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FREQUENCY DOMAIN MINIMUM DISTANCE INFERENCE FOR
POSSIBLY NONINVERTIBLE AND NONCAUSAL ARMA MODELS

BY CARLOS VELASCO1 AND IGNACIO N. LOBATO2

Universidad Carlos III de Madrid and Centro de Investigación Económica, ITAM

This article introduces frequency domain minimum distance procedures
for performing inference in general, possibly non causal and/or noninvert-
ible, autoregressive moving average (ARMA) models. We use information
from higher order moments to achieve identification on the location of the
roots of the AR and MA polynomials for non-Gaussian time series. We pro-
pose a minimum distance estimator that optimally combines the information
contained in second, third, and fourth moments. Contrary to existing esti-
mators, the proposed one is consistent under general assumptions, and may
improve on the efficiency of estimators based on only second order moments.
Our procedures are also applicable for processes for which either the third or
the fourth order spectral density is the zero function.

1. Introduction. Estimation of autoregressive-moving average (ARMA)
models is typically performed under causality and invertibility assumptions us-
ing second-order procedures, such as least squares or some variant of the Gaus-
sian maximum likelihood (ML) estimator. Causality and invertibility are crucial
assumptions when using second-order estimation procedures since these cannot
identify noncausal or noninvertible representations. Hence, for estimation of Gaus-
sian ARMA processes causality and invertibility need to be imposed. For non-
Gaussian ARMA models the causality and invertibility assumptions are not nec-
essary and not always justified, and in fact, noncausal or noninvertible ARMA
models have been employed in many areas such as economics, seismology, engi-
neering or astronomy; see references in Breidt, Davis and Trindade (2001). For
some examples in economics, see Alessi, Barigozzi and Capasso (2011), Hansen
and Sargent (1980, 1991), Huang and Pawitan (2000), Leeper, Walker and Yang
(2013), and Mountford and Uhlig (2009).

The broad literature devoted to estimating general nonstandard ARMA models
can be classified according to two criteria. The first criteria is whether the distri-
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bution for the innovations is assumed to be known or unknown, so either ML or
alternative approaches, such as those based on methods of moments, are used. The
second criteria is whether estimation is performed in one or in two steps. Estima-
tion in one step attempts to estimate the general possibly noncausal noninvertible
ARMA models irrespective of whether the absolute values of the roots of AR and
MA polynomials are larger or smaller than one. Estimation in two steps consists
of performing an initial first step where a causal and invertible model is estimated
using standard procedures, and then, in a second step, an ARMA all-pass model,
which is a model where all the roots of the AR part are the inverse of the roots of
the MA part, is fitted to the first step white noise residuals.

Some references are briefly summarized next. Lii and Rosenblatt (1992) inves-
tigate the properties of a one-step approximate maximum likelihood procedure for
the possibly noninvertible or nonminimum phase moving average case where the
exact distribution of the innovations is known. Breidt, Davis and Trindade (2001)
propose a two-step estimation where the least absolute deviation (LAD) estimator
is applied to the first step white noise all-pass residuals. This LAD estimator co-
incides with the maximum likelihood estimator for a Laplacian distribution of the
innovations. Andrews, Davis and Breidt (2007) extend the previous article to rank-
estimators so they can dispose of the Laplacian assumption. Using also a two-step
approach, Kumon (1992) proposes estimates based on the extension to higher or-
der spectral densities of the frequency domain first order conditions of the Whittle
(1953) estimate. Anh, Leonenko and Sakhno (2007) follow Kumon’s approach,
and propose estimates based on related estimating equations using weighted higher
order periodograms. Note that in both references, identification is achieved by in-
troducing ad hoc conditions on the sign of the higher order cumulants of the inno-
vation (Kumon) or on a weighting function that controls the sign of the cumulant
(Anh et al.). Lanne and Saikkonen (2011) employ a two-step strategy for estimat-
ing general noncausal AR models by maximum likelihood.

ML procedures are subject to the usual arbitrariness criticism, whereas the two-
step approach presents the obvious problem of independently estimating twice the
same parameters, so the asymptotic properties of the final estimates recovered from
these two steps are unclear. In addition, the second step is only meaningful when
the first step residuals are nonindependent white noise, hence an independence test
should be implemented between the two steps, which is not typically considered.
These criticisms lead to the conclusion that, ideally, one would like to employ a
one-step estimation procedure without restricting the distribution of the innova-
tions.

This article proposes a one-step estimator that does not rely on arbitrary dis-
tributional assumptions nor on arbitrary identification conditions. The only req-
uisites we need for identification are that some higher order cumulant (either the
third or the fourth) is non zero and that the innovations are independent up to this
order. In particular, we follow the approach of Brillinger (1985), and propose min-
imum distance (MD) procedures based on second and higher order information
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in the frequency domain. Minimum distance procedures have also been employed
in the time domain [see Ramsey and Montenegro (1992) and Gospodinov and
Ng (2015)], but these time-domain minimum distance estimators are inefficient
since they only employ a finite number of arbitrary moment conditions. An addi-
tional advantage of carrying out the analysis in the frequency domain is the useful
asymptotic properties of the frequency domain statistics when evaluated at Fourier
frequencies; see details in Section 2.

