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DETECTING RARE AND FAINT SIGNALS VIA THRESHOLDING
MAXIMUM LIKELIHOOD ESTIMATORS1

BY YUMOU QIU∗, SONG XI CHEN† AND DAN NETTLETON‡

University of Nebraska–Lincoln∗, Peking University† and Iowa State University‡

Motivated by the analysis of RNA sequencing (RNA-seq) data for genes
differentially expressed across multiple conditions, we consider detecting
rare and faint signals in high-dimensional response variables. We address the
signal detection problem under a general framework, which includes gener-
alized linear models for count-valued responses as special cases. We propose
a test statistic that carries out a multi-level thresholding on maximum likeli-
hood estimators (MLEs) of the signals, based on a new Cramér-type moderate
deviation result for multidimensional MLEs. Based on the multi-level thresh-
olding test, a multiple testing procedure is proposed for signal identification.
Numerical simulations and a case study on maize RNA-seq data are con-
ducted to demonstrate the effectiveness of the proposed approaches on signal
detection and identification.

1. Introduction. With the advance of technology, high-dimensional data are
becoming increasingly common in scientific studies ranging from bioinformatics,
signal processing and astrophysics. An important task in these studies is to detect
rare and faint signals leading to scientific discovery. The goal of signal detection is
to determine the existence of signals in the parameters of interest based on noisy
data. If any signal is detected, identifying the subset of parameters carrying the sig-
nal becomes important. Suppose each observation consists of a high-dimensional
response vector and a low-dimensional vector of explanatory variables which can
represent treatment regimes and covariate information. In this paper, we intend
to detect and identify signals defined, in general, by an association between the
explanatory vector and the high-dimensional response.

A primary motivation for our work is analyzing data from Next Generation Se-
quencing of RNA (RNA-seq), which provides information about transcript abun-
dance for each gene. When there are two or more treatments, we are interested in
detecting whether any of the genes are differentially expressed across treatments.
Unlike continuous microarray data, RNA-seq data are usually collected in the form
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of counts that are associated with expression levels of genetic features. General-
ized linear models (GLMs) and their extensions are often used to model such data;
see, for example, Robinson and Smyth (2007, 2008), Anders and Huber (2010)
and Lund et al. (2012).

In this paper, we first consider testing sparse and faint covariate effects among
all the responses variables, which includes testing regression coefficients in GLMs
as a special case. This amounts to testing whether certain linear combinations of
parameters are nonzero when the deviations of the linear combinations from zero
(signals) are small in magnitude (faintness of signal) and occur in few dimen-
sions (rareness of signals). We consider the high-dimensional paradigm where the
number of the response variables is much larger than the number of replications.
Due to high dimensionality and rareness and faintness of signals, we carry out
thresholding on maximum likelihood estimates (MLEs) of the signals in each di-
mension to remove nonsignal bearing dimensions. A thresholding test statistic is
constructed by summing the thresholded signal MLEs over all the response dimen-
sions based on a newly established Cramér-type moderate deviation result for the
MLEs. We propose a multi-level thresholding test statistic constructed by maxi-
mizing the standardized thresholding statistic over a set of thresholds. This pro-
vides a data-driven strategy for automated threshold selection that produces an at-
tractive detection boundary for testing rare and faint signals. Built on the promise
of the multi-level thresholding tests, we propose a procedure for identifying the
signal-bearing dimensions.

For testing rare and faint signals in means, Donoho and Jin (2004) showed
that the Higher Criticism (HC) test can attain the optimal detection boundary
[Ingster (1997)] for uncorrelated Gaussian random vectors; see Delaigle, Hall and
Jin (2011), Hall and Jin (2008, 2010) and Zhong, Chen and Xu (2013) for fur-
ther studies and extensions. Testing for high dimensional means is advantageous
because estimators for the means (i.e., sample means) are readily available, as
well as the large deviation results for the sample means needed for the analysis
of HC statistics. For testing the regression coefficients in GLMs, the study be-
comes more challenging. Although MLEs for the regression coefficients can be
obtained, we need moderate deviation results for MLEs to uncover the perfor-
mance of the proposed thresholding statistics. The new moderate deviation result
with specific error rates allows us to analyze the properties of the proposed test.
There is work for GLMs with univariate response but high-dimensional covariates,
which includes Fan and Song (2010) for Sure Independent Screening of covariates,
and Zhong and Chen (2011), Goeman et al. (2011) and Guo and Chen (2016) for
testing high-dimensional regression coefficients. Statistical inference for data with
sparse and faint signals has been also considered in the areas of high-dimensional
linear regression and classification; see, for example, Arias-Castro, Candès and
Plan (2011), Ji and Jin (2012) and Fan, Jin and Yao (2013). We address a different
problem where covariates are low dimensional but responses are high dimensional,
reflecting the situation of RNA-seq data.
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The paper is organized as follows. The models and hypothesis of interest are
introduced in Section 2. Section 3 presents thresholding for MLEs together with
the moderate deviation result. The multi-level thresholding test is proposed in Sec-
tion 4, where the powers of both the single- and multiple-level thresholding tests
are investigated. Signal identification is discussed in Section 5. Simulation results
and an analysis of maize RNA-seq data are presented in Sections 6 and 7, respec-
tively. Section 8 provides extensions of the proposed methods. Technical details
are given in both the Appendix and the Supplementary Material [Qiu, Chen and
Nettleton (2018)].

2. Models and hypotheses. Suppose p response variables are measured for
n experimental units. Let yij be the measurement of response j for experimen-
tal unit i (i = 1, . . . , n and j = 1, . . . , p). Let zi = (zi1, . . . , zim)′ be a vector
of fixed and known explanatory variable values for experimental unit i, and let
βj = (βj1, . . . , βjm)′ be parameters representing explanatory variable effects and
φj be an ancillary parameter for response j . Let fj (y; zi, θj ) be the density func-
tion of yij , where θj = (β ′

j , φj )
′.

We are interested in testing, for a known matrix Dd×m,

(2.1) H0 : Dβj = 0 for all j vs. Ha : Dβj �= 0 for some j .

The matrix D is determined by the context of an application that would lead to a
specific model parameterization and the hypothesis of interest in terms of model
parameters. Each row of the matrix D contains coefficients of a linear combina-
tion of the parameters. Under the null hypothesis, the d linear combinations of
regression coefficients determined by D are all zero for all j . Hypothesis (2.1) is
a general setup, which includes testing for main effects of factors and interactions
among factors as special cases. For example, in the case of testing the equivalence
of two sample means where βj = (βj1, βj2)

′ stands for the population means of
the two groups, D may be chosen as (1,−1). As another example, consider the test
for interaction in a 2-by-2 factorial design, where βj = (βj,11, βj,12, βj,21, βj,22)

′
is the vector of treatment means corresponding to the four combinations of factor
levels. Then D may be (1,−1,−1,1) to specify the null hypothesis of no interac-
tion.

We consider a setting of (2.1) which facilitates the study of test performance for
the challenging case of sparse and weak signals. Let βj,0 be the value of βj under
the null hypothesis. Suppose that under Ha , βj takes the value βj,0 with probability
1 − ε and takes the value βj,0 + βj,a with probability ε for an ε > 0. This means
only ε proportion of the responses are expected to carry signal under the alternative
with signal strength βj,a . This leads to a specific form of the hypotheses in (2.1):

H0 : βj = βj,0 such that Dβj,0 = 0 for all j vs.
(2.2)

Ha : βj
ind∼ (1 − ε)νβj,0 + ενβj,0+βj,a

for all j,



898 Y. QIU, S. X. CHEN AND D. NETTLETON

where νβ stands for the point mass distribution at β , ε = p−κ for κ ∈ (0,1), and
βj,a = rj

√
2(logp)/n for an m-dimensional vector rj ∈ (0,1)m. Here, κ and {rj }

specify the sparsity and the signal strengths, respectively. The signal strengths {rj }
are assumed to be independently drawn from a super population compactly sup-
ported on a set G where P(Drj �= 0) = 1.

