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TESTING INDEPENDENCE WITH HIGH-DIMENSIONAL
CORRELATED SAMPLES

BY XI CHEN AND WEIDONG LIU1

New York University and Shanghai Jiao Tong University

Testing independence among a number of (ultra) high-dimensional ran-
dom samples is a fundamental and challenging problem. By arranging n iden-
tically distributed p-dimensional random vectors into a p × n data matrix,
we investigate the problem of testing independence among columns under
the matrix-variate normal modeling of data. We propose a computationally
simple and tuning-free test statistic, characterize its limiting null distribu-
tion, analyze the statistical power and prove its minimax optimality. As an
important by-product of the test statistic, a ratio-consistent estimator for the
quadratic functional of a covariance matrix from correlated samples is de-
veloped. We further study the effect of correlation among samples to an im-
portant high-dimensional inference problem—large-scale multiple testing of
Pearson’s correlation coefficients. Indeed, blindly using classical inference
results based on the assumed independence of samples will lead to many
false discoveries, which suggests the need for conducting independence test-
ing before applying existing methods. To address the challenge arising from
correlation among samples, we propose a “sandwich estimator” of Pearson’s
correlation coefficient by de-correlating the samples. Based on this approach,
the resulting multiple testing procedure asymptotically controls the overall
false discovery rate at the nominal level while maintaining good statistical
power. Both simulated and real data experiments are carried out to demon-
strate the advantages of the proposed methods.

1. Introduction. The independence among samples is a fundamental assump-
tion in most statistical modeling upon which numerous estimation and infer-
ence methods and theories have been developed. Indeed, from classical statisti-
cal inference (e.g., Student’s t-test) to popular topics in modern statistics (e.g.,
high-dimensional problems, such as regression, matrix estimation and inference),
this assumption of independence occurs widely. Consider n samples X1, . . . ,Xn,
where each sample is a p-dimensional vector from the same population distribu-
tion with mean μ ∈ R

p and covariance � = (σij )p×p . It is often convenient to pool
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n samples together to form a p × n data matrix X = (X1, . . . ,Xn). More specifi-
cally, for example, in microarray data, X is an expression level matrix for p genes
measured on n subjects. Such data are usually high-dimensional; thus, we mainly
consider the setting where p is much larger than n. Most existing works in high-
dimensional literature make the independence assumption among columns of X,
serving as the starting point of methodology development and technical analysis.
However, recent studies have shown that there are correlation structures among
subjects in various microarray datasets [see, e.g., Allen and Tibshirani (2012),
Efron (2009), Kim et al. (2012), Teng and Huang (2009)], demonstrating the poten-
tial risk of making the seemingly natural assumption of independence. Therefore,
given a data matrix X, it is important to first test whether the samples are indeed
independent before applying any method that assumes independence.

A data matrix X = (X1, . . . ,Xn) is known as transposable data when both rows
and columns are potentially correlated [Lazzeroni and Owen (2002), Allen and
Tibshirani (2012)]. For a transposable data matrix X, it is commonly assumed
that X follows a matrix-variate normal distribution, which has been widely ap-
plied to model microarray data [see, e.g., Allen and Tibshirani (2012), Efron
(2009), Kim et al. (2012), Muralidharan (2010), Teng and Huang (2009), Yin
and Li (2012), Zhou (2014)]. The matrix-variate normal distribution is a natu-
ral generalization of familiar vector-variate normal distribution [Dawid (1981)].
In particular, let vec(X) ∈ R

np×1 be the vectorization of matrix X obtained by
stacking the columns of X on top of each other. We say X ∈ R

p×n follows a
matrix-variate normal distribution with the mean matrix M ∈ R

p×n and covari-
ance matrix � ⊗ � ∈ R

np×np [denoted by X ∼ N(M,� ⊗ �)] if and only if
vec(X′) ∼ N(vec(M′),� ⊗ �). Here, X′ denotes the transpose of X, ⊗ is the
Kronecker product and � = (ψij )n×n ∈ R

n×n is the covariance matrix of row
vectors of X. Given a matrix-variate normal X ∼ N(M,� ⊗ �), each column
Xi ∼ N(M i ,ψii�) for 1 ≤ i ≤ n, where M i is the ith column of the mean ma-
trix M. Recall our problem setup: each Xi follows the same population distribu-
tion with mean vector μ and covariance �. Thus, we have M = μ1′ where 1 is
the n-dimensional all one column vector and ψii = 1 for 1 ≤ i ≤ n. Under the
matrix-variate normal modeling of the data, the independence testing problem is
equivalent to the global test of whether � is a diagonal matrix, that is,

(1) H0 : ψij = 0 for all 1 ≤ i < j ≤ n.

The testing problem in (1) is closely related to the following correlation test
problem:

(2) H0 : ρij = 0 for all 1 ≤ i < j ≤ p,

where ρij = σij /
√

σiiσjj is the Pearson’s correlation coefficient. The testing prob-
lem in (2) is a classical problem in multivariate analysis [Anderson (2003), Nagao
(1973)]. It has also been extensively studied in the past decade under the high-
dimensional setting [e.g., Johnstone (2001), Ledoit and Wolf (2002), Jiang (2004),
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Schott (2005), Liu, Lin and Shao (2008), Bai et al. (2009), Cai and Jiang (2011),
Jiang and Yang (2013), Han and Liu (2017)]. However, the reported results are
based on the assumption that samples are independent. In fact, our problem in (1)
is equivalent to the testing problem (2) with correlated samples. To see this, note
that when treating each row of X as an individual sample, the role of � and �
interchanges since X′ ∼ N(1μ′,� ⊗ �), that is, the matrix � models the correla-
tions among row samples while � becomes the population covariance matrix. For
many types of data (e.g., genetic data, financial data), there exists a complicated
correlation structure among p variables. Thus, � will not be a diagonal matrix
and row vectors are not independent. Our problem in (1) essentially tests the cor-
relation among row vectors when samples are correlated. The correlation among
samples makes our problem more challenging; and the aforementioned methods
for testing (2), which are based on the assumption of sample independence, cannot
be applied to our problem.

The classical methods for testing independence among samples commonly as-
sume p is fixed and are usually designed only for time series data. It is also known
as serial independence test; see Hong (1998) and the references therein. In such
a framework, the methods require that the samples under alternatives come from
some time series. These samples satisfy an ordering structure such that the depen-
dence between two samples decays as the distance of their indices increases. In our
setting, there is no structural assumption among samples. Without any structural
assumption, we will show in Theorem 2.7 that any test will not have the power
tending to 1 uniformly over a large class of alternatives when the dimension p is
small [e.g., fixed constant or p = o(logn)]. On the other hand, for p ≥ c logn but is
small compared to n, the independence test is relatively easy. In fact, if � is known,
the data matrix can be transformed as �−1/2X ∼ N(�−1/2μ1′, Ip×p ⊗ �); and
thus the independence test can be directly carried out using existing approaches
[e.g., Jiang (2004), Liu, Lin and Shao (2008)]. One can apply such an approach
with a plug-in estimator �̂−1. However, as we will explain later in Section 5, when
p ≥ cn, even the optimal convergence rate of the estimator �̂−1 is not fast enough
to solve this problem. In fact, although we have more information (i.e., row sam-
ples) as p becomes larger, the number of unknown parameters in � increases ac-
cordingly, which makes the problem challenging. Therefore, the high-dimensional
setting is the most interesting case, and will be the main focus of the paper.

Although the testing of independence among high-dimensional samples is an
important and fundamental problem, few existing works have done so. Based on
matrix-variate normal modeling of the data, some inference approaches were pro-
posed by Efron (2009) and Muralidharan (2010). However, these works do not
explore the limiting null distributions as well as the validity and power of the test.
Pan, Gao and Yang (2014) proposed a statistic for this problem based on random
matrix theory. However, it requires the condition that p is proportionally as large
as n (i.e., 0 < limn→∞ p

n
< ∞), and thus cannot be applied to cases where p = nr
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with r > 1 or, as in the ultra high-dimensional setting, where p = exp(nγ ) for
some 0 < γ < 1; both scenarios are common in genetic applications. Further, the
method in Pan, Gao and Yang (2014) requires splitting n samples into two parts
and differences in splitting could lead to different test results. In this paper, we
consider the (ultra) high-dimensional setup and propose a minimax optimal test
procedure in terms of the statistical power for the testing problem in (1). We show
that the distribution of the proposed max-type test statistic converges to a type I ex-
treme value distribution under the null (Theorem 2.4). Therefore, the proposed test
has the pre-specified significance level asymptotically. We also investigate the sta-
tistical power. Roughly speaking, we show that under some very mild conditions
on off-diagonal elements of � , the power will converge to 1. Further, we prove that
the proposed test is minimax rate-optimal over a large class of � (Theorems 2.5
and 2.6).

