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CONSISTENCY OF AIC AND BIC IN ESTIMATING THE NUMBER
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Hiroshima University

In this paper, we study the problem of estimating the number of signifi-
cant components in principal component analysis (PCA), which corresponds
to the number of dominant eigenvalues of the covariance matrix of p vari-
ables. Our purpose is to examine the consistency of the estimation criteria
AIC and BIC based on the model selection criteria by Akaike [In 2nd In-
ternational Symposium on Information Theory (1973) 267–281, Akadémia
Kiado] and Schwarz [Estimating the dimension of a model 6 (1978) 461–
464] under a high-dimensional asymptotic framework. Using random ma-
trix theory techniques, we derive sufficient conditions for the criterion to be
strongly consistent for the case when the dominant population eigenvalues
are bounded, and when the dominant eigenvalues tend to infinity. Moreover,
the asymptotic results are obtained without normality assumption on the pop-
ulation distribution. Simulation studies are also conducted, and results show
that the sufficient conditions in our theorems are essential.

1. Introduction. Principal component analysis (PCA) is a widely used tech-
nique for reducing the dimensionality of data which are in the form of n observa-
tions of p variables. An important issue in the application of PCA is to determine
the number of significant components [see, e.g., Jolliffe (2002), Ferré (1995)],
which is also called the dimensionality in PCA. Let λ1 ≥ · · · ≥ λp be the popula-
tion eigenvalues of the covariance matrix � of a p-dimensional random vector y.
As an approach to determine the dimensionality, we consider a spike covariance
structure model proposed by Johnstone (2001) in which the number of dominant
eigenvalues is k, that is,

(1.1) Mk : λk > λk+1 = · · · = λp = λ.

Here, M0 refers to λ1 = · · · = λp = λ.

Received October 2015; revised January 2017.
1Supported by NSFC 11571067 and 11471140.
2Supported by the Singapore Ministry of Education Academic Research Fund R-155-000-141-112.
3Supported by the Ministry of Education, Science, Sports, and Culture, a Grant-in-Aid for Scien-

tific Research (C), #25330038, 2013–2015.
MSC2010 subject classifications. Primary 62H12; secondary 62H30.
Key words and phrases. AIC, BIC, consistency, dimensionality, high-dimensional framework,

number of significant components, principal component analysis, random matrix theory, signal pro-
cessing, spiked model.

1050

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1577
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


CONSISTENCY OF HIGH-DIMENSIONAL AIC AND BIC 1051

If Mk is true, we say that the true dimensionality or the true number of signifi-
cant components is k. The model Mk was used by Bai, Miao and Rao (1990) in the
problem of estimating the direction of signals. Spike models find wide applications
in A.I. such as face, handwriting and speech recognition, in wireless communica-
tion, statistical learning, etc. For further results and applications, see Paul (2007)
and Johnstone and Lu (2009) and the references therein. The number, k, in this
work is respectively referred to as the number of signals and the number of spikes.

In general, the number of significant components, k, is unknown, and we need
to estimate it. Specifically, let y1, . . . ,yn be a random sample of size n from a p-
dimensional population with mean μ and covariance matrix �, and let Sn be the
sample covariance matrix given by

(1.2) Sn = 1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)�,

where ȳ = (1/n)
∑n

i=1 yi . Based on the sample, we estimate the dimensionality by
selecting an appropriate model from the set {M0,M1, . . . ,Mp−1}. In particular, a
traditional way is to test M0,M1, . . . , sequentially until an Mj is accepted accord-
ing to certain selection criterion. Here, we consider two estimation criteria AIC
and BIC based on the decision rules of Akaike (1973) and that of Schwarz (1978),
respectively.

We shall discuss p < n first. With

Cp,n = n log
(
(n − 1)/n

)p + np
{
1 + log(2π)

}
,

we consider [see, e.g., Fujikoshi, Ulyanov and Shimizu (2010), Fujikoshi and
Sakurai (2016a)]

AICj = n log(�1p · · ·�jp) + n(p − j) log �̄jp + 2dj + Cp,n,(1.3)

BICj = n log(�1p · · ·�jp) + n(p − j) log �̄jp + (logn)dj + Cp,n,(1.4)

where �1p > · · · > �pp are the sample eigenvalues of Sn, and for 1 ≤ j ≤ p − 1,
�̄jp is the arithmetic mean of �j+1,p, . . . , �pp , that is,

(1.5) �̄jp := 1

p − j

p∑
t=j+1

�tp.

Furthermore, dj denotes the number of independent parameters for � and μ

under Mj which is given by

dj = pj − 1

2
j (j + 1) + j + 1 + p

= (j + 1)(p + 1 − j/2).

(1.6)
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Then the AIC and BIC select respectively the number of significant components
according to

k̂A = arg min
j

AICj and k̂B = arg min
j

BICj .

When we are interested in only the first q models Mj , j = 0,1, . . . , q − 1,
then the criteria are defined by considering the minimum only with respect to
j = 0,1, . . . , q − 1. We call q the number of candidate models. Instead of AICj

and BICj , it is equivalent to consider

(1.7) Aj = 1

n
(AICj − AICp−1), Bj = 1

n
(BICj − BICp−1).

Motivated by numerous modern data structure in which p > n, we extend our
study to cover this situation in Section 3.2. We modify the definition of (1.5) to
(3.11), and propose to use the modified criteria Ãj and B̃j .

In general, under a large-sample asymptotic framework, in which p is fixed and
n goes to infinity, it has been pointed out in various models that AIC is not consis-
tent, but BIC is; see, for example, Shibata (1976), Nishii (1984), Nishii, Bai and
Krishnaiah (1988) and Gunderson and Muirhead (1997). Similar selection consis-
tency results in PCA are shown by Zhao, Krishnaiah and Bai (1986) and Fujikoshi
and Sakurai (2016a). However, under some high-dimensional models, different
consistency behaviour of these model selection criteria are noted. For example,
in a regression model, AIC is asymptotically efficient when the true model is in-
finite. These were discussed by Shibata (1976), Shao (1997), Yang (2005), etc.
Kim, Kwon and Choi (2012) studied model selection consistency when the num-
ber of regressors exceeds the sample size. Further, in the high-dimensional multi-
variate model with p-variate such that both p and n tend to infinity, consistency
properties of model selection criteria have been shown: Fujikoshi, Sakurai and
Yanagihara (2014) and Yanagihara, Wakaki and Fujikoshi (2015) showed that in
multivariate regression model there are cases in which AIC is consistent, but BIC
is not. Fujikoshi and Sakurai (2016b) discussed consistency properties of model
selection criteria for estimating the reduced rank in the multivariate linear model.

In general, methods based on model selection criteria encounter computational
problems as the number of candidate models increases. For such cases, we need
to use some conventional methods such as stepwise methods. Methods based on
model selection criteria in the context of this paper do not suffer a computational
problem, since the number of candidate models is p. If we can know the dimen-
sionality k, it is expected that the statistical interpretation will becomes easy. Fur-
ther, it makes the estimation problem of principal components more efficient. Re-
cently, there are many works on modifying principal components based on the
penalized method for high dimension, which are called sparse principal compo-
nents. See, for example, Jolliffe, Trendafilov and Uddin (2003), Zou, Hastie and
Tibshirani (2006) and Johnstone and Lu (2009).
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Our purpose is to study the consistency of the estimation criteria AIC and
BIC under a high-dimensional asymptotic framework where p,n → ∞ such that
p/n → c > 0. It is assumed that the true number of significant components, k, is
fixed; and that the number of candidate models q satisfies q > k. We want to high-
light some results in this paper. For 0 < c < 1, Theorem 3.1 states that if the largest
population eigenvalue remains bounded, AIC is strongly consistent under the “gap
condition” (C3), but BIC is not. Furthermore, if the dominant k population eigen-
values tend to infinity, AIC is always strongly consistent regardless of whether the
gap condition holds. If the dominant k population eigenvalues tend to infinity with
a rate faster than logn, Theorem 3.2 shows that BIC is strongly consistent as well.
These results are extended to c > 1.