Note that (2.2) is a specialized version of (2.1), which has been used to evaluate
high-dimensional test procedures in the literature, for instance Donoho and Jin
(2004) and Hall and Jin (2010). Although the method we develop is for testing the
hypotheses in (2.1), it is important to understand its performance for testing (2.2),
which offers the most challenging setting for signal detection in high dimension.
The challenge is reflected in two aspects: the sparsity and faintness of signals under
Ha in (2.2). Good performance for testing (2.2) implies good performance for
testing (2.1) and is important in a variety of applications, including the empirical
study of RNA-seq data in Section 7, where important biological signals could be
both rare and faint. Thus, we construct a test that is powerful under (2.2) and also
directly applicable in the general settings of (2.1).

A relevant special case of (2.2) is when only one component of βj is of inter-
est, say βjk for some k ∈ {1, . . . ,m}. Let βjk,a be the kth element of βj,a . The
corresponding hypotheses under consideration are

(2.3) H0 : βjk = 0 for all j vs. Ha : βjk∼(1 − ε)ν0 + ενβjk,a
.

Testing for treatment effects under GLMs is a special case of the above frame-
work, where the distribution of yij is within the exponential family with mean μij

and dispersion parameter φj . The relationship between μij and βj is modeled as
g(μij ) = z′

iβj via a link function g(·). The following are some specific models.
Linear regression. The mean μij of the response is linearly related to the co-

variates zi as yij = z′
iβj + εij for i.i.d. error εij ∼ N(0, σ 2

j ) (φj = σ 2
j ).

Binomial regression. Suppose yij follows a binomial distribution with pa-
rameters nij and pij , where pij = E(yij /nij ) is the expected success propor-
tion. With the logistic link, the relationship between pij and zi is prescribed as
pij = exp(z′

iβj )/{exp(z′
iβj ) + 1}, and φj = 1.

Poisson regression. The dependence of μij = E(yij ) on the covariates zi is usu-
ally assumed to be log(μij ) = z′

iβj . Under the Poisson model, the dispersion pa-
rameter is a constant (i.e., φj = 1).

Negative binomial regression. Real data, such as RNA-seq data, often show ev-
idence of over-dispersion, where the variance of the response is larger than its
mean. The negative binomial distribution provides a way to account for over-
dispersion because its variance increases quadratically as the mean increases:
Var(yij ) = μij + μ2

ij /φj . We consider the log link log(μij ) = z′
iβj , and assume

that the dispersion parameter φj is unknown and may change from one response
variable to another.
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3. Thresholding MLEs. In this section, we construct a thresholding test for
the hypothesis (2.1). We have already explained that zi are fixed and known. For
the j th response variable, define

Iθ,j (θj ) = −1

n

n∑
i=1

E
{

∂2

∂θj ∂θ ′
j

logfj (yij ; zi, θj )

}

to be the average Fisher information of θj , where θj = (β ′
j , φj )

′. Let θ̂j = (β̂ ′
j , φ̂j )

′

and θ0
j = (β0

j

′
, φ0

j )
′ be the MLE and the true value of θj , respectively, where β̂j =

(β̂j1, . . . , β̂jm)′. As each θ0
j is low dimensional, θ̂j can be readily obtained for

each dimension. Let Îθ,j = Iθ,j (θ̂j ) be the estimated average Fisher information
matrix of θj . Let I−1

j (θj ) and Î−1
j = I−1

j (θ̂j ) be the true and estimated inverse
average Fisher information matrix corresponding to βj , which are the upper-left
m × m blocks of I−1

θ,j (θj ) and Î−1
θ,j , respectively. Because there are no treatment

effects on most of the responses under a sparse alternative, we apply thresholding
on the estimated treatment effects for each response. Let | · |, ‖ · ‖ and I(·) be
the Euclidean norm for vectors, the Frobenius norm for matrices and the indicator
function, respectively.

To formulate the thresholding procedure, we need to first establish a moderate
deviation result for MLEs of nonidentically distributed data, which requires the
following two assumptions.

A1. Suppose 
 is a compact subset of Rm+1, and θ0
j ∈ int
. There exist non-

negative measurable functions Hij (·, zi) and Gij (·, zi), such that for any y in the
support of yij :

(i) | logfj (y; zi, θ1) − logfj (y; zi, θ2)| ≤ Hij (y, zi)|θ1 − θ2| for any θ1, θ2 ∈

 and lim supn−1 ∑n

i=1 EHij (yij , zi) ≤ Hj < ∞ for Hj > 0;
(ii) there exists a constant δ0 > 0 such that for θ1 ∈ 
 and |θ1 − θ0

j | < δ0,∥∥∥∥ ∂2

∂θ ∂θ ′ logfj (y; zi, θ1) − ∂2

∂θ ∂θ ′ logfj

(
y; zi, θ

0
j

)∥∥∥∥ ≤ Gij (y, zi)
∣∣θ1 − θ0

j

∣∣
and lim supn−1 ∑n

i=1 EGij (yij , zi) ≤ Gj < ∞ for Gj > 0.

A2. There exists a constant δ > 0 such that E[exp{δ| ∂
∂θ

logfj (yij ; zi, θ
0
j )|}],

E[exp{δ‖ ∂2

∂θ ∂θ ′ logfj (yij ; zi, θ
0
j )‖}] and E[exp{δGij (yij , zi)}] are finite.

Assumption A1 prescribes the Lipschitz condition, which is commonly as-
sumed for likelihood inference [Jensen and Wood (1998); van der Vaart (1998)].
The existence of the moment generating function in A2 is a necessary condition
for the Cramér-type moderate deviation results [Petrov (1995); Saulis and Stat-
ulevic̆ius (1991)]. We verify in the Supplementary Material [Qiu, Chen and Net-
tleton (2018)] that these conditions are satisfied for the models discussed in Sec-
tion 2.
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LEMMA 1. Suppose Assumptions A1 and A2 are satisfied for all i = 1, . . . , n

and j = 1, . . . , p. Then:

(i) for wn = o(n1/6) and wn >
√

(2C0)−1 logn,

P
(∣∣Î 1/2

θ,j

(
θ̂j − θ0

j

)∣∣ ≥ wn/
√

n
) = P

(|Nm+1| ≥ wn

){
1 + O

(
w3

n/
√

n
)}

,

where Nm+1 ∼ N(0, Im+1) and C0 > 1 is a large positive constant;
(ii) for wn = O(

√
n) and some positive constants C and M ,

P
(∣∣Î 1/2

θ,j

(
θ̂j − θ0

j

)∣∣ ≥ wn/
√

n
) ≤ C exp

(−w2
n/M

)
.

Lemma 1(i) provides the Cramér-type moderate deviation result for MLEs from
independent but not identically distributed data with estimated Fisher informa-
tion matrix. It shows that the tail of standardized MLEs can be well approximated
by the tail of standard normal distribution. Lemma 1(ii) provides an exponential
bound for the tail probability of MLEs. These results suggest that the threshold
level for standardized MLEs is

√
2s logp for s ∈ (0,1).

Lemma 1 holds for i.i.d. data with more concise conditions. For the i.i.d. case,
Inglot and Kallenberg (2003) obtained results for the moderate deviation of an
MLE θ̂ under model mis-specification, where the amount of mis-specification con-
verges to 0 as n → ∞. They showed that

lim
n→∞w−2

n log
{
P

(√
n
∣∣I 1/2

θ

(
θ̂ − θ0)∣∣ ≥ wn

)} = −1/2

for wn = o(n1/2), where Iθ is the Fisher information of θ . However, such a result
is not enough for the analysis of the thresholding approach. The error rate w3

n/
√

n

in Lemma 1 is needed to facilitate the analysis for this paper.
We are now ready to define, for an s ∈ (0,1), a thresholding test statistic for

hypothesis (2.1) as

(3.1) Tn(s) =
p∑

j=1

n(Dβ̂j )
′V̂ −1

j (Dβ̂j )I
(∣∣V̂ −1/2

j Dβ̂j

∣∣ >
√

(2s logp)/n
)
,

where V̂j /n = DÎ−1
j D′/n is the estimated variance of the estimated signals, Dβ̂j .

