound for the AR-order at 5 to avoid over-whitening with finite samples. We
always set c0 = 0.75 in (2.12) and k0 = 5 in computing Ŝ unless stated explicitly.
See Remark 1(ii).

To show the advantages of the proposed TS-PCA transformation, we also con-
duct post-sample forecasting and compare the forecasts based on the original data
directly and those via TS-PCA transformation. To ensure that the comparison is
fair and objective, we adopt VAR models with the order determined by AIC for
both the original and the transformed data, involving no fine-tuning on the form
of model and the order determination. Note that there is no universally accepted
optimal model for a real data set. We use the R-function VAR in the R-package
vars to fit VAR models. We also report the results from the restricted VAR model
(RVAR) obtained by setting insignificant coefficients to 0 in a fitted VAR model,
using the R-function restrict in the R-package vars.

Some useful tips from the real data analysis below are worth mentioning. First,
the segmentation assumption is reasonable for Examples 1, 3 and 4. Second, when
the segmentation assumption is invalid (Example 2), the TS-PCA transformation
leads to approximate segmentations which also improve the forecasting perfor-
mance. Third, when p is large or moderately large, it is necessary to apply appro-
priate dimension-reduction techniques (such as TS-PCA) in order to take advan-
tage from the dependence across different series (Examples 3 and 4). Finally, the
forecasting via the TS-PCA transformation always outperform that directly based
on the original data in all the real data examples. The reason for this is explained
at the end of Section 6.

EXAMPLE 1 (Continued). We continue the analysis with the monthly tem-
perature data in the 7 cities in China. The result reported in Section 2.1 was
obtained with k0 = 5 in (2.5). The profile of the segmentation is unchanged for
1 ≤ k0 ≤ 36. For p = 7, we do not need to apply the methods in Section 2.2 for
permuting the transformed series. Nevertheless, exactly the same grouping is ob-
tained by the permutation based on the maximum cross correlation method with
1 ≤ m ≤ 30 in (2.10), or by the permutation based on FDR with 1 ≤ m ≤ 30 and
0.001% ≤ β ≤ 1% in (2.16).

Forecasting the original time series yt can be carried out in two steps. First, we
forecast the components of x̂t using 5 models according to the segmentation, that
is, one VAR for the first three components, and a univariate AR model for each
of the last four components. Then the forecasted values for yt are obtained via the
transformation ŷt = B̂−1x̂t . For each of the last 24 observations in this data set (i.e.,
the monthly temperatures in 1997 and 1998), we use the data up to the previous
month to fit three forecasting models: the model based on the segmentation (which
is a collection of 5 VAR/AR models for the 5 segmented subseries of x̂t ), the VAR
and RVAR models for the original data. We difference the original data at lag 12
before fitting them directly with VAR and RVAR models, to remove the seasonal
components. For fitting the segmented series x̂t , we only difference its first two
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component series also at lag 12 since only they have seasonal components. The
one-step-ahead forecasts can be obtained directly from the fitted models. The two-
step-ahead forecasts are obtained based on the plug-in method, that is, using the
one-step-ahead forecasted values as true values.

For each component series of yt , we calculate the mean squared predictive er-
rors (MSPE) d−1 ∑d

h=1(ŷi,n0+h − yi,n0+h)
2 for both one-step-ahead and two-step-

ahead forecasting, where ŷi,n0+h denotes the associated forecast for yi,n0+h (for
this example, d = 24 and n0 = n−24). The mean and standard deviations of those
MSPEs over the 7 cities are listed in Table 1. Both the mean and standard deviation
of the MSPEs based on TS-PCA are much smaller than those based on the direct
VAR or RVAR models for original data. To evaluate the sensitivity of the segmen-
tation, we also consider an over-segmentation case for x̂t with 6 groups ({1,2},
{3}, {4}, {5}, {6}, {7}), and an incomplete-segmentation case with 4 groups
({1,2,3}, {5,6}, {4}, {7}). Table 1 shows that, though the predictions for over-