Our main results are obtained by techniques from random matrix theory (RMT).
An attractive feature of our results is that we require very mild distributional as-
sumption on the population: finite fourth moment. In particular, the results hold
without assuming normality. Two new results, Lemmas 2.2 and 2.3, on the lim-
iting behaviors of the sample eigenvalues are of independent interests. The first
describes the limiting behaviors of the sample eigenvalues when the dominant pop-
ulation eigenvalues tend to infinity. The second is concerned with the monotonicity
of the ratio of quantiles of Marčenko–Pastur (MP) distribution.

This paper is organized as follows. In Section 2, we recall some basic results on
RMT and state the two new lemmas. Main results on strong consistency of AIC
and BIC are stated and proved in Section 3, first for c < 1 (Section 3.1) and then for
c > 1 (Section 3.2). In Section 4, we present the results of our simulation studies.
They show that the gap condition (C3) for 0 < c < 1 or (C5) for c > 1; and the
finite fourth moment condition are essential for the selection consistency of AIC.
We end our paper with some concluding remarks and conjectures in Section 5.
Proofs of Lemmas 2.2 and 2.3 are given in the Appendix.

2. Notation and preliminary lemmas. In this section, we introduce our nota-
tion and some of the conditions for our main results to hold. Let y1, . . . ,yn denote
a sample of size n from a p-dimensional population of mean vector μ and covari-
ance matrix �. Let λ1 ≥ · · ·λk > λk+1 = · · · = λp = 1 be the eigenvalues of �.
Since the context is clear, for the sake of simplifying notation, we suppress the
dependence of p on n, and �, λ1, λ2 . . . , on p. As we are concerned with the sam-
ple eigenvalues of the covariance matrix of the yj ’s, (1.2), we can assume μ = 0
without loss of generality. Furthermore, we assume yj = �1/2xj for j = 1, . . . , n

where xk = (x1k, . . . , xpk)
�, and {xij , i = 1, . . . , p; j = 1, . . . , n} is a double array

of i.i.d. random variables with mean 0, variance 1 with finite fourth moment. Let
x̄ = 1

n

∑n
k=1 xk , the covariance matrix of the xj ’s is similarly denoted as

(2.1) Snx = 1

n − 1

n∑
j=1

(xj − x̄)(xj − x̄)�.
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Assume that

p/n → c > 0.(C1)

λ1 ≥ · · · ≥ λk > λk+1 = · · · = λp = λ = 1.(C2)

We wish to point out that (C2) implies that the empirical spectral distribution
(ESD) of � converges weakly to the limiting spectral distribution (LSD) H(·) =
I (1 ≤ ·) as p → ∞.

Denote the eigenvalues of Sn as �1p > �2p > · · · > �pp > 0. Recall the empirical
spectral distribution (ESD) of Sn is given by

Fn(x) = 1

p

p∑
i=1

I(−∞,x](�ip),

where IA(·) is the indicator function of A. With probability 1, Fn(x)
w→ Fc(x).

Here, for 0 < c ≤ 1, Fc is given as

F ′
c(x) = fc(x) =

⎧⎨⎩
1

2πxc

√
(b − x)(x − a) if x ∈ (a, b),

0 otherwise,

where a = (1 − √
c)2 and b = (1 + √

c)2.
If c > 1, Fc has a point mass 1 − 1/c at the origin, that is,

Fc(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x < 0,

1 − 1/c if 0 ≤ x < a,

1 − 1/c +
∫ x

a
fc(t) dt if a ≤ x ≤ b,

where a and b are the same as in the case 0 < c ≤ 1. We remark that
∫ b
a fc(t) dt = 1

or 1/c according to c ≤ 1 or c > 1, respectively.
By a result of Silverstein (1995), the ESD of Snx also converges weakly to Fc as

n → ∞ under condition (C2) where the number of spikes, k, is fixed or k = o(n).
From the MP law, we have the easy consequence that if i/p → α ∈ (0,1), then
�ip

a.s.→ μ1−α , where μα is the α-quantile of the MP law, that is, Fc(μα) = α.
The ith largest eigenvalue, λi , of � is said to be a distant spiked eigenvalue

if ψ ′(λi) > 0 where ψ(x) = x + cx/(x − 1). Equivalently, λi is a distant spiked
eigenvalue if λi > 1 + √

c.
Our definition above and Lemma 2.1 below are a special case of a more general

definition and result in Bai and Yao (2012).

LEMMA 2.1. Let �ip denote the ith largest eigenvalue of Sn in (1.2). Suppose
that E(x4

11) < ∞, (C1) and (C2) hold, and that λ1 is bounded:

(i) If λi is a distant spiked eigenvalue, then �ip
a.s.→ ψ(λi) = λi + cλi

λi−1 .
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(ii) If λi is not a distant spiked eigenvalue and i/p → α, then �ip
a.s.→ μ1−α and

the convergence is uniform in 0 ≤ α ≤ 1.

A new limiting result for the distant spiked eigenvalues is needed when
the spiked population eigenvalues tend to infinity. Intuitively, if λj → ∞,
ψ(λj ) ∼ λj . Under the assumption of finite fourth moment, this is indeed the
case and is summarized in the following lemma. We remark that both Lemmas 2.1
and 2.2 hold for general LSD function H . For the purpose of this paper, it suffices
to state the special case when LSD, H(·) = I (1 ≤ ·). For more details, see Bai and
Yao (2012) and the references therein.

LEMMA 2.2. In the same setup of Lemma 2.1, instead of assuming λ1
bounded, we assume that λk → ∞ as p → ∞. We have the following results:

(i) For any j ≤ k, limn→∞ �jp/λj = 1 a.s.
(ii) If λi is not a distant spiked eigenvalue and i/p → α as n → ∞, then

limn→∞ �ip = μ1−α a.s. and the convergence is uniform in 0 ≤ α ≤ 1.

The proof of Lemma 2.2, which works for general H , is given in the Appendix.
Note that Lemmas 2.1 and 2.2 are true for both cases 0 < c ≤ 1 and c > 1. The
only difference is μ1−t = 0 when t > 1/c if c > 1.

Lemma 2.3 below is about the monotonicity property of the ratios of the quan-
tiles of the MP law. The proof of this lemma is given in the Appendix.

LEMMA 2.3. Let μα be the αth quantile of the MP distribution, that is,
Fc(μα) = α. We define

x(t) = μ1−t

μ̄1−t

, 0 ≤ t ≤ min{1,1/c},
where

μ̄1−t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 − t

∫ 1−t

0
μs ds = 1

1 − t

∫ μ1−t

a
xfc(x) dx if 0 < c ≤ 1;

c

1 − ct

∫ 1−t

1−1/c
μs ds = c

1 − ct

∫ μ1−t

a
xfc(x) dx if c > 1.

Then (i) when c ≤ 1, x(t) strictly decreases from b to 1 as t increases from 0 to 1;
and (ii) when c > 1, x(t) strictly decreases from b/c to 1 as t increases from 0 to
1/c.