Let ek be the m-dimensional unit vector with the kth element being 1 and all others
being 0. The thresholding test statistics for hypothesis (2.3) can be obtained from
(3.1) by setting D = e′

k , which leads to

Tn,k(s) =
p∑

j=1

nĴ−1
j,kkβ̂

2
jkI

(∣∣Ĵ−1/2
j,kk β̂jk

∣∣ ≥
√

(2s logp)/n
)
,

where Ĵj,kk is the kth diagonal element of Ĵj = Î−1
j .

Thresholding approaches have been applied on sample means in the HC test
[Donoho and Jin (2004)] for testing high-dimensional means. The properties of
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thresholding on general MLEs are more challenging due to the diverse form of the
parameters and less knowledge of moderate deviation results.

To derive the variance of Tn(s), we need to introduce the notion of ρ-
mixing. Let Yi = (yi1, . . . , yip)′ for i = 1, . . . , n, and Fb

a (Yi) = σ {yij : a ≤
j ≤ b} be the σ -field generated by Yi for −∞ ≤ a ≤ b ≤ ∞. Define the
ρ-mixing coefficients [Bradley (2005)] of the sequence {yij }pj=1 as ρi(k) =
supm∈Z ρ{Fm−∞(Yi),F∞

m+k(Yi)}, where for two σ -algebras A and B

ρ(A,B) = sup
{∣∣Corr(f, g)

∣∣ : f ∈ L2(A), g ∈ L2(B)
}
,

where Corr(·, ·) denotes the correlation operator and L2(A) is the collection of
random variables on A with finite second moment. The following assumption pre-
scribes the dependence among {yij }pj=1.

A3. The sequences of response variables {yij }pj=1 are ρ-mixing, and the mixing

coefficients satisfy ρi(k) ≤ Cαk for a constant α ∈ (0,1), any positive integer k

and i = 1, . . . , n.
Because the thresholding statistic Tn(s) in (3.1) involves summation over p

response variables, we only require that A3 holds for some permutation of the
response variables, but we do not need to know the permutation.

Let λp(s) = 2s logp, and F̄d(·) and fd(·) be the survival and the density func-
tions of a chi-square random variable with d degrees of freedom, respectively.
Define

μ0(s) = pdF̄d+2
(
λp(s)

)
and

(3.2)
σ 2

0 (s) = pd(d + 2)F̄d+4
(
λp(s)

) − pd2F̄ 2
d+2

(
λp(s)

)
.

Based on Lemma 1 and the ρ-mixing condition, we have the following theorem
giving the mean, variance and the limiting distribution of Tn(s).

THEOREM 1. Under H0, A1, A2, A3 and logp = o(n1/3),

E
{
Tn(s)|H0

} = μ0(s)
{
1 + O

(
λp(s)3/2/

√
n
)}

,

Var
{
Tn(s)|H0

} = σ 2
0 (s)

{
1 + o(1)

}
for any s ∈ (0,1) and

(3.3)
Tn(s) − E{Tn(s)|H0}√

Var{Tn(s)|H0}
d→ N(0,1) as n,p → ∞.

To formulate a testing procedure, E{Tn(s)|H0} and Var{Tn(s)|H0} can be es-
timated by their main orders μ0(s) and σ 2

0 (s), respectively. By Slutsky’s theo-
rem, {Tn(s) − μ0(s)}/σ0(s) converges in distribution to N(0,1) if E{Tn(s)|H0} −
μ0(s) = o{σ0(s)}. The latter is satisfied if n ∼ pξ for a ξ ∈ (0,1) and s > 1 − ξ as
stated in the following corollary.
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COROLLARY 1. Under H0, A1, A2, A3 and n ∼ pξ for a ξ ∈ (0,1), {Tn(s) −
μ0(s)}/σ0(s)

d→ N(0,1) for s > 1 − ξ as n,p → ∞.

As both μ0(s) and σ0(s) are known, a single-level thresholding test rejects H0
in (2.1) at significance level α if Tn(s) − μ0(s) > zασ0(s), where zα is the upper
α quantile of N(0,1). The restrictions n ∼ pξ and s > 1 − ξ can be removed if we
employ an estimator μ̂(s) that satisfies

(3.4) σ−1
0 (s)

[
E

{
Tn(s)|H0

} − μ̂(s)
] = o(1).

Such an estimator may be constructed by utilizing the specific distributional in-
formation of the GLM in conjunction with bias correction. It can be shown that
under the linear model with Gaussian errors, μ0(s) = E{Tn(s)|H0} which satisfies
the condition (3.4). Implications of using different forms of μ̂(s) on the proposed
multi-level thresholding test will be discussed after Theorem 2 in the next section.

4. Multi-level thresholding test. Single-level thresholding is known
[Donoho and Jin (2004)] to be incapable in testing sparse and faint signals in (2.2)
and (2.3) with unknown signal strength and sparsity. To adapt to the unknown
signal strength and sparsity, we propose a multi-level thresholding procedure that
considers multiple thresholding levels s ∈ (0,1). This avoids the issue of threshold
selection encountered in the single-level thresholding case. To simplify our expo-
sition, the main results in this section are presented under (3.4); extensions without
(3.4) are also discussed.

Donoho and Jin (2004) considered testing the high-dimensional mean of a stan-
dard normally distributed random vector. They studied the setting

H0 : μj = 0 for j = 1, . . . , p vs.

Ha : μ1, . . . ,μp
i.i.d.∼ (1 − ε)ν0 + ενμa

(4.1)

for ε = p−κ , μa = r
√

2(logp)/n, κ ∈ (0,1) and r ∈ (0,1). Ingster (1997) showed
that

(4.2) DB(κ) =
{

max{0, κ − 1/2} if 0 < κ ≤ 3/4,

(1 − √
1 − κ)2 if 3/4 < κ < 1,

is the optimal detection boundary for testing (4.1) for standard normally distributed
data. This means that for any test of hypothesis (4.1),

(4.3) Type I Error + Type II Error → 1 if r2 < DB(κ)

as n,p → ∞. And, there exists an optimal test such that,

(4.4) Type I Error + Type II Error → 0 if r2 > DB(κ)

as n,p → ∞. Donoho and Jin (2004) showed that their HC test attains the optimal
detection boundary for independent normal data with unit variance.
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We need knowledge about the power of the single-level thresholding test before
presenting the multi-level thresholding test. Let

(4.5) �n(s) = E(Tn(s)|Ha) − E(Tn(s)|H0)√
Var(Tn(s)|Ha)

be the signal to noise ratio. Given a nominal level α and Ha in (2.2), the power of
the single-level thresholding test is

Powern(s;α) = P

(
Tn(s) − E(Tn(s)|Ha)√

Var(Tn(s)|Ha)
> zα

√
Var(Tn(s)|H0)

Var(Tn(s)|Ha)
− �n(s)

∣∣∣Ha

)
.

It can be shown that Var(Tn(s)|H0)/Var(Tn(s)|Ha) is between 0 and 1, and
[Tn(s) − E(Tn(s)|Ha)]/√Var(Tn(s)|Ha) is stochastically bounded. To ensure the
power converges to 1, �n(s) has to diverge to ∞ as n → ∞. Hence, �n(s) is a
key power determinant, which depends on the sparsity κ and the signal strengths
in {rj }.

To make the test adaptive to the unknown sparsity and the signal strength, we
consider a test based on multiple threshold levels in the spirit of the HC test of
Donoho and Jin (2004) and its L2 version proposed by Zhong, Chen and Xu
(2013). Let

T̂n(s) = Tn(s) − μ̂(s)

σ0(s)
,

where μ̂(s), as conveyed in Section 3, is an estimate of E{Tn(s)|H0} that satisfies
(3.4). The strategy is to maximize T̂n(s) over multiple threshold levels. Let

Sn(ω) = {
sj : sj = n(Dβ̂j )

′V̂ −1
j (Dβ̂j )/(2 logp) and sj ≤ 1 − ω, 1 ≤ j ≤ p

}
for a small positive constant ω. The multi-level thresholding statistic is

(4.6) Tn = max
s∈Sn(ω)

T̂n(s).

The following theorem states the asymptotic null distribution of Tn.