The first contribution of this article is to establish global identification of the
parameters of a possibly noncausal noninvertible ARMA model using higher or-
der spectral densities as long as some higher order cumulant of the innovations
is not zero. Identification comes from establishing that an objective function (OF)
based on the L2 distance of the higher order spectral densities has a unique global
minimum at the correct parameter values. This result motivates the proposal of
an efficient estimator that optimally combines the information contained in the
second, third and fourth spectral densities. This minimum distance estimator opti-
mally weights the scores of the corresponding sample analogues of the objective
functions employed in the identification result.

The second contribution of this article is to establish the consistency (as long
as the third or the fourth cumulant of the innovations is not zero) and the asymp-
totic normality (even for the case where the third or the fourth cumulant of the
innovations is zero) of the proposed estimator for ARMA models irrespective of
noncausality or noninvertibility. Hence, for general ARMA models with no distri-
butional assumptions, this article is the first one to establish a one-step estimation
method with rigorously established statistical properties. Also note that the pro-
posed procedures overcome the need of using tests for causality or invertibility,
tests for independence, and our theory also cover all-pass models, both ignoring or
using such configuration.

The estimator studied in this paper weights optimally the information coming
from second, third and fourth moments. The particular case of ignoring third and
fourth moments leads to a minimum distance estimator, based just on second mo-
ments, which is shown to be asymptotically equivalent to the efficient unfeasible
Whittle estimator, the Gaussian quasi ML estimator (QMLE) that assumes correct
knowledge of the location of the ARMA roots. Using the information contained in
higher order moments does not only achieve identification, but also can improve
on the efficiency with respect to the Whittle estimator.

Although the article focus on identification and estimation of ARMA models, a
great part of the technical proofs for the asymptotic properties of parameter esti-
mates are established for general linear models where the parametric filter function
is smooth enough. A technical contribution of the article, of independent interest,
is a central limit theorem (CLT) for martingales where the leading term consists
of centered powers of the innovations, which is applied to weighted averages of
higher order periodograms.
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The article is structured as follows. Section 2 introduces the notation and the
model, and recalls the basics properties of the (higher-order) periodograms. Sec-
tion 3 studies the identification of noncausal/noninvertible ARMA models. Sec-
tion 4 presents the proposed minimum distance estimator, and establishes its
asymptotic properties. Section 5 contains simulations, and Section 6 concludes.
Proofs, auxiliary lemmas and additional material are contained in Appendices A,
B and C, respectively, in the Supplementary Material [Velasco and Lobato (2018)].

2. Notation, model and basics of periodograms.

2.1. Notation. Consider a stationary stochastic process {Yt }t∈Z with E[Y 2
t ] <

∞ and call μ = E[Yt ]. Define the autocovariance of order j as

γj = Cov[Yt , Yt−j ] = E
[
(Yt − μ)(Yt−j − μ)

]
for j = 0,±1, . . . ,

and the j th order autocorrelation as ρj = γj/γ0. The spectral density, f (λ), is
defined implicitly as

γj =
∫ π

−π
f (λ) exp(−ijλ) dλ.

The autocovariance sequence and the spectral density are measures of the depen-
dence of the stochastic process based on second moments, hence they are the ob-
jects of interest of usual time series analysis. The dependence contained in higher
order moments can also be described by the cumulants which are defined in terms
of higher order moments as

cum(Y1, . . . , Yk)

= ∑
(−1)p−1(p − 1)!E

( ∏
j∈v1

Yj

)
· · ·E

( ∏
j∈vp

Yj

)
, k = 1,2, . . .

assuming E[|Yt |k] < ∞, and where v1, . . . , vp is a partition of (1,2, . . . , k), and
the sum runs over all these partitions; see Brillinger (1975) or Rosenblatt (1985),
page 34. Hence, the first and second cumulants are the mean and the variance,
respectively.

We also define the kth order cumulant spectral density k = 2,3, . . . , which is
the Fourier transform of the kth order cumulants, as

(1)

fk(λ) = fk(λ1, . . . , λk−1)

= 1

(2π)k−1

∞∑
j1,...,jk−1=−∞

cum(Yt , Yt+j1, . . . , Yt+jk−1) exp

(
−

k−1∑
s=1

ijsλs

)
,

introducing for simplicity, when there is no ambiguity, the notation λ = (λ1, . . . ,

λk−1). Note that the usual spectral density is then recovered for k = 2; also note
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that fk can be complex valued for k > 2, unlike f = f2, which is always real
valued.

From a sample of size T , one can consistently estimate the higher order mo-
ments and cumulants by their sample analogs. In order to address estimation of the
higher order spectral densities, first we recall the definitions of the finite Fourier
transform as

w(λ) =
T∑

t=1

Yt exp(−itλ),

and of the standard second order periodogram

(2) I (λ) = 1

2πT
w(λ)w(−λ) = 1

2πT

∣∣w(λ)
∣∣2.