The asymptotic framework that the largest k population eigenvalues tending to
infinity was introduced in Schott (2006), and in Fujikoshi et al. (2007). In fact,
they derived the asymptotic distributions of test statistics for testing the hypothesis
λk+1 = · · · = λp under the assumptions that (i) k is fixed, (ii) p/n → c ∈ (0,1),
(iii) λi = O(n), i = 1, . . . , k and (iv) y is normal.
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3. Main results. In this section, we derive the consistency of two estimation
criteria k̂A and k̂B based on AIC and BIC. We shall study the case c < 1 first in
Section 3.1 and the case c > 1 in Section 3.2. We conclude this Section 3 with
some discussions and further remarks in Section 3.3.

3.1. The case c < 1. Throughout this subsection, we assume 0 < c < 1. Sup-
pose that the true number of significant components (or true dimensionality, or the
true number of spikes) is k. AIC and BIC being scale invariant so when we con-
sider the distributions of AIC and BIC, we may assume, without loss of generality,
that the population eigenvalues are

(3.1) λk+1 = · · · = λp = 1.

Here, λi should be read as λi/λ, i = 1, . . . , k.
Recall Aj and Bj in (1.7), we have

Aj = (p − j) log �̄jp −
p∑

i=j+1

log�ip − (p − j − 1)(p − j + 2)

n
,

Bj = (p − j) log �̄jp −
p∑

i=j+1

log�ip − (p − j − 1)(p − j + 2)

2n
logn.

The decision rule of AIC (resp., BIC) selects the model k̂A (resp., k̂B) by

k̂A = arg min
j

Aj and k̂B = arg min
j

Bj .

When we are interested in models Mj , j = 0,1, . . . , q − 1, then the criteria are
restricted to minimize over j = 0,1, . . . , q − 1.

In general, a criterion k̂ for estimating the true number of significant compo-
nents k is said to be consistent (or strongly consistent) if limn→∞ P(k̂ = k) = 1
[resp., P(limn→∞ k̂ = k) = 1].

The consistency properties of AIC and BIC criteria for the high-dimensional
case are derived based on the log-likelihood for the models. However, unlike the
finite dimensional case, they do not rely on the quadratic expansion of the log-
likelihood. In fact, the quadratic expansion does not hold for high dimension be-
cause the residuals do not tend to zero. For high-dimensional settings, we exploit
the fact that the log-likelihood can be written as a function of eigenvalues of the
sample covariance matrix so that we may tap into the techniques of random matrix
theory to derive the limiting properties of AIC and BIC.

3.1.1. AIC. Suppose that λ1 is finite. Assuming that λi’s (1 ≤ i ≤ k) are dis-
tant spiked eigenvalues, by Lemma 2.1, we have for i = 1, . . . , k, �ip

a.s.→ ψi , where

(3.2) ψi ≡ ψ(λi) = λi + cλi

λi − 1
, i = 1,2, . . . , k.
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Consider the function h(x) = x − 1 − logx − 2c, x ≥ 1. Let x = m(c) be the only
solution to the equation

(3.3) m = 1 + logm + 2c, m > 1.

It is easy to see that h(x) > 0, for x > m(c). We consider the following condition:

(C3) ψk > m(c),

which is equivalent to

(3.4) γ (c) ≡ ψk − 1 − logψk − 2c > 0.

Condition ψk > m(c) or γ (c) > 0 is called the gap condition.

THEOREM 3.1. Suppose the conditions (C1) with 0 < c < 1, and (C2) hold,
and that the number of candidate models, q , satisfies q = o(p). We have the fol-
lowing results on the consistency of the estimation criterion k̂A based on AIC:

(i) Suppose that λ1 is bounded. If the gap condition (C3) does not hold, then k̂A is
not consistent. If the gap condition (C3) holds, then k̂A is strongly consistent.

(ii) Suppose that λk → ∞. Then k̂A is strongly consistent.

PROOF. Suppose that λ1 is finite. We first consider the case where j < k.
Noting that for i ∈ [j, k), �ip

a.s.→ ψi = λi + cλi/(λi − 1) and

(3.5) �̄ip = 1

(p − i)

p∑
t=i+1

�tp
a.s.−→

∫ b

a
tfc(t) dt = 1.

This implies

Aj − Ak =
k∑

i=j+1

(Ai−1 − Ai)

=
k∑

i=j+1

[
(p − i + 1) log

{
1 − 1

p − i + 1
(1 − �ip/�̄ip)

}

+ log �̄ip − log�ip − 2(p − i + 1)/n

]

∼
k∑

i=j+1

(ψi − 1 − logψi − 2c).

(3.6)

If the gap condition (C3) does not hold, or equivalently, ψk − 1 − logψk − 2c < 0,
then for sufficiently large n, Ak−1 − Ak < 0 by (3.6), and hence k̂A is not consis-
tent.
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If the gap condition (C3) holds, that is, ψk > m(c) (which implies λk > 1 +√
c), then ψi > ψk . Since h is increasing, therefore, the summands in (3.6) are

decreasing in i. For 0 ≤ j < k, and for sufficiently large n, apply (3.6) to conclude
Aj − Ak ≥ (k − j)(ψk − 1 − logψk − 2c) > 0. In other words,

(3.7) k̂A ≥ k a.s.

Next, we consider the case where k < j = o(p). We have

Aj − Ak =
j∑

i=k+1

(Ai − Ai−1)

=
j∑

i=k+1

[
−(p − i + 1) log

{
1 − 1

p − i + 1
(1 − �ip/�̄ip)

}

− log �̄ip + log�ip + 2(p − i + 1)/n

]

∼
j∑

i=k+1

{
(1 − �ip/�̄ip) + log(�ip/�̄ip) + 2c(1 − i/p)

}
.

(3.8)

For k < i ≤ j , �jp ≤ �ip ≤ �k+1,p . From Lemma 2.1(ii), �k+1,p and �jp
a.s.→ μ1 = b

as n → ∞, so �ip
a.s.→ b. It implies almost surely that

Aj − Ak ∼ (j − k)(1 − b + logb + 2c)

= (j − k)
{
c − 2

√
c + 2 log(1 + √

c)
}
> 0.

Combining this with (3.7), we complete the proof of (i).
To prove (ii), we first note that, for k < j = o(p), the proof proceeds in the

same manner as in the proof of (i) and will not be repeated here. For j < k, as in
the proof of (i),

Aj − Ak ∼
k∑

i=j+1

[
�ip/�̄ip − 1 − log(�ip/�̄ip) − 2c

]
.

When λk → ∞, as 1
p

∑p
t=k+1 �tp ∼ ∫ b

a xfc(x) dx = 1 and �ip ∼ λi for i ≤ k by
Lemma 2.2. Thus, as n → ∞

�i,p

�̄ip

∼ λi

λi+1+···+λk

p
+ 1

≥ λi

(k − i)λi/p + 1
→ ∞.

So, n large enough, Aj − Ak > 0. This completes the proof of (ii). �
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3.1.2. BIC. In general, BIC is consistent under a large-sample asymptotic
framework. However, under a high-dimensional asymptotic framework, BIC is not
necessarily consistent. By the method of proof similar to that of Theorem 3.1 for
AIC, we obtain the following theorem.

THEOREM 3.2. Suppose the conditions (C1) with 0 < c < 1, and (C2) hold.
We have the following consistency results of the estimation criterion k̂B based on
BIC:

(i) Suppose that λk/ logn → 0. Then k̂B is not consistent.
(ii) Suppose that λk/ logn → ∞. Then k̂B is strongly consistent.

