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Software for computation of maximum likelihood estimates in linear
structural equation models typically employs general techniques from nonlin-
ear optimization, such as quasi-Newton methods. In practice, careful tuning
of initial values is often required to avoid convergence issues. As an alter-
native approach, we propose a block-coordinate descent method that cycles
through the considered variables, updating only the parameters related to a
given variable in each step. We show that the resulting block update problems
can be solved in closed form even when the structural equation model com-
prises feedback cycles. Furthermore, we give a characterization of the models
for which the block-coordinate descent algorithm is well defined, meaning
that for generic data and starting values all block optimization problems ad-
mit a unique solution. For the characterization, we represent each model by
its mixed graph (also known as path diagram), which leads to criteria that can
be checked in time that is polynomial in the number of considered variables.

1. Introduction. Structural equation models (SEMs) provide a general frame-
work for modeling stochastic dependence that arises through cause-effect relation-
ships between random variables. The models form a cornerstone of multivariate
statistics with applications ranging from biology to the social sciences [Bollen
(1989), Hoyle (2012), Kline (2015)]. Through their representation by path dia-
grams, which originate in the work of Wright (1921, 1934), the models encompass
directed graphical models [Lauritzen (1996)]. While SEMs can naturally be in-
terpreted as models of causality that predict effects of experimental interventions
[Pearl (2009), Spirtes, Glymour and Scheines (2000)], the focus of this paper is on
observational scenarios. In other words, we consider statistical inference based on
independent and identical samples from a distribution in an SEM. Concretely, we
will treat linear SEMs in which the effects of any latent variables are marginalized
out and represented through correlation among the error terms in the structural
equations; see, for example, Pearl [(2009), Section 3.7], Spirtes, Glymour and
Scheines [(2000), Chapter 6] or Wermuth (2011). This setting arises, in particular,
in problems of network recovery through model selection as treated, for exam-
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ple, by Colombo et al. (2012), Silva (2013), Nowzohour, Maathuis and Biithimann
(2015) or Triantafillou and Tsamardinos (2016). For further details and references,
see Section 5.2 in Drton and Maathuis (2017).

The specific problem we address is the computation of maximum likelihood
estimates (MLESs) in linear SEMs with Gaussian errors in the structural equations.
The R packages “sem” [Fox (2006)] and “lavaan” [Rosseel (2012)] as well as
commercial software [Narayanan (2012)] solve this problem by applying general
quasi-Newton methods for nonlinear optimization. However, these methods are
often subject to convergence problems and may require careful choice of starting
values [Steiger (2001)]. This is particularly exacerbated when computing MLEs
in poorly fitting models as part of model selection [Drton, Eichler and Richardson
(2009)]. As a software manual puts it: “It can be devilishly difficult for software to
obtain results for SEMs” [StataCorp (2013), page 112].

As an alternative, we propose a block-coordinate descent (BCD) method that
cycles through the considered variables, updating the parameters related to a given
variable in each step. Each update is performed through partial maximization of
the likelihood function. This method generalizes the iterative conditional fitting
algorithm of Chaudhuri, Drton and Richardson (2007) as well as the algorithm of
Drton, Eichler and Richardson (2009). In contrast to this earlier work, our exten-
sion is applicable to models that comprise feedback cycles. Models with feedback
cycles have been treated by Spirtes (1995), Richardson (1996, 1997), and more
recently by Lacerda et al. (2008), Mooij and Heskes (2013) and Park and Raskutti
(2016). An example of a recent application can be found in the work of Grace et al.
(2016).

The presence of feedback loops complicates likelihood inference as even in set-
tings without latent variables MLEs are generally high-degree algebraic functions
of the data. For example, the MLE in the model given by the graph in Figure 1 is
an algebraic function of degree 7; see Chapter 2.1 in Drton, Sturmfels and Sulli-
vant (2009) for how to compute this degree. Somewhat surprisingly, however, the
update steps in our BCD algorithm admit a closed form even in the presence of
feedback loops, and the computational effort is on the same order as in the case
without feedback loops. In numerical experiments, the BCD algorithm is seen to
avoid convergence problems.

As a second main contribution, we show that the algorithm applies to interest-
ing models with “bows.” In terms of the mixed graph/path diagram, a bow is a
subgraph on two nodes i and j with two edges i — j and i <> j. Such a subgraph
indicates that there is both a direct effect of the ith variable on the jth variable
as well as a latent confounder with effects on the two variables. Bows can lead to

O—@ 87 [J0+—=0

FI1G. 1.  Graph of a cyclic linear SEM with maximum likelihood degree 7.
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collinearity issues in the BCD algorithm, and we are able to give a characterization
of the models for which the algorithm is well defined, meaning that for generic data
and starting values all block optimization problems admit a unique and feasible so-
lution. For the characterization, we represent each model by its mixed graph/path
diagram, which leads to criteria that can be checked in time that is polynomial in
the number of considered variables.

The paper is organized as follows. In Section 2, we review necessary back-
ground on SEMs. The new BCD algorithm is derived in Section 3. Its properties
are discussed in Section 4. Numerical examples are presented in Section 5. We
conclude with a discussion of the considered problem in Section 6.

2. Linear structural equation models.

2.1. Basics. A structural equation model (SEM) captures dependence among
a set of variables {¥; : i € V}. Each model is built from a system of equations, with
one equation for each considered variable. Each such structural equation specifies
how a variable Y; arises as a function of the other variables and a stochastic error
term ¢;. In the linear case considered here, we have

2.1) Y, = Z ﬂinj—f-Ei, ieV.
JEVA{i}

Collecting the Y; and ¢; terms into the vectors Y and &, respectively, (2.1) can be
rewritten as

(2.2) Y = BY +e¢,

where B = (B;;) is a matrix of coefficients that are sometimes termed structural
parameters [Bollen (1989)]. Specific models of interest are obtained by assuming
that for some index pairs (7, j), variable ¥; has no direct effect on Y;, which in the
linear framework is encoded by the restriction that 8;; = 0.

Techniques for statistical inference are often based on the assumption that ¢
follows a multivariate normal distribution with possible dependence among its co-
ordinates. So,

(2.3) e~ N, Q),

where € = (w;;) is a symmetric, positive definite matrix of parameters. An entry
w;j may capture effects of potential latent variables that are common causes of Y;
and Y;. When no latent common cause of ¥; and Y; is believed to exist, constrain
wij = wj; =0 [see, e.g., Pearl (2009), Spirtes, Glymour and Scheines (2000)].
As a result of (2.2) and (2.3), the observed random variables, Y, have a centered
normal distribution with covariance matrix

(2.4) s=U-B)"'Qu-B"T.
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Here, I is the V x V identity matrix. Note that the assumption of centered variables
can be made without loss of generality [Anderson (2003), Chapter 7].

It is often convenient to represent an SEM by a mixed graph or path diagram
[Wright (1921, 1934)]. The graph has vertex set V and is mixed in the sense of
having both a set of directed edges E_, and a set of bi-directed edges E .. The
directed edges in E_, are ordered pairs in V x V, whereas the edges in E., have
no orientation and are unordered pairs {i, j} with i, j € V. We will often write
i — j in place of (i, j) for a potential edge in E_, and i <> j for a potential
edge {i, j} in E.,. In this setup, each variable Y; is then represented by a node,
corresponding to its index i € V. An edge j — i is not in E_, if and only if the
model imposes the constraint that 8;; = 0. Note that in our context there are no
self-loops i — i. Similarly, the edge i <> j is absent from E, if and only if the
model imposes the constraint that ;; = w;; = 0. Finally, for each node j € V, we
define two sets pa(j) and sib(j) that we refer to as the parents and siblings of j,
respectively. The set pa(j) comprises all nodes i € V such thati — j € E_,, and
sib(j) is the set of allnodes i € V such thati <> j € E,.