Our construction of the test statistic combines a bias correction and a variance
correlation based on the sample covariance matrix (ψ̂ij )n×n, where we treat each
row of X as a sample. The bias correction technique allows us to handle the ultra
high-dimensional case. Moreover, the variance correlation technique deals with the
correlation structure among “row samples” of X, which is specified by �. To char-
acterize the strength of correlation among row samples, we identify a key quantity

Ap = p‖�‖2
F

(tr(�))2 , which comes from the asymptotic variance of our bias-corrected
statistic. Here, ‖ · ‖F denotes the Frobenius norm and tr(�) is the trace of �. To
simultaneously control the type I error under null and maintain the minimax rate-
optimal statistical power, we need a ratio consistent estimator of Ap regardless of
the correlation among samples. Therefore, the remaining task essentially reduces
to the problem of estimating ‖�‖2

F from correlated samples.
It is noteworthy that estimating ‖�‖2

F itself is an important problem, which
is known as quadratic functional estimation of � [see, e.g., Bai and Saranadasa
(1996), Chen and Qin (2010), Fan, Rigollet and Wang (2015)]. Most existing
works are based on the assumption that samples are independent and identically
distributed (i.i.d.), and thus, cannot be directly applied to our problem. Motivated
by the thresholding estimator in Fan, Rigollet and Wang (2015), we propose a plu-
gin estimator for ‖�‖2

F based on a thresholded sample covariance matrix but we
relax the independence assumption among samples. Further, we propose a definite
threshold level, which is adaptive to the amount of correlations among samples
and guarantees the consistency of the resulting estimator. Our simulation results
demonstrate the superior performance of the proposed estimator of ‖�‖2

F over the
existing approaches, which leads to a significant improvement in statistical power.

In summary, we propose a simple max-type test statistic to conduct the global
test of independence among high-dimensional random samples in (1). Our ap-
proach has the following advantages:

1. Our construction is direct and computationally attractive, which only re-
quires the row sample covariance matrix (ψ̂ij )n×n and a threshold estimator of
‖�‖F. Further, our test statistic is completely tuning-free.
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2. The limiting null distribution is characterized, and thus the type I error is
controlled asymptotically. Further, our test procedure is minimax rate-optimal over
a sufficiently large class of � , which is enough for most practical purposes.

3. As an important by-product, we provide a ratio-consistent estimator for esti-
mating quadratic functional of covariance matrix from correlated samples.

We would like to note that we only focus on the matrix-variate normal distribu-
tion, which is a common assumption for studying a transposable data matrix and
widely used for modeling correlated microarray data. It is of interest to investi-
gate the independence test for more general distributions, for example, a matrix
elliptical distribution [Dawid (1977), Fang and Zhang (1990)] or X = �1/2Z�1/2,
where entries of Z = (Zij )p×n are i.i.d. random variables with unit variance. We
leave the extension to such distributions of data matrices for future work.

After we conduct the independence test, if the samples are indeed correlated,
many classical inference approaches cannot be directly applied. We use the multi-
ple testing problem of Pearson’s correlation coefficients to illustrate the effect of
the correlation among samples, demonstrate the reason why the classical approach
will fail when samples are correlated and further develop a new method to de-
correlate the samples. In particular, we consider the following large-scale multiple
testing problem, for 1 ≤ i < j ≤ p,

(3) H0ij : ρij = 0 versus H1ij : ρij �= 0.

Problem (3) is a natural extension of the global test of independence in (2). In
fact, the hypothesis that � is a diagonal matrix is a strong null hypothesis, which
will be rejected in most real data applications (e.g., microarray data, stock data).
In contrast, the goal of the multiple testing problem (3) is to identity the pairs
of correlated variables, and thus find many applications in real data analysis, for
example, gene co-expression network analysis [Carter et al. (2004), Hirai et al.
(2007), Lee, Hsu and Sajdak (2004), Zhu et al. (2005)], and brain connectivity
analysis [Shaw et al. (2006)]. The goal of the testing problem in (3) is consistent
with the goal of support recovery of a sparse �. The latter problem has been ex-
tensively studied in recent years [e.g., see Rothman, Levina and Zhu (2009), Lam
and Fan (2009), Cai and Liu (2011), Bien and Tibshirani (2011)]. These works
establish consistency results of support recovery from independent samples under
certain conditions, for example, all the absolute values of nonzero ρij are lower

bounded by C

√
logp

n
, which might be hard to hold in practice. Instead of trying to

achieve the perfect support recovery, the multiple testing problem (3) has a more
refined control of the type I error rate in support recovery under weaker assump-
tions. In particular, it usually aims to control the false discovery rate (FDR), which
is a useful measure for evaluating the performance of support recovery. We also
note that Cai and Liu (2016) recently studied problem (3) in a high-dimensional
setting but it still requires the independence assumption.
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For correlated samples from a matrix-variate normal distribution, we first es-
tablish the following result on the limiting distribution of the sample correlation
coefficient ρ̂ij (see Proposition 3.1):

(4)

√
n(ρ̂ij − ρij )√
Bn(1 − ρ2

ij )
⇒ N(0,1),

where Bn = ‖�‖2
F

n
, which quantifies the strength of the correlation among sam-

ples. Equation (4) subsumes as a special case the classical results on the limiting
distribution of ρ̂ij when samples are i.i.d. [Bn = 1 in (4)] [see Theorem 4.2.4 in
Anderson (2003)]. When the correlation is strong to a certain extent such that
Bn > 1 + c for some constant c > 0, directly using sample correlation coefficient√

nρ̂ij or Fisher’s z statistic will lead to many false positives; this is verified by our
simulations in Section 4.2. In fact, even if Bn is known and one uses the correct
limiting null distribution N(0, Bn

n
) of ρ̂ij , the variance of ρ̂ij − ρij becomes larger

as Bn increases, which leads to a lower power of the test.
To overcome the side effect of correlation among samples, we propose a “sand-

wich estimator” of ρij by de-correlating the samples, which has the limiting dis-
tribution N(ρij ,

1
n
(1 − ρ2

ij )
2). The corresponding asymptotical variance does not

depend on Bn and is smaller than that of the naïve estimator ρ̂ij . Therefore, the
proposed “sandwich estimator” has an improved statistical power especially when
the correlation among samples is strong. Based on the proposed “sandwich esti-
mator” of ρij , the standard multiple testing procedure [Benjamini and Hochberg
(1995)] is proven to asymptotically control the FDR at the nominal level (see The-
orem 3.2).

Finally, we introduce some necessary notation. For a positive integer p, [p] :=
{1, . . . , p}. For a square matrix A, let tr(A) denote the trace of A, λmax(A) the
maximum eigenvalue of A and λmin(A) the minimum eigenvalue of A. Let I {B}
be the indicator function that takes value one when the event B is true and zero
otherwise. For a given set H, let Card(H) be the cardinality of H. For any two real
numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b). We use lim and
lim to denote limit superior and limit inferior, respectively. Throughout the paper,
we use Ip×p to denote the p × p identity matrix, and use C, c, c1, etc. to denote
constants for which values might change from place to place and do not depend on
n and p.

The rest of the paper is organized as follows. In Section 2, we study the global
test in (1). The test statistic is proposed in Section 2.1. In Section 2.2, we pro-
vide the ratio consistent estimator of Ap and ‖�‖F from correlated samples. The
estimation error is characterized in Theorem 2.1. We further provide the limiting
null distribution of the test statistic and the power analysis (Theorems 2.4–2.7).
Section 3 studies the multiple testing of correlations in (3) from correlated sam-
ples. Experimental results are given in Section 4 followed by discussion in Sec-
tion 5. Due to space limitations, the proofs of our results as well as some addi-
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tional experimental results are provided in the Supplementary Material [Chen and
Liu (2018)].

2. Sample independence test. We study the global testing problem of sam-
ple independence in (1) given the p × n data matrix X = (X1, . . . ,Xn) ∼
N(μ1′,� ⊗ �).