Expression (2) can be easily extended to define the higher order periodogram of
order k as

Ik(λ) = Ik(λ1, . . . , λk−1) = 1

(2π)k−1T

k−1∏
j=1

w(λj )w

(
−

k−1∑
s=1

λs

)
,

where we use the notation in (1). In particular, the statistic I3(λ1, λ2) is called the
biperiodogram, which is the natural (although inconsistent) estimator of the bis-
pectral density, f3(λ1, λ2), and the triperiodogram, I4(λ1, λ2, λ3) that is the natural
estimator of the trispectral density, f4(λ1, λ2, λ3).

Similar to the periodogram, both biperiodogram and triperiodogram are asymp-
totically unbiased estimators but inconsistent. In particular, we have that, un-
der Assumption 1 below, the following properties hold for fixed frequencies λ,
k = 2,3, . . . ,

(3) E
[
Ik(λ)

] = fk(λ) + o(1),

and when λs �= 0 mod 2π , s = 1, . . . , k − 1,

(4)
T 2−k Var

[
Ik(λ)

]
= (k − 1)!f (λ1)f (λ2) · · ·f (λk−1)f (λ1 + λ2 + · · · + λk−1) + o(1),

as T → ∞. Note that these properties hold under a variety of weak depen-
dence conditions, for instance, mixing or summability of cumulants; see Brillinger
(1975), Rosenblatt [(1985), pages 172–173] or Alekseev (1993). Note also that by
tapering these variances can be reduced; see Alekseev (1993).

In this article, as it is common in time series analysis, we evaluate these statistics
at the Fourier frequencies defined as λj = 2πj

T
, for j = 1, . . . , T − 1. The main

reason is that when evaluated at (different) Fourier frequencies (λ �= λ′) the higher
order spectra are asymptotically uncorrelated, that is.

Cov
[
Ik(λ), I�

(
λ′)] = o

(
T (k+�−4)/2)

, k, � = 2,3, . . . ,
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as T tends to infinity for almost all λ and λ′ (not satisfying some particular linear
restrictions); see, for instance, Lemma 1 in page 172 in Rosenblatt (1985), and
Theorems 2 and 4 in Alekseev (1993).

2.2. Model. We assume that Yt is given by

(5) Yt = μ +
∞∑

j=−∞
ψjεt−j ,

where εt is an independent identically distributed (i.i.d.) sequence with zero mean,
variance κ0

2 , and with bounded moments of order k, with k ≥ 3; in addition∑∞
j=−∞ ψ2

j < ∞ (see Assumptions 1 and 2 below). Note that the double side
summation in equation (5) allows Yt to be noncausal or noninvertible.

A model establishes a structure on the ψ ′
j s in terms of some parameter vector

θ ∈ R, ψj = ψj(θ), and the target is the estimation of θ . This article focuses on
ARMA(p, q) models where

(6) α(L)Yt = β(L)εt ,

and the polynomials α(L) = 1 − ∑p
j=1 αjL and β(L) = 1 + ∑q

j=1 βjL are of
order p and q respectively, have all their roots away the unit circle, inside or
outside it, and do not have any common roots. Denote the model parameters
by θ = (α1, . . . , αp,β1, . . . , βq)

′ ∈ 
p,q = {θ ∈ R
p+q : α(z)β(z) �= 0 for |z| =

1, |α(z)|+ |β(z)| > 0 for all z ∈ C, αp �= 0, βq �= 0}. Since θ can be expressed as a
continuous function θ(ϕ), ϕ = (a1, . . . , ap, b1, . . . , bq)

′, of the zeroes a1, . . . , ap

of α(·) and b1, . . . , bq of β(·), the parameter set 
p,q is the image under θ(·) of
the set

Ap,q =
{
ϕ = (a1, . . . , ap, b1, . . . , bq)

′ ∈
�p/2	+�q/2	⋃

r=0

(
R

p+q−2r ∪C
2r∗

) :

|ai | �= 0,1; |bj | �= 0,1;ai �= bj , i = 1, . . . , p, j = 1, . . . , q

}
,

where ā denotes the complex conjugate of a, C2∗ = {(a, b) ∈ C
2 : b = ā} denotes

the space of pairs of complex conjugate numbers, guaranteing that θ(ϕ), ϕ ∈ Ap,q ,
is real, and r accounts for the number of such pairs.

Model (5) establishes that f (λ) = f (θ, κ2;λ) where

f (θ, κ2;λ) = κ2

2π
φ2(θ;λ),

and we employ κj to denote the j th order marginal cumulant of εt , so that κ2 is its
variance, and

φ2(θ;λ) = φ(θ;λ)φ(θ;−λ),
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where we denote the transfer function of the filter {ψj }∞j=−∞ by

φ(θ;λ) =
∞∑

j=−∞
ψj(θ) exp(−ijλ).

For instance, for the ARMA model (6),

(7) φ(θ;λ) = 1 + ∑q
j=1 βj exp(−ijλ)

1 − ∑p
j=1 αj exp(−ijλ)

.