Let G =(V, E_, E.) be a mixed graph, and define B(G) to be the set of real
V x V matrices B = (B;;) such that I — B is invertible and

(2.5) Bij =0 whenever j —>i ¢ E_,.

Similarly, define $2(G) to be the set of all positive definite symmetric V x V ma-
trices €2 = (w;;) that satisfy

(2.6) w;ij =0 whenever j < i ¢ E,.

The linear SEM N(G) associated with graph G is then the family of multivariate
normal distributions N (0, ¥) with covariance matrix ¥ as in (2.4) for B € B(G)
and Q2 € (G).

A mixed graph G and the associated model N(G) are cyclic if G contains a
directed cycle, that is, a subgraph of the form

i1—>i2—>---—>ik—>i1

for distinct nodes iy, ...ix € V, kK > 2. If there is no such cycle, the graph and
corresponding model are said to be acyclic. Acyclicity brings about great simplifi-
cations as we have det(/ — B) =1 for every B € B(G) if and only if G is acyclic.
To see this note that when G is acyclic, there exists a topological ordering of V,
that is, a relabeling of V such that i — j € E_, only if i < j. Under such an or-
dering every matrix in B(G) is strictly lower triangular. If G is an acyclic digraph,
such that £, = @ then the MLE in N(G) is obtained by solving a linear regres-
sion problem for each variable Y;, i € V. For an acyclic graph with E, # &, this
is generally no longer the case but the MLE can be found by iterative least squares
computations [Drton, Eichler and Richardson (2009)].
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FI1G. 2. Cyclic mixed graph that is almost everywhere identifiable.

2.2. Cyclic models. A challenge in the computation of MLEs in models with
cyclic path diagrams is the fact that det(/ — B) is not constant one. For example,
det(/ — B) =1 — B32843P24 for matrices B € B(G) when G is the mixed graph
in Figure 2. We observe a correspondence between the term B33843824 and the
directed cycle 2 — 3 — 4 — 2 in the graph. We now review this connection in the
setting of a general mixed graph G.

Let Sy be the symmetric group of all permutations of the vertex set V. Every
permutation o € Sy has a unique decomposition into disjoint permutation cycles.
Let C(o0) be the set of permutation cycles of o, and let C»(o) be the subset con-
taining cycles of length 2 or more. Write n(o’) for the cardinality of C>(o), and
V(o) for the set of nodes that are contained in a cycle in C;(o). Moreover, define

2.7 Sy(G)={oeSy:i=0o(@)ori —>o(i)€ E_ foralli e V}.
LEMMA 1. Let B = (B;j) € B(G) for a mixed graph G = (V,E_,, E_,). Then
det(I—B)= > (D" T Boayi-

oSy (G) ieV(o)

The lemma follows from a Leibniz expansion of the determinant. It could be
derived from Theorem 1 in Harary (1962) by treating the diagonal of I — B as
self-loops with weight 1 and taking into account that B is negated. We include its
proof in the Supplementary Material [Drton, Fox and Wang (2018)].

When deriving the block-coordinate descent algorithm proposed in Section 3,
we treat det(/ — B) as a function of only the entries in a given row. By multilin-
earity of the determinant, this function is linear and its coefficients are obtained in
a Laplace expansion. Throughout the paper, we let —i := V \ {i} and denote the
U x W submatrix of a matrix A by Ay w.

LEMMA 2. Let B = (Bij) € B(G) for a mixed graph G = (V,E_,, E_,). Fix
an arbitrary node i € V. Then det(I — B) is linear in the entries of B; pay = (Bij :
j €pa(i)) with

det(! — B) = ¢i,0 + Bi pa(i)Ci,pa(i)
where c; o € R and the entries of ¢; pa(i) € RPAD gqre subdeterminants, namely,

cio=det(( — B)—i i),

¢ip= (=D det((I — B)_;—,),  pepal);
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to define (—1)!TP~\ enumerate V in accordance with the layout of the matrix
I —B.

EXAMPLE 1. The mixed graph G from Figure 2 encodes the equation system

Y1 =¢1, Y2 =211+ BoaYs + 2,
Y3 =B3Y: +e3, Y4 = Ba3Y3 + €4,
Ys = Bs4Y4 + €5, Y6 = BesYs5 + €6,

where €1, €3, €3, &4 and &g are all pairwise uncorrelated, and &5 is uncorrelated
with &1, 4 and gg. The system contains the directed cycle 2 — 3 — 4 — 2. Con-
sequently,

det(/ — B) =1 — B32B43B24.

Hence, the coefficients must satisfy 832843824 7# 1 for the equation system to yield
a positive definite covariance matrix. When fixing node i € V and writing det(/ —
B) as a linear function of (8;;) jepai) as in Lemma 2, we have

c1,0=1— B32B43 P24, pa(l) = &;

c0=1, pa(2) = {1, 4}, c2.pa2) = (0, —B32813)";

cz0=1, pa(3) = {2}, c3,pa3) = —BazPo4;

c40 =1, pa(4) = {3}, C4,pa(4) = —B32P4;

¢s5,0=1— B32B43P24, pa(5) = {4}, cs pas) =0;

6,0 =1 — B32B43 P24, pa(6) = {5}, c6,pa6) = 0.

2.3. Likelihood inference. Suppose we are given a sample of N observations

in RY. Let Y be the V x N matrix with these observations as columns, and let
S = %YY T be the associated V x V sample covariance matrix (for known zero

mean). Fix a possibly cyclic mixed graph G. Ignoring an additive constant and
dividing out a factor of N /2, model N(G) has log-likelihood function

£6.y(Q, B) = —logdet(Q) + logdet(/ — B)?

(2.8) .
—tu|(I - B)TQ ' - B)S).

Throughout the paper, we assume that Y has full rank |V|. This holds with
probability one if the sample is from a continuous distribution and N > |V/|. Full
rank of ¥ implies that S is positive definite, and the log-likelihood function £,y
is then bounded for any graph G. However, if G is sparse with a bi-directed part
(V, E.) that is not connected, then £; y may also be bounded if S is not positive
definite [Fox (2014)].
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Our problem of interest is to compute (local) maxima of the log-likelihood func-
tion. These solve the likelihood equations, which are obtained by equating to zero
the gradient of £ y (B, 2). To be precise, the partial derivatives are taken with re-
spect to the free entries in B and €2, which we denote by 8 and w, respectively. So,
B has |E_, | entries, and w has |V | + | E. | entries. Let vec(A) denote the vector-
ization (stacking of the columns) of a matrix A. Then there are 0/1-valued matrices
P and Q such that vec(B) = PS, and vec(Q2) = Qw.

PROPOSITION 1. The likelihood equations of the model N(G) can be written

as
(2.9) Plvec[@ '(1-B)S— (1 -B)]=0,
(2.10) 0T vec(@ ' —Q'U-B)Su-BTa ) =o.

A derivation of this result is provided in the Supplementary Material [Drton,
Fox and Wang (2018)]. In general, the likelihood equations are difficult to solve
analytically; recall the example from Figure 1. Instead, it is common practice to
use iterative maximization techniques.