REMARK. Since the penalty in BIC tends to infinity as n → ∞, no further
condition on the number of candidate models: q = o(p) is required in Theo-
rem 3.2.

PROOF OF THEOREM 3.2. We first consider the case where j < k. Note that
for i ∈ [j, k),�ip

a.s.→ ψi . Similar to the AIC argument, we have

Bj − Bk ∼
k∑

i=j+1

(ψi − 1 − logψi − c logn).(3.9)

If λk/ logn → 0, or equivalently, ψk/ logn → 0, therefore Bk−1 − Bk ∼ ψk − 1 −
logψk − c logn < 0. This proves (i).

If λk/ logn → ∞, then for sufficiently large n, by (3.9),

Bj − Bk ≥ (k − j)(ψk − 1 − logψk − c logn) > 0 a.s.

for any 1 ≤ j < k. That is, k̂B ≥ k a.s.
Consider k < j , analogous to the derivation of (3.8), we have

Bj − Bk ∼
j∑

i=k+1

[
1 − x(i/p) + logx(i/p) + c(1 − i/p) logn

]
,

where x(t) is defined in Lemma 2.3.
We first consider the case where k < j ≤ 2p/3. Lemma 2.3 implies the mono-

tonicity of 1 − x(t) + logx(t). Therefore, when n is large enough, �jp/�̄jp ∼ b

and Bj − Bk > (j − k)[1 − b + logb + (c/3) logn] > 0. When j > 2p/3,

Bj − Bk ≥ ([2p/3] − k
)[

1 − b + logb + (c/3) logn
]

+ (
j − [2p/3])(1 − b + logb)

>
([2p/3] − k

)[
(c/3) logn − 2(b − 1 − logb)

]
> 0,

where we used the fact that j −[2p/3] < [2p/3]− k. So min{Bj , j �= k} > Bk a.s.
This completes the proof of (ii), and hence the theorem. �
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3.2. The case c > 1. We consider the case where p,n → ∞ such that p > n

and p/n → c > 1. Observe that the smallest p − (n − 1) eigenvalues of Sn are
zero, that is,

�n−1,p > �np = · · · = �pp = 0.

It is still of interest to estimate the true number of significant components in (1.1)
under this setting. Since n < p, it is not possible to infer the smallest population
eigenvalues λn,λn+1, . . . , λp > 0, and so in this subsection we assume (C1) with
c > 1 and (C4) hold where

(C4) λn−1 = λn = · · · = λp = λ.

Assumption (C4) is rather natural at least in a high-dimensional PCA setting.
Under (C4), we have, for j = 0,1, . . . , n − 2,

(3.10) M̃j : λj > λj+1 = · · · = λn−1 ⇔ Mj : λj > λj+1 = · · · = λp.

First, we modify the definition of �̄jp in (1.5) to

(3.11) �̄jp := 1

n − 1 − j

n−1∑
t=j+1

�tp, j = 1,2, . . . , n − 1.

Second, for selecting a model from the set of models M0,M1, . . . ,Mn−2, we con-
sider the following modified criteria Ãj and B̃j obtained from replacing the p and
n in Aj and Bj by n − 1 and p, respectively:

Ãj = (n − 1 − j) log �̄jp −
n−1∑

i=j+1

log�ip − (n − j − 2)(n − j + 1)

p
,

B̃j = (n − 1 − j) log �̄jp −
n−1∑

i=j+1

log�ip − (n − j − 2)(n − j + 1)

2p
logp.

Here, Ãn−2 = 0, B̃n−2 = 0. Similar to the case where c < 1, we propose the quasi-
AIC (or quasi-BIC) rule to select the model k̂Ã (or k̂B̃), respectively, by

k̂Ã = arg min
j≤n−2

Ãj , and k̂B̃ = arg min
j≤n−2

B̃j .

We abbreviate quasi-AIC and quasi-BIC to qAIC and qBIC, respectively.
Finally, as c > 1, the gap condition (3.4) is modified to

(C5) γ̃ (c) := ψk/c − 1 − log(ψk/c) − 2/c > 0.

We shall first provide some intuition about our proposed criteria before pro-
ceeding to the theorems (which say that k̂Ã and k̂B̃ possess similar consistency

properties as that of k̂A and k̂B) and their proofs. The AIC and BIC criteria for
case c = p/n > 1 cannot be interpreted by the likelihood ratio framework since
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the determinants involved in the likelihood ratio statistic are all zeros. Therefore,
it is impossible to derive the criteria following the arguments used in papers of
Akaike and Schwarz. The criteria proposed above are motivated by the asymp-
totics of spiked eigenvalues of sample covariance and comparing to the case for
c < 1.

THEOREM 3.3. Suppose the conditions (C1) with c > 1 and (C4) hold, and
that the number of candidate models q = o(p). We have the following results on
the consistency of the estimation criterion k̂Ã based on qAIC:

(i) Suppose that λ1 is bounded. If the modified gap condition (C5) fails, k̂Ã is not

consistent. If the modified gap condition (C5) holds, k̂Ã is strongly consistent.

(ii) Suppose that λk → ∞. Then k̂Ã is strongly consistent.

THEOREM 3.4. Suppose the conditions (C1) with c > 1 and (C4) hold. We
have the following results on the consistency of the estimation criterion k̂B̃ based
on qBIC:

(i) Suppose that λk/ logn → 0. Then k̂B̃ is not consistent.
(ii) Suppose that λk/ logn → ∞. Then k̂B̃ is strongly consistent.

We shall sketch the proofs of Theorems 3.3 and 3.4 below. For j < k, we have

Ãj − Ãk =
k∑

i=j+1

[
(n − i) log

{
1 − 1

n − i

(
1 − �ip

�̄ip

)}
− log

�ip

�̄ip

− 2(n − i)

p

]
.

When λ1 is bounded, we have �̄i,n−1 ∼ c
∫ b
a tfc(t) dt = c, and hence if the mod-

ified gap condition (C5) is satisfied,

Ãj − Ãk ∼
k∑

i=j+1

(
ψi/c − 1 − log(ψi/c) − 2/c

) ≥ (k − j)γ̃ (c) > 0.

When λk → ∞, the same inequality can be obtained without the modified gap
condition γ̃ (c) > 0.

We next consider the case where i ∈ [k + 1, n − 2]. Similarly, we have

Ãj − Ãk

=
j∑

i=k+1

[
−(n − i) log

{
1 − 1

n − i

(
1 − �ip

�̄ip

)}
+ log

�ip

�̃ip

+ 2(n − i)

p

]

∼
j∑

i=k+1

{
g̃(i/n) + o(1)

}
,
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when j = o(p), and we used the approximation �ip/�̄ip ∼ b/c. Here,

g̃(t) = log x̃(t) − x̃(t) + 1 + 2c−1(1 − t)

and

x̃(t) = μ1−t

c
1−ct

∫ 1−t
1−1/c μs ds

≥ 1,

and o(1) is uniformly in i ∈ [k + 1, n − 2]. Similar to the case where c < 1,
one can prove Ãj − Ãk > 0. Combining these results, we have proved that
minj �=k(Ãj − Ãk) > 0. Similarly, one can prove that minj �=k(B̃j − B̃k) > 0, when
λk/ logn → ∞.