TABLE 1
One-step and two-step ahead post-sample forecasting: means and standard deviations (in

subscripted bracket) of MSPEs for Examples 1, 3 and 4 and means and standard deviations (in
subscripted bracket) of the relative MSPEs for Example 2

Method One-step forecast Two-step forecast

Example 1 VAR 2.470(0.416) 2.559(0.385)

(p = 7) RVAR 2.530(0.398) 2.615(0.382)

Segmentation with 5 groups 2.221(0.339) 2.203(0.323)

Segmentation with 6 groups 2.417(0.348) 2.419(0.326)

Segmentation with 4 groups 2.421(0.343) 2.422(0.325)

Example 2 VAR 0.950(0.148) 0.726(0.328)

(p = 7) RVAR 0.962(0.138) 0.796(0.277)

Segmentation with 4 groups 0.884(0.180) 0.708(0.377)

Segmentation with 7 groups 0.919(0.130) 0.884(0.219)

Segmentation with 3 groups 0.873(0.176) 0.694(0.377)

Example 3 Univariate AR 0.208(0.551) 0.194(0.539)

(p = 25) VAR 0.295(0.806) 0.301(0.855)

RVAR 0.293(0.820) 0.296(0.863)

Segmentation with 24 groups 0.153(0.134) 0.163(0.124)

Segmentation with 25 groups 0.110(0.084) 0.132(0.091)

Segmentation with 23 groups 0.151(0.133) 0.159(0.121)

Example 4 Univariate AR 0.525(0.204) 0.835(0.284)

(p = 84) Segmentation with 83 groups 0.485(0.185) 0.662(0.224)

Segmentation with 84 groups 0.484(0.184) 0.662(0.224)

Segmentation with 50 groups 0.492(0.187) 0.678(0.228)

Segmentation with 70 groups 0.474(0.180) 0.664(0.225)
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and incomplete-segmentation are worse than the segmentation with the 5 groups,
they still outperform both VAR and RVAR models.

EXAMPLE 2. We consider the weekly notified measles cases in 7 cities in
England (i.e., London, Bristol, Liverpool, Manchester, Newcastle, Birmingham
and Sheffield) in 1948–1965, before the advent of vaccination. All the 7 series
show biennial cycles, which is a common feature in measles dynamics in the pre-
vaccination period. This biennial cycling is the major driving force for the cross
correlations among different component series displayed in Figure 2(a). The cross
correlogram of the transformed data is displayed in Figure 2(b). Since none of
the transformed component series are white noise, the confidence bounds in Fig-
ure 2(b) could be misleading; see Remark 1(i).

We apply prewhitening to each transformed component time series by fitting
an AR model with the order determined by AIC. Although all those 7 filtered
time series behave like white noise, there are still quite a few small but signifi-
cant cross correlations here and there. Figure 3(a) plots, in descending order, the
maximum cross correlations L̂n(i, j) defined in (2.11) for those 7 transformed and
prewhitened series. As 1.96/

√
n = 0.064 with n = 937 now, one may argue that

the segmentation assumption does not hold for this example. Consequently, the
ratio estimator r̂ defined in (2.12) does not make any sense for this example; see
also Figure 3(b).

Nevertheless Figure 3(a) ranks the pairs of transformed component series ac-
cording to the strength of the cross correlation. If we would only accept r con-
nected pairs, this leads to an approximate segmentation according to the rule set
in Section 2.2.1. By doing this, we effectively ignore some small, though still sta-
tistically significant, cross correlations. Table 2 lists the different segmentations
corresponding to the different values of r . It shows that the group {4,5} is always
present until all the 7 series merge together. Further it only takes 6 connected pairs,
corresponding to the 6 largest points in Figure 3(a), to merge all the series together.