In addition, model (5) establishes that fk(λ) = fk(θ, κk;λ) where

(8) fk(θ, κk;λ) = κk

(2π)k−1 φk(θ;λ)

and

φk(θ;λ) = φ(θ;λ1) · · ·φ(θ;λk−1)φ(θ;−λ1 − · · · − λk−1).

Then it is simple to show the following relation that will be used later for under-
standing the role that higher-order terms have in our final OF,

(9)

∣∣fk(θ, κk;λ)
∣∣2

= ν2
k

(2π)k−2 f (θ, κ2;λ1) · · ·f (θ, κ2;λk−1)f (θ, κ2;λ1 + · · · + λk−1),

where

νk = κk

κ
k/2
2

is the standardized cumulant of order k. In particular, ν3 and ν4 are the skewness
and kurtosis coefficients, respectively.

3. Identification of noncausal/noninvertible ARMA models using higher
order spectra. Although the standard spectral density f = f2, based on sec-
ond moments, cannot identify the parameters in the noninvertible/noncausal case,
identification can be achieved by using the information about these parameters
contained in the higher order spectral densities. The next theorem shows that the
L2 distance of the higher order spectral density identifies the correct values of
the parameters for an ARMA model defined in (6). Denote � = [−π,π ] and
dλ = dλ1 · · · dλk−1.
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ASSUMPTION A(p, q). The polynomials α(L) and β(L) of order p and q

respectively have roots ϕ ∈ Ap,q(η) for some η > 0, where

Ap,q(η) =
{
ϕ = (a1, . . . , ap, b1, . . . , bq)

′ ∈
�p/2	+�q/2	⋃

r=0

(
R

p+q−2r ∪C
2r∗

) :

min
{|ai |, |bj |, ||ai | − 1|, ∣∣|bj | − 1

∣∣, |ai − bj |} ≥ η > 0,

i = 1, . . . , p, j = 1, . . . , q

}
.

Consider a positive weighting function g(θ;λ), possibly depending on θ , which
is uniformly bounded away from zero and from above for all λ ∈ �k−1 and θ ∈ �.

THEOREM 1. Consider an ARMA(p, q) model (6) with true roots ϕ0 satisfy-
ing Assumption A(p, q) and κ0

k �= 0 for some k ≥ 3. Then, for all θ ∈ � ⊂ 
p,q ,
� compact, and all η > 0 there exists an ε > 0 such that

(10) inf
θ∈�:‖θ−θ0‖>η,κk∈R

∫
�k−1

∣∣fk(θ, κk;λ) − fk

(
θ0, κ

0
k ;λ)∣∣2g(θ;λ) dλ ≥ ε > 0.

Proofs and technical results are contained in Appendices A and B of the Sup-
plementary Material [Velasco and Lobato (2018)]. The weighting function g(θ;λ)

could be for instance, |φk(θ;λ)|−2 to allow for periodogram optimal normaliza-
tion, since MA unit roots are excluded in the definition of �, as proposed in Terdik
(1999), equation (4.3). In particular, for k = 3, Theorem 1 shows that, when the
third order cumulant κ3 is different from 0, the bispectral density can be used to
identify the parameters of a noninvertible or noncausal linear model. By a similar
reasoning, the trispectral density, f4, can be used for identification when the fourth
order cumulant is different from 0.

The identification provided in Theorem 1 relies on the next lemma, which will
be proved for k = 3 only, the extension to k ≥ 4 is straightforward. Denote by
S ⊆ Ap,q the discrete set of all potential roots obtained by inversion (of at least
one) of the elements of ϕ0 so that complex roots always appear in conjugate pairs.
Note that the cardinality of S is 2n − 1 where n = p + q − r and r is the number
of pairs of complex roots determined by ϕ0. Then, fk(θ(ϕ), κk;λ) is the spectral
density of order k of the ARMA process (6) calculated from (7) and (8) expressed
in terms of ϕ, the roots of the AR and MA polynomials, rather than in terms of the
parameters θ . Note that θ(ϕ) is a continuous function of ϕ ∈ Ap,q .

LEMMA 1. Consider an ARMA(p, q) model (6) with true roots ϕ0 satisfying
Assumption A(p, q) and κ0

k �= 0 for some k ≥ 3. Then,

inf
ϕ∈S,κk∈R

∫
�k−1

∣∣fk

(
θ(ϕ), κk;λ) − fk

(
θ(ϕ0), κ

0
k ;λ)∣∣2g(θ;λ) dλ > 0.
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Lemma 1 shows that for any ϕ �= ϕ0 that belongs to the set S , the resulting
spectral density is different from fk(θ(ϕ0), κ

0
k ;λ) in g(θ;λ)-L2 distance in �k−1

for whatever choice of κk if k ≥ 3. The proof relies on the fact that it is not possi-
ble to choose κk so that both the real and imaginary parts of fk(θ(ϕ), κk;λ) match
simultaneously those of fk(θ(ϕ0), κ

0
k ;λ) for all λ. Note, however, that this is in-

deed possible for k = 2 because f = f2 is real and it is always possible for any
ϕ ∈ S to find a value κ2 = κ2(ϕ) that satisfies f2(θ(ϕ), κ2;λ) = f2(θ(ϕ0), κ

0
2 ;λ)

for all λ ∈ �. An equivalent result holds also when allowing for unit roots in the
MA polynomial, since this fact will not affect the integrability of fk , noting that,
in case of real unit roots (i.e., ±1), the inversion leads to the same solution, so
this case should be excluded from S . Then, in order to prove Theorem 1 from
Lemma 1 it only remains to consider elements ϕ outside S , which can not repli-
cate the transfer function φ(θ;λ) under the identification of the orders (p, q) in
Assumption A(p, q).

