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CURRENT STATUS LINEAR REGRESSION

BY PIET GROENEBOOM AND KIM HENDRICKX1

Delft University of Technology and Hasselt University

We construct
√

n-consistent and asymptotically normal estimates for the
finite dimensional regression parameter in the current status linear regression
model, which do not require any smoothing device and are based on maxi-
mum likelihood estimates (MLEs) of the infinite dimensional parameter. We
also construct estimates, again only based on these MLEs, which are arbitrar-
ily close to efficient estimates, if the generalized Fisher information is finite.
This type of efficiency is also derived under minimal conditions for estimates
based on smooth nonmonotone plug-in estimates of the distribution function.
Algorithms for computing the estimates and for selecting the bandwidth of
the smooth estimates with a bootstrap method are provided. The connection
with results in the econometric literature is also pointed out.

1. Introduction. Investigating the relationship between a response variable
Y and one or more explanatory variables is a key activity in statistics. Often en-
countered in regression analysis, however, are situations where a part of the data
is not completely observed due to some kind of censoring. In this paper, we focus
on modeling a linear relationship when the response variable is subject to interval
censoring type I, that is, instead of observing the response Y , one only observes
whether or not Y ≤ T for some random censoring variable T , independent of Y .
This type of censoring is often referred to as the current status model and arises
naturally, for example, in animal tumorigenicity experiments (see, e.g., [7] and
[8]) and in HIV and AIDS studies (see, e.g., [29]). Substantial literature has been
devoted to regression models with current status data including the proportional
hazard model studied in [17], the accelerated failure time model proposed by [23]
and the proportional odds regression model of [24].

The regression model we want to study is the semiparametric linear regression
model Y = β ′

0X + ε, where the error terms are assumed to be independent of T

and X with unknown distribution function F0. This model is closely related to the
binary choice model type, studied in econometrics (see, e.g., [2, 4, 19] and [6]),
where, however, the censoring variable T is degenerate, that is, P(T = 0) = 1,
and observations are of the type (Xi,1{Yi≤0}). In the latter model, the scale is not
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identifiable, which one usually solves by adding a constraint on the parameter
space such as setting the length of β or the first coefficient equal to one.

Our model of interest is parametrized by the finite dimensional regression pa-
rameter β0 and the infinite dimensional nuisance parameter F0 that contains β0
as one of its arguments. A similar bundled parameter problem was studied by [5],
where the authors first provide a framework for the distributional theory of prob-
lems with bundled parameters, and next prove their theory for efficient estimation
in the linear regression model with right censored data. A spline based estimate of
the nuisance parameter is proposed.

Although it is indeed tempting to think that some kind of smoothing is needed,
like the splines in [5] or the kernel estimates in the econometric literature for the
binary choice model, where even higher order kernels are used (see, e.g., [19]), a
maximum rank correlation estimate, which does not use any smoothing has been
introduced in [14], and this estimator has been proved to be

√
n-consistent and

asymptotically normal in [28]. However, the latter estimate does not attain the
efficiency bounds and one wonders whether it is possible to construct simple dis-
crete estimates of this type and achieve the efficiency bounds. It is not clear how
the maximum rank correlation estimate in [14] could be used to this end, and we
therefore turn to estimators depending on maximum likelihood estimators for the
nuisance parameter.

The profile maximum likelihood estimator (MLE) of β0 was proved to be con-
sistent in [2] but nothing is known about its asymptotic distribution, apart from
its consistency and upper bounds for its rate of convergence. It remains an open
question whether or not the profile MLE of β0 is

√
n-consistent. [22] derived an

n1/3-rate for the profile MLE; we show that without any smoothing it is possible
to construct estimates, based on the MLE for the distribution function F for fixed
β , that converge at

√
n-rate to the true parameter. We note, however, that the esti-

mator we propose, based on the nonparametric MLE for F for fixed β , is not the
profile MLE for β0. The estimator is a kind of hybrid estimator, which is based on
the argmax MLE for F for fixed β , but defined as the zero of a nonsmooth score
function as a function of β . So we have the remarkable situation that finding the
estimate β̂n as the root of a score equation based on the MLEs F̂n,β , can be proved
to give

√
n-consistent estimates of β0, in contrast with the argmax approach, using

profile likelihood, for which we even still do not know whether it is
√

n-consistent.
We go somewhat deeper into this matter in the discussion section of this paper.

A general theoretical framework for semiparametric models when the criterion
function is not smooth is developed in [1]. The proposed theory is less suited for
our score approach since the authors assume existence of a uniform consistent esti-
mator for the infinite dimensional regression parameter with convergence rate not
depending on the finite dimensional regression parameter of interest. In the current
status linear regression model, we have to estimate β0 and F0 simultaneously, as
a consequence the convergence rate of the estimator for F0 depends on the con-
vergence rate of the estimator for β0, the parameters β0 and F0 are bundled and,
therefore, we cannot apply their theory.
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[22] considers efficient estimation for the current status model with a 1-
dimensional regression parameter β via a penalized maximum likelihood estimator
under the conditions that F0 and u �→ Eβ(X|T − βX = u) are three times contin-
uously differentiable and that the data only provide information about a part of the
distribution function F0, where F0 stays away from zero and 1. [21] proposes an
estimation equation for β , derived from an inequality on the conditional covariance
between X and � conditional on T − β ′X, and uses a U-statistics representation,
involving summation over many indices. [27] considers an estimator based on a
random sieved likelihood, but the expression for the efficient information (based
on the generalized Fisher information) in this paper seems to be different from
what we and the authors mentioned above obtain for this expression.

Approaches to
√

n-consistent and efficient estimation of the regression parame-
ters in the binary choice model were considered by [19] and [4] among others. For
a derivation of the efficient information �̃2

β0,F0
, defined by

�̃β,F (t, x, δ) = {
E

(
X|T − β ′X = t − β ′x

) − x
}
f

(
t − β ′x

)
·
{

δ

F (t − β ′x)
− 1 − δ

1 − F(t − β ′x)

}
,

(1.1)

where we assume f (t − β ′x) > 0, we refer to [3] for the binary choice model, and
next to [18] and [22] for the current status regression model.

As mentioned above, the condition that the support of the density of T − β ′X
is strictly contained in an interval D for all β in the parameter space and that F0
stays strictly away from 0 and 1 on D is used in [22]. This condition is also used
in [18] and [27]. The drawback of the assumption is that we have no information
about the whole distribution F0. It also goes against the usual conditions made for
the current status model, where one commonly assumes that the observations pro-
vide information over the whole range of the distribution one wants to estimate.
We presume that this assumption is made for getting the Donsker properties to
work and to avoid truncation devices that can prevent the problems arising if this
condition is not made, such as unbounded score functions and ensuing numerical
difficulties. Examples of truncation methods can be found in [4] and [19] among
others where the authors consider truncation sequences that converge to zero with
increasing sample size. We show that it is possible to estimate the finite dimen-
sional regression parameter β0 at

√
n-rate based on a fixed truncated subsample

of the data where the truncation area is determined by the quantiles of the infinite
dimensional nuisance parameter estimator.

The paper is organized as follows. The model, its corresponding log likelihood
and a truncated version of the log likelihood are introduced in Section 2. In this
section, we also discuss the advantages of a score approach over the maximum
likelihood characterization. The behavior of the MLE for the distribution function
F0 in case β is not equal to β0 is studied in Section 3. We first construct in Sec-
tion 4, based on a score equation, a

√
n-consistent but inefficient estimate of the
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regression parameter based on the MLE of F0 and show how an estimate of the
density, based on the MLE, can be used to extend the estimate of the regression
parameter to an estimate with an asymptotic variance that is arbitrarily close to the
information lower bound.

Next, we give the asymptotic behavior of a plug-in estimator which is obtained
by a score equation derived from the truncated log likelihood in case a second-
order kernel estimate for the distribution function F0 is considered. We show that
the latter estimator is

√
n-consistent and asymptotically normal with an asymp-

totic variance that is arbitrarily (determined by the truncation device) close to the
information lower bound, just like the estimator based on the MLE we discussed
in the preceding paragraph.