3.3. Discussions and further remarks. Intuitively, if the largest eigenvalues
are not well separated from the support of the MP law, there is no way to iden-
tify the true model from all candidate models. Since the penalty term in AIC
is fixed, to prevent AIC from under-estimating the true model, one requires the
spiked eigenvalues are large enough as compared with the penalty term leading to
the gap condition Specifically, for 0 < c < 1, if the gap condition (C3) does not
hold, then according to the Tracy–Widom law there will be a positive probability
that the AIC criterion will under-estimate the model. In fact, if ψk ≤ m(c), then
ψk − 1 − log(ψk)− 2c ≤ 0. So �kp < ψk implies �kp − 1 − log(�kp)− 2c < 0, that
is, the model is under-estimated. By Bai and Yao (2012), we have

P(AIC is under-estimated) ≥ P(�kp − ψk < 0)

= P
(√

n(�kp − ψk) < 0
) → �(0) = 1

2
.

We provide some intuition why different sufficient conditions are needed for
AIC and BIC to achieve consistency. The penalty for BIC tends to ∞ with a rate of
logn, thus BIC will surely under-estimate the model unless the spiked eigenvalues
tend to infinity at a rate faster than logn. However, the penalty for AIC has a
fixed magnitude, so a sufficient condition for the consistency of AIC does not even
require the spiked eigenvalues tend to infinity.

When c = 1, the behavior of the smallest eigenvalue is not well understood and
we may not have the property that x(t) decreases to 1 as t increases to 1. However,
if the number of candidate models is o(p), Theorem 3.1 or Theorem 3.3 holds for
c = 1.

4. Simulation studies. In our experiments, we define p-variate y as

(4.1) y = �1/2(x1, . . . , xp)�,

where � = diag(̃λ1, . . . , λ̃k, λ̃, . . . , λ̃) and x1, . . . , xp are i.i.d. with mean 0 and
variance 1. Clearly, the covariance of y is given by �.
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We conducted a number of simulation studies to examine the effects on the con-
sistency of k̂A and k̂B when the gap condition or the finite fourth moment condition
does not hold. Moreover, when these conditions are met, we are interested to gain
some insight at the rate of convergence.

4.1. Simulation studies for 0 < c < 1. We set p/n = 1/3, that is, c = 1/3. So
m(c) = 2.636. For the distribution of xi ’s, we consider the following five cases:
(i) standard normal distribution (D1); (ii) standardized t distribution with 4 de-
grees of freedom (D2), that is, xi ∼ t4/

√
Var(t4); (iii) standardized t distribution

with 5 degrees of freedom (D3); (iv) standardized t distribution with 10 degrees
of freedom (D4); and (v) standardized chi-square distribution with 3 degrees of
freedom (D5).

For the eigenvalues of �, we considered the following three spectrums
(eigenvalues arranged in decreasing order, denoted by λ̃i ’s): (i) {30,20,13,5,
3, . . . ,3} (L1); (ii) {30,22,16,10,3, . . . ,3} (L2); and (iii) {30αp,20αp,13αp ,
5αp,3, . . . ,3} where αp = √

p/10 (L3).
We highlight some salient features of our choices of the distributions and the

eigenvalues. The finite fourth moment of xi’s are satisfied in all the distributions
above except (D2), in which case, the standardized t distribution with 4 degrees of
freedom has only finite moments up to order 3. In L1, the gap condition (C3) fails:
λ4 = 5/3 and ψ4 = 2.5 < m = 2.636. In L2, the gap condition holds. In L3, the
spiked eigenvalues (1 ≤ i ≤ 4) tend to infinity at a rate n1/2, which is faster than
logn.

In our framework, λi is taken to be λ̃i /̃λp . The true number of significant com-
ponents in all three cases, L1–L3, is the same: k = 4. Let the minimum model
including the true model be denoted by F∗. Furthermore, let the sets of under-
specified and over-specified models be denoted by F− and F+ respectively; that
is, in our simulation studies,

F− = {M0,M1,M2,M3}, F∗ = {M4}, F+ = {M5,M6, . . . ,Mp}.
The selection percentages of F−, F∗ and F+ by Monte Carlo simulations with 104

repetitions were computed. Since the sum of the three selection percentages is 100,
and so for the sake of clarity of the plots we only display the selection percentages
of F− and F∗. We plot the selection percentages based on AIC criterion (brown
dot for F∗, and brown circle for F−) and BIC criterion (blue solid triangle for F∗,
and blue triangle for F−) on the same graph for easy visual comparison.

We highlight two observations from Figure 1. (i) In D2 case (i.e., the standard-
ized t4 distribution), k̂A is not consistent across our choices of eigenvalues, L1–L3
illustrating that the finite fourth moment condition is essential for Theorem 3.1 to
hold. Moreover, when AIC does not specify the true number of significant compo-
nents correctly, it tends to over-specify it. (ii) In the D2 case, k̂B is not consistent
for L1 and L2 cases with tendency to under-specify the true number of signifi-
cant components. Interestingly, when eigenvalues tend to infinity fast enough as in
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FIG. 1. Selection percentages under AIC and BIC for c = 1/3 < 1 case. Here, the horizontal axes
represent the sample sizes, and vertical axes selection percentages. Brown solid circles (resp., brown
circles) denote the selection percentages of F∗ (resp., F−) under AIC decision rule. Similarly, blue
solid triangles (resp., blue triangles) for selection percentages of F∗ (resp., F−) under the BIC
decision rule.

L3, our simulation results suggest that k̂B is consistent although the finite fourth
moment condition fails.

4.2. Simulation studies for c > 1. For the case where n,p → ∞ such that
p/n → c > 1, we consider the consistency properties of k̂Ã and k̂B̃ under the pop-
ulation eigenvalues L4: {30,20,13,8,1, . . . ,1} in addition to L1, L2 and L3 as
described in Section 4.1. The variables x1, . . . , xp in (4.1) are chosen to be i.i.d.
from the standard normal distribution. In Section 4.1, we set p/n = c = 1/3, and
so as a natural first step to conduct the simulation studies in this case, we inter-
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FIG. 2. Selection percentages under AIC and BIC for c = 3 > 1 case. Here, the horizontal axes
represent the sample sizes, and vertical axes selection percentages. Brown solid circles (resp., brown
circles) denote the selection percentages of F∗ (resp., F−) under AIC decision rule. Similarly, blue
solid triangles (resp., blue triangles) for selection percentages of F∗ (resp., F−) under BIC decision
rule.

change the roles of p and n. Thus, we consider p/n = 3, that is c = 3. The true
dimension is 4 in all four spectrums.

The simulation results are summarized in the plots as shown in Figure 2. Selec-
tion percentages of F∗ and F− based on AIC criterion are represented by brown
dots and brown circles, respectively. Similarly, we used triangles for the BIC cri-
terion. From the plots, we observe (i) both qAIC and qBIC are inconsistent for
spectrums L1 and L2 and both tend to under-estimate the true dimension; (ii) both
qAIC and qBIC are consistent for spectrum L3; and (iii) qAIC is consistent, and
qBIC is not and tends to under-estimate the true dimension. These observations
agree well with the conclusions depicted by Theorems 3.3 and 3.4. Indeed, in L1,
L2 and L4, the spiked eigenvalues satisfy the condition in Theorem 3.4(i), we see
that simulation results for qBIC in L1, L2 and L4 tally with the conclusion in Theo-
rem 3.4(i). The spiked eigenvalues in L3 satisfies the condition in Theorem 3.4(ii),
and the simulation results in L3 and the corresponding conclusion in this theorem
agree.