3. Block-coordinate descent for cyclic mixed graphs.

3.1. Algorithm overview. We now introduce our block-coordinate descent
(BCD) procedure for computing the MLE in a possibly cyclic mixed graph model
N(G). The method requires initializing with a choice of B € B(G) and 2 € (G).
The algorithm then proceeds by repeatedly iterating through all nodes in V and
performing update steps. In the update for node i, we maximize the log-likelihood
function with respect to all parameters corresponding to edges with a head at i
(i.e., Bipaii) and €2; sib(yugiy) While holding all other parameters fixed. The pa-
rameters that are updated determine the ith row in B and the ith row and column
in the symmetric matrix 2. The algorithm stops when a convergence criterion is
satisfied.

In the derivation of the block update, we write Y¢ for the C x N submatrix of ¥,
for subset C C V. In particular, Y_; = Yy\(;}, and Y; is the ith row of Y. Finally,
we will invoke assumptions to ensure that the optimization problem yielding the
block update admits a unique solution. The graphs G for which these assumptions
hold will be characterized in Section 4.

3.2. Block update problem. In the ith block update problem, we seek to max-
imize the log-likelihood function £ y while holding the submatrices 2_; _; and
B_; fixed. Let

~1
wii—i = wii — Qi Q7 Qi
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be the conditional variance of the error term ¢; given e_;; here, Q:l.l =

(Q,,-,,i)_l. In analogy to Theorem 12 in Drton, Eichler and Richardson (2009),
the log-likelihood function can be decomposed as

LG,y (£2, B)
= —logwjj.—i

(3.1) 1

Nw;;.

— 2
|Yi = Bi pati) Ypat) — Qissiv) (7] _i6—i) iy |

1
—logdet(2-i-) — tr(QZ] _;e—ie’;) +logdet(I — B).

This follows by factoring the joint distribution of & into the marginal distribution
of e_; and the conditional distribution of ¢; given e_;. The key difference between
(3.1) and the corresponding log-likelihood decomposition in Drton, Eichler and
Richardson (2009) is the presence of the term logdet(/ — B)?, which is nonzero

for cyclic graphs.

With Q_; _; and B_; fixed, we can first compute the error terms
(3.2) e_i=U—-B)_;Y
and subsequently the pseudo-variables
(3.3) Zi=Q7] 6.
From (3.1), it is clear that, for fixed 2_; _; and B_;, the maximization of £ y
reduces to the maximization of the function

£6G,v,i (82 sib(i)» Wii.—i» Bipa(i))

(3.4) = —log wji.—i + log[(cio + Bi,pa(i)ci,pa(i))2]

I1Y: — Bi paci) Ypa(i) — Sisib(i) Zsib@) |-

" Nowji—i
Here, we applied Lemma 2, and let B; pa;) = (B;; : j € pa(i)) and Qi,sib(,-) = (wj :
k € sib(i)). The domain of definition of £g.y,; is R¥°@) x (0, 00) x RP*D | where

mv

RPN = RPN\ {B; pagiy 2 €1,0 + Bi.pati)Ci.pati) = 0}

mv

excludes choices of B; py(;) for which I — B is noninvertible. For any fixed choice
of B; pai) and €2; siv(i)> if ¥; — Bj pa(i) Ypa(i) — S2i,sib(i) Zsib(i) # 0 then

1
(3.5) Wl = N”Yi — Bi pati) Ypati) — Sisib(i) Zsib) I

uniquely maximizes £¢ y,; with respect to w;; —;. This fact could be used to form
a profile log-likelihood function. Before proceeding, however, we shall address
the concern that for a mixed graph G that contains cycles, it may occur that
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Y; € span(Ypa(i), Zsibi)) even if the rows of Y are linearly independent. A sim-
ple example would be the graph with nodes 1 and 2 and three edges 1 — 2, 1 <2
and 1 <> 2; see Example 4 below.

LEMMA 3. Let the data matrix Y € RV*N have linearly independent rows.
Then Y; — B pati)Ypa() — S2isib(i) Zsivi) # 0 for all B € B(G), Q2 € (G) and
ieV.

PROOF. From (3.3),
Yi — Bi pai) Ypat) — S2i,sib(i) Zsib(i) = & — wi,—iQ:,'l’_iS—i =0

only if e = (I — B)Y € RV*¥ has linearly dependent rows. However, this cannot
occur when Y has linearly independent rows as matrices B € B(G) have [ — B
invertible. [J

According to Lemma 3, we may indeed substitute ?; _; from (3.5) into g y,;
and maximize the resulting profile log-likelihood function:

(€2 sib(i)» Bi,pa(i)) +> log(N) — 1

(3.6) B log< 1Yi — Bi pati) Ypati) — Qi,sib(i) Zsib(i) ||2)
(C,"() + Bi,pa(z‘)cz‘,pa(i))2

By monotonicity of the logarithm, maximizing (3.6) with respect to the structural

parameters (£2; sib(i)» Bi,pa(i) € RSP % Rﬁilv(i) is equivalent to minimizing

1Y: — Bi pai) Ypati) — i sib(i) Zsiv(i) 1>
(¢i,0 + Bi pa(i)Ci,pa(i))? '

3.7 8i (82 sib(i)> BipaG)) =

If ¢; pa(iy = 0, which occurs when i does not lie on any directed cycle, then the
denominator in (3.7) is constant and the problem amounts to finding least squares
estimates for £2; sib;) and Bj pa(;). In other words, we solve a linear regression
problem with response Y; and covariates Zi, k € sib(i) and Y;, j € pa(i). This is
the setting of Drton, Eichler and Richardson (2009).

In the more difficult case where ¢; pa(;) # 0, minimizing the function g; from
(3.7) amounts to minimizing a ratio of two univariate quadratic functions. The
numerator is a least squares objective for a linear regression problem with design
matrix (ZSTib(l.), Yp];(i)) e RVxUsib@I+pai))  The denominator is the square of an
affine function whose slope vector satisfies the following property proven in the
Supplementary Material [Drton, Fox and Wang (2018)].

Zsib(i) )T

LEMMA 4. The vector ( G :1 (l,)) is orthogonal to the kernel of ( Yout)
: pai
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3.3. Minimizing a ratio of quadratic functions. When ¢; paiy # 0, the mini-
mization of g; from (3.7) is an instance of the general problem

Iy — Xo||?

3.8 —_
(3-8) aeR" (co + cTa)?

that is specified by a vector y € RY with N > m, a matrix X € RV*"_ a nonzero
vector ¢ € R™ \ {0} and a scalar ¢y € R. For a correspondence to (3.7), take as
argument the vector o = (£2; sib(i)» B,-’pa(,-))T, which is of length m = |sib(i)| +
| pa(i)|, and set

T
Zsib(i 0
39 y= YiT, X = (YS‘b(f)) , c= ( o > , €0 = Ci,0-
pa(i) Ci,pa(i)

We now show that (3.8) admits a closed-form solution. In doing so, we focus at-
tention on problems in which the matrix X has full column rank. Unless stated
otherwise, we do not require that ¢ be orthogonal to the kernel of X. Rank defi-
cient cases are discussed in Remark 2 at the end of this section.

THEOREM 1.  Suppose the matrix X has full rankm < N.Let& = (XT X)~! x
XTy be the minimizer o +— ||y — Xal?, and let yg =|y— Xa|?*:
() Ifco+cla #0, then (3.8) is uniquely solved by
_ %
co+clTa

(xTx)" e

of=a+
(i) Ifco+cTa=0and yg =0, then (3.8) admits a solution, but not uniquely
so. The solution set is {& + AM(XTX)"lc: 1 e R\ {0}}.
(iii) If co + cT@=0and yg > 0, the minimum in (3.8) is not achieved.