The estimation of an intercept term, that originates from the mean of the error
distribution, is outlined in Section 5. Section 6 contains details on the computa-
tion of the estimates together with the results of our simulation study; a bootstrap
method for selecting a bandwidth parameter is also given. A discussion of our re-
sults is given in Section 7. The Appendix contains the derivation of the efficient
information given in (1.1). The proofs of the results given in this paper are worked
out in the Supplementary Material [10].

2. Model description. Let (Ti,Xi,�i), i = 1, . . . , n be independent and
identically distributed observations from (T ,X,�) = (T ,X,1{Y≤T }). We assume
that Y is modeled as

Y = β ′
0X + ε,(2.1)

where β0 is a k-dimensional regression parameter in the parameter space � and
ε is an unobserved random error, independent of (T ,X) with unknown distribu-
tion function F0. We assume that the distribution of (T ,X) does not depend on
(β0,F0), which implies that the relevant part of the log likelihood for estimating
(β0,F0) is given by

ln(β,F ) =
n∑

i=1

[
�i logF

(
Ti − β ′Xi

) + (1 − �i) log
{
1 − F

(
Ti − β ′Xi

)}]

=
∫ [

δ logF
(
t − β ′x

) + (1 − δ) log
{
1 − F

(
t − β ′x

)}]
dPn(t, x, δ),

(2.2)

where Pn is the empirical distribution of the (Ti,Xi,�i). We will denote the
probability measure of (T ,X,�) by P0. We define the truncated log likelihood
l
(ε)
n (β,F ) by

(2.3)

∫
F(t−β ′x)∈[ε,1−ε]

[
δ logF

(
t − β ′x

)
+ (1 − δ) log

{
1 − F

(
t − β ′x

)}]
dPn(t, x, δ),
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where ε ∈ (0,1/2) is a truncation parameter. Analogously, let

ψ(ε)
n (β,F ) =

∫
F(t−β ′x)∈[ε,1−ε]

φ(t, x, δ)
{
δ − F

(
t − β ′x

)}
dPn(t, x, δ),(2.4)

define the truncated score function for some weight function φ. In this paper,
we consider estimates of β0, derived by the idea of solving a score equation
ψ

(ε)
n (β, F̂β) = 0 where F̂β is an estimate of F for fixed β . A motivation of the

score approach is outlined below. We have three reasons for using the score func-
tion characterization instead of the argmax approach for the estimation of β0:

(i) Our simulation experiments indicate that, even if the profile MLE would be√
n-consistent, its variance is clearly bigger than the other estimates we propose.

(ii) The characterization of β̂n as the solution of a score equation

ψn(β, F̂n,β) = 0

[see, e.g., (2.4)], where F̂n,β is the MLE for fixed β maximizing the log likelihood
defined in (2.2) over all F ∈ F = {F : R → [0,1] : F is a distribution function},
gives us freedom in choosing the function ψn of which we try to find the root β̂n.
Smoothing techniques can be used but are not necessary to obtain

√
n-convergence

of the estimate.
In this paper, we first choose a function ψn, which produces a

√
n-consistent and

asymptotically normal estimate of β0, and does not need any smoothing device.
Just like the Han maximum correlation estimate, this estimate does not attain the
efficiency bound, although the difference between its asymptotic variance and the
efficient asymptotic variance is rather small in our experiments. More details are
given in Section 6.

Next, we choose a function ψn which gives (only depending on our truncation
device) an asymptotic variance which is arbitrarily close to the efficient asymptotic
variance. In this case, we need an estimate of the density of the error distribution
and are forced to use smoothing in the definition of ψn. The estimate, although
efficient in the sense we use this concept in our paper, is not necessarily better in
small samples, though.

(iii) The “canonical” approach to proofs that argmax estimates of β0 are
√

n-
consistent has been provided by [28]. His Theorem 1 says that ‖β̂n − β0‖ =
Op(n−1/2), where ‖ · ‖ denotes the Euclidean norm, if β̂n is the maximizer of
�n(β), with population equivalent �(β) and:

(a) there exists a neighborhood N of β0 and a constant k > 0 such that

�(β) − �(β0) ≤ −k‖β − β0‖2,

for β ∈ N , and
(b) uniformly over op(1) neighborhoods of β0,

�n(β) − �n(β0)

= �(β) − �(β0) + Op

(‖β − β0‖/√n
) + op

(‖β − β0‖2) + Op

(
n−1)

.
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If we try to apply this to the profile MLE β̂n, it is not clear that an expansion of
this type will hold. We seem to get inevitably an extra term of order Op(n−2/3) in
(b), which does not fit into this framework. On the other hand, in the expansion of
our score function ψn, we get that this function is in first order the sum of a term
of the form

ψ ′(β0)(β − β0),

where ψ ′ is the matrix, representing the total derivative of the population equiva-
lent score function ψ , and a term Wn of order Op(n−1/2), which gives

β̂n − β0 ∼ −ψ ′(β0)
−1Wn = Op

(
n−1/2)

,

and here extra terms of order Op(n−2/3) do not hurt. The technical details are
elaborated in the proofs of our main result given in the Supplementary Material
[10].

Before we formulate our estimates, we first describe in Section 3 the behavior
of the MLE F̂n,β for fixed β . Throughout the paper, we illustrate our estimates by
a simple simulated data example; we consider the model Yi = 0.5Xi + εi , where
the Xi and Ti are independent Uniform(0,2) and where the εi are independent
random variables with density f (u) = 384(u − 0.375)(0.625 − u)1[0.375,0.625](u)

and independent of the Xi and Ti . Note that the expectation of the random error
E(ε) = 0.5, our linear model contains an intercept, E(Yi |Xi = xi) = 0.5 + 0.5xi .

REMARK 2.1. We chose the present model as a simple example of a model
for which the (generalized) Fisher information is finite. This Fisher information
easily gets infinite. For example, if F0 is the uniform distribution on [0,1] and X

and T (independently) also have uniform distributions on [0,1] and β = 1/2, the
Fisher information for estimating β is given by∫ 1/2

u=0

(x − 1/2)2

u(1 − u)
dx du +

∫ 1

u=1/2

{x − (1 − u)}2

u(1 − u)
dx du = ∞.

We observed in simulations with the uniform distribution that n times the vari-
ance of our estimates (using ε = 0) steadily decreases with increasing sample
size n, suggesting a faster than

√
n-convergence for the estimate in this model.

The theoretical framework for estimation of models with infinite Fisher informa-
tion falls beyond the scope of this paper. So we chose a model where the ratio
f0(x)2/[F0(x){1 −F0(x)}] stays bounded near the boundary of its support by tak-
ing a rescaled version of the density 6x(1 − x)1[0,1](x) for f0. Note that, if the
Fisher information is infinite, our theory still makes sense for the truncated ver-
sion: ∫

F0(u)∈[ε,1−ε]

∫ 1

x=0

(x −E{X|T − X/2 = u})2f0(u)2

F0(u){1 − F0(u)}
· fX|T −X/2(x|u)fT −X/2(u) dx du,
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corresponding to our truncation of the log likelihood and the score function in the
sequel. For completeness, we included the derivation of the Fisher information
in the Appendix. These calculations provide more insight in the information loss
when one moves from a parametric model where F0 is known to our semiparamet-
ric model with unknown F0.