THEOREM 2. Under H0 in (2.1), A1, A2, A3, (3.4) and logp = o(n1/3), for
any x ∈R and ω ∈ (0,1),

P
(
apTn − bp(ω) ≤ x

) → exp
{− exp(−x)

}
as n → ∞,

where ap = {2 log(log(p))}1/2 and

bp(ω) = 2 log
(
log(p)

) + 2−1 log
(
log

(
log(p)

)) + log(1 − ω) − 2−1 log(4π).

Based on Theorem 2, a level α multi-level thresholding test rejects H0 in (2.1) if
Tn > a−1

p (gα +bp(ω)), where gα is the upper α quantile of the Gumbel distribution
exp{− exp(−x)}. We choose ω small to obtain good power for the proposed test.
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In practice, we may choose μ̂(s) = μ0(s) in the formulation of Tn. In the case
that μ0(s) does not satisfy (3.4), we have to (i) restrict the relationship between n

and p such that n ∼ pξ for a ξ ∈ (0,1); (ii) modify the multi-level thresholding
statistic by restricting Sn(ω) such that sj > 1 − ξ for all j and choosing ω small
enough such that ω < ξ . It can be shown that Theorem 2 is still valid with bp(ω)

replaced by bp(1+ω− ξ). In this case, the multi-level thresholding test rejects H0
in (2.1) if Tn > a−1

p (gα + bp(1 + ω − ξ)).
To study the power of the proposed test against the sparse and weak hypothesis

in (2.2), we consider a general setting which allows the response distributions,
parameters and signal strength to vary across dimensions. In the following, we use
c0 to denote a small positive constant.

B1. There are H (a positive integer) possible families of distributions for the
responses. Specifically, a τh ≥ c0 proportion out of the total p responses are dis-
tributed according to a distribution family with density f(h)(yij ; zi, θj ) that satis-
fies Assumptions A1 and A2 for h = 1, . . . ,H .

B2. The parameters under H0, {(β ′
j,0, φj )

′}pj=1, are i.i.d. copies from an (m +
1)-dimensional super population with a density function q1 which is compactly
supported on a set K ⊂ Rm+1 such that q1(θ) ≥ c0 and Dβ = 0 for any θ =
(β ′, φ)′ ∈ K.

B3. The signal strengths in {rj } are independently drawn from a super popula-
tion with a density function q2, which is compactly supported on a set G, where
Dr �= 0 and q2(r) ≥ c0 for any r ∈ G.

Let Iθ,h,∞(·) = − limn→∞ 1
n

∑n
i=1 E ∂2

∂θ ∂θ ′ logf(h)(yij ; zi, ·). Let I−1
h,∞(θ) be the

upper m×m block of I−1
θ,h,∞(θ). Suppose the j th response is from the hj th family

of distributions. Define the standardized signal strength

(4.7) r̃hj
(rj , θj ) = r ′

jD
′V −1

hj ,∞(θj )Drj ,

where Vhj ,∞(θj ) = DI−1
hj ,∞(θj )D

′, and for H = {1, . . . ,H }, let

(4.8) r̃ = max
h∈H,r∈G,θ∈K r̃h(r, θ)

be the maximal standardized signal strength. Unlike the setting of the means in
(4.1), where the signal strength is solely determined by r , both r̃hj

(rj , θj ) and r̃

depend on both rj and θj .
As we will demonstrate shortly, the power of the multi-level thresholding test

is critically determined by r̃ . Although it may seem strange for an L2-type test’s
power to depend on the maximal signal strength, this connection with r̃ is due
to the thresholding step we have augmented to the L2 formulation to make the
procedure adaptive to weak and faint signals. It should be noted that this maximal
signal is not “isolated.” Indeed, under the alternative hypothesis of (2.2), due to
the compact support and bounded density [q1(θ) ≥ c0 and q2(r) ≥ c0] conditions
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in B1–B3, there will be a cε′ > 0 proportion of the signal-bearing responses with
signal strength larger than r̃ − ε′ for any small ε′ > 0. This cluster of the responses
around r̃ determines the power of the proposed test as revealed in the following
theorem.

THEOREM 3. Under Ha in (2.2), A1–A3, B1–B3, (3.4), logp = o(n1/3) and
ω small enough, for a series of slowly varying type I error rates converging to 0 as
n → ∞, with probability approaching 1:

(i) if r̃ < DB(κ), the power of the multi-level thresholding test → 0;
(ii) if r̃ > DB(κ), the power of the multi-level thresholding test → 1.

The theorem indicates that DB(κ) is the detection boundary of the multi-level
thresholding test. This detection boundary cannot be achieved by the standard L2
tests, for instance that in Chen and Qin (2010), due to the lack of a thresholding
component to screen out dimensions bearing no signal. Thresholding retains the
most informative part of the signal while removing the noninformative dimensions.

The optimality of the detection boundary DB(κ) can be established when we
confine to the linear regression with normally distributed response. Consider the
linear regression model, for i = 1, . . . , n and j = 1, . . . , p,

(4.9) yij = z′
iβj + εij for εij

i.i.d.∼ N
(
0, σ 2)

.

Under this model, r̃ = maxr∈G limn→∞ r ′D′{D(Z′Z)−1D′}−1Dr/(nσ 2) for Z =
(z1, . . . , zn)

′.

THEOREM 4. Assume the responses for each observation are independent.
For the hypothesis (2.2), under B2, B3 and the linear model (4.9), if r̃ < DB(κ),
Type I Error + Type II Error → 1 for any test as n,p → ∞.

Theorem 4 shows that DB(κ) is the detection lower boundary of any test for
the hypothesis (2.2) under the linear model (4.9) and independence among re-
sponses. From Theorem 3, we see that the proposed test obtains the optimal de-
tection boundary under the conditions of Theorem 4. Although the assumption of
independent responses is used here for deriving the optimal detection boundary and
showing the optimality of the proposed test, the proposed test is still valid without
the independence assumption (see A3). We would also like to point out that the
optimal detection boundary under the case of dependent responses could be lower
than the one given in Theorem 4, as discovered in Hall and Jin (2010) for testing
high-dimensional means. We believe that the optimality under this dependent case
could be achieved by the proposed test by implementing a data transformation first.

Arias-Castro, Candès and Plan (2011) showed that DB(κ) is the optimal de-
tection boundary for the linear regression model with high-dimensional covariates
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but low-dimensional (univariate) response. The model we consider in (4.9) has
low-dimensional covariates but high-dimensional responses.

For non-Gaussian distributions that satisfy A1 and A2, the following Theorem 5
indicates that DB(κ) is a detection lower boundary in the sense of (4.3). To for-
mulate the statement, we define a new quantity r0 that reflects the discrepancy
between βj and 0. Recall that fhj

(yij ; zi, θj ) is the density of the j th response
and βj,a = rj

√
2(logp)/n for rj ∈ G. Let

Iβ,hj ,∞(·) = − lim
n→∞

n∑
i=1

E
∂2

∂β ∂β ′ logfhj
(yij ; zi, ·)/n and

(4.10)
r0 = max

h∈H,r∈G,θ∈K r ′Iβ,h,∞(θ)r.

Note that r̃ measures the signal strength of the targeting linear combinations Dβj ,
while r0 is the squared standardized distance of rj from 0. The latter may involve
nuisance parameters, which are not of our interest. Since D has full row rank,
and Iβ,h,∞(θ) and I−1

h,∞(θ) are the upper m × m sub-matrices of Iθ,h,∞(θ) and

I−1
θ,h,∞(θ), respectively, it can be shown that r0 ≥ r̃ under any distribution of the

response.

THEOREM 5. Assume the responses for each observation are independent.
Under A1, A2, and B1–B3, for the hypothesis (2.2), if r0 < DB(κ), Type I Error+
Type II Error → 1 for any test as n,p → ∞.

Since r0 ≥ r̃ , the undetectable region r0 < DB(κ) given in Theorem 5 for any
distribution is smaller than that given in Theorem 4 written in terms of r̃ , which
is specifically for the linear model (4.9). When the dispersion parameter φj is
known and D is the identity matrix, we have Iβ,h,∞(θ) = Ih,∞(θ) and r0 = r̃ .
Under this form of the simple null hypothesis, it can be shown that the multi-level
thresholding test attains the detection lower boundary. Hence, it is optimal under
this scenario. However, for a general composite hypothesis (2.2), the proposed test
may not attain this lower detection boundary written in terms of r0, since there
may not exist a simple hypothesis equivalent to (2.2) under the non-Gaussian case.