REMARK 1. The computational complexity of solving (3.8) is on the same
order as that for the least squares problem with objective ||y — Xa||2.

PROOF OF THEOREM 1. We give a numerically stable algorithm for solv-
ing (3.8), and then translate the solution into a rational function of the input
(v, X, co, ©).

(a) Algorithm. Find an orthogonal m x m matrix Qp such that Qic =

0,...,0, lcIDT; note that in our context the support of ¢ is confined to the co-
ordinates indexed by pa(i). Reparametrizing to &’ = Q«, (3.8) becomes

- X T /12
(3.10) Iy O

m 2
o’eRm (co + [lcllag,)

with «;, being the last coordinate of o’ = (o, ..., a,). Next, compute a QR de-
composition X QlT = Q2T R, where Q5 is an orthogonal N x N matrix, and R is
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an upper triangular N x m matrix. Observe that R = (If)‘ ) with Ry € R"™*"™ upper

triangular. Since orthogonal transformations leave Euclidean norms invariant,

ly = XQTa'I>  1Qay — Re/|? 271 1(Q2y)j — (Rie);1% + y5
(co+ llclley,)? — (co+ liclay,)? (co + llclle,)?

(3.11)

El

where yg = Zj\’:m 4 (sz)§ is the squared length of the projection of y on the
orthogonal complement of the span of X. Finally, we reparametrize to a” = Rja’
and obtain the problem

"l(Q2y)j — a1+ y5

3.12 min
12 wern (o + lelrTa,)?

with r = Ry, being the (m, m) entry in R (and R;). We have r # 0 as X and thus
X QlT and also R have full column rank. This also entails that R is invertible.
For a” to be a solution of (3.12), it clearly must hold that

(3.13) o =(Qay); forj=1,...m—1,

and (3.12) is solved by finding the coordinate ¢, by minimizing the univariate
function

(o) = (Q29)m — ) + 8

m) =

o/ eR.

3.14 R
G-19) o+ lelrTa)? m

By Lemma 5 below and assuming that co + ||c[r "' (Q2y), # 0, the univariate
function g from (3.14) attains its minimum at

lellyd
reo+ el (Qay)m

If co + ||c||r_1(Q2y)m =0 and yé =0, then g is constant and any feasible o), #
(Q2y)m is optimal. If co+ ||c||r ~' (Q2y),» = 0 and yg > 0, then g does not achieve
1ts minimum.

In order to solve the problem posed at the beginning of this subsection, that is,
the problem from (3.8), we convert the optimum «” from (3.13) and (3.15) to

(3.16) a=QTR "

(3.15) oy = (Q2y)m +

.....

the coefficient vector that solves the least squares problem in which y is regressed
on X Q7. Therefore,

(3.17) OTRT (0ot = (XTX) ' XTy =24

is the least squares coefficient vector for the regression of y on X. Because
R is rectangular, it follows that r‘l(sz)m is the mth entry of the vector
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,,,,,

lellr 1 (Qay)m =(Q1c, RT N (Qan)q1,.omy) = (e, QT RT (Qay)q1,.m))
={c, @).

(3.18)

Lete, =(0,...,0, l)T be the mth canonical basis vector. Using that R T has its
last column equal to r~le,,, we find that

- - —1p— -1
OTR M enliclr™ = 0T R'RTT Q1e=(QTRTRO)) ¢

=(0TRT0,0FR0)) 'e=(x"x)""e.
In case (i), we obtain from (3.13), (3.15) and (3.16) that the unique minimum is

(3.19)

lellr=tyg
co+ llcllr =1 (Q2y)m

Applying (3.17)—(3.19), we readily find the rational formula asserted in the theo-
rem. Cases (ii) and (iii) are similar. [

Q{RI_I(QZY){I ..... m} + Q{Rl_lem-

The proof used the following lemma about ratios of univariate quadratics. The
lemma is derived in the Supplementary Material [Drton, Fox and Wang (2018)].

LEMMA 5. For constants a, b, cg, c1 € R with c| # 0, define the function
(a — x)? + b?
(co+cix)?’

fx) = x € R\ {—co/c1}.
(1) If co+ac1 #0, then f is uniquely minimized by

aco + a’cy + b3c; b2y
X = +

co+acy co+acy’
(1) Ifco+ac1 =0and b =0, then f is constant and equal to l/c%.

(iii) If co + ac; =0 and b? > 0, then f does not achieve its minimum, and
inf f =1limy 400 f(x) = 1/c3.

REMARK 2. When c is orthogonal to the kernel of X, then ¢ = X Té for a
vector ¢ € RV . The problem (3.8) is then equivalent to
=2
(3.20) Ny ol
aespan(X) (co + CTOl)2

Let £(X) be the column span of X, and let 7 (x) be the orthogonal projection onto
L(X). Then (3.20) admits a unique solution if and only if ¢ + ETng(X)(y) #0.
The unique solution is

Iy =m0 WI1?
co+ Tmrpx)(y)

&*zﬂg(x)(y)-f— X)(g)’
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which is meaningful also when X does not have full rank. If desired, a coefficient
vector a* € R™ satisfying Xo* = @* can be chosen.

3.4. The BCD algorithm. By Theorem 1, or rather the algorithm outlined in
its proof, we are able to efficiently minimize the function g; from (3.7). In other
words, we can efficiently update the ith row in B and the ith row and column in 2
by a partial maximization of the log-likelihood function £, y. We summarize our
block-coordinate descent scheme for maximization of the log-likelihood function
£c.y in Algorithm 1. For a convergence criterion, we may compare the norm of
the change in (B, 2) or the resulting covariance matrix or the value of £ y to a
given tolerance.

Because cases (ii) and (iii) of Theorem 1 allow for nonunique or nonexistent
solutions to block update problems, a remaining concern is whether the BCD al-
gorithm may fail to be well defined. We address this problem in Section 4, where

Algorithm 1 Block-coordinate descent
Require: Y, Q© and B©

1: repeat

2: fori e V do

3: Fix Q_; _; and B_;, and compute residuals ¢_; and pseudo-variables
Zsib (i)

4: Compute ¢; o and ¢; pa(;) as in Lemma 2

5: if Ci,pa(i) # 0 then

Set up problem (3.8) with y = Y[, X = (Y);), Zpi))s ¢ =
(cT Ci pa(i)’ 0)" and ¢ = Ci.0

Compute an orthogonal matrix Q1 with Q1¢c= (0, ..., 0, |lc|D”

Compute QR decomposition 01X = QIR

Extract submatrix Ry = R1,.. m)x(1,...m)

10: Compute intermediate constants 7 = Ry, yg, and (Q»y); for j =
1,....m

11: Compute o using (3 13) and (3.15)

12: Compute (B, pa(i)> 2 sibi) ! =a = QTR Lo

13: else

14: Compute (lA?Lpa(i), Qi,sib(,-)) by minimizing sum of squares in nu-
merator of (3.7)

15: end if

16: Compute @;; —; using (3.5)

17: Update B; and 2; _; = QLJ using ﬁi?pa(i) and Qi,sib(i), respectively

18: Update Q2 by setting w;; = @;; —; + Qi,_iQ:i{_iQ_,‘,i

19: end for

20: until Convergence criterion is met
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F1G. 3. Illustration of the update steps for the BCD algorithm for each node. At each step, the
edges corresponding to fixed parameters have been replaced with dotted edges. Arrowheads into
nodes other than i have been removed. Hence, solid and dashed directed edges into i respectively
represent directed and bi-directed edges with an arrowhead at i. Each remaining arrowhead signifies
the relevant parameter to update during this step.

we characterize the mixed graphs for which BCD updates are unique and feasible.
This characterization treats generic data Y and generically chosen starting val-
ues for (B, €2). As discussed in Section 4.4, graphs for which the BCD algorithm
is not generically well defined yield nonidentifiable models. Identifiability is not
necessary, however, for the BCD algorithm to be generically well defined. Further-
more, nonuniqueness of block update solutions could be addressed as outlined in
Remark 2.