3. Behavior of the maximum likelihood estimator. For fixed β , the MLE
F̂n,β of ln(β,F ) is a piecewise constant function with jumps at a subset of
{Ti − β ′Xi : i = 1, . . . , n}. Once we have fixed the parameter β , the order statis-
tics on which the MLE is based are the order statistics of the values U

(β)
1 =

T1 − β ′X1, . . . ,U
(β)
n = Tn − β ′Xn and the values of the corresponding �

(β)
i . The

MLE can be characterized as the left derivative of the convex minorant of a cumu-
lative sum diagram consisting of the points (0,0) and(

i,

i∑
j=1

�
(β)
(j)

)
, i = 1, . . . , n,(3.1)

where �
(β)
(i) corresponds to the ith order statistic of the Ti −β ′Xi (see, e.g., Propo-

sition 1.2 in [13] on page 41). We have

P
{
�

(β)
i = 1

∣∣ U
(β)
i = u

} =
∫

F0
(
u + (β − β0)

′x
)
fX|T −β ′X

(
x|T − β ′X = u

)
dx.

Hence, defining

Fβ(u) =
∫

F0
(
u + (β − β0)

′x
)
fX|T −β ′X

(
x|T − β ′X = u

)
dx,(3.2)

we can consider the �
(β)
i as coming from a sample in the ordinary current status

model, where the observations are of the form (U
(β)
i ,�

(β)
i ), and where the obser-

vation times have density fT −β ′X and where �
(β)
i = 1 with probability Fβ(U

(β)
i )

at observation U
(β)
i .

REMARK 3.1. Assume that T and X are continuous random variables, then
we can write

F ′
β(u) =

∫
f0

(
u + (β − β0)

′x
)
fX|T −β ′X(x|u)dx

+
∫

F0
(
u + (β − β0)

′x
) ∂

∂u
fX|T −β ′X(x|u)dx.

Integration by parts on the second term yields∫
F0

(
u + (β − β0)

′x
) ∂

∂u
fX|T −β ′X(x|u)dx

= −(β − β0)
′
∫

f0
(
u + (β − β0)

′x
) ∂

∂u
FX|T −β ′X(x|u)dx.
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This implies

F ′
β(u) =

∫
f0

(
u + (β − β0)

′x
){

fX|T −β ′X(x|u)

− (β − β0)
′ ∂

∂u
FX|T −β ′X(x|u)

}
dx.

Assuming that u �→ fX|T −β ′X(x|u) stays away from zero on the support of f0, this
implies by a continuity argument that Fβ is monotone increasing on the support of
F ′

β for β close to β0.
Also note that we get from the fact that F0 is a distribution function with com-

pact support

lim
u→−∞Fβ(u) = 0 and lim

u→∞Fβ(u) = 1.

So we may assume that Fβ is a distribution function for β close to β0. If X is
discrete, a similar argument can be used to show that Fβ is a distribution function
for β close to β0 under the assumption that u �→ P(X = x|T − β ′X = u) stays
away from zero on the support of f0.

A picture of the MLE F̂n,β , based on the values Ti −βXi , and the corresponding
function Fβ for the model used in our simulation experiment, is shown in Figure 1
and compared with F0. Note that Fβ involves both a location shift and a change in
shape of F0.

For fixed β in a neighborhood of β0, we can now use standard theory for the
MLE from current status theory. The following assumptions are used:

FIG. 1. (a) The real F0 (red, solid), the function Fβ for β = 0.6 (blue, dashed) and the MLE F̂n,β

(step function), for a sample of size n = 1000. (b) The real f0 (red, solid) and the function F ′
β for

β = 0.6 (blue, dashed).
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(A1) The parameter β0 = (β0,1, . . . , β0,k) ∈ Rk is an interior point of � and the
parameter space � is a compact convex set.

(A2) Fβ has a strictly positive continuous derivative, which stays away from
zero on Aε′,β

def= {u : Fβ(u) ∈ [ε′,1 − ε′]} for all β ∈ �, where ε′ ∈ (0, ε).
(A3) The density u �→ fT −β ′X(u) is continuous and also staying away from

zero on Aε′,β for all β ∈ �, where Aε′,β is defined as in (A2).

REMARK 3.2. Note that the truncation is for the interval [ε,1 − ε], but that
we need conditions (A2) and (A3) to be satisfied for the slightly bigger interval
[ε′,1 − ε′].

LEMMA 3.1. If Assumptions (A1), (A2) and (A3) hold, then:

(i) sup
β∈�

∫ {
F̂n,β

(
t − β ′x

) − Fβ

(
t − β ′x

)}2
dG(t, x) = Op

(
n−2/3)

.

(ii) P
(

lim
n→∞ sup

β∈�,u∈Aε′,β

∣∣F̂n,β(u) − Fβ(u)
∣∣ = 0

)
= 1,

where ε′ is chosen as in condition (A2).

PROOF. Part (i) is proved in the Supplementary Material. Using the continuity
and monotonicity of Fβ the second result follows from (i). �

We first show in Section 4.1 that it is possible to construct
√

n-consistent es-
timates of β0 derived from a score function ψ

(ε)
n (β, F̂n,β) without requiring any

smoothing in the estimation process. In Section 4.2, we look at
√

n-consistent and
efficient score-estimates based on the MLE F̂n,β , using a weight function φ that
incorporates the estimate

∫
Kh(u − y)dF̂n,β(y) of the density f0(u) = F ′

0(u). An
efficient estimate of β0 derived by a score function based on kernel estimates for
the distribution function, is considered in Section 4.3. The latter estimate does not
involve the behavior of the MLE F̂n,β .

4.
√

n-Consistent estimation of the regression parameter.

4.1. A simple estimate based on the MLE F̂n,β , avoiding any smoothing. We

consider the function ψ
(ε)
1,n, defined by

ψ
(ε)
1,n(β)

def=
∫
F̂n,β (t−β ′x)∈[ε,1−ε]

x
{
δ − F̂n,β

(
t − β ′x

)}
dPn(t, x, δ),(4.1)

where F̂n,β is the MLE based on the order statistics of the values Ti − β ′Xi , i =
1, . . . , n. The function ψ

(ε)
1,n has finitely many different values, and we look for a

“crossing of zero” to define our estimate.
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FIG. 2. The truncated profile log likelihood l
(ε)
n for the MLE F̂n,β (left panel) and the score func-

tion ψ
(ε)
1,n (right panel) as a function of β for a sample of size n = 100 and ε = 0.001.

Figure 2 gives a picture of the function ψ
(ε)
1,n as a function of β , drawn as a

right-continuous piecewise constant function on a grid of 100 points. Note that this
function can have at most n! different values, for all permutations of the numbers
1, . . . , n. We would like to define the estimate β̂n by

ψ
(ε)
1,n(β̂n) = 0,(4.2)

but it is clear that we cannot hope to achieve that due to the discontinuous nature
of the score function ψ

(ε)
1,n. We therefore introduce the following definition.

DEFINITION 4.1 (Zero-crossing). We say that β∗ is a crossing of zero of a
real-valued function C : � → R : β �→ C(β) if each open neighborhood of β∗
contains points β1, β2 ∈ � such that C̄(β1)C̄(β2) ≤ 0, where C̄ is the closure of
the image of the function.

We say that a k-dimensional function C̃ : � → Rk : β �→ C̃(β) = (C̃1(β), . . . ,

C̃k(β))′ has a crossing of zero at a point β∗ if β∗ is a crossing of zero of each
component C̃j : � →R, j = 1 . . . , k.

We define our estimator β̂n as a crossing of zero of ψ
(ε)
1,n. Figure 2 shows a

crossing of zero at a point β close to β0 = 0.5. If the number of dimensions k

exceeds one, then a crossing of zero can be thought of as a point β∗ ∈ � such
that each component of the score function ψ

(ε)
1,n passes through zero in β = β∗.

Before we state the asymptotic result of our estimator in Theorem 4.1, we give
in Lemma 4.1 below some interesting properties of the population version of the
score function.