5. Signal identification. If hypothesis (2.1) is rejected, we are interested in
locating the dimensions of signals. This is equivalent to considering

(5.1) Hj,0 : Dβj = 0 vs. Hj,a : Dβj �= 0,

for j = 1, . . . , p, and identifying the dimensions with Dβj �= 0. Let p0 be the
number of true null hypotheses. For sparse signals, p0 is close to p. Let V and R be
the numbers of false positives and rejected null hypotheses, respectively. The false
discovery proportion FDP = V/max{R,1} is the proportion of falsely rejected
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null hypotheses among all rejected null hypotheses, and the false discovery rate
(FDR) is the expectation of the FDP.

Benjamini and Hochberg (1995) (BH) considered FDR control at a level α ∈
(0,1) for (5.1) under dimension-wise independence. For each dimension j , let
pj = P(X 2

d > n(Dβ̂j )
′V̂ −1

j (Dβ̂j )) be the p-value for testing Hj,0 based on the

Wald test, where X 2
d denotes the chi-square distribution with d degrees of freedom.

Let p(1) ≤ p(2) ≤ · · · ≤ p(p) be the ordered p-values, and π(j) be the dimension
label of the j th smallest p-value. BH’s procedure rejects Hπ(1),0, . . . ,Hπ(M),0 in
(5.1) for M = max{j : p(j) ≤ αj/p}.

Controlling FDR bounds the expected FDP over repeated experiments.
Genovese and Wasserman (2006) suggested controlling the probability that FDP
exceeds a specific value, that is, to control P(FDP > c) ≤ α for a given c in (0,1),
For each subset W ⊂ {1, . . . , p}, they considered testing

HW,0 : Dβl = 0 for all l ∈ W vs.

HW,a : Dβl �= 0 for some l ∈ W
(5.2)

at level α. Let U be the collection of all subsets W not rejected in (5.2). For any
subset A ⊂ {1, . . . , p}, they define �̄(A) = maxB∈U #(B∩A)

#(A)
to be a 1 − α confi-

dence envelope for FDP, where #(A) is the cardinality of A. Then choose the re-
jection set R0 such that �̄(R0) ≤ c to control the FDP exceedance rate. Genovese
and Wasserman (2006) proposed to test the overall hypothesis (5.2) via the min-
imum p-value test (GW1). Extensions to tests based on the kth smallest p-value
and an approach to combine results from different k (GWcom) were proposed. See
Sections 4 and 6 of Genovese and Wasserman (2006) for details.

Testing all the subsets of {1, . . . , p} is computational infeasible when p is
large. Most importantly, by linking the results given in Donoho and Jin (2004)
and Theorem 3, the test based on the minimum p-value cannot attain the opti-
mal detection boundary DB(κ). To translate the good detection property of the
multi-level thresholding test to better signal detection, we apply the proposed
test for the overall hypotheses (5.2) in a step-down formulation. Specifically, let
Wj = {π(j),π(j + 1), . . . , π(p)} for j = 1, . . . , p. Consider testing at level α the
hypothesis

HWj ,0 : Dβl = 0 for all l ∈ Wj vs.

HWj ,a : Dβl �= 0 for some l ∈ Wj.
(5.3)

The sequence of the tests in (5.3) serves as a step-down procedure for (5.1).
Let T (Wj ) be the multi-level thresholding statistic computed using data in Wj .

The following is the proposed multiple testing procedure for (5.1):

(i) Step-down: define J = min{j : T (Wj ) ≤ a−1
p−j+1(gα + bp−j+1(ω))} or

p + 1 if T (Wj ) > a−1
p−j+1(gα + bp−j+1(ω)) for all j = 1, . . . , p. Let R1 =

{π(1), . . . , π(J − 1)} or the empty set if J = 1.
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(ii) Augmentation: let J ∗ = min{p, �(J − 1)/(1 − c)�}, R∗ = {π(1), . . . ,

π(J ∗)} or the empty set if J ∗ = 0.
(iii) Rejection set: our proposed procedure rejects the null hypothesis in (5.1)

for all j in R∗.

Part (i) is a step-down procedure via the thresholding statistic (4.6) for the hy-
potheses (5.3). Essentially, J is obtained by repeatedly conducting the multi-level
thresholding test on Wj while removing the most significant individual dimension
one at a time until there is no rejection. Part (ii) is the augmentation step. Following
Genovese and Wasserman (2006), the rejection set R∗ is obtained by augmenting
R1 from part (i) with the next �(J − 1)c/(1 − c)� most significant dimensions
whenever R1 is nonempty.

The rationale for enlarging R1 is that if we only choose R1 as the set of sig-
nals, the FDP rate would diminish to zero with probability 1 − α as the num-
ber of signals increases with n and p. Augmenting the rejection set with the next
�(J −1)c/(1−c)� most significant dimensions increases power while still asymp-
totically controlling the rate of FDP exceeding c at level α.

Comparing to the BH procedure that only controls average FDP, our procedure
can control a more stringent type I error rate without power loss. Comparing to the
GW procedure, since the multi-level thresholding test is more powerful than the
minimum p-value test in detecting rare and faint signals as confirmed in Figure 3,
the proposed signal identification procedure enjoys higher power than the GW
procedure. We will demonstrate those advantages of the proposed procedure by
the following two theorems.

Let S = R − V be the number of correctly discovered signals (true positives),
and let SGW, SBH and Sprop be S for the GW, BH and the proposed procedures, re-
spectively. Recall that p−p0 is the total number of signals. The following theorem
compares the ratios of signal selection of the proposed procedure with that of the
GW and BH procedures. To simplify the presentation, we assume the standardized
signal strength r̃hj

(rj , θj ) in (4.7) is the same for all the responses in the following
theorems.

THEOREM 6. Under Ha in (2.2) with r̃ > κ , Conditions A1–A3 and logp =
o(n1/3), as α → 0 slowly and n,p → ∞:

(i) SGW/(p − p0)
p→ 0 when r̃ < 1;

(ii) SGW/(p − p0)
p→ 1 at the rate p−(

√
r̃−√

κ)2+o(1) when r̃ > 1;
(iii) Sprop/(p − p0) and SBH/(p − p0) converge to 1 in probability at the rate

p−(
√

r̃−√
κ)2+o(1).

Theorem 6 shows that the signal identification by employing the proposed ap-
proach and the BH procedure is selection consistent as long as r̃ > κ , whereas the
GW procedure is selection consistent only for the strong signal case of r̃ > 1. It
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is noted that r̃ > κ is a minimum requirement for identifying rare and faint sig-
nal since Ji and Jin (2012) discovered that the signal identification is impossible if
r̃ < κ . When the signal strength is stronger such that r̃ > 1, all the three procedures
attain the signal selection consistency with the same rate of convergence up to a
factor of po(1). While Theorem 6 shows that the true positive rates of the proposed
procedure is comparable to that of the BH procedure, the following theorem shows
that the proposed procedure can control the FDP exceedance rate, which is more
stringent than the FDR control achieved by the BH procedure.

THEOREM 7. Under Ha in (2.2) with r̃ > κ , Conditions A1–A3 and logp =
o(n1/3), as n,p → ∞, the proposed multiple testing procedure controls the FDP
exceedance rate such that P(FDP > c) ≤ α.

It is noted that the FDR based procedure (BH method) controls the average of
FDP without considering its variation. Hence, it may not be suitable in some ap-
plications as pointed out by Genovese and Wasserman (2006). The proposed pro-
cedure provides a method for incorporating FDP variability under control without
sacrificing the power in terms of signal selection consistency. Simulation studies
reported in the next section confirm that the proposed procedure can control both
FDR and the exceedance FDP rate, and outperform both the BH and GW proce-
dures.