2.1. Construction of the test statistic. Recall that Xi = (Xi1, . . . ,Xip)′ de-
notes the ith sample for 1 ≤ i ≤ n and let X̄ = 1

n

∑n
i=1 Xi =: (X̄1, . . . , X̄p)′. De-

fine

(5) ψ̂ij = 1

p

p∑
k=1

(Xik − X̄k)(Xjk − X̄k), 1 ≤ i, j ≤ n.

In fact, from the proof, the statistic (ψ̂ij )n×n is the sample covariance coefficient
corresponding to tr(�)

p
ψij . Further, under the null H0, we can show that

(6) ψ̂ij = 1

p

p∑
k=1

(Xik − μk)(Xjk − μk) − 1

np

p∑
k=1

σkk + OP

(
1√
np

)
.

The first term 1
p

∑p
k=1(Xik − μk)(Xjk − μk) has mean tr(�)

p
ψij and variance

‖�‖2
F

p2 (ψiiψjj + ψ2
ij ). The bias term 1

np

∑p
k=1 σkk comes from the centralization

statistics {X̄k}pk=1 in (5). When p = o(n2), we have 1
np

∑p
k=1 σkk = o(1/

√
p) and√

pψ̂ij can be shown to converge to a normal distribution. However, as we are in-
terested in the ultra high-dimensional case where p can be as large as exp(o(nγ ))

for some 0 < γ < 1, when p becomes larger such that n2 = o(p),
√

pψ̂ij → −∞
in probability under the null. To enable the applicability of our test statistic in the
ultra high-dimensional setting, we first propose the following bias corrected quan-
tity:

(7) Tij := ψ̂ij + 1

np

p∑
k=1

σ̂kk,

where σ̂kk = 1
n−1

∑n
j=1(Xjk − X̄k)

2 is the sample variance corresponding to σkk .

Since the first term in (6) has variance ‖�‖2
F

p2 (ψiiψjj +ψ2
ij ), the asymptotic variance

of Tij is ( tr(�)
p

)2 Ap

p
, where

(8) Ap = p‖�‖2
F

(tr(�))2

quantifies the strength of correlations among row vectors of X.
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Given Ap in (8), we will show that under the null as (n,p) → ∞,

(9)

P

(
p

Ap

max
1≤i<j≤n

T 2
ij

ψ̂iiψ̂jj

− 4 logn + log logn ≤ t

)

→ exp
(
− 1√

8π
exp

(
− t

2

))
for t ∈ R, where the term Ap plays the role of variance correction for Tij . The
remaining task is to develop a ratio consistent estimator Âp for Ap . In addition, to
maintain the statistical power, the estimator Âp should also be consistent for cor-
related samples. In Section 2.2, we will develop such an estimator for Ap . Given
the estimator Âp [see (14)], we propose the following test statistic for the indepen-
dence test in (1):

(10) T̂n,p = p

Âp

max
1≤i<j≤n

T 2
ij

ψ̂iiψ̂jj

.

2.2. Estimation of Ap and ‖�‖2
F from correlated samples. The estimation of

‖�‖2
F finds many applications and has been studied in several works [Bai and

Saranadasa (1996), Chen and Qin (2010), Fan, Rigollet and Wang (2015)]. How-
ever, all these works rely on the sample independence assumption. In particular,
Fan, Rigollet and Wang (2015) proved that the simple plug-in procedure based on
threshold estimators are minimax optimal over a large class of covariance matri-
ces. Moreover, the threshold level in Fan, Rigollet and Wang (2015) takes the form

of C

√
logp

n
, where the constant C needs to be carefully tuned to achieve good per-

formance in practice. A cross-validation (CV) procedure was suggested; however,
there is no theoretical justification for such a CV procedure. In this section, we
introduce a threshold estimator for ‖�‖2

F with an explicit threshold level, which is
completely data-driven without any tuning and automatically adaptive to the cor-
relation among samples. We will show in Theorem 2.1 that the obtained estimator
is ratio-consistent for correlated samples.

Let us define the (column) sample covariance matrix �̂ = (σ̂ij )1≤i,j≤p with
σ̂ij = 1

n−1
∑n

k=1(Xki − X̄i)(Xkj − X̄j ) and sample correlation coefficient ρ̂ij =
σ̂ij /

√
σ̂ii σ̂jj for 1 ≤ i, j ≤ p. Further, define

(11) Bn = ‖�‖2
F

n
= 1

n

∑
1≤i,j≤n

ψ2
ij ,

which quantifies the average correlation among samples. It can be shown that
ρ̂ij−ρij√
Bn(1−ρ̂2

ij )
⇒ N(0,1) (see Proposition 3.1 in Section 3 and note that ρ̂ij → ρij in
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probability). We propose the following threshold estimator �̂thr = (σ̂ij,thr)1≤i,j≤p ,
where

(12)
σ̂ij,thr = σ̂ij I

{ |ρ̂ij |
1 − ρ̂2

ij

≥ δ

√
B̂n logp

n

}
for i �= j,

σ̂ii,thr = σ̂ii for 1 ≤ i ≤ p.

Here, B̂n is an estimator of Bn and δ can be any constant larger than
√

2. Let
�̂ = (

p

tr(�̂)
ψ̂ij )1≤i,j≤n. Using the approach from Bai and Saranadasa (1996), we

construct

(13) B̂n = 1

n

(
‖�̂‖2

F − 1

p

(
tr(�̂)

)2
)
.

Given the threshold estimator �̂thr = (σ̂ij,thr)1≤i,j≤p in (12), the ‖�‖2
F is esti-

mated by ‖�̂thr‖2
F and Ap is estimated by

(14) Âp = p‖�̂thr‖2
F

(tr(�̂thr))2
.

Now we will show that ‖�̂thr‖2
F and Âp are ratio-consistent estimators of ‖�‖F

and Ap , respectively. We first make the following three assumptions throughout
this section. Let λmin(�) = λ1 ≤ λ2 ≤ · · · ≤ λp = λmax(�) be the eigenvalues of
� and λmin(�) = ν1 ≤ ν2 ≤ · · · ≤ νn = λmax(�) be eigenvalues of � . We make
the following standard assumption on eigenvalues:

(C1) We assume that c−1 ≤ λmin(�) ≤ λmax(�) ≤ c and c−1 ≤ λmin(�) ≤
λmax(�) ≤ c for some constant c > 0.

The condition (C1) is a typical eigenvalue assumption in high-dimensional co-
variance estimation literature [see the survey Cai, Ren and Zhou (2016) and refer-
ences therein]. This assumption is natural for many important classes of covariance
matrices, for example, bandable, Toeplitz and sparse covariance matrices. There
are cases that the assumption (C1) is violated, for example, when the covariance
matrix has equal correlation structure [i.e., � = ρ · 11′ + (1 − ρ) · Ip×p for some
ρ ∈ (0,1)]. Our result will not hold for such a setting and please refer to Figure 3
in Section 4.1 for the experimental illustrations.

We also note that this condition can be weakened by replacing the constant c

by some cp → ∞ at a certain rate. However, for the sake of simplicity, we do not
intend to seek the optimal rate of cp . We only mention that this type of constraint
on eigenvalues is needed in our problem. Without this type of constraint, Tij in
(7) will no longer be asymptotic normal because the Lindeberg’s condition for the
central limit theorem (CLT) of independent random variables [see the expression
of ψ̂ij in equation (67) in the Supplementary Material, Chen and Liu (2018)] is
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violated. Thus, our result on type I error rate control in Proposition 2.3 will no
longer hold.

The second condition is also a standard assumption on the norm of each row of
� and �.

(C2) For some 0 < τ < 2, assume that
∑n

k=1 |ψik|τ ≤ C uniformly over each
row 1 ≤ i ≤ n and

∑p
k=1 |σjk|τ ≤ C uniformly over each row 1 ≤ j ≤ p.

Notably, the upper bounds on eigenvalues of � and � in (C1) only imply the �2-
boundedness of each row of � and �, that is,

∑n
k=1 |ψik|2 ≤ c2 and

∑p
k=1 |σjk|2 ≤

c2. The condition (C2) is stronger than this implication by noticing that 0 < τ < 2.
Moreover, when 0 < τ < 1, this assumption becomes the typical weak sparsity
assumption in high-dimensional covariance estimation.

The third assumption is on the relationship between n and p.

(C3) We assume that p > cn for some universal constant c > 0 that does not
depend on p and n. We further assume that p = exp(o(nγ )) with γ = (1 − ε) ∧
( 2
τ

− 1) for some ε > 0.