Theorem 3.3 provides explanation for observations (i)–(iii) for qAIC. In L1,
λ4 is not even a distant spiked eigenvalue, and in L2, gap condition (C5) fails.
Gap condition (C5) holds in L3 and L4. Likewise, Theorem 3.4 explains these
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observations for qBIC: as n → ∞, λ4/ logn → 0 in L1, L2 and L4, whereas
λ4/ logn → ∞ in L3.

5. Concluding remarks and conjectures. In this paper, we consider the con-
sistency problem in estimating the number of dominant eigenvalues in (1.1), which
is called the number of significant components or the dimensionality in PCA.
High-dimensional properties are studied for two estimation criteria k̂A and k̂B

based on AICj and BICj . When the true number of significant components is
o(p), we give sufficient conditions in Theorems 3.1 and 3.2 for the criteria k̂A

and k̂B to be strongly consistent under a high-dimensional asymptotic framework
such that p/n → c ∈ (0,1). We emphasize that the consistency properties of the
AIC and BIC criteria differ substantially from those in a large-sample asymptotic
framework. In a large-sample asymptotic framework, in general, k̂A is not con-
sistent, but k̂B is consistent. When n < p, we propose quasi-AIC and quasi-BIC
decision rules k̂Ã and k̂B̃. Further, their consistency properties are summarized in
Theorems 3.3 and 3.4.

These theorems were proved by random matrix theory techniques. We were also
led to discover some interesting limiting results in sample eigenvalues when the
population eigenvalues tend to infinity (Lemma 2.2); and monotonicity property
of the ratios of quantiles of the MP law (Lemma 2.3).

We note that AIC has been proposed as an asymptotic unbiased estimator of
the AIC-type risk. Our AIC has been justified under the large-sample asymptotic
framework by Fujikoshi and Sakurai (2016b). Results under the high-dimensional
framework will be left for future work. The difficulty comes from the fact that
the AIC-type risk depends on eigenvectors as well as eigenvalues, and there is no
appropriate asymptotic results for eigenvectors under the high-dimensional asymp-
totic framework. In concluding this paper, we list below some conjectures which
arise from this work.

CONJECTURE 1. Let Sn be the sample covariance in (1.2) with the population
covariance matrix � = Ip , and let �1p > �2p > · · · > �pp > 0 be the eigenvalues
of Sn. Consider the ratios

Ri = �ip

1
p−i

∑p
t=i+1 �tp

= �ip

�̄ip

, i = 1,2, . . . , p − 1.

Monotonicity of the ratio of quantiles of MP law in Lemma 2.3 below leads us to
conjecture that

R1 > R2 > · · · > Rp−1,

hold almost surely under some general conditions.
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CONJECTURE 2. Theorem 3.1 continues to hold when the candidate mod-
els are {M0,M1, . . . ,Mp−1}. In other words, the condition that the number of
candidate models is o(p) is superfluous. We shall provide some evidence in Ap-
pendix A.5 to support this conjecture.

CONJECTURE 3. Theorem 3.3 continues to hold when the candidate models
are {M0,M1, . . . ,Mn−2}.

The conjecture below arises from a comment of one of the reviewers.

CONJECTURE 4. The results concerning AIC remains to hold allowing
k → ∞ at some rate.

The proof of the consistency of AIC relies on a well-known result that the spiked
eigenvalues tend to known locations, the renowned phase transition theorem. In-
tuitively, it is not hard to believe that the consistency of AIC should still be true
for k → ∞, at least at a certain rate. This will follow if a similar phase transition
theorem with infinitely many spiked eigenvalues can be established.

APPENDIX

A.1. Two additional lemmas. We need two additional lemmas to prove
Lemma 2.2. Lemma A.1 is a modification of Lemma 2 from Bai and Yin (1993).

LEMMA A.1. Let x be a random variable with E|x|(1+β)/α < ∞ for some
α > 1/2, β ≥ 0. Let {xij } be a double array of random variables such that
P(|xij | > t) ≤ KP(|x| > t) for all i, j, t > 0, and a fixed constant K . For each
j fixed, we assume further that x1j , . . . , xnj are independent. For 1/2 < α ≤ 1, we
require further that xij ’s have the same mean. Then for any constant 0 < M < ∞,
we have

(A.1) lim
n→∞ sup

j≤Mnβ

∣∣∣∣∣n−α
n∑

i=1

(xij − ν)

∣∣∣∣∣ = 0 a.s.

Here,

ν =
{
E(x11) if 1/2 < α ≤ 1,

any constant if α > 1.

PROOF. The proof of the lemma is the same as the proof for the sufficient
part of Lemma 2 of Bai and Yin (1993) by noticing that the independence be-
tween rows of random variables was in fact not used in the latter. Details are
omitted. �
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Recall Snx = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)� in (2.1), and write � = U�U�, where

U = (U1,U2) = (u1, . . . ,up) is a p-dimensional orthogonal matrix with U1 of
dimension p × k and � = diag(λ1, . . . , λk,1, . . . ,1) is a diagonal matrix of eigen-
values of �. Then

Sn = U�1/2U�SnxU�1/2U�

= U

(
�

1/2
1 U�

1 SnxU1�
1/2
1 �

1/2
1 U�

1 SnxU2

U�
2 SnxU1�

1/2
1 U�

2 SnxU2

)
U�,

(A.2)

where �1 = diag(λ1, . . . , λk). Since U2U�
2 has p − k eigenvalues 1 and k eigen-

values 0, we know that the ESD of U�
2 SnxU2 tends to MP law by Silverstein (1995)

and its largest eigenvalue tends to b and smallest eigenvalue tends to a by Bai and
Silverstein (1998).

LEMMA A.2. Let uj , j = 1,2, . . . , k denote p-dimensional unit vectors. Un-
der the assumption of Lemma 2.2, we have

max
j≤k

∣∣u�
j Snxuj − 1

∣∣ → 0 a.s.

PROOF. It suffices to show that u�
1 Snxu1 → 1 a.s. Without loss of generality,

we may assume the means of the random entries are 0. Let u1 = (u1, . . . , up)�,
then we have∣∣u�

1 Snxu1 − 1
∣∣ = ∣∣∣∣∣ 1

n − 1

p∑
j=1

u2
j

n∑
j=1

(
x2
ij − 1

)

+ 1

n − 1

∑
j1 �=j2

uj1uj2

n∑
i=1

xij1xij2 − n

n − 1

(
u�

1 x̄
)2

∣∣∣∣∣
≤ sup

j≤p

∣∣∣∣∣ 1

n − 1

n∑
i=1

(
x2
ij − 1

)∣∣∣∣∣
+
∣∣∣∣∣ 1

n − 1

n∑
i=1

∑
j1 �=j2

uj1uj2xij1xij2

∣∣∣∣∣+ n

n − 1

(
u�

1 x̄
)2

.

The first term above converges to 0 with probability 1 by Lemma A.1, and the third
term converges to 0 with probability 1 by the simple fact that E(u�

1 x̄)4 = O(n−2).
The second term converges to 0 with probability 1 because

E

∣∣∣∣∣ 1

n − 1

n∑
i=1

∑
j1 �=j2

uj1uj2xij1xij2

∣∣∣∣∣
4

= 1

(n − 1)4

[
n∑

i=1

E

( ∑
j1 �=j2

uj1uj2xij1xij2

)4
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+ 3
∑
i1 �=i2

E

( ∑
j1 �=j2

uj1uj2xi1j1xi1j2

)2( ∑
j1 �=j2

uj1uj2xi2j1xi2j2

)2
]

≤ n

(n − 1)4

[
24n

∑
j1,j2,j3,j4

distinct

u2
j1

u2
j2

u2
j3

u2
j4

+ 24n
∑

j1,j2,j3
distinct

u3
j1

u3
j2

u2
j3

Ex3
11Ex3

11

+ 8n
∑

j1 �=j2

u4
j1

u4
j2

Ex4
11Ex4

11 + 12n(n − 1)

]
≤ K

n2 ,

for some constant K . The proof is complete. �

A.2. Proof of (i) of Lemma 2.2. First, we prove that lim inf �ip/λi ≥ 1 a.s.
for i ≤ k. We note that

�ip/λi = λ−1
i inf

v1,...,vi−1
sup

u⊥v1,...,vi−1,‖u‖=1
u�Snxu.