4. Minimum distance estimation.

4.1. Minimum distance estimation based on the spectral density of order k.
Consider initially the problem of estimating the parameter vector θ using the in-
formation contained in the spectral density of order k. The idea is to use the in-
formation provided by the normalized distance between the data, reflected in the
higher-order periodogram, Ik(λ), and the model, reflected in the parameterization
of the spectral density of order k, fk(θ, κk;λ). In particular, using (3) and (4) we
define

(11) Lk(θ, κk) =
∫
�k−1

E|Ik(λ) − fk(θ, κk;λ)|2
T k−2f (λ1) · · ·f (λk−1)f (λ1 + λ2 + · · · + λk−1)

dλ.

Note that in the k = 2 case the modulus is not needed since both the periodogram
and the spectral density are real. However, for k > 2, both Ik(λ) and fk(θ, κk;λ)

are complex. Then, the L2 distance estimator of θ is based on minimizing the em-
pirical analogue of Lk(θ, κk), scaling each periodogram ordinate by its variance,
which can also be interpreted in terms of data standardization to make Lk com-
parable for different k. Note that the scaling is well defined when unit roots are
excluded in the parameter space, so that 0 < f (λ) < ∞ for all λ.

Hence, the OF based on fk(θ, κk;λ) is the sample analogue of (11) where in
the denominator we replace the normalizing spectral densities by their traditional
Whittle estimators (under invertibility and causality), f T (λ) = f (θT , κ2T ;λ), say,

(12) LkT (θ, κk) = 1

T

T −1∑
j=1

|Ik(λj ) − fk(θ, κk;λj )|2
T k−2f T (λj1) · · ·f T (λjk−1)f T (λj1 + · · · + λjk−1)

.

Here we have simplified the notation by introducing the general (k − 1)-
dimensional vector of Fourier frequencies λj = (λj1, . . . , λjk−1) and by writing
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∑T −1
j=1 = ∑T −1

j1=1 · · ·∑T −1
jk−1=1, where we discard all combinations of frequencies

such that λja + λjb
= T , a �= b, and λj1 + λj2 + λj3 = T modT . This avoids re-

ferring in the notation to specific sets of λj ∈ �k−1 where the periodogram can
be defined uniquely; see the discussion in Anh, Leonenko and Sakhno (2007).
Note that plugging in these consistent estimators f T (λ) = f (θT , κ2T ;λ) gives
always the appropriate scaling in (12) since they are invariant to any potential
inversion of the polynomials roots implied by θT if κ2T is adjusted accordingly
to estimate the corresponding innovation variance. Further, the normalization by
preliminary estimates of f does not have any effect on the asymptotic proper-
ties of the parameter estimates, and greatly simplifies the analysis when compared
to the case where scaling is simultaneously estimated; cf. Section 4 in Terdik
(1999).

In the minimization of the previous OF (12), the cumulant κk is a nuisance
parameter that can be concentrated out. Then, recalling (9), expression (12) can be
written as

LkT (θ, κk) = (2π)k

κk
2T

1

T

T −1∑
j=1

|Ik(λj ) − fk(θ, κk;λj )|2
T k−2|φk(θT ;λj )|2 .

Also note that κ2T is only a scaling factor in LkT (θ, κk), but it is useful in order
to make comparisons among the contribution from different k. Considering the
first order conditions (FOC) of minimizing LkT (θ, κk) respect to κk , after straight-
forward algebra using the definition of fk , it is simple to solve for κk , and de-
fine

κkT (θ) = (2π)k−1

(
T −1∑
j=1

|φk(θ;λj )|2
|φk(θ̄T ;λj )|2

)−1 T −1∑
j=1

Re(Ik(λj )φk(θ;−λj ))

|φk(θ̄T ;λj )|2 .