The first condition p = pn > cn is quite natural in a high-dimensional setting
and the second condition p = exp(o(nγ )) allows us to deal with an ultra high-
dimensional setting.

Under these three assumptions, we provide the following theorem, which estab-
lishes the ratio consistency of the estimators Âp and ‖�̂thr‖2

F.

THEOREM 2.1. Assume that (C1)–(C3) hold. For any δ >
√

2, we have Âp

Ap
=

1 + OP((

√
logp

n
)min(1,2−τ)) and ‖�̂thr‖2

F
‖�‖2

F
= 1 + OP((

√
logp

n
)min(1,2−τ)).

According to Theorem 2.1, we will simply set δ = 1.42 in the estimator Âp in
our experiment. In fact, the experimental results are quite robust with respect to
the choice of δ. As long as the δ is above

√
2 and does not take a too large value,

the experimental results will not be affected.
Due to the term B̂n in the thresholding level, our estimator is adaptive to the

correlations between the samples. We next show that, even when � = Ip×p , if
we use the thresholding level designed for i.i.d. samples without B̂n as in Fan,
Rigollet and Wang (2015), the resultant estimator Ãp will overestimate Ap , and
hence, reduce the power. In particular, define the thresholding estimator

�̂1 = (σ̂ij,1) where σ̂ij,1 = σ̂ij I

{
|σ̂ij | ≥ λ

√
logp

n

}
, i �= j,

and σ̂ii,1 = σ̂ii . Fan, Rigollet and Wang (2015) showed that, under the i.i.d. as-
sumption, for a large constant-valued λ (not depending on �),

∑
i �=j σ̂ 2

ij,1 attains
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the minimax-optimal rate for estimating
∑

i �=j σ 2
ij . Let Ãp = p‖�̂1‖2

F

(tr(�̂1))
2 . When the

samples are correlated, ‖�̂1‖F is no longer a ratio consistent estimator for ‖�‖F,
and hence results in a poor estimator for Ap .

PROPOSITION 2.2. Assume that � = Ip×p and (C1)–(C3) hold. For any λ >

0 and ν > 0, there is a class of covariance matrices � with Bn ≥ 5λ2/ν such that
P(Ãp/Ap ≥ 1 + cp1−ν/n) → 1 as (n,p) → ∞.

Proposition 2.2 shows that Ãp will overestimate Ap when p � n. If Ãp is used
to estimate Ap , then the resultant testing approach will be less powerful than the
test with our estimator Âp . We will further show the impact of Ãp on the power in
the simulation.

2.3. Type I error rate control and optimality of statistical power. The follow-
ing proposition gives the limiting distribution of Tij .

PROPOSITION 2.3. Assume that p ≥ cn for some constant c > 0 (which does
not depend on n and p) and (C1) holds. Under the null H0, for t ∈ R, we have as
(n,p) → ∞

P

(
p

Ap

max
1≤i<j≤n

T 2
ij

ψ̂iiψ̂jj

− 4 logn + log logn ≤ t

)
→ exp

(
− 1√

8π
exp

(
− t

2

))
.

In Proposition 2.3, the test statistic Tij√
ψ̂ii ψ̂jj

can be viewed as a sample correla-

tion coefficient related with ψij . We first note that Proposition 2.3 cannot be im-
plied by Theorem 4 in Cai and Jiang (2011). Let us denote the sample correlation
coefficient by

(15) ρ̂ij =
∑n

k=1(Xki − X̄i)(Xkj − X̄j )√∑n
k=1(Xki − X̄i)2 ∑n

k=1(Xkj − X̄j )2
.

Cai and Jiang (2011) established the limiting distribution of max|i−j |≥τ |ρ̂ij | for
τ ≥ 1. Their result requires that n random vectors (Xki,Xkj ) for 1 ≤ k ≤ n in the
sum

∑n
k=1(Xki − X̄i)(Xkj − X̄j ) in (15) are i.i.d. On the contrary, our statistic

Tij is based on
∑p

k=1 XikXjk , which is a sum of p potentially correlated random
variables, no matter under the null or alternatives.

In addition, it is worthwhile to note that Cai and Jiang (2012) revealed an in-
teresting phase transition phenomenon in the limiting distribution of the largest
off-diagonal entry of the sample correlation matrix. There are different regimes
for large p, in which the limiting distributions are different. In contrast, in our
problem, there is no such a phase transition phenomenon and the limiting distri-
bution is unified in the high-dimensional setting when p ≥ cn. To see this more
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clearly, let us assume that X(k) for k = 1, . . . , p, are independent so that the results
in Cai and Jiang (2012) are valid. Now, the quantity p is the sample size and n is
the dimension. According to Corollary 2.2 of Cai and Jiang (2012), there is a phase
transition phenomenon for the distribution of the statistic in Proposition 2.3 (i.e.,
p
Ap

max1≤i<j≤n
T 2

ij

ψ̂ii ψ̂jj
− 4 logn + log logn) between two regimes 1√

p
logn → 0

and 1√
p

logn → α ∈ (0,∞). In our high-dimensional setting, we have p ≥ cn,

which belongs to the first regime 1√
p

logn → 0. Thus, there is no phase transition
phenomenon in the high-dimensional setting.

Using Theorem 2.1, we provide the limiting null distribution of our test statistic
T̂n,p in the next theorem.

THEOREM 2.4. Assume that (C1)–(C3) hold. Under the null H0, we have

(16) P(T̂n,p − 4 logn + log logn ≤ t) → exp
(
− 1√

8π
exp

(
− t

2

))
for t ∈ R, as (n,p) → ∞.

REMARK. In Theorem 2.4, we need the additional assumption p =
exp(o(nγ )) in (C3), which is used to obtain a ratio-consistent estimator of ‖�‖2

F
and Ap . If we consider only the limiting distribution of the test statistic under
the null (i.i.d. samples), one may use the method from Chen and Qin (2010) to
estimate ‖�‖F. The estimator from Chen and Qin (2010) does not require the con-
dition p = exp(o(nγ )). However, in terms of statistical power, as we have shown
in our simulations, their estimator will overestimate ‖�‖2

F (see Figure C in the
Supplementary Material [Chen and Liu (2018)]) and reduce the power (see Fig-
ure 1 in Section 4.1) especially when the correlation among samples is strong.
Our estimator is ratio-consistent for both null and alternative (see Theorem 2.1)
under the extra condition p = exp(o(nγ )). For the thresholding estimator, such a
condition on p is necessary. To see this, if logp is much larger than n, then the
thresholding level in (12) is much larger than one. Thus, �̂thr becomes diag(�̂)

and ‖�̂thr‖2
F will no longer be consistent. As a future direction, it would be in-

teresting to construct a consistent estimator for ‖�‖2
F and Ap under the null and

alternative simultaneously without the restriction on p.
According to Theorem 2.4, for a given significance level 0 < α < 1, we reject

the null hypothesis whenever T̂n,p ≥ qα +4 logn− log logn, where qα is the 1−α

quantile of the type I extreme value distribution with the cumulative distribution
function (CDF) exp(− 1√

8π
exp(−x

2 )), that is,

(17) qα = − log(8π) − 2 log log(1 − α)−1.

Theorem 2.4 shows that the proposed test statistic controls the type I error rate at
the nominal level asymptotically.
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We now turn to the power analysis. For a given pair of 1 ≤ i < j ≤ n, let us
define

(18) dij,� = ψij −
∑n

k=1,�=i ψik

n
−

∑n
k=1,�=j ψjk

n
−

∑
1≤i �=j≤n ψij

n2(n − 1)

and

(19) dn,� := max
1≤i<j≤n

|dij,� |.

The next theorem shows that for a large class of � , the null hypothesis will be
rejected by our test with probability tending to one.

THEOREM 2.5. Assume that (C1)–(C3) hold and suppose that for some δ > 2
and all large enough n and p,

(20) dn,� ≥ δ

√
Ap logn

p
.

We have P(T̂n,p − 4 logn + log logn ≥ qα) → 1 as (n,p) → ∞.

We next show that our test statistic is minimax rate optimal for statistical power
even when μ and � are known. To this end, we introduce a class of covariance
matrix for �—F(δ) for some δ > 0 as follows:

F(δ) =
{
� � 0 : ψii = 1,1 ≤ i ≤ n and dn,� ≥ δ

√
logn

p

}
.

Let Tα be the set of α-level tests with μ and � being known, that is, Tα = {Tα :
P(Tα = 1|H0) ≤ α}. Here, Tα = 1 means the rejection of H0.