For any given v1, . . . ,vi−1, there exists a vector u in the linear space spanned by
u1, . . . ,ui which is orthogonal to v1, . . . ,vi−1 denoted by u = ∑i

j=1 aj uj with∑i
j=1 a2

j = 1. By Lemma A.2, we have

u�Snxu/λi = λ−1
i

i∑
j=1

λja
2
j u�

j Snxuj ≥
i∑

j=1

a2
j u�

j Snxuj
a.s.→ 1.

Next, we shall show that lim sup�ip/λi ≤ 1 a.s. for i ≤ k. As before, we have

�ip/λi = λ−1
i inf

v1,...,vi−1
sup

u⊥v1,...,vi−1,‖u‖=1
u�Snxu

≤ λ−1
i sup

u⊥u1,...,ui−1,‖u‖=1
u�Snxu

= λ−1
i sup

a≤1

{
a2u�

i Snxui + (
1 − a2) sup

u⊥u1,...,uk,‖u‖=1
u�Snxu

}
∼ sup

|a|≤1

{
a2 + (

1 − a2)λ−1
i

∥∥U�
2 SnxU2

∥∥}

∼ sup
|∑k

t=i a2
t |≤1

{
k∑

t=i

a2
t +

(
1 −

k∑
t=i

a2
t

)
λ−1

i b

}
= 1,

where we have used the fact that ‖U�
2 SnxU2‖ → b in the second equality. To

see this is the case, first note that U2U�
2 = Ip−k implies ‖U2‖ ≤ 1, and so

lim sup‖U�
2 SnxU2‖ ≤ lim sup‖Snx‖ → b a.s. That lim inf‖U�

2 SnxU2‖ ≥ b is an
easy consequence of the convergence of the empirical distribution of the matrix
U�

2 SnxU2. So ‖U�
2 SnxU2‖ → b a.s. holds regardless of p < n or p � n.

Combining the two conclusions, we conclude that �jp/λj
a.s.→ 1.
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A.3. Proof of (ii) of Lemma 2.2. By (A.2), �1p, . . . , �pp are also the eigen-
values of (

�
1/2
1 U�

1 SnxU1�
1/2
1 �

1/2
1 U�

1 SnxU2

U�
2 SnxU1�

1/2
1 U�

2 SnxU2

)
.

Write the eigenvalues of the matrix U�
2 SnxU2 as �̃1p, . . . , �̃p−k,p. By Silverstein

(1995), the empirical spectral distribution of U�
2 SnxU2 tends to MP law with prob-

ability 1. Thus, if i/p → α, then �̃ip
a.s.→ μ1−α .

On the other hand, by the interlace theorem [see, e.g., Section 10.2 in Rao and
Rao (1998)], for any i ∈ (1,p − k), we have

�ip ≥ �̃ip ≥ �k+i,p ≥ �̃k+i,p.

Thus, for all i ≥ k + 1, �ip
a.s.→ μ1−α , where α = lim i/p. This completes the proof

of Lemma 2.2.

A.4. Proof of Lemma 2.3. For notational simplicity, we write Fc and fc as
F and f , respectively, for the rest of this paper. Define G(t) = F−1(t), the t th
quantile of the MP, which is denoted by μt earlier.

Note that G′(t) = 1
f (G(t))

. We write y(t) = tG(t)/
∫ t

0 G(s)ds, which is equal
to x(1 − t). Thus we want to prove that y increases from y(0) = 1 to y(1) = b.
Toward this end, we have

y′(t) = [G(t) + tG′(t)] ∫ t
0 G(s)ds − t[G(t)]2

(
∫ t

0 G(s)ds)2

= [f (G(t))G(t) + t] ∫ t
0 G(s)ds − tf (G(t))[G(t)]2

f (G(t))(
∫ t

0 G(s)ds)2
.

So to prove y′(t) > 0, it is equivalent to proving that

(A.3) �(t) ≡
∫ t

0
G(s)ds − tf (G(t))[G(t)]2

[f (G(t))G(t) + t] > 0.

It is easy to see that limt→0+ �(t) = 0. If we can show that

(A.4) �′(t) > 0 for t ∈ (0,1),

then �(t) > �(0+) = 0, and so y′(t) > 0.
We have

�′(t) = G(t) − f (G(t))[G(t)]2 + tf ′(G(t))[G(t)]2

f (G(t))
+ 2tG(t)

[f (G(t))G(t) + t]

+ t[G(t)]2[2f (G(t)) + f ′(G(t))G(t)]
[f (G(t))G(t) + t]2
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= G(t) − [f (G(t))]2[G(t)]2 + tf ′(G(t))[G(t)]2 + 2tf (G(t))G(t)

f (G(t))[f (G(t))G(t) + t]

+ t[G(t)]2[2f (G(t)) + f ′(G(t))G(t)]
[f (G(t))G(t) + t]2 .

If we let u = G(t), then u ∈ (a, b) and t = F(u). We can rewrite �′(t) as uψ(u)

where

ψ(u) = 1 − u[f (u)]2 + uf ′(u)F (u) + 2f (u)F (u)

f (u)[uf (u) + F(u)] + uF(u)[2f (u) + uf ′(u)]
[uf (u) + F(u)]2

= ψ1(u)F (u)

[uf (u) + F(u)]2 .

Here,

(A.5) ψ1(u) = 1

u
− h′(u)F (u)

h2(u)
,

where

h(u) = uf (u) = (2πc)−1
√

(b − u)(u − a).

Finally, to show that �′(t) > 0, it remains to show that ψ1(u) > 0 for u ∈ (a, b).
Since

h′(u) = −u + (b + a)/2

2πc
√

(b − u)(u − a)
= 1 + c − u

2πc
√

(b − u)(u − a)
,

we know that h′(u) < 0 if u ≥ 1 + c, and hence ψ1(u) > 0. Thus, we need only to
prove that ψ1(u) > 0 for u ∈ (a,1 + c). Rewriting

ψ1(u) = 1 + c − u

[(b − u)(u − a)]3/2 ψ2(u),

where

ψ2(u) = [(b − u)(u − a)]3/2

u(1 + c − u)
−
∫ u

a

√
(b − s)(s − a)

s
ds, u ∈ (a,1 + c).

Observe that ψ2(a) = 0. Writing β(u) = √
(b − u)(u − a)/[u2(1 + c − u)2], it is

straightforward to verify that

ψ ′
2(u) = β(u)

{
3(1 + c − u)2 − (b − u)(u − a)(1 + c − 2u) − u(1 + c − u)2}

= β(u)
{
(1 + c)u2 − 2(1 − c)2u + (1 + c)(1 − c)2}

= (1 + c)β(u)

{[
u − (1 − c)2

1 + c

]2
+ 4c(1 − c)2/(1 + c)2

}
> 0.