6. Simulation study. We studied the empirical performance of the proposed
test under generalized linear models. Balanced designs with two treatments were
considered. To mimic the “large p, small n” paradigm, we chose the total sample
size n = 20 and 40, where the sub-sample sizes of each treatment group are 10 and
20, respectively. The dimension was chosen as p = 100,400,1000 and 10,000.
Three models were used to simulate data. In each model, the covariate vectors (zi)
take values (1,0)′ or (0,1)′, indicating the first and second treatment, respectively.
The models are as follows:

• Poisson regression. For i = 1, . . . , n and j = 1, . . . , p, the response yij follows
Poisson distribution with mean μij = exp(z′

iβj ).
• Binomial regression. Suppose yij ∼ binomial(nij , pij ), where nij were ran-

domly chosen from the integers between 20 and 40 according to a discrete uni-
form distribution, and pij = exp(z′

iβj )/{exp(z′
iβj ) + 1}.

• Negative binomial regression. The response yij is generated from NB(μij , φj )
with log(μij ) = z′

iβj , where the dispersion parameters φ1, . . . , φp were set ac-
cording to i.i.d. draws from the uniform(3,13) distribution.

We tested whether there are treatment effects for any of the response variables.
Namely, with the D matrix in (2.2) equal to (1,−1), we have

(6.1) H0 : βj1 = βj2 for all j vs. Ha : βj2
i.i.d.∼ (1 − ε)νβj1 + ενβj1+βa ,
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where ε = p−κ and βa = √
(2ra logp)/n. Under H0, βj1 = βj2 = β0 for all re-

sponse variables, where β0 = 2 for Poisson regression, 2.5 for negative binomial
regression and 0.5 for binomial regression.

We chose κ = 0.6 and 0.55 representing the sparsity of signals. The numbers
of signals were kept at 7,11,16 and 40 corresponding to p = 100,400,1000 and
10,000 for κ = 0.6, and 8,15,22 and 63 corresponding to p = 100,400,1000 and
10,000 for κ = 0.55, respectively. The strength parameter ra was chosen differ-
ently between different models to make the standardized signal strength within
(0,1). We estimated E{Tn(s)|H0} by its main order μ0(s) given in (3.2), and set
ω = 0.1. The nominal size was 5%. All the simulation results reported below are
based on 1000 replications.

For negative binomial regression, the MLE φ̂j usually overestimates φj when
the sample size is small, leading to under-estimation of the standard deviation of
β̂j . This enlarges the thresholding statistic and causes a size distortion. We use a
parametric bootstrap to correct the bias of φ̂j . Specifically, for each response vari-
able, the MLEs β̂j and φ̂j are first obtained based on the original sample. Bootstrap
resamples of size n are drawn from the negative binomial model with parameters
β̂j and φ̂j , and φj is re-estimated based on the resample. The process is repeated
B times to obtain the bootstrapped MLEs φ̂∗

j,1, . . . , φ̂
∗
j,B . The bias corrected esti-

mator is φ̃j = 2φ̂j − φ̄∗
j , where φ̄∗

j = ∑B
i=1 φ̂∗

j,i/B . We use φ̃j to approximate the
Fisher information of βj and to compute the thresholding statistics Tn(s) in (3.1).

The empirical size and power of the multi-level thresholding test are displayed
in Figure 1. We observe that the proposed test had reasonable size around the nom-
inal level 5% in most cases. The sizes for Poisson and negative binomial regression
were slightly conservative under n = 20. When n was increased to 40, the sizes in-
creased to around 5%. The powers of the proposed test were satisfactory under all
the scenarios and increased rapidly with the increase of signal strength and number
of signals. There were dips in the power between the fourth and fifth index, which
were due to the decrease in the signal strength ra that was not compensated by the
increase in the number of signals. The simulation setting provides one example
where fewer large signals are easier to detect than many small signals.

To better understand the different performances of the proposed test under
the three models, we provide in Table 1 the value of ra that defines βa =√

(2ra logp)/n and the corresponding maximal standardized signal strength r̃ in
(4.8). It shows that the negative binomial regression has the highest r̃ among the
three models, which is due to the fact that the ra for the negative binomial re-
gression is larger than those in the Poisson and binomial regression. Having the
largest r̃ is the reason why the empirical power was higher for negative binomial
regression than for Poisson or binomial regression. It is observed that the empirical
power is not very responsive to the changing sample size, but is sensitive to the di-
mensionality p. This is because, as shown in Proposition S1 in the Supplementary
Material [Qiu, Chen and Nettleton (2018)], the signal to noise ratio (SNR) of the
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FIG. 1. Empirical sizes and powers of the multi-level thresholding test for the hypothesis (6.1)
under Poisson, binomial and negative binomial regression. The vertical axis shows the proportion
of rejections. The horizontal axis gives the null hypothesis, represented by (0, 0), and six alternative
hypotheses. The first and second index of the horizontal axis give the values of 10κ and 100ra ,
respectively, providing signal sparsity and strength.
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TABLE 1
The maximal standardized signal strength r̃ at different ra for the three models

Poisson Binomial Negative binomial
β = (2,2)′ β = (0.5,0.5)′ β = (2.5,2.5)′

ra r̃ ra r̃ ra r̃

0.15 0.28 0.15 0.29 0.4 0.63
0.2 0.37 0.22 0.42 0.5 0.78
0.25 0.46 0.3 0.59 0.6 0.94

thresholding test is largely determined by p, κ and r̃ . And the SNR increases as p

increases as long as r̃ > DB(κ).
In addition to (6.1), we also considered scenarios motivated by the experiment

described in Section 7. That experiment involves a Latin square design with two
blocking factors (lanes and barcodes) and one treatment factor of interest (geno-
type). Suppose for i = 1, . . . , n and j = 1, . . . , p,

g(μij ) = νj + X′
g,iαj + X′

�,iτj + X′
b,iγj ,

where g(·) is a link function, νj is an intercept parameter, Xg,i , X�,i and Xb,i

are vectors that indicates the genotype, lane and barcode of the ith experimen-
tal unit, respectively, and αj = (αj1, αj2, αj3, αj4)

′, τj = (τj1, τj2, τj3, τj4)
′ and

γj = (γj1, γj2, γj3, γj4)
′ are vectors of genotype, lane and barcode effects, re-

spectively. As discussed in Section 7, we are interested in testing the hypothesis
H0 : αj1 = αj2 = αj3 = 0 for all j , where αj4 is set to zero for identifiability
purposes. Recall that I3 is the 3 × 3 identity matrix. The D matrix in (2.2) that
corresponds to this hypothesis is [03×1, I3,03×3,03×3].

We consider Poisson, negative binomial and binomial regression with n = 16
(to match the sample size in the case study) and also n = 32, which doubles the
number of observations for each combination of factors. The link function g(·)
was set to log for Poisson and negative binomial cases and to logit for binomial
regression. We set νj = 3.5,2,0.2 for Poisson, negative binomial and binomial
regression, respectively. We set τj = γj = (−0.5,0,0.5,0)′ for Poisson and nega-
tive binomial regression, and τj = γj = (−0.1,0,0.1,0)′ for binomial regression.
In all our simulations, αj1, αj2 and αj3 were set to a common value denoted as
αj0. Under the null, αj0 was set to 0, and under the alternative, αj0 was generated
according to

(6.2) Ha : αj0
i.i.d.∼ (1 − ε)ν0 + εναa ,

where αa = √
(2ra logp)/n. The simulation results, reported in Figure 2, show

that the multi-level thresholding test had reasonable size and good power for de-
tecting the alternative in (6.2). This shows that the proposed method works well
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FIG. 2. Empirical sizes and powers of the multi-level thresholding test for the hypothesis (6.2)
under Poisson, binomial and negative binomial regression. The vertical axis shows the proportion
of rejections. The horizontal axis gives the null hypothesis, represented by (0, 0), and six alternative
hypotheses. The first and second index of the horizontal axis give the values of 10κ and 100ra ,
respectively, providing signal sparsity and strength.
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for designed experiments more complex than the two-group comparisons covered
in our other simulation scenarios.

To gain wider perspectives on our proposal, we compared the proposed test with
two alternative formulations. One was a HC test in the spirit of Donoho and Jin
(2004), which rejects H0 in (6.1) if HC∗ >

√
2 log logp where

HC∗ = max
1≤j≤p/2

√
p[j/p − p(j)]/[

p(j)(1 − p(j))
]1/2

.