EXAMPLE 2. We illustrate the BCD algorithm for the graph from Figure 2,
visiting the nodes in the order of their labels from 1 to 6. Since the graph is simple
(i.e., without bows), the theory from Section 4.2 shows that all updates depicted in
Figure 3 are well defined.

Beginning with node i = 1, we fix all but the first row of B and the first row and
column of 2. In graphical terms, we fix the parameters that correspond to edges
that do not have an arrowhead at node 1. Now, there are no arrowheads at node 1,
and all entries in the first row of B and all off-diagonal entries in the first row and
column of Q2 are zero. Consequently, the algorithm merely updates the variance
w11. The update simply sets wi; = S11, the sample variance for variable 1. This
update is the same in later iterations, that is, node 1 can be skipped in subsequent
iterations.

For i =2, three edges have arrowheads at node 2, with corresponding parame-
ters f21, B4 and wys. The directed edge 4 — 2 is contained in a cycle of the graph.
Its associated parameter, B4, has coefficient — 832843 in det(/ — B). Thus, unless
B32 or Bu3 is zero, ¢z pa2) # 0 and the more involved update from lines 6-11 in
Algorithm 1 applies. If 835 or Ba3 is fixed to zero during this first iteration of the
algorithm (i.e., one or both were initialized to zero), then the first update for i =2
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is a least squares problem but subsequent updates would almost surely require the
more involved update.

Nodes 3 and 4 each have one arrowhead corresponding to a directed edge con-
tained in a cycle of the graph. Hence, the updates for i € {3, 4} proceed analogously
to the update step i = 2. For i = 3, we update the parameters 83,, w3s, and w33.
For i =4, we update the parameters B43 and wa4.

For i =5, there are three arrowheads at node 5 corresponding to parameters
Bsa, w5, and w3s. Observe that 4 — 5 is the only directed edge into node 5 and is
not contained in a cycle. Hence cs pa(s) = 0, and we proceed with the least squares
update in line 13 of Algorithm 1. This least squares computation may change from
one iteration of the algorithm to the next.

For i = 6, the only arrowhead corresponds to the directed edge 5 — 6 with
associated parameter fes. This directed edge is not involved in a cycle, so we
estimate the parameter via a least squares regression and then solve for wgg. This
update remains the same throughout all iterations of the algorithm and only needs
to be performed once.

4. Properties of the block-coordinate descent algorithm.

4.1. Convergence properties. Since the BCD algorithm performs partial max-
imizations, the value of the log-likelihood function £ y is nondecreasing through-
out the iterations. When initialized generically, the algorithm finds a positive def-
inite covariance matrix at every update. The update steps preserve the structural
zeros of the matrices B and €2, and / — B remains invertible. Hence, the algorithm
constructs a sequence in B(G) x (G).

Every accumulation point (B*, 2*) of the sequence constructed by the algo-
rithm is a critical point of the likelihood function and either a local maximum or a
saddle point. A local maximum can be certified by checking negative definiteness
of the Hessian of £g y. However, as “always” in general nonlinear optimization
there is no guarantee that a global maximum is found. Indeed, even for seem-
ingly simple mixed graphs, the likelihood function can be multimodal [Drton and
Richardson (2004)]. In practice, one may wish to run the algorithm from several
different initial values. A strength of the BCD algorithm is that for nodes whose
incoming directed edges are not contained in any cycle of G and that are not inci-
dent to any bi-directed edges, the update of B; pa(;) and w;; does not depend on the
fixed pair (B_;, Q2_; —;), and thus needs to performed only once (in the first iter-
ation). As we had noted, this happens for nodes 1 and 6 of the example discussed
in Section 3.4. Hence, we may check for nodes of this type and exclude them from
subsequent iterations after the first iteration of the algorithm. We also update these
nodes before the set of nodes that require multiple update iterations.
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4.2. Existence and uniqueness of optima in block updates. The BCD algo-
rithm is well defined if each block update problem has a unique solution that is
feasible, where feasibility refers to the new matrix €2 being positive definite. When
updating at node i, the positive definiteness of €2 is equivalent to w;; —; > 0. Since
the latter conditional variance is set via (3.5), feasibility of a block update solu-
tion ($2; sib(i)» Bi,pa(i)) corresponds to [|Y; — Bi pagi) Ypai) — $2i,sib(i) Zsib(i) || being
positive.

If the underlying graph is acyclic, then the update at node i solves a least squares
problem that has a unique solution if and only if the | pa(i)| + | sib(i)| vectors in
the rows of Ypa(;) and Zgjp(;) form a linearly independent set in RV Moreover, the
update yields a positive value of w;; _; if and only if Y; is not in the linear span
of the rows of Ypa;) and Zgp;). We conclude that, in the acyclic case, the block
update admits a unique and feasible solution if and only if the following condition
is met:

(A1l); The matrix (sz;(ll;zz}) e RUsbOI+IpaI+D XN paq linearly independent
TOwWS.

As we show in Theorem 2 below, if the underlying graph is not acyclic, then a
further condition is needed:

(A2); The inequality ¢; ¢ + éi,pa(i)ci,pa(i) # 0 holds for

R 3 T

Bugui = 11 X] X gy and X, = (320),
pa(i)

Note that the acyclic case has ¢; o = 1 and ¢; pa¢) = 0, so condition (A2); is void.

EXAMPLE 3. Letthe graph G = (V, E_,, E_,) be a two-cycle, so V = {1, 2},
E,={1—-2,2— 1} and E., = &. Consider the update for node i = 2. With
pa(2) = 1, we have ¢ pa2) = —B12 and 20 = 1. Since sib(2) = &, the block
update amounts to solving

12 — B Y1 |?
min ———————-
paeR (1 — B12B21)
for fixed B12. Condition (A1); holds for i = 2 when the data vectors Y; and and Y»

are linearly independent. We are then in case (i) or (iii) of Theorem 1. Hence, the
solution either exists uniquely or does not exist. It fails to exist when
(Y2, Y1)

I— B2 =0,
Y1112

that is, when (A2); fails for i = 2.

THEOREM 2. Let G=(V,E_, E.) be any mixed graph, and let Y € RV *N
be a data matrix of full rank |V| < N. Let i € V be any node. Then the function g;
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from (3.7) has a unique minimizer (£2; sib(i)» Bi pai)) With
1 Yi — Bi pagi) Ypaii) — $2i,sib) Zsibii) Il > 0
if and only if conditions (A1); and (A2); hold.

PROOF. (<=) When (A1); holds, Theorem 1 applies to the minimization of
gi because the matrix X defined in (3.9) has full rank. Condition (A2); ensures we
are in case (i) of the theorem. Hence, g; has a unique minimizer (£2; sib(i)» Bi pa(i))-
According to (Al);, Yl.T is not in the span of X. Thus, ¥; — B pa¢i)Ypa) —
Qi sib(i) Zsib(i) 7 0.

(=) First, suppose (Al); holds but (A2); fails. Then Theorem 1 applies in
either case (ii) or (iii). Hence, the minimizer of g; is either not unique or does not
exist.