So ψ2 is increasing on (a,1 + c). As ψ2(a) = 0, therefore, ψ2(u) > 0, and thus
ψ1(u) > 0 on (a,1 + c). This completes the proof of Lemma 2.3 for 0 < c < 1.
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The proof for c > 1 is similar and goes as follows. We still write Fc and fc as F

and f for brevity. We let c̄ = 1 − 1/c. Define G(t) = F−1(t) for t ∈ (1 − 1/c,1)

and G(t) = a when t ∈ (0,1 − 1/c), the t th quantile of the MP, which is denoted
by μt earlier.

Note that G′(t) = 1
f (G(t))

, when t > 1−1/c and = 0 otherwise. We write y(t) =
(t − c̄)G(t)/

∫ t
c̄ G(s) ds when t ∈ (c̄,1), which is equal to x(1 − t). Thus we want

to prove that y increases from y(c̄) = 1 to y(1) = b. Toward this end, for t ∈ (c̄,1),
we have

y′(t) = [G(t) + (t − c̄)G′(t)] ∫ t
c̄ G(s) ds − (t − c̄)[G(t)]2

(
∫ t
c̄ G(s) ds)2

= [f (G(t))G(t) + (t − c̄)] ∫ t
c̄ G(s) ds − (t − c̄)f (G(t))[G(t)]2

f (G(t))(
∫ t
c̄ G(s) ds)2

.

So to prove y′(t) > 0 when t ∈ (c̄,1), it is equivalent to proving that

(A.6) �(t) ≡
∫ t

c̄
G(s) ds − (t − c̄)f (G(t))[G(t)]2

[f (G(t))G(t) + t − c̄] > 0.

It is easy to see that limt↓c̄ �(t) = 0. If we can show that

(A.7) �′(t) > 0 for t ∈ (c̄,1),

then �(t) > �(c̄+) = 0, and so y′(t) > 0.
We have

�′(t)

= G(t) − f (G(t))[G(t)]2 + (t−c̄)f ′(G(t))[G(t)]2

f (G(t))
+ 2(t − c̄)G(t)

[f (G(t))G(t) + t − c̄]

+ (t − c̄)[G(t)]2[2f (G(t)) + f ′(G(t))G(t)]
[f (G(t))G(t) + t − c̄]2

= G(t) + (t − c̄)[G(t)]2[2f (G(t)) + f ′(G(t))G(t)]
[f (G(t))G(t) + t − c̄]2

− [f (G(t))]2[G(t)]2 + (t − c̄)f ′(G(t))[G(t)]2 + 2(t − c̄)f (G(t))G(t)

f (G(t))[f (G(t))G(t) + t − c̄] .

If we let u = G(t), then u ∈ (a, b) and t = F(u). We can rewrite �′(t) as uψ(u)

where

ψ(u) = 1 − u[f (u)]2 + uf ′(u)F (u) + 2f (u)F (u)

f (u)[uf (u) + F(u)] + uF(u)[2f (u) + uf ′(u)]
[uf (u) + F(u)]2

= ψ1(u)F (u)

[uf (u) + F(u)]2 .



CONSISTENCY OF HIGH-DIMENSIONAL AIC AND BIC 1073

Here,

(A.8) ψ1(u) = 1

u
− h′(u)F (u)

h2(u)
,

where

h(u) = uf (u) = (2πc)−1
√

(b − u)(u − a).

Finally, to show that �′(t) > 0, it remains to show that ψ1(u) > 0 for u ∈ (a, b).
Since

h′(u) = −u + (b + a)/2

2πc
√

(b − u)(u − a)
= 1 + c − u

2πc
√

(b − u)(u − a)
,

we know that h′(u) < 0 if u ≥ 1 + c, and hence ψ1(u) > 0. Thus, we need only to
prove that ψ1(u) > 0 for u ∈ (a,1 + c). Rewriting

ψ1(u) = 1 + c − u

[(b − u)(u − a)]3/2 ψ2(u),

where

ψ2(u) = [(b − u)(u − a)]3/2

u(1 + c − u)
−
∫ u

a

√
(b − s)(s − a)

s
ds, u ∈ (a,1 + c).

Observe that ψ2(a) = 0. Writing β(u) = √
(b − u)(u − a)/[u2(1 + c − u)2], it is

straightforward to verify that

ψ ′
2(u) = β(u)

{
3(1 + c − u)2 − (b − u)(u − a)(1 + c − 2u) − u(1 + c − u)2}

= β(u)
{
(1 + c)u2 − 2(1 − c)2u + (1 + c)(1 − c)2}

= (1 + c)β(u)

{[
u − (1 − c)2

1 + c

]2
+ 4c(1 − c)2/(1 + c)2

}
> 0.

So ψ2 is increasing on (a,1 + c). As ψ2(a) = 0, therefore, ψ2(u) > 0, and thus
ψ1(u) > 0 on (a,1 + c). This completes the proof of Lemma 2.3.

A.5. Evidences in support of Conjecture 2. Evidence 1. From the proof in
Theorem 3.1, indeed we have shown for k < j < p,

Aj − Ak ∼
j∑

i=k+1

[
1 − �ip

�̄ip

+ log
(

�ip

�̄ip

)
+ 2c

(
1 − i

p

)]

−
p∑

i=k+1

1

p − i + 1

(
1 − �ip

�̄ip

)2
=

j∑
i=k+1

gi.
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By the MP law and the boundedness of �1p under finite fourth moment condition,
it can be shown that

j∑
i=k+1

gi = (
1 + oa.s.(1)

) j∑
i=k+1

ĝi ,

where

ĝi = 1 − x(i/p) = logx(i/p) + 2c(1 − i/p)

and

x(t) = μ1−t

1
1−i/p

∫ μ1−t
a tfc(s) ds

.

It remains to consider the case where j > k and j/p → α ∈ (0,1). For this case,
it can be shown that

Aj − Ak ∼
∫ α

0
ĝ(t) dt =: I (c,α).

PROOF OF I (c,1) > 0. Note that

(A.9) I (c,1) = 1 −
∫ 1

0
x(t) dt +

∫ 1

0
logx(t) dt + c.

Let u = μ1−t , then

(A.10)
∫ 1

0
x(t) dt =

∫ b

a

ufc(u)Fc(u)∫ s
a fc(s) ds

du = −
∫ b

a
fc(u) log

(∫ u

a
sfc(s) ds

)
du;

and ∫ 1

0
logx(t) dt =

∫ b

a
fc(u) log

(
uFc(u)∫ u

a sfc(s) ds

)
du

(A.11)

=
∫ b

a
fc(u) logudu − 1 +

∫ 1

0
x(t) dt.

By (A.9)–(A.11), we have

I (c,1) = c +
∫ b

a
f (u) logudu

= c + 1

π

∫ π

−π

sin2 θ

1 + c − 2
√

c cos θ
log(1 + c − 2

√
c cos θ) dθ

= (1 − c)

c

[− log(1 − c) − c
]
> 0.

We used contour integration in the last step.
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Evidence 2. We can show that ĝ(t) is positive in the neighbourhood of 0. Nu-
merical calculation for various values of c shows that ĝ(t) has at most one zero.
We have not been able to prove this. If this were true, then we could prove that

(A.12) I (c,α) > 0

and Conjecture 2 would be proved. �

PROOF OF (A.12). If ĝ(t) has no zero, then (A.12) holds trivially. If ĝ(t) has
one zero in (0,1), we denote this zero by t0. If 0 < α ≤ t0, then (A.12) holds
trivially. If α > t0, then I (c,α) > I (c,1) > 0. �
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