The other was a test based on the minimum p-value, which reject H0 in (6.1) if
p(1) < B−1

1,p(0.05) ≈ 0.05/p. This is equivalent to the test based on the max-norm
statistics over all dimensions. We considered 30 and 40 signals. Figure 3 displays
the powers of the three tests for Poisson regression with p = 400 and 1000. The
results for other models and dimensions were similar. To make the power com-
parison fair, all the empirical sizes were adjusted to be 5%. It is observed that the
proposed test had the best power among the three test procedures, and the power
of the minimum p-value test was the lowest. In the context of testing for means,
Donoho and Jin (2004) showed that the minimum p-value test is powerless for
κ ∈ (1/2,3/4) and κ − 1/2 < r̃ < (1 −√

1 − κ)2, a region that lies above the opti-
mal detection boundary of the proposed test. Similar detection boundary results for
the minimum p-value test can be derived under our context, so the poorer power
performance in our simulation is not surprising. The superior performance of the
proposed test over the HC formulation suggests that the advantage of the L2 for-
mulation after thresholding as discovered in Zhong, Chen and Xu (2013) for the
mean parameter may be valid for general MLEs.

To compare the proposed multiple testing procedure with the procedures of
Benjamini and Hochberg (1995) (BH) and Genovese and Wasserman (2006), we
considered negative binomial regression under Ha in (6.1) with βj1 = 2.5, n = 40,
p = 10,000 and 4 different numbers of signals, 50, 100, 150 and 200. We adopt
the GW procedure with k = 1 (GW1) and the combined k approach (GWcom),
and set the FDP exceedance level c = 0.1 and the control rate α = 0.05. Figure 4
shows the type I and type II errors of the four procedures. We see that the proposed
procedure controlled the FDR and the exceedance FDP rate around 5% for all the
cases. The BH procedure (which is designed to control FDR) was unable to con-
trol the exceedance FDP rate when the number of signals is 50. The nondiscovery
proportions of the proposed procedure were close to those of the BH procedure.
However, the proposed procedure was more powerful when the signal strength
is weak (ra = 0.8). Although both the GW procedures controlled the exceedance
FDP rate, they were too conservative. Their type I error rates were around 0, which
inevitably brought large type II errors.

7. Case study. In this section we illustrate the proposed method in an anal-
ysis of maize RNA-seq data from Paschold et al. (2017). In an RNA-seq exper-
iment, target mRNA molecules are first converted to cDNA fragments that are
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FIG. 3. Power comparison between the multi-level thresholding test, HC test and minimum p-value
test. The vertical axis gives the empirical powers of the three tests for hypothesis (6.1) under Poisson
regression and p = 400,1000. The first and second index of the horizontal axis give one tenth of the
number of signals and 10ra , respectively.

sequenced on a high-throughput next generation sequencing platform. Then these
sequences (known as reads) are aligned to a reference genome, and the number
of reads mapped to a given gene measures its expression level. The data set we
analyze consists of RNA-seq read counts from root cortex tissue of four maize
genotypes with four replications per genotype. The four genotypes include two
inbred parental lines (labeled B and M) as well as two hybrid genotypes formed
by crossing B and M with B as the female parent and M as the male parent (BM)
and vice versus (MB). Although these two reciprocal hybrids are genotypically
indistinguishable, they may differ in some traits, including gene expression levels.
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FIG. 4. Averages of the number of false negatives (type II errors), the nondiscovery proportion
(number of false negatives/number of signals), FDR and the proportion of FDP in excess of 0.1
for the proposed multiple testing procedure, BH procedure and GW procedures with k = 1 and the
combined k approach for the negative binomial regression under Ha in (6.1) with βj1 = 2.5, n = 40
and p = 10,000. The first and second index of the horizontal axis give one tenth of the number of
signals and 10ra , respectively.

The four samples from any given block were sequenced together in a single Il-
lumina flow cell lane. Four barcodes (AR001, AR003, AR008 and AR009) were
used so that each read could be attributed to the correct sample within each lane.
Table 2 illustrates the Latin square sequencing design employed to facilitate esti-
mation of block/lane, barcode and genotype effects on gene expression levels.

Consistent with standard practice in the analysis of RNA-seq data, we ap-
plied pre-screening to delete the genes with low read counts (average counts less
than 10). For the j th gene included in the analysis, let y1j , . . . , y16j be the RNA-
seq read counts. We assume yij follows a negative binomial distribution with dis-
persion parameter φj and mean μij satisfying

log(μij ) = νj + X′
g,iαj + X′

�,iτj + X′
b,iγj ,



THRESHOLDING TESTS ON MLES 917

TABLE 2
The Latin square sequencing design for the maize study

Barcode

AR001 AR003 AR008 AR009

Block/lane 1 B M BM MB
Block/lane 2 M BM MB B
Block/lane 3 BM MB B M
Block/lane 4 MB B M BM

where νj is an intercept parameter and αj = (αj1, αj2, αj3, αj4)
′, τj = (τj1, τj2,

τj3, τj4)
′ and γj = (γj1, γj2, γj3, γj4)

′ are the effects of genotypes, blocks/lanes
and barcodes for the j th gene. Without loss of generality, we set αj4 = τj4 = γj4 =
0 for identifiability purposes.

We begin our analysis by testing whether any gene is differentially expressed
across genotypes. The relevant hypotheses are

H0 : αj1 = αj2 = αj3 = 0 for all j vs.

Ha : at least one component of αj is not equal to 0 for some j .
(7.1)

Let βj = (νj , αj1, αj2, αj3, τj1, τj2, τj3, γj1, γj2, γj3)
′. As in the second setting

of the simulation study, D = [03×1, I3,03×3,03×3].
We applied the proposed test for the hypotheses in (7.1). The value of the multi-

level thresholding statistic in (4.6) was 1012.3. At the 5% significant level, we
reject the null hypothesis when this statistic is larger than 3.08. Therefore, the pro-
posed method provides a clear indication that the null hypothesis of (7.1) should be
rejected. Next, we test whether any gene is differentially expressed between the re-
ciprocal hybrid genotypes BM and MB. The value of the multi-level thresholding
statistic was 37.83, which exceeds the critical value 3.08. Thus, there is evidence
that some genes are differentially expressed between the reciprocal hybrids BM
and MB.

We also applied the proposed multiple testing procedure to identify genes differ-
entially expressed (DE) between the hybrids. We controlled at 5% the probability
of FDP in excess of 0.1. The proposed method identified 32 DE genes between
the reciprocal hybrids, while the BH procedure found only 23 of the 32 DE genes.
Both the GW procedures based on the minimum p-value and the combined k ap-
proach found just 18 of the 23 identified by the BH procedure. These results are
consistent with the findings of Theorem 6 and the simulation study: our proposed
method tends to identify more genes as DE than does the GW approach, and it
does not suffer power loss compared to the BH approach, while controlling the
FDP exceedance rate.
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8. Extension. The proposed multi-level thresholding test can be extended to
more complicated scenarios. We discuss two possible extensions in this section:
generalized linear mixed models (GLMMs) and high-dimensional predictors.

GLMM. We focus on a group random effects model. Suppose that the n = u× v

observations come from u groups with v observations in each group. Let yijk be
the value of the kth observation of the j th response variable in the ith group, and
let zik be the corresponding vector of explanatory variables, where i = 1, . . . , u,
j = 1, . . . , p and k = 1, . . . , v. Let ηj = (η1j , . . . , ηuj )

′ and βj = (βj1, . . . , βjm)′
be random group effects and fixed treatment effects, respectively. Let μijk =
E(yijk|ηij ). For the link function g(·) and an unknown positive variance compo-
nent σ 2

j ,

(8.1) g(μijk) = z′
ikβj + ηij for ηij

i.i.d.� N
(
0, σ 2

j

)
.