CURRENT STATUS REGRESSION 1425

LEMMA 4.1. Let ψ1,ε be defined by

ψ1,ε(β) =
∫
Fβ(t−β ′x)∈[ε,1−ε]

x
{
δ − Fβ

(
t − β ′x

)}
dP0(t, x, δ),(4.3)

and define

Eε,β

(
w(T ,X,�)

) = E
(
1{Fβ(t−β ′x)∈[ε,1−ε]}w(T ,X,�)

)
,

for functions w, then ψ1,ε(β0) = 0 and for each β ∈ � we have:

(i) ψ1,ε(β) = Eε,β

[
Cov

(
�,X|T − β ′X

)]
,

(ii) (β − β0)
′Eε,β

[
Cov

(
�,X|T − β ′X

)] ≥ 0 for all β ∈ �,

and β0 is the only value such that (ii) holds. The derivative of ψ1,ε at β = β0 is
given by

ψ ′
1,ε(β0) = Eε,β0

[
f0

(
T − β ′

0X
)

Cov
(
X|T − β ′

0X
)]

.(4.4)

The proof of Lemma 4.1 is given in the Supplementary Material. An illustration
of the second result (ii) is given in Figure 3. This property is used in the proof of
consistency of our estimator β̂n given in the Supplementary Material.

The following assumptions are also needed for the asymptotic normality results
of our estimators:

(A4) The function Fβ is twice continuously differentiable on the interior of the
support Sβ of fβ = F ′

β for β ∈ �.

FIG. 3. The function β �→ (β − β∗)′ ∫Fβ(t−β ′x)∈[ε,1−ε] x{δ − Fβ(t − β ′x)}dP0(t, x, δ) as a func-
tion of β , with β∗ = 0.45 (black, dashed), β∗ = β0 = 0.50 (red, solid) and β∗ = 0.55 (blue, dashed—
dotted) for ε = 0.001.
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(A5) The density fT −β ′X(u) of T − β ′X and the conditional expectations
E{X|T − β ′X = u} and E{XX′|T − β ′X = u} are twice continuously differen-
tiable functions w.r.t. u, except possibly at a finite number of points. The functions
β �→ fT −β ′X(v), β �→ E{X|T −β ′X = v} and β �→ E{XX′|T −β ′X = v} are con-
tinuous functions, for v in the definition domain of the functions and for β ∈ �.
The density of (T ,X) has compact support.

THEOREM 4.1. Let Assumptions (A1)–(A5) be satisfied and suppose that the
covariance Cov(X,F0(u + (β − β0)

′X)|T − β ′X = u) is not identically zero for
u in the region Aε,β , for each β ∈ �. Moreover, let β̂n be defined by a crossing of

zero of ψ
(ε)
1,n. Then:

(i) [Existence of a root] For all large n, a crossing of zero β̂n of ψ
(ε)
1,n exists

with probability tending to one.
(ii) [Consistency]

β̂n
p→ β0, n → ∞.

(iii) [Asymptotic normality]
√

n{β̂n − β0} is asymptotically normal with mean
zero and variance A−1BA−1, where

A = Eε

[
f0

(
T − β ′

0X
)

Cov
(
X|T − β ′

0X
)]

and

B = Eε

[
F0

(
T − β ′

0X
){

1 − F0
(
T − β ′

0X
)}

Cov
(
X|T − β ′

0X
)]

,

defining Eε(w(T ,X,�)) = E1{F0(t−β ′
0x)∈[ε,1−ε]}w(T ,X,�) for functions w and

assuming that A is nonsingular.

REMARK 4.1. Note that Cov(X,F0(u + (β − β0)
′X)|T − β ′X = u) is not

identically zero for u in the region {u : ε ≤ Fβ(u) ≤ 1 − ε} if the conditional dis-
tribution of X, given T − β ′X = u, is nondegenerate for some u in this region if
F0 is strictly increasing on {u : ε ≤ Fβ(u) ≤ 1 − ε}.

The proof of Theorem 4.1 is given in the Supplementary Material [10]. A picture
of the truncated profile log likelihood l

(ε)
n (β, F̂n,β) and the score function ψ

(ε)
1,n(β)

for β ranging from 0.45 to 0.55 is shown in Figure 2. Note that, since the MLE F̂n,β

depends on the ranks of the Ti − β ′Xi , both curves are piecewise constant where
jumps are possible if the ordering in Ti − β ′Xi changes when β changes. Due to
the discontinuous nature of the profiled log likelihood and the score function, the
estimators are not necessary unique. The result of Theorem 4.1 is valid for any β̂n

satisfying Definition 4.1.
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4.2. Efficient estimates involving the MLE F̂n,β . Let K be a probability den-
sity function with derivative K ′ satisfying:

(K1) The probability density K has support [−1,1], is twice continuously dif-
ferentiable and symmetric on R.

Let h > 0 be a smoothing parameter and Kh respectively K ′
h be the scaled versions

of K and K ′, respectively, given by

Kh(·) = h−1K
(
h−1(·)) and K ′

h(·) = h−2K ′(h−1(·)).
The triweight kernel is used in the simulation examples given in the remainder of
the paper. Define the density estimate

fnh,β

(
t − β ′x

) =
∫

Kh

(
t − β ′x − w

)
dF̂n,β(w).(4.5)

We consider

ψ
(ε)
2,nh(β)

def=
∫
F̂n,β (t−β ′x)∈[ε,1−ε]

xfnh,β

(
t − β ′x

)

· δ − F̂n,β(t − β ′x)

F̂n,β(t − β ′x){1 − F̂n,β(t − β ′x)} dPn(t, x, δ),

(4.6)

and let, analogously to the first estimator defined in the previous section, β̂n be the
estimate of β0, defined by a zero-crossing of the score function ψ

(ε)
2,nh.

THEOREM 4.2. Suppose that the conditions of Theorem 4.1 hold and that
the function Fβ is three times continuously differentiable on the interior of the
support Sβ . Let β̂n be defined by a zero-crossing of ψ

(ε)
2,nh. Then, as n → ∞, and

h 
 n−1/7:

(i) [Existence of a root] For all large n, a crossing of zero β̂n of ψ
(ε)
2,nh exists

with probability tending to one.
(ii) [Consistency]

β̂n
p→ β0, n → ∞.

(iii) [Asymptotic normality]
√

n{β̂n − β0} is asymptotically normal with mean
zero and variance Iε(β0)

−1, where

(4.7) Iε(β0) = Eε

{
f0(T − β ′

0X)2 Cov(X|T − β ′
0X)

F0(T − β ′
0X){1 − F0(T − β ′

0X)}
}
,

which is assumed to be nonsingular.

A picture of the score function ψ
(ε)
2,nh(β) is shown in Figure 4. Note that the

range on the vertical axis is considerably larger than the range on the vertical axis
of the corresponding score function ψ

(ε)
1,n(β).
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FIG. 4. The score functions ψ
(ε)
1,n (left panel) and ψ

(ε)
2,nh (right panel) as a function of β for a

sample of size n = 1000 with ε = 0.001 and h = 0.5n−1/7.