Second, suppose condition (Al); fails because X = (ZSTib(i), ng(l.)) is not of
full rank. Let n € RISP@+1Pa@l be any nonzero vector in the kernel of X. Let
c = (0, cZ pa(l.))T. With the orthogonality from Lemma 4, we have Xa = X (o + 1)

and cTo = ¢T (o + n) for any o € RISP@OIFIPaDI Consequently, g; does not have
a unique minimizer.

Third, suppose that X = (Z%;, Yp;y) has full rank but (A1); still fails. Then
y= YiT is in the column span of X so that Theorem 1 applies with the quantity
y% zero. We are thus in either case (i) or case (ii) of the theorem. In case (ii), the
minimizer is not unique. This leaves us with case (i), in which yg = 0 implies that
gi is uniquely minimized by the least squares vector &, that is, the minimizer of
o ||y — Xa|/. Since y = YiT is in the span of X, we have ||y — Xa||®> =0,
which translates into Y; — B; pa¢i)Ypa) — €2 sib(i) Zsibi) = 0. We conclude that g;
has a unique and feasible minimizer only if (A1); and (A2); hold. [

EXAMPLE 4. Let G = (V, E_,, E.,) be the graph with vertex set V = {1, 2},
and edge sets E_, = {1 — 2,2 — 1} and E., = {1 < 2}. Note that the model
N(G) comprises all centered bivariate normal distributions. Therefore, the log-
likelihood function £,y achieves its maximum for any data matrix ¥ € R2*V of
rank 2.

The two block updates in this example are symmetric, so consider the update
for i = 1 only. Fix any two values of 21 € R and wyy > 0. Then the map from
(B12, w12, w11) to the covariance matrix (I — B 'QU - B)Tis easily seen to
have a Jacobian matrix of rank 2. Because the rank drops from 3 to 2, for each
triple (812, w12, w11) there is a one-dimensional set of other triples that yield the
same covariance matrix, and thus, the same value of the likelihood function. Due
to this lack of blockwise identifiability, the block update cannot have a unique
solution.
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In this example, we have sib(1) = pa(1) = {2} and det(/ — B) =1 — 812821, SO
that ¢; 0 =1 and ¢ = (0, —,321)T. Moreover,

1 1

7 _ (Zsib(i) — Y2 — Y1) _pu 1
X=y )= o2 =| wn owx]|Yt.

pa(i) Y» 0 1

If 821 =0, then (A1); fails for i = 1 because X is rank deficient. If 81 # 0, and
rank(Y) =2, then rank(X) =2 and y = YIT is in the span of X, with

1
Y, = (—% —> x7.
B2t B2

Consequently, yg = 0 and the least squares coefficients for the regression of y
on X are (—w22/B21,1/B21). Then conditior} (A2); fails for i = 1 because with
C1,pa(1) = —PB21 and least squares coefficient By pa(1) = 1/B21 we find that

1
B21

REMARK 3. The findings from Example 4 generalize. Indeed, for any graph
G, if Y has full rank and YiT is in the span of X = (ZSTib(i), ij;(i))’ then one can
show that (A2); fails, and thus, the block update has infinitely many solutions; see
the Supplementary Material [Drton, Fox and Wang (2018)].

c1,0+ é],pa(l)cl,pa(l) =1+ —(—p21) =0.

4.3. Well-defined BCD iterations. Although Theorem 2 characterizes the ex-
istence of a unique feasible solution for a particular block update, it does not
yet clarify when its conditions (A1l); and (A2); hold throughout all iterations of
the BCD algorithm. In practice, there is freedom in choosing the starting value
(Bo, R0) € B(G) x £(G) and, in particular, we may choose it randomly to alle-
viate problems of having the triple (Y, By, €20) in undesired special position; re-
call Example 3. Since our models concern a continuously distributed data matrix
Y € RY*N | the natural problem is to characterize the graphs G such that any fi-
nite number of BCD iterations are well defined for generic triples (Y, By, £20). As
before, our treatment assumes N > |V|.

We begin by studying condition (Al);. Let G = (V, E_,, E.) be a mixed
graph. Let = be a path in G, and let iy, ..., ix be the not necessarily distinct ver-
tices on 7. Then 7 is a half-collider path if either all edges on 7 are bi-directed,
or the first edges is i1 — i and all other edges are bi-directed. Both a single edge
i1 — i> and an empty path comprising only node i are half-collider paths. The bi-
directed portion of a half-collider path r is the set of nodes that are incident to a
bi-directed edge on . In other words, if 7 starts with i — i3, then its bi-directed
portion is {ip, ..., ir}. If w does not contain a directed edge, then its bi-directed
portion is the set of all of its nodes {iy, ..., ix}. Valid half-collider paths are shown
in Figure 4.
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&

FIG. 4.  Four half-collider paths with boxes around their bi-directed portions.

i1 > iy iz< - <) i1 —|iz); il oiyoiz <

We note that half-collider paths are dual to the half-treks of Foygel, Draisma and
Drton (2012). A half-trek is a path whose first edge is either directed or bi-directed,
and whose remaining edges are directed.

Let Sp, S. C V be two sets of nodes. A collection of paths 7 L. . ,nisa system
of half-collider paths from S to S, if |Sp| = |S.| = s, each 7! is a half-collider path

from a node in Sj to a node in S,, every node in S is the first node on some 7!,

and every node in S, is the last node on some 7.

PROPOSITION 2. Let G = (V,E_,, E.) be a mixed graph, and let i € V.
Then the following two statements are equivalent:

(a) Condition (Al); holds for generic triples (Y, B, Q) € RV*N x B(G) x
Q(G).

(b) The induced subgraph G_; contains a system of half-collider paths from
some subset Sp(i) C V \ (pa(i) U {i}) to S.(i) = sib(i) such that the bi-directed
portions are pairwise disjoint.

The proof is deferred to the Supplementary Material [Drton, Fox and Wang
(2018)]; it merely requires Y to be of full rank and (B, €2) to be chosen from a set
of generic points that is independent of Y.

EXAMPLE 5. Suppose a graph with vertex set V = {1, ..., 6} contains the
paths

1-3«<4<«<5 and 2< 1< 6.

These form a system of half-collider paths from {1, 2} to {5, 6}. The system is not
vertex disjoint as node 1 appears on both paths. However, the bi-directed portions
{3,4,5} and {1, 2, 6} are disjoint.

Next, we turn to condition (A2); and show that in generic cases it does not
impose any additional restriction.

PROPOSITION 3. Suppose the mixed graph G is such that (Al); holds for
generic triples (Y, B, Q) € RY*N % B(G) x Q(G). Then (A2); holds for generic
triples (Y, B, 2).

PROOF. The matrix X; and the least squares vector éi,pa(i) in condition
(A2); are rational functions of the triple (Y, B, 2). Hence, there is a polynomial
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f(, B, 2) such that (A2); fails only if f vanishes. A polynomial that is not the
zero polynomial has a zero set that is of reduced dimension and of measure zero
[Okamoto (1973), Lemma 1]. Therefore, it suffices to show that (A2); holds for a
single choice of (Y, B, Q2).