The forecasting comparison is conducted in the same manner as in Example 1.
We adopt the segmentation with 4 groups: {1,2,3}, {4,5}, {6} and {7}, that is, we
regard that only the three pairs, corresponding to the 3 maximum cross correlations
in Figure 3(a), are connected. We forecast the notified measles cases in the last 14
weeks of the period for all the 7 cities. Due to the fact that the data from differ-
ent cities are on different scales, we present the results based on relative MSPEs
in Table 1: a relative MSPE is the ratio of a MSPE concerned over that obtained
from fitting each original component series with an AR model. Once again the
forecasting based on this (approximate) segmentation is much more accurate than
those based on the direct VAR and RVAR models, although we have ignored quite
a few small but significant cross correlations among the transformed series. Ta-
ble 1 also reports an over-segmentation case with each transformed series as an
individual group, and an alternative segmentation case with 3 groups ({1,2,3,7},
{4,5}, {6}). The over-segmentation ignores all the correlations among different
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(a) Cross correlogram of the 7 original measles series

(b) Cross correlogram of the 7 transformed component time series

FIG. 2. Cross correlograms for Example 2.
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(a) Max cross correlations between pairs (b) Ratios of maximum cross correlations

FIG. 3. Example 2: (a) The maximum cross correlations, plotted in descending order, among each
of the

( 7
2

) = 21 pairs component series of the transformed and prewhitened measles series. The max-
imization was taken over the lags between −20 to 20. (b) The ratios of two successive correlations
in (a).

components, it has an adverse effect on forecasting, though it still outperforms the
VAR and RVAR models. The alternative segmentation with the 3 groups takes into
account more correlations, leading to the best forecasting performance in compar-
ison with the other methods.

EXAMPLE 3. Now we consider the daily log-sales of a clothing brand in 25
provinces in China in 1 January 2008 – 9 December 2012 (i.e., n = 1805 and
p = 25). All those series exhibit peaks before the Spring Festival (i.e., the Chinese
New Year, typically around February). The cross correlogram of the 8 randomly
selected component series in Figure 4 indicates the strong cross correlations over
different time lags among the sales over different provinces. The strong periodic
components with the period 7 indicate a regular sales pattern over 7 different week-
days. By applying the proposed segmentation transformation and the permutation
based on the maximum cross correlations with m = 25 in (2.11), the transformed
25 time series are divided into 24 group with only nonsingle-element group con-
taining the 15th and the 16th transformed series. The same grouping is obtained

TABLE 2
Segmentations determined by different numbers of connected pairs for the

transformed series in Example 2

No. of connected pairs No. of groups Segmentation

1 6 {4,5}, {1}, {2}, {3}, {6}, {7}
2 5 {1,2}, {4,5}, {3}, {6}, {7}
3 4 {1,2,3}, {4,5}, {6}, {7}
4 3 {1,2,3,7}, {4,5}, {6}
5 2 {1,2,3,6,7}, {4,5}
6 1 {1, . . . ,7}
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FIG. 4. Example 3: Cross correlogram of eight randomly selected log-sales series.

for m between 14 and 30. Note for this example, we should not use small m as the
autocorrelations of the original data decay slowly; see Figure 4.

To compare the post-sample forecasting performance, we calculate one-step-
ahead and two-step-ahead forecasts for each of the daily log-sales in the last two
weeks of the period. Table 1 lists the means and the standard deviations of the
MSPEs across the 25 provinces. With p = 25, the fitted VAR(2) model, selected by
AIC, contain 2×25×25 = 1250 parameters, leading to poor post-sample forecast-
ing. The RVAR(2) model improves the forecasting a bit, but it is still significantly
worse than the forecasting based on the approach of fitting a univariate AR model
to each of the original series directly. Since the proposed segmentation leads to 24
subseries, it also fits univariate AR models to 23 (out of 25) transformed series, fits
a 2-dimensional VAR model to the 15th and the 16th transformed series together.
The proposed approach leads to much more accurate forecasts as both the mean
and standard deviation are much smaller than those of the other three methods.
The above comparison shows clearly that the cross correlations in the sales over
different provinces are valuable information which can improve the forecasting for
the future sales significantly. However, the endeavor to reduce the dimension by,
for example, TS-PCA, is necessary in order to make use of this valuable informa-
tion. We also consider an over-segmentation by regarding each component of the
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transformed series as an individual group, and an incomplete-segmentation with
{5,15,16} as a group and the other 22 components as 23 individual groups. Both
of them show good performances.