The fact that |φk(θ̄T ;λj )|2 is a consistent estimator for |φk(θ0;λj )|2 up to scale
implies that, for θ ≈ θ0 and large T , the ratio in parenthesis can be approximated
by a constant that cancels out with the ratio involving Ik , so we propose to replace
κkT (θ) by the following simpler estimate of κk :

(13) κ
†
kT (θ) =

(
2π

T

)k−1 T −1∑
j=1

Re
(

Ik(λj )

φk(θ;λj )

)
,

that does not depend on θ̄T . Then a consistent estimator for κk is obtained by
plugging in a consistent estimator of θ into (13) for k = 2,3,4; see Theorem 2 in
the next section. The modified concentrated OF is defined as LkT (θ, κ

†
kT (θ)) and,

for simplicity in the analytical derivation, it is of interest to work with a rescaled
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version of this OF, namely,

(14)

L∗
kT (θ) = (2π)k−2

2k
LkT

(
θ, κ

†
kT (θ)

)

= (2π)2(k−1)

2kκk
2T T k−1

T −1∑
j=1

|Ik(λj ) − f
†
kT (θ;λj )|2

|φk(θ̄T ;λj )|2 ,

where f
†
kT (θ;λj ) = fk(θ, κ

†
kT (θ);λj ).

4.2. Asymptotic properties of estimators based on minimizing a weighted linear
combination of L∗

kT . The OF L∗
kT (θ) extracts the information on θ contained in

fk only. For identification, we need to consider fk for which κk �= 0, and k > 2. In
addition, although f2 does not help for global identification, it is very important
for efficiency purposes. In this article, we aim to combine the information con-
tained in f2, f3 and f4 (note that, when both κ3 = κ4 = 0, additional higher order
fk should be considered). In order to combine these sources of information, we
initially consider general minimum distance estimators based on minimizing the
weighted sum

(15) L∗
wT (θ) = w2L

∗
2T (θ) + w3L

∗
3T (θ) + w4L

∗
4T (θ),

where w = (w2,w3,w4)
′ are some nonnegative weights that can give more em-

phasis to information from a particular cumulant. Then define the general family
of minimum distance frequency domain estimators

θwT = arg min
θ∈�

L∗
wT (θ).

Including both L∗
3T (θ) and L∗

4T (θ) in (15), guarantees that θwT is consistent as
long as κ0

3 �= 0 or κ0
4 �= 0. In addition, even in the case where either κ0

3 = 0 or
κ0

4 = 0, the presence in (15) of the particular L∗
kT (θ) for which κ0

k = 0, does not
affect the consistency of θwT , since when κ0

k = 0 it holds that, as T → ∞,

sup
θ∈�

∣∣L∗
kT (θ) − CT

∣∣ →p 0,

where CT depends on the data, but does not depend on θ .
Note also that, by setting wk = 1 and wj = 0, j �= k, the estimator θwT includes,

as particular cases of interest, the marginal estimators θ
(k)
T , k = 2,3,4, which min-

imize only L∗
kT (θ).

Although specific examples of θwT have been proposed previously in the liter-
ature [see, for instance, Chapter 4 in Terdik (1999)], the class of estimators θwT

presents the problem that it is not possible to derive closed form optimal weights
w for the general noninvertible/noncausal case. Despite that, for a given set of
weights w, θwT can be used as a robust initial estimate for developing a feasible
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efficient estimator, which we analyze in the next section. Hence, we next establish
the asymptotic properties of θwT under general conditions.

We introduce Assumption 1 on the parameter space for identification and As-
sumption 2 on the innovations. Given the linear nature of the model, the depen-
dence condition we employ is just based on restricting the moments of εt together
with an i.i.d. assumption, whereas conditions on the summability of the ψ ′s are
directly implied by the ARMA parametrization since unit roots are excluded by
Assumption A.

ASSUMPTION 1. Yt follows an ARMA(p, q) model (6) with true roots ϕ0
satisfying Assumption A(p, q) with θ0 ∈ � ⊂ 
p,q , � compact.

ASSUMPTION 2. The process εt is an i.i.d. sequence with zero mean, variance
κ0

2 > 0, |κ0
3 | + |κ0

4 | > 0, and E[ε8
t ] < ∞.

Under these conditions the results (3) and (4) hold because the ARMA model
implies smooth spectral densities. The next two theorems establish the asymptotic
properties of the estimators θwT .

THEOREM 2. Under Assumptions 1 and 2, with min{w3,w4} > 0, as T → ∞,

θwT →p θ0

and

κ
†
kT (θwT ) →p κ0

k , k = 2,3,4.

We emphasize that the previous consistency result just requires that either κ0
3 or

κ0
4 is nonzero. In practice, we set both w3 and w4 positive since we might not have

a priori information on which one is nonnegligible. The value of w2 is irrelevant
for consistency of θwT since second moments are of no use for identification, and
hence L∗

2T does not distort the identification provided from higher order cumu-

lants. The fact that κ
†
kT (θwT ) is able to recover the true value of κ0

k , even if this is
zero, will be employed in the next subsection to propose an efficient estimator for
θ , valid for general linear processes.

In addition to consistency, the next theorem establishes the asymptotic normal-
ity. Define the matrix

(16) �0 = 1

2π

∫ π

−π
ϕ1(θ0;λ)ϕ1(θ0;−λ)′ dλ,

where ϕ1(θ0;λ) = ϕ(θ0;λ) − μ(θ0),

(17) ϕ(θ0;λ) = φ̇(θ0;λ)

φ(θ0;λ)
, μ(θ0) = 1

2π

∫ π

−π
ϕ(θ0;λ)dλ,
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and

φ̇(θ0;λ) = ∂

∂θ
φ(θ0;λ).