THEOREM 2.6. Let α,β > 0 and α + β < 1. Assume that (C3) holds. For any
δ < 2, we have

(21) lim
(n,p)→∞ sup

Tα∈Tα

inf
�∈F(δ)

P(Tα = 1) ≤ 1 − β.

Theorem 2.6 shows that for any α-level test Tα and any δ < 2, there must exist
a covariance matrix � ∈ F(δ) such that the probability of rejecting the null is less
than α + ε asymptotically for any ε > 0. Theorems 2.5 and 2.6 together show
that the proposed test based on T̂n,p is minimax rate optimal by noting that 1 ≤
Ap ≤ C for some constant C > 0 according to the condition (C1). In other words,

the order of the lower bound
√

logn
p

on dn,� cannot be improved, which establishes
the minimax-optimal rate for the test. Moreover, when � = Ip×p , we have Ap = 1,
and hence, our test statistic is also minimax constant optimal.
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We further show that (20) is a rather wide class of � in the sense that if (20)
does not hold, it will be safe to assume the independence for some applications.
In particular, assume that � is a sn sparse matrix, that is, the number of nonzero
elements in each row of � is bounded from above by sn. Then by (18),

dn,� ≥
(

1 − 3sn

n

)
max

1≤i<j≤n
|ψij |.

Thus, a sufficient condition for (20) to hold is sn = o(n) and

(22) max
1≤i<j≤n

|ψij | ≥ δ

√
Ap logn

p
for some δ > 2.

Theorem 2.5 shows that under (22), the null hypothesis will be rejected with prob-
ability tending to 1. In fact, when (22) does not hold, the samples can be safely
treated as independent for some applications. Let us take the multiple testing prob-
lem of correlations in (3) as an example. As we discussed in the Introduction,

the effect of the correlation among samples is quantified by Bn = ‖�‖2
F

n
and when

Bn → 1, the limiting distribution of ρ̂ij in (4) will be the same as the limiting
distribution of ρ̂ij estimated from independent samples. Indeed, when (22) does
not hold and p ≥ cnγ for some γ > 1, then we have Bn → 1 (note that ψii = 1
for 1 ≤ i ≤ n). Thus, the correlation among samples is asymptotically negligible.
We next give a more general result on the relation between the lower bound of
max1≤i<j≤n |ψij |, n and p. Here, we only assume that n → ∞ and p is a function
of n (note that p can be a constant). Let

G(a) =
{
� � 0 : ψii = 1,1 ≤ i ≤ n and max

1≤i<j≤n
|ψij | ≥ a

}
.

THEOREM 2.7. Let α,β > 0 and α + β < 1. For any a and p satisfying

(23)
(
1 − a2)−p/2 = o

(
n2)

as n → ∞,

we have

lim
n→∞ sup

Tα∈Tα

inf
�∈G(a)

P(Tα = 1) ≤ 1 − β.

Theorem 2.7 shows that when the dimension p is fixed, it is impossible to reject
H0 correctly for all � ∈ G(a) with probability greater than α + ε, even when the
lower bound max1≤i<j≤n |ψij | is close to one. It is easy to understand since the
role of n and p is interchanged in our setting (we are testing an n × n covariance
matrix � with p row samples). It also indicates that the independence test problem
(1) is essentially different from the serial independence test in time series analysis.
When a = c/

√
n for some constant c > 0, we must require p ≥ c1n logn for some

c1 > 0 such that the independence testing problem (1) is solvable over G(a). Note
that Pan, Gao and Yang (2014) requires 0 < limn→∞ p

n
< ∞, which means that

their method fails to deal with the setting a ≤ c/
√

n. On the other hand, by (22),
such a setting of minimum signal a ≤ c/

√
n can be solved by the proposed test.
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3. Multiple testing of correlations with correlated observations. As we
mentioned in the Introduction, when the independence hypothesis in (1) is rejected,
there is potential risk of using inference methods developed based on independence
assumption. To illustrate the effect of sample correlations, we study an important
high-dimensional problem—the large-scale multiple testing of correlations when
the samples are correlated, that is,

(24) H0ij : ρij = 0 versus H1ij : ρij �= 0 for 1 ≤ i < j ≤ p.

When the samples are i.i.d. and normally distributed, the following classical result
from Anderson (2003) (Theorem 4.2.4) establishes the limiting distribution of the
sample correlation coefficient ρ̂ij :

(25)

√
n(ρ̂ij − ρij )

1 − ρ2
ij

⇒ N(0,1).

However, when the samples are correlated, the limiting distribution of ρ̂ij in (25)
does not hold. In fact, we can prove the following proposition.

PROPOSITION 3.1. Assume that the condition (C1) holds. We have

(26)

√
n(ρ̂ij − ρij )√
Bn(1 − ρ2

ij )
⇒ N(0,1),

where Bn = ‖�‖2
F

n
.

The term Bn is the same quantity as in (11), which represents the average cor-
relation among n samples. When the sample correlation is strong enough to ex-
tent such that Bn ≥ 1 + c > 1, the multiple testing procedure based on (25) [e.g.,
Benjamini–Hochberg (BH) procedure, Benjamini and Hochberg (1995)] will lead
to many false positives. In fact, even when the correct limiting distribution in (26)
is used, the resulting test will lose statistical power. For simplicity, let us consider a
single testing problem H0ij : ρij = 0. To control the type I error rate when the sam-
ples are correlated, we need a larger critical value for ρ̂ij , which is linear in

√
Bn.

That is, the rejection region should be {ρ̂ij : √n|ρ̂ij | ≥ √
Bn�

−1(1−α/2)}, where
�(·) is the standard normal CDF function. Plugging in a ratio-consistent estimator
of Bn (e.g., using the method developed in Section 2.2 to estimate ‖�‖2

F), we will
obtain a test that controls the type I error rate asymptotically. However, such a test
will lose statistical power since the length of the acceptance region grows with the
strength of the correlation among samples.

In this section, we propose a multiple testing procedure that asymptotically
controls the FDR at the nominal level while maintaining good statistical power.
Our method is based on the construction of a “sandwich estimator” of ρij by de-
correlating the samples. In particular, first assume that μ and � are known. We
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transform the data X into Y = (Y 1, . . . ,Y n) := (X−μ1′)�−1/2 ∼ N(0,�⊗In×n)

and columns Y k ∈ R
p for 1 ≤ k ≤ n are i.i.d. from N(0,�). The corresponding

“sample” covariance matrix of Y is [“sample” is quoted here since μ and � are
unknown, and thus (σ̃ij,Y )p×p is not a real sample covariance matrix]

(27) (σ̃ij,Y )p×p = 1

n

n∑
k=1

Y kY
′
k = 1

n

(
X − μ1′)�−1(

X − μ1′)′.
Let ρ̃ij,Y = σ̃ij,Y√

σ̃ii,Y σ̃jj,Y

be the “sample” correlation coefficient matrix. By (25), we

have

(28)

√
n(ρ̃ij,Y − ρij )

1 − ρ2
ij

⇒ N(0,1),

which implies that the performance of the test statistic ρ̃ij,Y is the same as that of
ρ̂ij for independent samples. By comparing (28) and (26), the asymptotic variance
of the sandwich estimator ρ̃ij,Y is always smaller than that of the sample corre-
lation coefficient as Bn ≥ 1. Therefore, even when Bn is bounded by a constant,
the sandwich estimator is more powerful. To obtain an estimate of ρ̃ij,Y , we need
to estimate μ and �−1 := (γij )n×n. Let μ̂ = (X̄1, . . . , X̄p)

′
be the estimator of μ,

where X̄i = 1
n

∑n
k=1 Xki for 1 ≤ i ≤ p. For estimating �−1, we adopt the CLIME

estimator proposed in Cai, Liu and Luo (2011). In particular, following Cai, Liu
and Luo (2011), we assume that �−1 is a weakly sparse matrix, which belongs to
the class

(29) G =
{
�−1 : ∥∥�−1∥∥

l1
≤ Mn, max

1≤i≤n

∣∣∣∣∣
n∑

j=1

ψij

∣∣∣∣∣ ≤ Nn,

n∑
j=1

|γij |q ≤ sn

}
,

where 0 ≤ q < 1/2, ‖�−1‖l1 = max1≤j≤n

∑n
i=1 |γij | and the relationship among

Mn, Nn and sn will be specified in the condition of Theorem 3.2. Let R̂� =
(ψ̂ij )n×n, where ψ̂ij is defined in (5), and �̂

1 = (γ̂ 1
ij )n×n be any optimal solution

of the following optimization problem:

(30) min
�∈Rn×n

‖�‖1 subject to ‖R̂�� − In×n‖∞ ≤ λn,p.