EXAMPLE 4. The air pollution due to the fine particulate (PM2.5) has aroused
serious concerns in China. PM2.5 consists of airborne particles with aerodynamic
diameters smaller than 2.5μm. In this example, we consider the logarithmic daily
average PM2.5 concentration readings at 84 monitoring stations in Beijing, Tianjin
and Hebei in 1 January 2015–31 December 2016. Figure 5 is a map of those 84 sta-
tions. For this data set, n = 731 and p = 84. The readings at different locations are
crossly correlated; see Figure 6 for the cross correlogram of six randomly selected
stations.

Since the dimension p is large, we choose Ŝ as in (3.5) with the threshold level
u determined by the method of Bickel and Levina (2008). The maximum cross
correlation method in Section 2.2.2 divides the 84 transformed time series into 83
groups, with only one non-single-element group containing the 46th and the 83rd
transformed series. In the post-sample forecasting for the daily readings in De-
cember 2016 (i.e., 31 days in total), we also include the over-segmentation with
84 groups (i.e., treating each transformed series as an individual group), and two
incomplete segmentations with, respectively, 50 groups and 70 groups. The max-
imum group size is 8 for the segmentation with 50 groups, and is 4 for the seg-
mentation with 70 groups. Those segmentations are obtained in the same manner

FIG. 5. Example 4: locations of 84 PM2.5 monitoring stations.
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FIG. 6. Example 4: Cross correlogram of logarithmic daily PM2.5 readings at six randomly se-
lected monitoring stations in Beijing, Tianjin and Hebei.

as in Example 2 (see also Table 2). With p = 84, direct VAR is too crude to be at-
tempted. Comparing to the univariate AR models for the original series, all the four
segmentations provide more accurate one-step and two-step ahead predictions. It
is worth pointing out that the difference due to using different segmentations is
small.

5. Segmenting multivariate volatility processes. The methodology pro-
posed in Section 2 can be readily extended to segment multivariate volatility pro-
cesses. To this end, let yt be a p×1 volatility process. Let Ft = σ(yt ,yt−1, . . .) and
Var(yt |Ft−1) = �y(t). Without loss of generality, we assume E(yt |Ft−1) = 0 and
Var(yt ) = Ip . Suppose that there exists an orthogonal matrix A for which yt = Axt

and Var(xt |Ft−1) = diag{�1(t), . . . ,�q(t)} with �1(t), . . . ,�q(t) being, respec-
tively, p1 × p1, . . ., pq × pq nonnegative definite matrices. Hence the latent p-
dimensional volatility process xt can be segmented into q lower-dimensional pro-
cesses, and there exist no conditional cross correlations across those q processes.

Let Wy = ∑
B∈Bt−1

[E{ytyT
t I(B)}]2 and Wx = ∑

B∈Bt−1
[E{xtxT

t I(B)}]2, where
Bt−1 is a π -class and the σ -field generated by Bt−1 equals to Ft−1. Since it holds
for any B ∈ Bt−1 that E{xtxT

t I(B)} = E{I(B)E(xtxT
t |Ft−1)} = E[I(B)diag{�1(t),
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. . . ,�q(t)}] is a block diagonal matrix, so is Wx . Now (2.6) still holds for
the newly defined Wy and Wx . Thus A can be estimated exactly in the same
manner as in Section 2.1. An estimator for Wy can be defined as Ŵy =∑

B∈B
∑k0

k=1{(n− k)−1 ∑n
t=k+1 ytyT

t I(yt−k ∈ B)}2, where B is a set with elements
{u ∈ R

p : ‖u‖2 ≤ ‖yt‖2} for t = 1, . . . , n; see Fan, Wang and Yao (2008). We
illustrate this idea by a real data example.