4.3. Efficient estimates not involving the MLE F̂n,β . Define the plug-in esti-
mate

(4.8) Fnh,β

(
t − β ′x

) =
∫

δKh(t − β ′x − u + β ′y)dPn(u, y, δ)∫
Kh(t − β ′x − u + β ′y)dGn(u, y)

,

where Gn is the empirical distribution function of the pairs (Ti,Xi) and where Kh

is a scaled version of a probability density function K , satisfying condition (K1);
the probability measure of (T ,X) will be denoted by G. The plug-in estimates
are not necessarily monotone but we show in Theorem 4.4 that Fnh,β is monotone
with probability tending to one as n → ∞ and β → β0. Another way of writing
Fnh,β is in terms of ordinary sums. Let

gnh,1,β

(
t − β ′x

) = 1

n

n∑
j=1

�jKh

(
t − β ′x − Tj + β ′Xj

)
(4.9)

and

gnh,β

(
t − β ′x

) = 1

n

n∑
j=1

Kh

(
t − β ′x − Tj + β ′Xj

)
,(4.10)

then

Fnh,β

(
t − β ′x

) = gnh,1,β(t − β ′x)

gnh,β(t − β ′x)
=

∑n
j=1 �jKh(t − β ′x − Tj + β ′Xj)∑n

j=1 Kh(t − β ′x − Tj + β ′Xj)
,

in which we recognize the Nadaraya–Watson statistic. One could also omit the di-
agonal term j = i in the sums above when estimating Fnh,β(Ti − β ′Xi), which is
often done in the econometric literature (see, e.g., [15]). In our computer exper-
iments, however, this gave an estimate of the distribution function, which had a
more irregular behavior than the estimator with the diagonal term included.
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If we replace F in (2.3) by Fnh,β , the truncated log likelihood becomes a func-
tion of β only. Although the log likelihood has discontinuities if we consider the
lower and upper boundaries F−1

nh,β(ε) and F−1
nh,β(1 − ε) of the integral also as a

function of β , an asymptotic representation of the partial derivatives of the trun-
cated log likelihood is given by the score function

ψ
(ε)
3,nh(β)

def=
∫
Fnh,β(t−β ′x)∈[ε,1−ε]

∂βFnh,β

(
t − β ′x

)

· δ − Fnh,β(t − β ′x)

Fnh,β(t − β ′x){1 − Fnh,β(t − β ′x)} dPn(t, x, δ),

(4.11)

where the partial derivative of the plug-in estimate Fnh,β(t − β ′x), given by (4.8),
w.r.t. β has the following form:

∂βFnh,β

(
t − β ′x

)
=

∫
(y − x){δ − Fnh,β(t − β ′x)}K ′

h(t − β ′x − u + β ′y)dPn(u, y, δ)

gnh,β(t − β ′x)
,

(4.12)

where gnh,β(t −β ′x) is defined in (4.10). We define the plug-in estimator β̂n of β0
by

ψ
(ε)
3,nh(β̂n) = 0.(4.13)

A picture of the truncated log likelihood l
(ε)
n (β,Fnh,β) and score function ψ

(ε)
3,nh(β)

for the plug-in method is shown in Figure 5. Since Fnh,β(t − β ′x) is continuous,
we no longer need to introduce the concept of a zero-crossing to ensure existence

FIG. 5. The truncated profile log likelihood l
(ε)
n for the plug-in Fnh,β (left panel) and the score

function ψ
(ε)
3,nh (right panel) as a function of β for a sample of size n = 1000 with ε = 0.001 and

h = 0.5n−1/5.
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of the estimator and we can work with the zero of the score function ψ
(ε)
3,nh(β). Our

main result on the plug-in estimator is given below.

THEOREM 4.3. If Assumptions (A1)–(A5) hold and

− (β − β0)
′
∫
Fβ(t−β ′x)∈[ε,1−ε]

∂βFβ

(
t − β ′x

)

· F0(t − β ′
0x) − Fβ(t − β ′x)

Fβ(t − β ′x){1 − Fβ(t − β ′x)} dG(t, x),

(4.14)

is nonzero for each β ∈ � except for β = β0, then for β̂n being the plug-in estima-
tor introduced above, as n → ∞, and h 
 n−1/5:

(i) [Existence of a root] For al large n a point β̂n, satisfying (4.13), exists with
probability tending to one.

(ii) [Consistency]

β̂n
p→ β0, n → ∞.

(iii) [Asymptotic normality]
√

n{β̂n − β0} is asymptotically normal with mean
zero and variance Iε(β0)

−1 where Iε(β0), defined in (4.7), is assumed to be non-
singular.

REMARK 4.2. Note that using an expansion in β −β0, we can write ∂βFβ(t −
β ′x) as∫

(y − x)f0
(
t − β ′

0x + (β − β0)
′(y − x)

)
fX|T −β ′X

(
y|T − β ′X = t − β ′x

)
dy

+
∫

F0
(
t − β ′

0x + (β − β0)
′(y − x)

)
· ∂βfX|T −β ′X

(
y|T − β ′X = t − β ′x

)
dy

= f0
(
t − β ′x

)
E

{
X − x|T − β ′X = t − β ′x

} + O(β − β0)

so that the integral defined in (4.14) can be approximated by

− (β − β0)
′
∫
Fβ(u)∈[ε,1−ε]

f0(u)E
{
X − x|T − β ′X = u

}

· F0(u + (β − β0)
′x) − Fβ(u)

Fβ(u){1 − Fβ(u)} fX|T −β ′X(x|u)dx du

=
∫
Fβ(u)∈[ε,1−ε]

(
f0(u)Cov

(
(β − β0)

′X,F0
(
u + (β − β0)

′X
)|T − β ′X = u

))

· (
Fβ(u)

{
1 − Fβ(u)

})−1
du,
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FIG. 6. The integral defined in (4.14), as a function of β , with ε = 0.001.

which is positive by the monotonicity of F0. (See also the discussion in [21] about
this covariance and the proof of Lemma 4.1 given in the Supplementary Material.)
A crucial property of the covariance used here, showing that the covariance is
nonnegative, goes back to a representation of the covariance in [16], which can
easily be proved by an application of Fubini’s theorem:

EXY − EXEY =
∫ {

P(X ≥ s, Y ≥ t) − P(X ≥ s)P(Y ≥ t)
}
ds dt,

if XY , X and Y are integrable. Figure 6 shows the integral in (4.14) for our simu-
lation model for β ∈ [0.45,0.55] and illustrates that this integral is strictly positive
except for β = β0, which is a crucial property for the proof of the consistency of
the plug-in estimator given in the Supplementary Material [10].

Section 4.3.1 contains a road map of the proof of Theorem 4.3, the proof itself
is given in the Supplementary Material [10]. We also have the following results for
the plug-in estimate.

THEOREM 4.4. Let the conditions of Theorem 4.3 be satisfied, then we have
on each interval I contained in the support of fβ and for each β ∈ �

P {Fnh,β is monotonically increasing on I } p−→ 1.

The proof of Theorem 4.4 follows from the asymptotic monotonicity of the
plug-in estimate in the classical current status model (without regression parame-
ters) and is proved in the same way as Theorem 3.3 of [12].
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THEOREM 4.5. Let the conditions of Theorem 4.3 be satisfied. Then, for β̂n

being the plug-in estimator of β0,

√
n(β̂n − β0) = Iε(β0)

−1
√

n

∑
i∈JF0

f0
(
Ti − β ′

0Xi

){
E

(
Xi |Ti − β ′

0Xi

) − Xi

}

· �i − F0(Ti − β ′
0Xi)

F0(Ti − β ′
0Xi){1 − F0(Ti − β ′

0Xi)} + op(1),

where JH = {i : ε ≤ H(Ti − β ′
0Xi) ≤ 1 − ε} for some function H .

The representation of Theorem 4.5 plays an important role in determining the
variance of smooth functionals, of which the intercept α = ∫

udF0(u) is an exam-
ple. The proof of Theorem 4.5 is given in the Supplementary Material [10]. A simi-
lar representation holds for the estimators defined in Theorem 4.1 and Theorem 4.2
(see the proofs of Theorem 4.1 and 4.2, respectively, given in the Supplementary
Material).