By assumption, we may pick B € B(G) and 2 € £(G) such that (Al); holds
for any full rank Y. Take Y such that (/ — B lQu-B)T= %YYT. When Y

has full rank, the normal distribution with covariance matrix % YYT has maximal
likelihood. Therefore, 2 and B maximize the log-likelihood function £ y. Con-
sider now the block update for node i. Because (A1); holds, the matrix X; has full
rank and Y; is not in the span of X;. Hence, Theorem 1 applies with yg > 0. Since
our special choice of (Y, B, 2) guarantees the existence of an optimal solution, we
must be in case (i) of the theorem. The inequality defining this case corresponds to
(A2);. O

The following theorem gives a combinatorial characterization of the graphs for
which the BCD algorithm is well defined. It readily follows from the above results,
as we show in the Supplementary Material [Drton, Fox and Wang (2018)].

THEOREM 3. For a mixed graph G = (V, E_,, E_,), the following two state-
ments are equivalent:

(a) Foralli €V, the induced subgraph G _; contains a system of half-collider
paths from a set of nodes Sp(i) C V \ (pa(i) U{i}) to S.(i) = sib(i) such that the
bi-directed portions are pairwise disjoint.

(b) For generic triples (Y, By, ) € RV*N x B(G) x (G), any finite number
of iterations of the BCD algorithm for £ y have unique and feasible block updates
when (By, Q20) is used as starting value.

In Drton, Eichler and Richardson (2009), the focus was on bow-free acyclic
graphs, where bow-free means that there do not exist two nodes i and j with both
i — jand i < j in G. For such graphs, the BCD algorithm is easily seen to be
well defined. More generally, by taking S (i) = sib(i) we obtain the following
generalization to graphs that may contain directed cycles.

PROPOSITION 4. If G is a simple mixed graph, that is, every pair of nodes is
incident to at most one edge, then condition (a) in Theorem 3 holds.

When the graph G is not simple, checking condition (a) from Theorem 3 is
more involved. It can, however, be checked in polynomial time. As noted in con-
dition (b), well-defined updates are only guaranteed for generic initializations. In
particular, if B;; is initialized to 0, this effectively removes the j — i edge from
the graph and will cause the update to become ill defined if that edge is necessary
for condition (a) to hold.
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PROPOSITION 5. For any mixed graph G = (V, E_,, E.), condition (a) in
Theorem 3 can be checked in O(|V|?) operations.

The proof, which is deferred to the Supplementary Material [Drton, Fox and
Wang (2018)], casts checking the condition as a network flow problem.

4.4. Identifiability. There is a close connection between well-defined block
updates and parameter identifiability. Suppose the data matrix Y is such that the
sample covariance is S = %YYT = —-B)'QU—-B)T fora pair (B, Q) €
B(G) x R(G). Consider the block update of the ith row of B and ith row and
column of Q2. Based on Theorem 1, if the update does not have a unique solution
then there is an infinite set of solutions (B’, Q). Each such solution (B’, ') must
have (I — B)~'Q'(I — B’)~T equal to S because S is the unique covariance matrix
with maximum likelihood. Hence, there is an infinite set of parameters (B’, ')
that define the same normal distribution as (B, €2).

COROLLARY 1. [fthe graphical condition in statement (a) of Theorem 3 fails
for the graph G, then the parameters of model N(G) are not identifiable.

5. Simulation studies. In this section, we analyze the performance of our
BCD algorithm in two contexts. First, we use it to compare the fit of two nested
models (one of which is cyclic) for data on protein abundances. Second, we exam-
ine the problem of parameter estimation in a specified model. There we compare
our algorithm on a number of simulated graphs against the fitting routine from the
“sem” package in R [Fox (2006), R Development Core Team (2011)].

5.1. Protein-signaling network. Figure 2 in Sachs et al. (2005) presents a
protein-signaling network involving 24 molecules. Abundance measurements are
available for 11 of these. The remaining 13 are unobserved. For our illustration,
we select two plausible mixed graphs over the 11 observed variables. The graphs
differ only by the presence of a directed edge that induces a cycle and a bow; see
Figure 5. The edge PIP2 — PIP3, which makes for the difference, is highlighted
in red. Before proceeding to our analysis, we note that the results in Sachs et al.
(2005) are based on discretized data and are thus not directly comparable to our
computations.

We proceed by comparing the two candidate models via the likelihood ratio test.
The data we consider consist of 11 simultaneously observed signaling molecules
measured independently across N = 853 individual primary human immune sys-
tem cells. Specifically, we consider the data from experimental condition CD3 +
CD28 and center/rescale the data, ensuring that each variable has zero mean and
variance one. Although the likelihood ratio test statistic is invariant to scale, the
rescaling improves the conditioning of the sample covariance matrix which im-
proves the performance of BCD.
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F1G. 5. Plausible mixed graph for the protein-signaling network dataset. The relevant acyclic sub-
model can be formed by removing the red directed edge from PIP2 to PIP3.

The corresponding likelihood ratio test statistic for the data is 0.075, and under
the standard X12 asymptotic distribution for the null hypothesis, this corresponds to
a p-value of 0.78. However, in the considered models it is not immediately clear
whether a X12 approximation has (asymptotic) validity, as the models generally
have a singular parameter space [Drton (2009)]. Therefore, we enlist subsampling
as a guard against a possible nonstandard asymptotic distribution. Subsampling
only requires the existence of a limiting distribution for the likelihood ratio statistic
[Politis, Romano and Wolf (1999), Chapter 2.6]. This limiting distribution, while
not necessarily chi-squared, is guaranteed to always exist [Drton (2009)]. Each
random subsample consists of b observations where b is chosen large enough to
approximate the true asymptotic distribution under the null, but small compared to
N = 853 to still provide reasonable power under the alternative. We consider 5000
subsamples of sizes b = 30 and b = 50.

For each subsample, we first fit the sub-model corresponding to the mixed graph
depicted in Figure 5 without the edge PIP2 — PIP3. For this procedure, we ini-
tialize the free entries of B using least squares regression estimates (i.e., fitting
the model that ignores the error correlations). We then calculate the covariance
between the regression residuals to estimate the nonzero elements of Q2. Although
the sample covariance of the regression residuals is positive definite, the result-
ing matrix which also encodes the structural zeros may not be. To ensure that 2
is positive definite, we scale the off-diagonal elements so that the matrix is diag-
onally dominant. Specifically, for any row i where ;. ; |wjj| > wj;, we rescale
the off-diagonal elements so that Zi?& j lwij| =0.9 X w;; and set w;; = w;;. If a
row is already diagonally dominant, we do not explicitly rescale the off-diagonal
elements, but individual elements of the row might be modified to preserve sym-
metry after other rows have been rescaled. After the BCD algorithm converges to
a stationary point in the sub-model, we take the fitted values B and 2 to initialize
the algorithm run on the model that includes the additional PIP2 — PIP3 edge.
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FI1G. 6. Histograms for the likelihood ratio test statistic for 5000 subsamples of size 30 and 50,
respectively. The superimposed red line depicts the X]2 density.

We evaluate the likelihood function at each of the two maxima and formulate the
corresponding likelihood ratio test statistic. The choice of B and < as initial values
for estimating the larger model guarantees that the test statistics are nonnegative.

Figure 6 shows histograms for the subsampled log-likelihood ratio statistics.
The empirical distributions for b = 30 and b = 50 are seen to be similar to one
another and also rather close to a X12 distribution. The observed test statistic for
the full data has empirical p-value of 0.76 and 0.73 for b = 30 and b = 50, re-
spectively. These p-values are slightly smaller than the p-value of 0.78 from X12
approximation. Altogether there is little evidence to reject the sub-model in favor
of the more complicated cyclic model.

5.2. Simulated data. 'We now demonstrate how the BCD algorithm behaves
on different types of mixed graphs. We consider the existing R package “sem”
[Fox (2006)] as an alternative and compare the performance of these algorithms
for maximum likelihood estimation on simulated data.