EXAMPLE 5. We consider the daily returns of the stocks of Walt Disney Com-
pany, Wells Fargo & Company, Honeywell International Inc., MetLife Inc., H & R
Block Inc. and Cognizant Technology Solutions Corporation in 14 July 2008–11
July 2014. For this data set, n = 1509 and p = 6. Denote by yt = (y1,t , . . . , y6,t )

T

the returns on the t th day. By fitting each return series a GARCH(1,1) model, we
calculate the residuals εi,t = yi,t /σ̂i,t for i = 1, . . . ,6, where σ̂i,t denotes the pre-
dicted volatility for the ith return at time t based on the fitted GARCH(1,1) model.
The cross correlogram of the residual series are plotted in Figure 7(a), which shows
the strong and significant concurrent correlations across all residual series. It indi-
cates clearly that Var(yt |Ft−1) is not a block diagonal matrix. We also apply the
traditional PCA to the 6 returns series, the cross correlogram of prewhitened series
is shown in Figure 7(b). There are also strong and significant concurrent correla-
tions across the residual series; see Panels (1,2), (2,3), (3,4), (2,5) and (6,4).
This indicates all the principal components should not be modelled separately.
Now we apply the segmentation transform stated above. We repeat the whitening
process above for the transformed series x̂t , that is, fit a GARCH(1,1) model for
each of the component series of x̂t and calculate the residuals. Figure 8 presents
the cross correlogram of these new residual series. There exist almost no signifi-
cant cross correlations among the residual series. This is the significant evidence
to support the assertion that Var(xt |Ft−1) is a diagonal matrix. For this example,
the segmentation method leads to the conditional uncorrelated components of Fan,
Wang and Yao (2008).

6. Final remarks. This paper proposes a contemporaneous linear transfor-
mation to segment a multiple time series into several both contemporaneously and
serially uncorrelated subseries. The method is simple, and can be used as a prelim-
inary step to reduce a high-dimensional time series modelling problem into several
lower-dimensional problems. The reduction of dimensionality is often substantial
and effective.

The method is abbreviated as TS-PCA, as it can be viewed as a version of PCA
for multiple time series. Like the standard PCA, TS-PCA technically also boils
down to an eigenanalysis for a positive definite matrix. The difference is that the
intended segmentation is not guaranteed to exist. However, one of the strengths of
the proposed TS-PCA is that even when the segmentation assumption is invalid, it
provides some approximate segmentations which ignore some minor (though still
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(a) Cross correlogram of the residuals resulted from fitting each original component series a
GARCH(1,1) model

(b) Cross correlogram of the residuals resulted from fitting each series of PCA components a
GARCH(1,1) model

FIG. 7. Cross correlograms for Example 5.
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FIG. 8. Cross correlogram of the residuals resulted from fitting each component series of the trans-
formed series x̂t with a GARCH(1,1) model in Example 5.

significant) cross correlations, and thus, lead to parsimonious modelling strategies.
Those parsimonious strategies often bring in improvements in, for example, fore-
casting future values; see, for example, Example 2. Furthermore, when the dimen-
sion of time series is large, TS-PCA is necessary in order to utilize the information
across different component series effectively; see, for example, Examples 3 and 4.

We have conducted some post-sample forecasting comparison with several
real data sets including some not reported in the paper. The forecasting based
on the proposed TS-PCA always outperforms that for the original data. We
give one explanation as follows. It follows from (2.6) that � ≡ tr(Wy) − p =∑k0

k=1
∑p

i,j=1 ρ2
y,ij (k) = tr(Wx) − p = ∑k0

k=1
∑p

i,j=1 ρ2
x,ij (k), where ρy,ij (k) and

ρx,ij (k) denote, respectively, the cross correlation at lag k between the ith and
the j th components of yt and xt . Since the future prediction is based on the se-
rial correlations, � can be taken as a measure for the predictive strength, which is
the same for yt and xt . To make use of the full predictive strength of yt , we need
to model the p-vector process appropriately to catch all the autocorrelations and
cross correlations (over different time lags) among the p components of yt . In con-
trast, such a task for xt is much easier as it can be divided into q lower-dimensional
problems. In the ideal situation when q = p, that is, ρx,ij (k) = 0 for any i �= j , we
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just need to model all the component series of xt separately in order to make the
full use of the overall predictive strength.
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to substantial improvement of the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Principal component analysis for second-order stationary
vector time series” (DOI: 10.1214/17-AOS1613SUPP; .pdf). This supplement
contains simulation studies and all technical proofs.
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