REMARK 4.3. The plug-in method also suggests the use of U-statistics. By
straightforward calculations, we can write the score function defined in (4.11) as

ψ
(ε)
3,nh(β)

= 1

n2

∑
i∈JFnh,β

∂
∂β

Fnh,β(Ti − β ′Xi){�i − Fnh,β(Ti − β ′Xi)}
Fnh,β(Ti − β ′Xi){1 − Fnh,β(Ti − β ′Xi)}

= 1

n2

∑
i∈JFnh,β

∑
j �=i

�i�j (Xj − Xi)K
′
h(Ti − β ′Xi − Tj + β ′Xj)

gnh,1,β(Ti − β ′Xi)

(4.15)

+ 1

n2

∑
i∈JFnh,β

∑
j �=i

(
(1 − �i)(1 − �j)(Xj − Xi)

· K ′
h

(
Ti − β ′Xi − Tj + β ′Xj

))(
gnh,0,β

(
Ti − β ′Xi

))−1

− 1

n2

∑
i∈JFnh,β

∑
j �=i

(Xj − Xi)K
′
h(Ti − β ′Xi − Tj + β ′Xj)

gnh,β(Ti − β ′Xi)
,

where gnh,0,β = gnh,β − gnh,1,β ; see (4.9) and (4.10). Each of the three terms on
the right-hand side of (4.15) can be rewritten in terms of a scaled second order
U-statistics. A proof based on U-statistics requires lengthy and tedious calcula-
tions, which are avoided in the current approach for proving Theorem 4.3. The
representation given in Theorem 4.5 also indicates that the U-statistics representa-
tion does not give the most natural approach to the proof of asymptotic normality
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and efficiency of β̂n. For these reasons, we do not further examine the results on
U-statistics.

REMARK 4.4. We propose the bandwidths h 
 n−1/7 respectively h 
 n−1/5

in Theorem 4.2, respectively Theorem 4.3, which are the usual bandwidths with
ordinary second-order kernels for the estimates of a density, respectively distri-
bution function. Unfortunately, various advices are given in the literature on what
smoothing parameters one should use. [19] has fourth-order kernels and uses band-
widths between the orders n−1/6 and n−1/8 for the estimation of F . Note that the
use of fourth-order kernels needs the associated functions to have four deriva-
tives in order to have the desired bias reduction. [4] advises a bandwidth h such
that n−1/5 � h � n−1/8, excluding the choice h 
 n−1/5. Both ranges are con-
siderably large and exclude our bandwidth choice h 
 n−1/5. [22] considers a
penalized maximum likelihood estimator where the penalty parameter λn satisfies
1/λn = Op(n2/5) and λ2

n = op(n−1/2). Translated into bandwidth choice (using
hn 
 √

λn), the conditions correspond to: n−1/5 � h � n−1/8, suggesting that their
conditions do allow the choice h 
 n−1/5 for estimating the distribution function.

4.3.1. Road map of the proof of Theorem 4.3. The older proofs of a result of
this type always used second derivative calculations. As convincingly argued in
[30], proofs of this type should only use first derivatives and that is indeed what
we do. The limit function Fβ of the estimates for F0 when β �= β0 plays a crucial
role in our proofs. We first prove the consistency of the plug-in estimate β̂n. Next,
we use a Donsker property for the functions representing the score function and
prove that the integral w.r.t. dPn of this score function is

op

(
n−1/2 + β̂n − β0

)
,

and that the integral w.r.t. dP0 is asymptotically equivalent to

−(β̂n − β0)Iε(β0),

where Iε(β0) is the generalized Fisher information, given by (4.7). Combining
these results give Theorem 4.3. Very essential in this proof are L2-bounds on the
distance between the functions Fnh,β to its limit Fβ for fixed β and on the L2-
distance between the first partial derivatives ∂βFnh,β and ∂βFβ . If the bandwidth
h 
 n−1/5, the first L2-distance is of order n−2/5 and the second distance is of
order n−1/5, allowing us to use the Cauchy–Schwarz inequality on these compo-
nents. Here, we use a result in [9] on L2 bounds of derivatives of kernel density
estimates.

In Section 5, we discuss the estimation of an efficient estimate of the intercept
term in regression model (2.1) using the plug-in estimates β̂n and F

nh,β̂n
.
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4.4. Truncation. We introduced a truncation device in order to avoid un-
bounded score functions and numerical difficulties. If one starts with the effi-
cient score equation or an estimate thereof, the solution sometimes suggested in
the literature, is to add a constant cn, tending to zero as n → ∞, to the factor
F(t − β ′x){1 − F(t − β ′x)}, which inevitably will appear in the denominator.
This is done in, for example, [21]; similar ideas involving a sequence (cn) are used
in [19] and [4].

In contrast with the usual approaches to truncation, which imply the selection
of a suitable sequence cn, we do not consider a vanishing truncation sequence but
work with a subsample of the data depending on the ε and (1 − ε) quantiles of the
distribution function estimate for small but fixed ε ∈ (0,1/2). This simple device
in (2.3) moreover implies keeping the characterizing properties of the MLE (see
Proposition 1.1 on page 39 of [13]), which are lost when a vanishing sequence
is considered. It is perhaps somewhat remarkable that we can, instead of letting
ε ↓ 0, fix ε > 0 and still have consistency of our estimators; on the other hand,
the estimate proposed by [22] is also identified via a subset of the support of the
distribution F0.

Although the truncation area depends on β , we show in the Supplementary Ma-
terial [10] (see the proof of Theorem 4.1) that the population version of the score
function, given by

ψε(β) =
∫
Fβ(t−β ′x)∈[ε,1−ε]

φ(t, x, δ)
{
δ − Fβ

(
t − β ′x

)}
dP0(t, x, δ),(4.16)

has a derivative at β = β0 that only involves the derivative of the integrand in
(4.16), but does not involve terms arising from the truncation limits appearing in
the integral. Using the truncation in the argmax maximum log likelihood approach
would not lead to a derivative of the population version of the log likelihood, which
ignores the boundaries and, therefore, this truncation is less suited for argmax es-
timators.

A drawback of our fixed truncation parameter approach is that we get a trun-
cated Fisher information. The resulting estimates are therefore not efficient in the
classical sense of efficiency but the difference between the efficient variance and
almost (determined by the size of ε) efficient variance is rather small in our simu-
lation models. We also tried to program the fully efficient estimators proposed by
[21] and compared its performance to the performance of our almost-efficient esti-
mators. The comparison showed that our estimates perform better in finite samples.
Moreover, the estimates by [21] involve several kernel density estimates, resulting
in a very large computation time compared to our simple estimates (involving 5
double summations over the data points).

Moreover, the usual conditions in the theory of estimation of F0 under current
status and, more generally, interval censored data are that F0 corresponds to a dis-
tribution with compact support. Otherwise, certain variances easily get infinite, and
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similarly, the Fisher information in our model can easily become infinite. Truncat-
ing by keeping the quantiles between ε and 1−ε avoids difficulties in this case and
allows us to apply the theory, which presently has been developed for the current
status model.

Note that the score function defined in (4.1) does not contain a factor F(t −
β ′x) or 1 − F(t − β ′x) in the denominator. For simplicity of the proofs, we still
impose the truncation area, since the classical results for the current status model
are derived under the assumption that the density f0 is bounded away from zero.
We conjecture however that the result of Theorem 4.1 remains valid when taking
ε = 0.

5. Estimation of the intercept. We want to estimate the intercept

(5.1) α =
∫

udF0(u).

We can take the plug-in estimate β̂n of β0, by using a bandwidth of order n−1/5

and the score procedure, as before. However, in estimating α, as defined by (5.1),
we have to estimate F0 with a smaller bandwidth h, satisfying h � n−1/4 to avoid
bias, for example, h 
 n−1/3. The matter is discussed in [4], page 1253.

We have the following result of which the proof can be found in the Supplemen-
tary Material [10].

THEOREM 5.1. Let the conditions of Theorem 4.3 be satisfied, and let β̂n be
the k-dimensional estimate of β0 as obtained by the score procedure, described in
Theorem 4.3, using a bandwidth of order n−1/5. Let F

nh,β̂n
be a plug-in estimate of

F0, using β̂n as the estimate of β0, but using a bandwidth h of order n−1/3 instead
of n−1/5. Finally, let α̂n be the estimate of α, defined by∫

udF
nh,β̂n

(u).

Then
√

n(α̂n − α) is asymptotically normal, with expectation zero and variance

σ 2 def= a(β0)
′Iε(β0)

−1a(β0) +
∫

F0(v){1 − F0(v)}
fT −β ′

0X
(v)

dv,(5.2)

where a(β0) is the k-dimensional vector, defined by

a(β0) =
∫

E
{
X|T − β ′

0X = u
}
f0(u) du,

and Iε(β0) is defined in (4.7).