To simulate a mixed graph, we begin with the empty graph on V nodes. For
0 <k <V, we add directed edges | - 2 — --- — (k — 1) - k — 1, creating
a directed cycle of length k. For all p(p — 1)/2 — (k — 1) remaining pairs of
nodes (i, j) withi < j, we generate independent uniform random variables U;; ~
U0, 1). If U;; <d, we introduce the directed edge i — j. Alternatively, if d <
Uij < b +d, we introduce the bi-directed edge i <> j. If U;; > b + d, there is no
edge between i and j. After all edges have been determined, we randomly permute
the node labels. This construction ensures that the resulting mixed graph G has the
following properties:

(i) G has a unique cycle of length k;
(i1) G is simple when k > 2 and bow-free (for all k).
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For this simulation, we use 24 different configurations of (V, N, k, d, b), where
N is the sample size. We examine graphs of size V =10 and V =20 and N =
3V /2 and N = 10V observations. In each of these 4 configurations, we consider
3 distinct choices of the maximum cycle length: k =0, V /5, and 2V /5. For each
combination of (V, N, k), we let d = 0.1 and d = 0.2, fixing b = d/2 in each
case. Note that in the case of k = 0, every generated graph will be acyclic and
simple, the class of mixed graphs considered by Drton, Eichler and Richardson
(2009).

In each simulation, we generate a random mixed graph G according to the pro-
cedure above. We then select a random distribution from the corresponding normal
model N(G) by taking the covariance matrix to be & = (I — B)~'Q( — B)~T
for B € B(G) and Q2 € (G) selected as follows. We set all free, off-diagonal
entries of B and Q2 to independent realizations from a N (0, 1) distribution. The
diagonal entries of 2 are chosen as one more than the sum of the absolute val-
ues of the entries in the corresponding row of €2 plus a random draw from a X12
distribution. Hence, €2 is diagonally dominant and positive definite. The model
N(G) is then fit to a sample of size N that is generated from the selected distribu-
tion. We use the routine “sem” and our BCD algorithm. We consider the BCD
algorithm to have converged when ﬁ”ﬁ(’_l) — fl(’)|| < 107 where || - || is
the vector L1 norm. The algorithm proceeds for a maximum of 5000 iterations,
at which point divergence is assumed. The BCD algorithm is initialized using
the procedure described in Section 5.1. The “sem” method is initialized by de-
fault using a modification of the procedure described by McDonald and Hartmann
(1992).

Each row of Table 1 corresponds to 1000 simulations at a configuration of
(V,N,k,d, b). We record how often each algorithm converges. The columns “both
converge” and “both agree” report the number of simulations for which both al-
gorithms converged, and the number of these simulations for which the resulting
estimates were equal up to a small tolerance. For the routine “sem,” which uses
a generic “nlm” Newton optimizer, it is not uncommon that convergence occurs
but yields estimates that are not positive definite. In these cases, we consider the
algorithm to have not converged.

The last two columns show the average CPU running times (in milliseconds)
over simulations for which both methods converged and agreed.! We caution that
these times are not directly comparable, since “sem” computes a number of other
quantities of interest in addition to the maximum likelihood estimate. However, the
BCD algorithm is up to 6 times faster than “sem” in some instances. One potential
reason is that when the graph is relatively sparse, many of the nodes may only
require a single BCD update.

I The simulations were run on a laptop with a quad-core 2.4 Ghz processor.
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TABLE 1
Data simulated from a random distribution in a randomly generated mixed graph model is fit to the
model using BCD and the quasi-Newton method invoked by “sem.” Each row summarizes 1000
simulations. “Both agree” counts the cases with ML estimates equal up to small tolerance. Running
time is average CPU time (in milliseconds) for the cases in which both algorithms converged

and agreed
Convergence Both Both Running time
1% N k d BCD SEM  ‘omverse agree BCD  SEM
10 15 0 0.1 1000 991 991 932 3.8 24.1
10 15 0 0.2 1000 949 949 884 9.5 31.8
10 15 2 0.1 1000 479 479 456 10.7 28.7
10 15 2 0.2 1000 559 559 518 16.0 36.2
10 15 4 0.1 997 672 672 637 10.7 30.5
10 15 4 0.2 997 553 553 520 16.7 38.0
10 100 0 0.1 1000 996 996 985 6.5 30.9
10 100 0 0.2 1000 991 991 991 20.9 53.3
10 100 2 0.1 1000 517 517 517 40.1 48.0
10 100 2 0.2 1000 635 635 635 51.5 58.9
10 100 4 0.1 999 726 726 725 33.4 50.2
10 100 4 0.2 998 688 688 688 46.3 63.0
20 30 0 0.1 1000 989 989 971 54.0 324.7
20 30 0 0.2 1000 921 921 881 166.7 550.5
20 30 4 0.1 999 836 836 824 77.3 319.5
20 30 4 0.2 998 731 731 701 197.0 652.6
20 30 8 0.1 1000 709 709 696 97.0 342.2
20 30 8 0.2 999 534 534 505 237.5 766.3
20 200 0 0.1 1000 998 998 993 119.8 330.1
20 200 0 0.2 1000 983 983 958 299.0 585.4
20 200 4 0.1 1000 847 847 829 199.5 356.8
20 200 4 0.2 999 806 806 773 359.6 712.3
20 200 8 0.1 999 765 765 755 257.6 409.8
20 200 8 0.2 1000 659 659 630 471.7 851.4

6. Discussion. This work extends the RICF algorithm of Drton, Eichler and
Richardson (2009) to cyclic models. The RICF algorithm and its BCD extension
iteratively perform partial maximizations of the likelihood function via joint up-
dates to the parameter matrices B and 2. Each update problem admits a unique
solution. Like its predecessor, the generalized algorithm is guaranteed to produce
feasible positive definite covariance matrices after every iteration. Moreover, any
accumulation point of the sequence of estimated covariance matrices is necessarily
either a local maximum or a saddle point of the likelihood function.

Despite its desirable properties, the algorithm is not without limitations. As with
any iterative maximization procedure, there is no guarantee that convergence of
the algorithm is to a global maximum, due to possible multi-modality of the likeli-
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hood function. In addition, for certain models the algorithm may be ill defined due
to collinearity of the covariates and pseudo-covariates in our update step. How-
ever, we show that the models for which this occurs are nonidentifiable. Moreover,
we give necessary and sufficient graphical conditions for generically well-defined
updates, which were not previously known for the acyclic case.

In some of our simulated examples the BCD algorithm, which does not use any
overall second-order information, needed many iterations to meet a convergence
criterion. It is possible that in those cases a hybrid method that also considers
quasi-Newton steps would converge more quickly. Nevertheless, our numerical
experiments show that the BCD algorithm is competitive in terms of computation
time with the generic optimization tools as used in the R package “sem” all the
while alleviating convergence problems.

SUPPLEMENTARY MATERIAL

Proofs of claims (DOI: 10.1214/17-AOS1602SUPP; .pdf). The supplement
provides proofs for claims made in Sections 2, 3 and 4. Specifically, we verify
the form of det(/ — B) as claimed in Lemma 1 and derive the likelihood equations
with respect to 2 and B. We also verify the claims in Lemmas 4 and 5 which are
required for the BCD algorithm described in the constructive proof of Theorem 1.
Finally, we verify the claims in Section 4 which characterize graphs for which the
BCD algorithm is well defined when initialized generically. In particular, we give a
graphical condition and show that it can be checked in time which is a polynomial
of the considered variables.
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