�0 is positive definite under Assumption A excluding common and unit roots in
the AR and MA polynomials. Define also

�∗
0 = 1

2π

∫ π

−π
ϕ1(θ0;λ)ϕ1(θ0;λ)′ dλ,

and note that �∗
0 is zero for pure invertible and causal processes because in this

case ϕ1 = ϕ has no constant term in its Fourier expansion. Note that both �0 and
�∗

0 are real because imaginary parts of the integrands are odd and cancel out in the
integration. Also call μ̄4 = μ4/(κ

0
2 )2 = ν4 + 3, μ̄5 = μ5/(κ

0
2 )5/2 = ν5 + 10ν3 and

μ̄6 = μ6/(κ
0
2 )3 = ν6 + 10ν2

3 + 15ν4 + 15 to the standardized fourth, fifth and sixth
moments, respectively.

Finally, define the matrix V =V(θ0, ν3, ν4) with blocks Vj,k , j, k = 2,3,4, as

(18) V=
⎛
⎝ �0 + �∗

0 ν2
3
(
�0 + �∗

0
)

μ̄4ν4
(
�0 + �∗

0
)

ν2
3
(
�0 + �∗

0
)

ν2
3
{
(2 + ν4)�0 + ν2

3�∗
0
}

ν3ν4
{
(μ̄5 − ν3)�0 + μ̄4ν3�

∗
0
}

μ̄4ν4
(
�0 + �∗

0
)

ν3ν4
{
(μ̄5 − ν3)�0 + μ̄4ν3�

∗
0
}

ν2
4
{(

μ̄6 − ν2
3
)
�0 + μ̄2

4�
∗
0
}

⎞
⎠ .

THEOREM 3. Under Assumptions 1 and 2, with min{w3,w4} > 0, θ0 ∈
Int(�), as T → ∞,

(19)
√

T (θwT − θ) →d N
(
0,�−1

0 �0�
−1
0

)
,

where

�0 = �0(w) = (
w2 + w3ν

2
3 + w4ν

2
4
)
�0 + w2�

∗
0

is positive definite and

�0 = �0(w) =
4∑

j,k=2

wjwkVj,k.

Notice again that the previous theorem covers the case when one higher order
cumulant (κ0

3 or κ0
4 , but not both) is zero. In any of these situations the asymp-

totic distribution is derived using the Cramér–Wold device (see Lemma A.4 in the
Appendix), with the implicit assumption that XT converges in distribution to a
N(0,�) distribution with � singular as T → ∞ if and only if c′XT converges
to c′X, which is a N(0, c′�c), for any c ∈ Rk , so, for instance, the N(0,0) is the
0-point mass distribution.

The expressions for �0 and �0 illustrate that the (relatively) larger are w3 or ν2
3

and w4 or ν2
4 the more important is the contribution from these particular moments

in the estimation method, while the dependence of the asymptotic variance of θwT
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on higher order moments is reflected in the elements of V. From Theorem 3, it is
immediate to derive the asymptotic behavior of the individual θ

(k)
T (obviously for

θ
(2)
T we have to presume identification).

COROLLARY 1. Under the conditions of Theorem 3, and assuming that �

for θ
(2)
T correctly identifies the location of the roots of θ0, κ0

3 �= 0 and κ0
4 �= 0, as

T → ∞,

√
T

⎛
⎜⎜⎜⎝

θ
(2)
T − θ0

θ
(3)
T − θ0

θ
(4)
T − θ0

⎞
⎟⎟⎟⎠ →d N(0,W),

where

(20) W=

⎛
⎜⎜⎜⎜⎝

(
�0 + �∗

0
)−1

�−1
0

μ̄4

ν4
�−1

0

�−1
0

μ̄4 − 1

ν2
3

�−1
0 + �−1

0 �∗
0�

−1
0

μ̄5 − ν3

ν3ν4
�−1

0 + μ̄4

ν4
�−1

0 �∗
0�

−1
0

μ̄4

ν4
�−1

0
μ̄5 − ν3

ν3ν4
�−1

0 + μ̄4

ν4
�−1

0 �∗
0�

−1
0

μ̄6 − ν2
3

ν2
4

�−1
0 +

(
μ̄4

ν4

)2
�−1

0 �∗
0�

−1
0

⎞
⎟⎟⎟⎟⎠ .

Our results can be compared with previous CLTs in the related literature. A par-
ticular case of interest, covered by Theorem 3, occurs when both κ0

3 or κ0
4 are

zero. For example, classical textbooks from Hannan (1970) or Brillinger (1975)
to Brockwell and Davis (1991) provide CLT for the QMLE for causal and invert-
ible ARMA models. Their asymptotic variance is a particular case of ours. For
establishing the CLT, the i.i.d. restriction could be relaxed to martingale difference
sequence with constant conditional homoskedasticity (and additional higher order
conditional moment restrictions) at cost of further notational complexity. The ex-
tension to the conditional heteroskedasticity case is more challenging since this
will affect the parametric form of f4 and left open for future research.