REMARK 5.1. We choose the bandwidth of order n−1/3 for specificity, but
other choices are also possible. We can in fact choose n−1/2 � h � n−1/4. The
bandwidth of order n−1/3 corresponds to the automatic bandwidth choice of the
MLE of F0, also using the estimate β̂n of β0.
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REMARK 5.2. Note that the variance corresponds to the information lower
bound for smooth functionals in the binary choice model, given in [4]. The second
part of the expression for the variance on the right-hand side of (5.2) is familiar
from current status theory; see, for example, (10.7), page 287 of [11].

Instead of considering the plug-in estimate, we could also consider the estimates
described in Theorem 4.1 and Theorem 4.2. After having determined an estimate
β̂n in this way, we next estimate α by

(5.3) α̂n =
∫

x dF̂
n,β̂n

(x),

where F̂
n,β̂n

is the MLE corresponding to the estimate β̂n. The theoretical jus-
tification of this approach can be proved using the asymptotic theory of smooth
functionals given in [11], page 286. Using the MLE F̂

n,β̂n
instead of the plug-in

F
nh,β̂n

as an estimate of the distribution function F0, avoids the selection of a band-
width parameter for the intercept estimate. We discuss in the next section how the
bandwidth can be selected by the practitioner in a real data sample.

6. Computation and simulation. The computation of our estimates is rela-
tively straightforward in all cases. For the score-estimates defined in Sections 4.1
and 4.2, we first compute the MLE for fixed β by the so-called “pool adjacent
violators” algorithm for computing the convex minorant of the “cusum diagram”
defined in (3.1). If the MLE has been computed for fixed β , we can compute the
density estimate fnh. The estimate of β0 is then determined by a root-finding algo-
rithm such as Brent’s method. Computation is very fast. For the plug-in estimate,
we simply compute the estimate Fnh,β as a ratio of two kernel estimators for fixed
β and then compute the derivative w.r.t. β . Next, we use again a root-finding algo-
rithm to determine the zero of the corresponding score function.

Some results from the simulations of our model are available in Table 1, which
contains the mean value of the estimate, averaged over N = 10,000 iterations,
and n times the variance of the estimate of β0 = 0.5 (resp., α0 = 0.5) for the
different methods described above, as well as for the classical MLE of β0, for
different sample sizes n and a truncation parameter ε = 0.001. We took the band-
width h = 0.5n−1/7 for the efficient score-estimate of Section 4.2. The bandwidth
h = 0.5n−1/5 for the plug-in estimate of Section 4.3 was chosen based on an inves-
tigation of the mean squared error (MSE) for different choices of c in h = cn−1/5.
Details on how to choose the bandwidth in practice are given in Section 6.1. The
true asymptotic values for the variance of

√
n(β̂n − β0) in our simulation model,

obtained via the inverse of the Fisher information Iε(β0), are 0.151707 without
truncation and 0.158699 for ε = 0.001 and 0.17596 for ε = 0.01. We advise to use
a truncation parameter ε of 0.001 or smaller in practice. The variance defined in
Theorem 4.1 for ε = 0.001 is 0.193612. The lower bounds for the variance of the
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TABLE 1
The mean value of the estimate and n times the variance of the estimates of β0 and α0 for different methods, hβ = 0.5n−1/7 (for the efficient score

method), hβ = 0.5n−1/5 and hα = 0.75n−1/3 (for the plug-in method), ε = 0.001 and N = 10,000

Score-1 Score-2 Plugin MLE

n mean n × var mean n × var mean n × var mean n × var

β 100 0.500212 0.364558 0.502247 0.410449 0.499562 0.245172 0.489690 0.307961
500 0.499845 0.221484 0.499825 0.230178 0.498857 0.191857 0.499315 0.228335

1000 0.499982 0.211608 0.500353 0.208102 0.499502 0.192223 0.499937 0.228420
5000 0.499901 0.195294 0.499964 0.184807 0.500314 0.181421 0.499933 0.239898

10,000 0.499988 0.191115 0.499985 0.172758 0.500120 0.172043 0.499994 0.227222
20,000 0.500038 0.187616 0.500023 0.169762 0.500096 0.174197 0.499952 0.238400

α 100 0.511937 0.468415 0.509679 0.515638 0.495709 0.332949 0.523103 0.425614
500 0.502258 0.293585 0.502506 0.287576 0.498932 0.254040 0.502514 0.304540

1000 0.500839 0.284958 0.500616 0.262684 0.498385 0.270085 0.500937 0.300201
5000 0.500345 0.262566 0.500316 0.244892 0.501597 0.241294 0.500270 0.303754

10,000 0.500127 0.256983 0.500134 0.232973 0.501680 0.245993 0.500076 0.289905
20,000 0.500020 0.250720 0.500042 0.230901 0.501660 0.244042 0.500101 0.302824
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intercept are 0.257898 for the simple score method and 0.222984 for the efficient
methods. Our results show slow convergence to these bounds.

Table 1 shows that the efficient score and the efficient plug-in methods perform
reasonably well. A drawback of the plug-in method however is the long comput-
ing time for large sample sizes, whereas the computation for the MLE is fast even
for the larger samples. Note moreover that the plug-in estimate is only asymptot-
ically monotone whereas the MLE is monotone by definition. All our proposed
estimates perform better than the classical MLE; the log likelihood for the MLE
has moreover a rough behavior, with a larger chance that optimization algorithms
might calculate a local maximizer instead of the global maximizer.

The performance of the score estimates is worse than the performance of the
plug-in estimates for small sample sizes but increases considerably when the sam-
ple size increases. Although the asymptotic variance of the first score-estimator of
Section 4.1 is larger than the (almost, determined by the truncation parameter ε)
efficient variance, the results obtained with this method are noteworthy seen the
fact that no smoothing is involved in this simple estimation technique.

Table 1 does not provide strong evidence of the
√

n-consistency of the classical
MLE, but we conjecture that the MLE is indeed

√
n-consistent but not efficient.

Considering the drawbacks of the classical MLE, we advise the use of the plug-in
estimate for small sample sizes and the use of the score estimates, based on the
MLE, for larger sample sizes, for estimating the parameter β0. We finally sug-
gest to estimate the parameter α0 via the MLE corresponding to this β0-estimate,
avoiding in this way the bias problem for the kernel estimates of α0.

6.1. Bandwidth selection. In this section, we discuss the bandwidth selection
for the plug-in estimate. A similar idea can be used for the selection of the band-
width used for the second estimate defined in Section 4.2. We define the optimal
constant copt in h = cn−1/5 as the minimizer of MSE,

copt = arg min
c

MSE(c) = arg min
c

Eβ0(β̂n,hc − β0)
2,

where β̂n,hc is the estimate obtained when the constant c is chosen in the estimation
method. A picture of the Monte Carlo estimate of MSE as a function of c is shown
for the plug-in method in Figure 7, where we estimated MSE(c) on a grid c =
0.01,0.05,0.10, . . . ,0.95, for a sample size n = 1000 and truncation parameter
ε = 0.001 by a Monte Carlo experiment with N = 1000 simulation runs,

M̂SE(c) = N−1
N∑

j=1

(
β̂

j
n,hc

− β0
)2

,(6.1)

where β̂
j
n,hc

is the estimate of β0 in the j th simulation run, j = 1, . . . ,N .
Since F0 and β0 are unknown in practice, we cannot compute the actual MSE.

We use the bootstrap method proposed by [26] to obtain an estimate of MSE. Our
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FIG. 7. Estimated MSE(c) plot of β̂n obtained from N = 1000 Monte Carlo simulations (red, solid)
versus the bootstrap MSE for c0 = 0.25 (blue, dashed) with B = 10,000, n = 1000 and ε = 0.001.

proposed estimate Fnh,β of the distribution function F0 satisfies the conditions
of Theorem 3 in [26] and the consistency of the bootstrap is guaranteed. Note
that it follows from [20] and [25] that naive bootstrapping, by resampling with
replacement (Ti,Xi,�i), or by generating bootstrap samples from the MLE, is
inconsistent for reproducing the distribution of the MLE.