Here, λn,p = cMn(
Nn

n
+

√
logn
p

), c is a sufficiently large constant, ‖�‖1 =∑
1≤i,j≤n |γij | and ‖A‖∞ = max1≤i,j≤n |aij | for matrix A = (aij )n×n. We note

that in the estimation of �−1, each row of X is treated as a sample, and thus the
sample size is p and the dimensionality is n. The estimator of �−1, �̂ = (γ̂ij )n×n,

is obtained by a symmetrization of �̂
1
: γ̂ij = γ̂ 1

ij I {|γ̂ 1
ij | ≤ |γ̂ 1

ji |} + γ̂ 1
jiI {|γ̂ 1

ij | >

|γ̂ 1
ji |}. Based on the estimated μ̂ and �̂, we define the “sandwich estimator” of
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(σ̃ij,Y )p×p , (σ̂ij,Y )p×p = 1
n
(X − μ̂1′)�̂(X − μ̂1′)′ with each

σ̂ij,Y = 1

n
(X·,i − X̄i1)′�̂(X·,j − X̄j 1),

where X·,i = (X1i , . . . ,Xni)
′ is the ith column of X. The corresponding correlation

coefficient

(31) ρ̂ij,Y = σ̂ij,Y√
σ̂ii,Y σ̂jj,Y

.

We note that the “sandwich estimator” ρ̂ij,Y is related to the Knorm correlation
proposed by Teng and Huang (2009), which estimates �−1 in ρ̃ij,Y by the inverse
of maximum likelihood estimator (MLE) of � . However, there is no closed-form
solution for MLE of the matrix-variate normal distribution. So it is difficult to
develop limiting distribution results for the Knorm correlation in high-dimensional
settings.

In the proof of Theorem 3.2, we will show that
√

nmax1≤i≤j≤p |ρ̂ij,Y − ρ̃ij,Y | =
oP(1/

√
logp). Combining it with (28), we have

√
n(ρ̂ij,Y −ρij )

1−ρ2
ij,Y

⇒ N(0,1). There-

fore, for each single test problem H0ij : ρij = 0, we propose the test statistic

(32) T̂ij = √
nρ̂ij,Y

and the null H0ij is rejected when |T̂ij | ≥ t for some threshold level t > 0.
To implement the large-scale multiple testing of correlations, we adopt the pop-

ular BH method [Benjamini and Hochberg (1995)]. In particular, we need to search
for a threshold t̂ for |T̂ij | that controls the false discovery proportion (FDP) and
false discovery rate (FDR) defined as follows while rejecting as many hypotheses
as possible:

FDP =
∑

(i,j)∈H0
I {|T̂ij | ≥ t̂}

max{∑1≤i<j≤p I {|T̂ij | ≥ t̂},1} and FDR = E(FDP),

where H0 = {(i, j) : ρij = 0,1 ≤ i < j ≤ p} is the set of null. Therefore, an ideal
choice of the threshold level for a pre-specified significance level 0 < α < 1 should
be

(33) t̂orc = inf
{
t > 0 :

∑
(i,j)∈H0

I {|T̂ij | ≥ t}
max{∑1≤i<j≤p I {|T̂ij | ≥ t},1} ≤ α

}
.

The oracle threshold level t̂orc cannot be computed since H0 is unknown. Nev-
ertheless, since T̂ij ⇒ N(0,1) under the null ρij = 0, the numerator in (33),∑

(i,j)∈H0
I {|T̂ij | ≥ t}, can be approximated by 2(1 − �(t))Card(H0). The quan-

tity Card(H0) can be further bounded from above by (p2 − p)/2 and such an
upper bound is good when � is sparse, which is a common setup. Therefore, we
propose the following threshold level t̂ and the corresponding multiple testing pro-
cedure.
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MULTIPLE TESTING PROCEDURE. For a given 0 < α < 1, let

(34) t̂ = inf
{
t ≥ 0 : (1 − �(t))(p2 − p)

max{∑1≤i<j≤p I {|T̂ij | ≥ t},1} ≤ α

}
.

For 1 ≤ i < j ≤ p, we reject H0ij if |T̂ij | ≥ t̂ .

The next theorem shows that the proposed procedure controls the FDP and FDR
at level α asymptotically. Recall the definition of H0. Let h0 = Card(H0), H1 =
{(i, j) : ρij �= 0,1 ≤ i < j ≤ p}, h1 = Card(H1) and h = (p2 − p)/2. For a given
γ > 0, we further define the following sets:

(35) Ai (γ ) = {
j : 1 ≤ j ≤ p, j �= i, |ρij | ≥ (logp)−2−γ }

, 1 ≤ i ≤ p.

THEOREM 3.2. Assume that the condition (C1) holds, p ≤ nr for some r > 0,
and �−1 ∈ G defined in (29) with

(36)

p

(ns2
n(logp)3)1/(1−q)M4

n logn
→ ∞ and

sn = o

(
n1/2−q

M
2−2q
n N

1−q
n (logp)3/2

)
.

Suppose that h1 ≤ κh for some κ < 1,

(37) Card
{
(i, j) : 1 ≤ i < j ≤ p, |ρij | ≥ 4

√
logp/n

} ≥
√

log logp,

and max1≤i≤p Card(Ai (γ )) = O(pρ) for some ρ < 1/2 and γ > 0. We have

lim
(n,p)→∞

FDR

αh0/h
= 1 and

FDP

αh0/h
→ 1 in probability as (n,p) → ∞.

We briefly comment on the condition in Theorem 3.2. We note that in the es-
timation of �−1, n plays the role of dimensionality and p plays the role of the
sample size. The condition in (36) ensures that p is sufficiently large so that the
estimation of �−1 is accurate. On the other hand, the assumption that p is suffi-
ciently large is also natural for high-dimensional applications (e.g., genetic stud-
ies). The assumption that h1 ≤ κh for some κ < 1 is necessary. Since if h0 = o(h),
then almost all of ρij are nonzeros and simply rejecting all the hypotheses will
lead to FDR → 0. The condition in (37), which is only slightly stronger than the
condition that the number of true alternatives goes to infinity, is a nearly neces-
sary condition. In fact, Proposition 2.1 in Liu and Shao (2014) shows that if the
number of true alternatives is fixed, then it is impossible for the BH method to
control the FDP with probability tending to one at any desired level. The condition
on max1≤i≤p Card(Ai (γ )) is essentially a sparsity condition for �. In particular,
when p ≥ nr1 with r1 > 1 and the number of nonzero entries in each row of � is on
the order of

√
n (which is a common assumption for sparse �), then the condition

on max1≤i≤p Card(Ai (γ )) automatically holds.
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4. Numerical results. In this section, we provide numerical results to demon-
strate the performance of the proposed test methods. Due to space constraints,
some simulations and real experiments are provided in the Supplementary Mate-
rial [Chen and Liu (2018)]. Recall that the p × n data matrix X follows a matrix-
variate normal distribution N(μ1′,� ⊗ �). The matrix � (and �) is generated
from one of the following classes of matrices:

1. Auto-correlation matrix where σij = ρ|i−j | and ρ is set to 0.2, 0.5 or 0.8.
The larger the parameter ρ is, the stronger the correlation.

2. Banded matrix (“band” for short) where σii = 1, σi,i+1 = σi+1,i = 0.6,
σi,i+2 = σi+2,i = 0.3 and σij = 0 for |i − j | ≥ 3.

3. Block diagonal matrix (“block” for short) where the main diagonal blocks
are 10 × 10 square matrices and off-diagonal blocks are zeros matrices. A 10 × 10
main diagonal block B = (bij )10×10 has bii = 1 and bij = 0.5 when i �= j .

In simulations, we fix μ = 0 and the level of significance α = 0.05.

4.1. Independence test. We consider the independence test problem in (1). All
the reported empirical sizes and powers are averaged over 5000 independent repli-
cations. In Table 1, we consider relatively large n and p and show the empirical
type I error rate (a.k.a. the empirical size) of the proposed test statistics T̂n,p in (10)
under the null when � = In×n. From Table 1, as the sample size n and dimension
p increase, the empirical type I error rates get closer to the nominal level of 0.05,
which verifies the validity of the proposed test statistics shown in Theorem 2.4.