Define θj = (β ′
j , φj , σ

2
j )′, Ỹij = (yij1, . . . , yijv)

′ and Zi = (z′
i1, . . . , z

′
iv)

′. Let

Ỹj = (Ỹ ′
1j , . . . , Ỹ

′
uj )

′. For the j th response variable in the ith group, the marginal

probability density function of Ỹij is

(8.2) fj (w1, . . . ,wv;Zi, θj ) =
∫ v∏

k=1

pijk

(
wk|t; z′

ik, βj , φj

)
φσ 2

j
(t) dt,

where pijk(·|t; z′
ik, βj , φj ) is the conditional density of yijk given ηij = t , and

φσ 2
j
(t) is the N(0, σ 2

j ) density. Due to the random group effects, observations are

independent between groups but dependent within groups. Let θ̃j be the exact
MLE. However, due to intractable integration in (8.2) for fj (Ỹij ;Zi, θj ), θ̃j may
be unobtainable.

As the group random effects ηij are Gaussian, Gauss–Hermite quadrature
can be used to approximate fj (Ỹij ;Zi, θj ). Let f̂j,G(Ỹij ;Zi, θj ) be its approx-
imation by the Gauss–Hermite quadrature of degree G. The exact MLE θ̃j

can be approximated by θ̂j,G, which maximizes the approximate log likelihood∑u
i=1 log{f̂j,G(Ỹij ;Zi, θj )} [McCulloch, Searle and Neuhaus (2008)]. Since the

approximation error of f̂j,G(Ỹij ;Zi, θj ) to fj (Ỹij ;Zi, θj ) can be controlled by the
quadrature degree G, a moderate deviation result similar to Lemma 1 could also
hold for the approximate MLE θ̂j,G with a carefully chosen G. This indicates that
the thresholding test procedure could be applied in conjunction with the Gaussian
quadrature approximation method.

High-dimensional predictors. The proposed procedure could be applied to the
case of diverging number of predictors, namely, allowing m → ∞. We illustrate
the idea via the linear regression. For i = 1, . . . , n and j = 1, . . . , p,

(8.3) yij = z′
ij βj + εij for εij

i.i.d.∼ N
(
0, σ 2)

,
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where zij = (zij1, . . . , zijm)′, βj = (βj1, . . . , βjm)′, and both the covariates and
responses are high-dimensional such that m � n and p � n. For some covariate
k, a hypothesis of interest is

(8.4) H0 : βjk = 0 for all j vs. Ha : βjk �= 0 for some j .

Let Ỹj = (y1j , . . . , ynj )
′ and Zj = (z1j , . . . , znj )

′. For each response, we esti-
mate βj by the disparsified Lasso estimator

b̂j = β̂j + 
̂jZ
′
j (Ỹj − Zj β̂j )/n

of Zhang and Zhang (2014) and van de Geer et al. (2014), where b̂j = (b̂j1, . . . ,

b̂jm)′, β̂j is the Lasso estimator, and 
̂j is from the node-wise regression of each
covariate in the design matrix Zj on all other covariates. See equations (7) and
(8) of van de Geer et al. (2014). By Theorem 2.1 of van de Geer et al. (2014),
the moderate deviation result for the desparsified Lasso estimators b̂j similar to
Lemma 1 could be established under some suitable conditions. Based on this, the
proposed procedures for signal detection and identification could be applied on b̂jk

for the hypothesis (8.4).

APPENDIX

Here we provide the proof of Theorem 4, which is the key in the detection
boundary analyzes. Proofs of the other theorems are given in the Supplementary
Material [Qiu, Chen and Nettleton (2018)].

PROOF OF THEOREM 4. Consider the hypotheses (2.2) under the linear model

yij = z′
iβj + εij for εij

i.i.d.∼ N
(
0, σ 2)

, i = 1, . . . , n, j = 1, . . . , p.

Let Z = (z1, . . . , zn)
′, and CZ ⊂ Rn be its column space with dimension m. Let

μij = E(yij ). Then, for each j , the j th response mean, (μ1j , . . . ,μnj )
′, is in CZ .

Let ND ⊂ Rm be the null space of D. Because D has d linearly independent rows,
the dimension of ND is m − d . Let E be an m × (m − d) matrix whose column
space is ND . Under H0 in (2.2), we see that (μ1j , . . . ,μnj )

′ is contained in the
column space of ZE for each j = 1, . . . , p.

Following the argument for linear hypotheses in page 266 of Lehmann (1959),
we would like to construct an n × n orthogonal matrix G in such a way that
the first m rows of G span CZ with the (d + 1)th row to the mth row spanning
the column space of ZE. Transform the responses by G. Let (y∗

1j , . . . , y
∗
nj )

′ =
G(y1j , . . . , ynj )

′ and ηij = E(y∗
ij ) for i = 1, . . . , n and j = 1, . . . , p. Then, testing

Dβj = 0 is equivalent to testing η1j = · · · = ηdj = 0 for each j .
Let A = σ−1{D(Z′Z)−1D′}−1/2D(Z′Z)−1Z′. Note that AA′ = σ−2Id×d . It

can be shown that the first d rows of G can be chosen as σA. Then the first d

transformed responses under the linear model are

y∗
ij = Biβj + ε∗

ij for ε∗
ij

i.i.d.∼ N(0,1),
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where Bi is the ith row of B = σ−1{D(Z′Z)−1D′}−1/2D for i = 1, . . . , d . Let
rt = Br/

√
n. The hypotheses (2.2) are equivalent to

H0 : η1j = · · · = ηdj = 0 for j = 1, . . . , p vs.

Ha : ηij
ind∼ (1 − ε)ν0 + ενai

for i = 1, . . . , d and j = 1, . . . , p,
(A.1)

where ε = p−κ for κ ∈ (0,1), ai = rt,i
√

2 logp and rt,i is the ith row of rt for
i = 1, . . . , d .

Let μ = (a1, . . . , ad)′. Note that |μ|2 = r ′
t rt (2 logp). Let P and Q be the dis-

tribution under H0 and Ha of (A.1). Due to the independence between responses,
it follows that P = P

p
1 and Q = Q

p
1 , where P1 and Q1 are the distributions of the

j th response under H0 and Ha , respectively. We have

H 2(P,Q) = 2 − 2
(

1 − H 2(P1,Q1)

2

)p

for H 2(P1,Q1) =
∫ (√

dQ1

d�
− 1

)2
d�,

where � is the d-dimensional standard normal distribution.
It can be shown that, if H 2(P1,Q1) = o(p−1), then H 2(P,Q) → 0, and no test

can distinguish H0 and Ha of (A.1), asymptotically. Let L(y) = dQ1/d� be the
likelihood ratio. We have

L(y) = (1 − ε) exp(−y′y/2) + ε
∫

exp{−(y − μ)′(y − μ)/2}dF(r)

exp(−y′y/2)

= (1 − ε) + ε

∫
exp

(
y′μ − ‖μ‖2/2

)
dF(r).

Let Lp be a multi-log(p) term which may change from case to case. Define f =
μ/

√
2 logp. By Jensen’s inequality, it follows that

H 2(P1,Q1) ≤ Lp

∫ ∫ {√
1 + p−κ

(
p2w′f −r∗ − 1

) − 1
}2

p−w′w dw dF(r),

where r∗ = r ′
t rt . Given r , it can be shown that the leading order of the inner inte-

gration in the term above is∫
p{2w′f −r∗−κ}∧{4w′f −2r∗−2κ}−w′w dw ∼= pmaxw{g(w,r∗)},

where g(w, r∗) = {2w′f − r∗ − κ} ∧ {4w′f − 2r∗ − 2κ} − w′w. Hence, the opti-
mal detection boundary is determined by whether maxw,r∈G{g(w, r∗)} is larger or
smaller than −1. It can be shown that

max
w∈Rd

{
g(w, r∗)

} =

⎧⎪⎪⎨⎪⎪⎩
−κ if r∗ ≥ κ,

−(κ + r∗)2/4r∗ if κ/3 ≤ r∗ < κ,

2r∗ − 2κ if r∗ < κ/3,
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and maxw{g(w, r∗)} is an increasing function of r∗. The optimal detection bound-
ary DB(κ) in Theorem 4 follows by noting r̃ = maxr∈G limn→∞ r∗. �
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SUPPLEMENTARY MATERIAL

Supplement to “Detecting rare and faint signals via thresholding maximum
likelihood estimators” (DOI: 10.1214/17-AOS1574SUPP; .pdf). The supplemen-
tal article contains additional empirical results, as well as the proofs of all the
theoretical results not in the Appendix.
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