The method works as follows. We let h0 = c0n
−1/5 be an initial choice of the

bandwidth and calculate the plug-in estimates β̂n,h0 and Fn,hc0
based on the origi-

nal sample (Ti,Xi,�i), i = 1, . . . , n. We generate a bootstrap sample (Xi, Ti,�
∗
i ),

i = 1, . . . , n where the (Ti,Xi) correspond to the (Ti,Xi) in the original sample
and where the indicator �∗

i is generated from a Bernoulli distribution with proba-
bility Fn,h0(Ti − β̂n,h0Xi), and next estimate β̂∗

n,hc
from this bootstrap sample. We

repeat this B times and estimate MSE(c) by

̂MSEB(c) = B−1
B∑

b=1

(
β̂∗b

n,hc
− β̂n,hc0

)2
,(6.2)

where β̂∗b
n,hc

is the bootstrap estimate in the bth bootstrap run. The optimal band-
width ĥopt = ĉoptn

−1/5 where ĉopt is defined as the minimizer of ̂MSEB(c).
To analyze the behavior of the bootstrap method, we compared the Monte Carlo

estimate of MSE, defined in (6.1), (based on N = 1000 samples of size n = 1000)
to the bootstrap MSE defined in (6.2) (based on a single sample of size n = 1000)
in Figure 7. The figure shows that the Monte Carlo MSE and the bootstrap MSE
are in line, which illustrates the consistency of the method. The choice of the initial
bandwidth does affect the size of the estimated MSE but not the behavior of the
estimate, and we conclude that this bootstrap algorithm can be used to select an
optimal bandwidth parameter in the described method above.
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7. Discussion. In this paper, we propose a simple
√

n-consistent estimate
for the finite dimensional regression parameter in the semiparametric current sta-
tus linear regression model with unspecified error distribution. The estimate has
an asymptotically normal limiting distribution but does not attain the efficiency
bounds. We also consider two different methods to obtain

√
n-consistent and

asymptotic normal estimates with an asymptotic variance that is arbitrarily close to
the efficient variance. The first approach uses the MLE for the distribution function
F for fixed β , the second approach does not depend on the behavior of this MLE
but uses a kernel estimate for the distribution function. All proposed estimates are
defined as a root of a score function as a function of β .

We introduced a truncation device to avoid theoretical and numerical difficulties
caused by unbounded score functions. The truncation is carried out by considering
a subsample of the data depending on the ε and 1 − ε quantiles of the distribution
function estimate. Although our estimates do not attain the efficiency bound, the
proposed method allows for easy computation of the estimates without the need for
selecting a truncation sequence converging to zero. Achieving efficiency at the cost
of additional computational complexities associated with smoothing procedures
and truncation sequence selection results in only a small asymptotic efficiency
gain and does not seem to improve the performance of our simple methods.

The estimates based on the efficient score function depending on the MLE for
F0 for fixed β have a slightly better performance than the estimates based on the
smooth score function depending on the plug-in estimates for F0 when the sample
size is large. For small samples, none of the MLE-based estimates comes out as
uniformly best.

APPENDIX

In this section, we include the derivation of the efficient information bound for
the current status linear regression model. The proofs of the results given in Sec-
tions 3, 4 and 5 are deferred to the Supplementary Material [10].

A.1. Efficient information in the current status linear regression model.
The density of one observation in the current status linear regression model is

pβ,F (t, x, δ) = F
(
t − β ′x

)δ{1 − F
(
t − β ′x

)}1−δ
fT ,X(t, x).

We assume that the distribution of (T ,X) does not depend on (β,F ), which im-
plies that the relevant part of the log likelihood is given by

ln(β,F ) =
n∑

i=1

[
�i logF

(
Ti − β ′Xi

) + (1 − �i) log
{
1 − F

(
Ti − β ′Xi

)}]
.

If the distribution F is known (parametric case), the information for β is given by

IP (β) = E

((
∂

∂β
logpβ,F (T ,X,�)

)′( ∂

∂β
logpβ,F (T ,X,�)

))
.
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Straightforward calculations yield

IP (β)ij =
∫

E(XiXj |T − β ′X = u)

F (u){1 − F(u)} f (u)2fT −β ′X(u)du,

where f = F ′ and where fT −β ′X is the density of T − β ′X. When F is unknown,
we need to calculate the efficient score function. Let F and P0 be the proba-
bility measures of ε and (T ,X,�), respectively, and let L0

2(Q) be the Hilbert
space of square integrable functions a with respect to the measure dQ satisfying∫

adQ = 0. The score operator lF : L0
2(F ) �→ L0

2(P0) is defined by

[lF a](t, x, δ) = E
(
a(ε)|(T ,X,�) = (t, x, δ)

)

= δ
∫ t−β ′x
−∞ a(s) dF (s)

F (t − β ′x)
− (1 − δ)

∫ t−β ′x
−∞ a(s) dF (s)

1 − F(t − β ′x)
,

with adjoint, [
l∗F b

]
(e) = E

(
b(T ,X,�)|ε = e

)
.

The information for β in the semiparametric model is defined by

I (β) = E
(
�̃β,F (T ,X,�)′�̃β,F (T ,X,�)

)
,

where �̃β,F (t, x, δ) is the efficient score function defined by

�̃β,F (t, x, δ) = �β(t, x, δ) − [�F a∗](t, x, δ),

where

�β(t, x, δ) = ∂

∂β
logpβ,F (t, x, δ) = −δxf (t − β ′x)

F (t − β ′x)
+ (1 − δ)xf (t − β ′x)

1 − F(t − β ′x)
,

and �F a∗ satisfies

�∗
F �F a∗ = �∗

F �β.(A.1)

The efficient score �̃β,F can be interpreted as the residual of �β projected in the
space spanned by �F a for a ∈ L0

2(F ). Note that, as a consequence of (A.1), the
efficient information is

I (β) = E
(
�̃β,F (T ,X,�)′�β(T ,X,�)

)
.

To find a∗, we have to solve (A.1),

�∗
F �F a∗(e) =

∫ ∞
e

φ(u)

F (u)
fT −β ′X(u)du −

∫ e

−∞
φ(u)

1 − F(u)
fT −β ′X(u)du

= −
∫ +∞
e

E(X|T − β ′X = u)f (u)

1 − F(u)
fT −β ′X(u)du

(A.2)

+
∫ e

−∞
E(X|T − β ′X = u)f (u)

1 − F(u)
fT −β ′X(u)du

= �∗
F �β(e),
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where φ(t) = ∫ t
−∞ a(s) dF (s). Equation (A.2) is satisfied with

φ(u) = −E(X|T − β ′X = u)f (u).

Any a∗ that satisfies the above equation satisfies (A.1) and we get

�̃β,F (t, x, δ) = {
E

(
X|T − β ′X = t − β ′x

) − x
}
f

(
t − β ′x

)
·
{

δ

F (t − β ′x)
− 1 − δ

1 − F(t − β ′x)

}

and

(A.3) I (β)ij =
∫ Cov(Xi,Xj |T − β ′X = u)

F (u){1 − F(u)} f (u)2fT −β ′X(u)du.

Note that I (β)−1 − IP (β)−1 equals the minimal increase of the variance of an
estimator for β based on an unknown F (semiparametric case) compared to the
situation where F is known (parametric). In our simulation example, IP (β) =
26.3667 and I (β) = 6.5917.
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SUPPLEMENTARY MATERIAL

Supplement to “Current status linear regression” (DOI: 10.1214/17-AOS
1589SUPP; .pdf). We give the proofs of the results stated in Sections 3, 4 and 5 of
the manuscript.
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