TABLE 1
Empirical type I error rates for testing independence based on 5000 replications with α = 0.05

n � � p = 1000 p = 2000 p = 5000 p = 10,000

200 0.2|i−j | In×n 0.046 0.046 0.042 0.043
0.5|i−j | In×n 0.040 0.049 0.049 0.050
0.8|i−j | In×n 0.045 0.048 0.055 0.058

band In×n 0.031 0.032 0.035 0.043
block In×n 0.014 0.025 0.030 0.035

500 0.2|i−j | In×n 0.034 0.041 0.042 0.046
0.5|i−j | In×n 0.037 0.046 0.041 0.049
0.8|i−j | In×n 0.028 0.050 0.048 0.055

band In×n 0.032 0.035 0.038 0.040
block In×n 0.016 0.025 0.041 0.044

1000 0.2|i−j | In×n 0.039 0.035 0.048 0.044
0.5|i−j | In×n 0.035 0.042 0.056 0.054
0.8|i−j | In×n 0.026 0.040 0.051 0.050

band In×n 0.029 0.037 0.040 0.045
block In×n 0.016 0.024 0.035 0.041
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Recalling in the construction of T̂n,p (in particular, in the term Âp), we threshold
the sample covariance matrix �̂ as in (12), where the threshold level involves the
estimator B̂n of Bn = ‖�‖2

F/n. We compare the empirical sizes of the test statistics
in the same form as T̂n,p in (10) but using different estimators (listed as follows)

of ‖�‖2
F in estimating Ap = p‖�‖2

F
(tr(�))2 :

1. CV [Fan, Rigollet and Wang (2015)]: plugin estimator based on thresholded
� with the threshold level tuned by cross validation (CV).

2. Bai: method proposed by Bai and Saranadasa (1996).
3. CQ: method proposed by Chen and Qin (2010).
4. B̂n: plugin estimator based on thresholded � as in (12) with the proposed

estimator B̂n for setting the threshold level.

We would like to make it clear that for the ease of presentation, the acronyms CV,
Bai and CQ refer to the proposed test statistics in the form of T̂n,p while using the
corresponding method to construct the estimator of ‖�‖2

F in Ap .
In Table 2, we show the comparison results when n = 50 or 100 and p = 1000.

Of note, we only present smaller n and p cases since the computational cost of CV
and CQ are expensive for large n and p and the case n = 50/100 and p = 1000
has been sufficient to demonstrate the points below. We show that the CV cannot
control the type I error below the nominal level 0.05. The CQ leads the type I
error rates that are closest to the nominal level. However, as we will show later,
it has a lower statistical power. The empirical sizes of the proposed test statistics
(with the thresholding level B̂n in estimating ‖�‖2

F) are below the nominal level,
which shows that the proposed test statistic is conservative when n and p are small.
This results from the slow rate of convergence in distribution for the max-type test
statistics [Liu, Lin and Shao (2008)]. For small n and p, one useful way to make

TABLE 2
Comparison of empirical type I error rates for testing independence when p = 1000 and α = 0.05

n � � CV Bai CQ B̂n

50 0.2|i−j | In×n 0.029 0.001 0.038 0.002
0.5|i−j | In×n 0.129 0.004 0.039 0.008
0.8|i−j | In×n 0.157 0.010 0.022 0.037

band In×n 0.072 0.005 0.033 0.007
block In×n 0.249 0.011 0.028 0.017

100 0.2|i−j | In×n 0.070 0.017 0.041 0.028
0.5|i−j | In×n 0.118 0.020 0.036 0.034
0.8|i−j | In×n 0.101 0.019 0.025 0.049

band In×n 0.066 0.017 0.034 0.025
block In×n 0.068 0.017 0.023 0.016
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the test less conservative is to adopt the critical value from a Monte-Carlo simula-
tion instead of the one derived from the limiting distribution. In particular, we can
generate M (e.g., M = 10,000 in our simulation) replications of p × n data ma-
trix, where each one is randomly drawn from N(0, Ip×p ⊗In×n) under the null. We

compute the corresponding test statistics T̂
(i)
n,p , 1 ≤ i ≤ M , for each randomly gen-

erated data matrix and let cα be the (1 − α)-quantile of the empirical distribution
1
M

∑M
i=1 I {T̂ (i)

n,p ≤ t}. We reject the null whenever the our test statistic T̂n,p ≥ cα

(note that the statistic is the same and only the critical value is changed). As shown
in the additional experimental results in Section E.1 in the Supplementary Mate-
rial [Chen and Liu (2018)], using a Monte-Carlo based critical value will push the
empirical size closer to the nominal α when n and p are small.

Then we compare statistical power of the proposed test procedure when using
different estimators of ‖�‖2

F in our test statistic. In particular, we first consider
� = (ρ|i−j |)n×n and vary the parameter ρ from 0.55 to 0.85. The larger the ρ is,
the stronger the correlation among samples. For different types of �, the empirical
powers are all 100% for our method (Figure 1). The powers using Bai and CQ drop
to zeros when ρ becomes larger than 0.7. Since both methods for estimating ‖�‖2

F
are developed under the i.i.d. assumption, when the sample correlation becomes
stronger, the estimation of ‖�‖2

F is inaccurate, which leads to inferior statistical
powers. The CV-based thresholding method has maintained statistical power 100%
for a wider range of ρ. However, we note that the CV fails to control the type I error
rate as shown in Table 2. In Section E.2 in the Supplementary Material [Chen and
Liu (2018)], we further demonstrate the superiority of using the proposed estimator
for ‖�‖2

F in terms of empirical powers when � is a block diagonal matrix.
It is also of interest to investigate the performance of the proposed test statis-

tics when n and p are comparable. We vary p from 50 to 2000 and consider
four settings for the sample size, n = 0.5p, n = p, n = 2p and n = 3p. We set
� = (0.5|i−j |)i,j and show the empirical type I error rates and powers for differ-
ent � in Figure 2. As one can see from Figure 2(a), the empirical type I error
rates are approaching the nominal level α = 0.05 as p increases. Notably, when
the ratio between n and p increases, the test statistic becomes more conservative.
From Figure 2(b)–2(d), although the powers are low when p is very small (i.e.,
p = 50), they are 100% for moderate and large p. This simulation study suggests
that the proposed independence test performs reasonably well when n and p are
comparable.

Moreover, we consider the setting in which � does not satisfy the condi-
tions (C1)–(C2). In particular, we choose an equicorrelation covariance matrix
� = 0.85 · 11′ + 0.15 · Ip×p , which enforces very strong correlation among ev-
ery pairs of variables. It is easy to see that λmax(�) = 0.85 · p + 0.15 and∑p

k=1 |σjk|τ = 1 + 0.85τ · (p − 1). Both quantities are linear in p, and thus cannot
be bounded by constants as p grows, which violates the assumptions (C1)–(C2).
Hence, it is expected that the results of type I error rate control in Proposition 2.3
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FIG. 1. Comparison of empirical powers when using different estimators of ‖�‖2
F in Âp . The �

matrix is set to the auto-correlation matrix where ψij = ρ|i−j | and we vary ρ (corresponding to
x-axis in each figure) from 0.55 to 0.85. Here, n = 50, p = 1000 and α = 0.05.

and Theorem 2.4 will not hold for this model. This is verified by our simulation
study. In particular, we vary n and p and show the type I error rates in Figure 3.
When p grows and the conditions (C1)–(C2) no longer hold, the type I error rate
exceeds the nominal level α = 0.05 (represented by the green line). Due to space
limitations, we relegate the other settings of � and some additional simulation
studies for independence testing to Section E in the Supplementary Material [Chen
and Liu (2018)], which includes:

1. We compare empirical powers when the � is a block diagonal matrix and
demonstrate the superiority of the proposed method.

2. To empirically verify the result in Theorem 2.5, we consider the case of

extremely sparse � where ψ12 = ψ21 = κ
√

logn
p

and all the other off-diagonal
elements are zeros. The experimental results show that for different types of �,
the empirical powers all become 100% as κ increases, which demonstrates that
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FIG. 2. The empirical type I error rates and powers when n = 0.5p, n = p, n = 2p and n = 3p

and p varies from 50 to 2000. Panel (a) shows the empirical type I error rate and the green line
indicates the nominal level α = 0.05. Panels (b)–(d) show the empirical powers for different � .

FIG. 3. The empirical type I error rates when � = 0.85 · 11′ + 0.15 · Ip×p for n = 50,100,200
and p varying from 1000 to 10,000. The green line indicates the nominal level α = 0.05.
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our test statistic can successfully reject the null even when the � is extremely
sparse.

3. To provide more intuitive comparisons between different methods for es-
timating ‖�‖2

F, we directly show the relative estimation error under different
settings. This experiment demonstrates that the proposed thresholding estima-
tor greatly outperforms its competitors when the correlation among samples is
large.

4.2. Large-scale multiple testing of correlations. In this section, we conduct
both simulated and real data analysis to demonstrate performance of the proposed
“sandwich” estimator in (32) for large-scale multiple testing of correlations in (24).

4.2.1. FDP and power of simulated results. In simulated study, we compare
the BH procedure based on four different estimators of ρij :

1. The proposed sandwich estimator T̂ij (λn,p) = √
nρ̂ij,Y in (32), where �−1

is estimated by CLIME [Cai, Liu and Luo (2011)]. Further, we adopt the data-
driven approach in Liu (2013) to tune the λn,p in CLIME [see (30)]. In particular,
the parameter λn,p is selected by

λ̂n,p = arg min
λ

9∑
k=3

(∑
1≤i �=j≤p I {|T̂i,j (λ)| ≥ �−1(1 − k/20)}

k(p2 − p)/10
− 1

)2
.

2. The classical sample correlation estimator
√

nρ̂ij based on sample indepen-
dence assumption.

3. The variance corrected sample correlation estimator
√

nρ̂ij√
Bn

, where true Bn =
‖�‖2

F/n is assumed to be known.
4. The proposed sandwich estimator in (32) with the true �−1, which serves as

an oracle benchmark.

In Table 3, we report the averaged FDP and power over 100 replications.
The matrix � is chosen to be either banded or block diagonal matrix, both
of which are sparse. As we can see from Table 3, the FDPs of the BH pro-
cedure based on sandwich estimator are below α = 0.05. The empirical pow-
ers get close to one as the sample size n increases and are only slightly worse
than the powers of the oracle benchmark with true �−1. For the classical sam-
ple correlation estimator

√
nρ̂ij , the FDP can be very large (e.g., around 50%

when ψij = 0.5|i−j | and more than 95% when ψij = 0.8|i−j |). This verifies
our result showing that naïvely using the sample correlation estimator devel-
oped under the sample independence assumption will lead to many false posi-

tives. Using the variance corrected sample correlation estimator
√

nρ̂ij√
Bn

will help
reduce the number of false positives and control FDP as shown in Table 3,
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TABLE 3
Averaged FDP and power for testing correlations over 100 replications. Here, α = 0.05 and

p = 1000

n � �
√

nρ̂ij,Y
√

nρ̂ij

√
nρ̂ij√
Bn

True �−1

FDP Power FDP Power FDP Power FDP Power

50 band 0.2|i−j | 0.010 0.311 0.027 0.339 0.010 0.276 0.015 0.339
band 0.5|i−j | 0.009 0.308 0.403 0.378 0.000 0.000 0.015 0.340
band 0.8|i−j | 0.009 0.292 0.986 0.648 0.000 0.000 0.014 0.338
block 0.2|i−j | 0.011 0.262 0.036 0.416 0.014 0.295 0.021 0.407
block 0.5|i−j | 0.011 0.257 0.366 0.504 0.000 0.000 0.021 0.410
block 0.8|i−j | 0.012 0.168 0.965 0.739 0.010 0.000 0.021 0.408

100 band 0.2|i−j | 0.025 0.576 0.057 0.593 0.029 0.568 0.033 0.587
band 0.5|i−j | 0.025 0.575 0.581 0.650 0.011 0.448 0.032 0.587
band 0.8|i−j | 0.025 0.556 0.986 0.795 0.000 0.000 0.032 0.587
block 0.2|i−j | 0.028 0.942 0.061 0.961 0.035 0.945 0.038 0.966
block 0.5|i−j | 0.028 0.935 0.454 0.942 0.017 0.646 0.038 0.966
block 0.8|i−j | 0.030 0.820 0.963 0.924 0.000 0.000 0.038 0.966

200 band 0.2|i−j | 0.036 0.839 0.072 0.852 0.039 0.820 0.041 0.854
band 0.5|i−j | 0.036 0.835 0.620 0.867 0.028 0.640 0.041 0.853
band 0.8|i−j | 0.041 0.749 0.984 0.906 0.002 0.240 0.042 0.852
block 0.2|i−j | 0.034 1.000 0.071 1.000 0.041 1.000 0.043 1.000
block 0.5|i−j | 0.034 1.000 0.498 1.000 0.033 0.992 0.044 1.000
block 0.8|i−j | 0.040 0.969 0.962 0.994 0.004 0.233 0.044 1.000

which is consistent with our result in Proposition 3.1. However, as we ob-

serve from Table 3, even when the true Bn is used, the powers of
√

nρ̂ij√
Bn

are
quite low, especially when the correlation among samples becomes stronger.
The reason for this low power is explained in the paragraph below Proposi-
tion 3.1.

In Table 4, we consider the setting when the samples are i.i.d., in which case
the classical sample correlation estimator should be used as it is based on sam-
ple independence assumption. We also note that when samples are i.i.d., both the

variance corrected sample correlation estimator
√

nρ̂ij√
Bn

(Bn = 1) and the sandwich

estimator with true �−1 = In×n reduce to the classical sample correlation esti-
mator. The power when using the sandwich estimator with the estimated �−1

by CLIME is quite close to the power when using the benchmark sample cor-
relation estimator (Table 4), which demonstrates the robustness of the proposed
method.
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TABLE 4
Averaged FDP and power for testing correlations over 100 replications when samples are i.i.d.

Here, α = 0.05 and p = 1000

n � �
√

nρ̂ij,Y
√

nρ̂ij

FDP Power FDP Power

50 band In×n 0.009 0.318 0.014 0.341
block In×n 0.012 0.293 0.021 0.408

100 band In×n 0.025 0.578 0.032 0.587
block In×n 0.028 0.952 0.037 0.965

200 band In×n 0.035 0.844 0.041 0.852
block In×n 0.035 1.000 0.043 1.000

We also conducted real experiments on correlation tests for yeast genomics data
and stock data, which are detailed in Section E.5 in the Supplementary Material
[Chen and Liu (2018)].

5. Discussion. This paper studies the sample/column independence test and
multiple testing of Pearson’s correlation coefficients in a high-dimensional setting.
The main difficulty in column independence test arises from the correlation among
different variables, which is characterized by the covariance matrix �. If � is
known, the data matrix can be transformed as �−1/2X ∼ N(�−1/2μ1′, Ip×p ⊗�),
based on which the independence test can be directly carried out using existing
approaches [e.g., Jiang (2004), Liu, Lin and Shao (2008)]. However, the covari-
ance matrix � is unknown. Although the problem of estimating �−1 has been
well studied, the optimal convergence rate in matrix �1-norm is known to be
O(sp‖�−1‖l1

√
(logp)/n), where sp is the row sparsity level of �−1 [see, e.g.,

Cai, Liu and Zhou (2016)]. However, such a rate is not fast enough for establish-
ing a limiting null distribution of the test statistic based on the estimated �−1.
In particular, from the proof of Theorem 2.4, when using max-type test statistics,
to eliminate the effect of the estimation error from �−1 and establish a limiting
null distribution, the convergence rate needs to be oP(1/

√
p logn). As p can be

exp(o(nγ )) for some γ > 0 in an ultra high-dimensional setting, one cannot solve
the independence test problem in (1) by simply plugging in the estimator of �−1.
On the other hand, when using the row sample correlation matrix (ψ̂ij ) by treat-
ing each row of X as a sample, we only need to estimate ‖�‖2

F instead of �−1.
The problem of estimating ‖�‖2

F from correlated samples has been successfully
addressed in Section 2.2. We would also like to note that in the multiple testing
problem of Pearson’s correlation coefficients, such a difficulty no longer exists.
In fact, when estimating �−1 from row samples of X, the roles of n and p has
interchanged (i.e., the sample size becomes p and the dimensionality becomes n),
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and thus, the estimation problem is conducted in a relatively lower dimensional
setting.

SUPPLEMENTARY MATERIAL

Supplement to “Testing independence with high-dimensional correlated
samples” (DOI: 10.1214/17-AOS1571SUPP; .pdf). We provide the proofs of all
the theorectial results as well as additional simulated and real experimental results.
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