Kumon (1992) provides a CLT for Z-estimators based on higher order cumu-
lants, which are asymptotically equivalent to the corresponding MD estimators.
Notice that Kumon’s formula (3.9), which provides the asymptotic variance of
θ

(3)
T differs from ours due to two important aspects: he is not centering by μ(θ0)

in expression (16), which is needed for noninvertible processes, and the scaling
in his expression (3.9) is adjusted by the fact that we only use the real part of the
biperiodogram in the FOC.

Terdik [(1999), Theorem 76] considers a loss function that weights second and
third moments, with simultaneous normalization of the periodograms, although he
does not analyze the contribution of this modification to the asymptotic variance.
The results in Terdik can be compared to ours. In particular, for the invertible
case setting w2 = 2p1, w3 = 3q1 and w4 = 0, the expression for the asymptotic
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variance is

�−1
0 �0�

−1
0 = w2

2 + {2w3w2 + w2
3(2 + ν4)}ν2

3

(w2 + w3ν
2
3)2

�−1
0 ,

which in Terdik’s notation would be

(21)
4p2

1 + {9q2
1ν4 + 18q2

1 + 12p1q1}ν2
3

(2p1 + 3q1ν
2
3)2

�−1
0 .

Notice that (21) differs from Terdik’s expression (4.21) in the factor 12p1q1 (ver-
sus 6p1q1), which corresponds to the term pqς2 in his expression for �R1(ϑ0).
This discrepancy seems to originate from ignoring the 2 factor in front of the
definition of �R23(ϑ0) (page 167). Note that p1 + q1 = 1 is imposed in Terdik
(1999) in terms of a geometric motivation, but this normalization is not needed if
min{p1, q1} ≥ 0, as it happens with our weights wj when aggregating loss func-
tions to be minimized.

Corollary 1 shows that the asymptotic variances of θ
(3)
T and θ

(4)
T are smaller

the larger are ν2
3 and ν2

4 , respectively, that is, the more information is contained in
these particular higher order moments. In addition, notice that for pure invertible
and causal processes, W simplifies to

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1
μ̄4

ν4

1
μ̄4 − 1

ν2
3

μ̄5 − ν3

ν3ν4

μ̄4

ν4

μ̄5 − ν3

ν3ν4

μ̄6 − ν2
3

ν2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊗ �−1
0 ,

using that in this case �∗
0 = 0. Then, the asymptotic variance of θ

(2)
T for invertible

and causal models equals the one of the Whittle estimate because

�−1
0 = 4π

(∫ π

−π
ϕ2(θ0;λ)ϕ2(θ0;−λ)′ dλ

)−1
,

since ϕ1 = ϕ and
∫
� ϕ2(θ0;λ)ϕ2(θ0;−λ)′ dλ = 2

∫
� ϕ(θ0;λ)ϕ(θ0;−λ)′ dλ. In Ap-

pendix C of the Supplementary Material [Velasco and Lobato (2018)] we show
that these estimates are also asymptotically equivalent in this case. In addition, it
is simple to show that both (μ̄4 − 1)/ν2

3 and (μ̄6 − ν2
3)/ν2

4 are larger than one.

Hence, both θ
(3)
T and θ

(4)
T would be less efficient estimators than θ

(2)
T , in case this

estimator were consistent, which is not in general. Finally, the fact that the matrix
W is nondiagonal implies that a consistent, and more efficient than θ

(2)
T , estimator

can be constructed by linearly combining θ
(2)
T , θ

(3)
T and θ

(4)
T .
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REMARK 1. Note that for invertible processes μ0, defined in (17), equals 0,
so that �0 simplifies to

1

2π

∫ π

−π
ϕ(θ0;λ)ϕ(θ0;−λ)′ dλ,

but for general noninvertible cases the expression for μ0 has to be considered.
For instance, for a simple noninvertible MA(1) process, |θ0| > 1, from Cauchy
formula, it is simple to show that

μ0 = 1

2π

∫ π

−π

eiλ

1 + θ0eiλ
dλ = 1

2πi

∮
z

1 + θ0z
dz = 1

θ0
,

and also that in this case with q = 1

�∗
0 = 1

2π

∫ π

−π

(
eiλ

1 + θ0eiλ

)2
dλ − 1

θ2
0

= 0,

but this will not be generally true when q > 1.

REMARK 2. For all-pass models with constant spectral density, we have that
�0 + �∗

0 is singular, indicating that second moments cannot identify the parame-
ters in absence of further information. Consider the case of unrestricted estimation
of an ARMA(1,1) with (invertible) MA parameter, β1 = θ0, |θ0| < 1, and with
(noncausal) AR parameter α1 = −θ−1

0 , so the roots of both polynomials are −θ−1
0

and −θ0, respectively, and

f2
(
β1, α1, κ

0
2 ;λ) = κ0

2

2π

|1 + β1e
iλ|2

|1 − α1eiλ|2 = κ0
2

2π

|1 + θ0e
iλ|2

|1 + θ−1
0 eiλ|2 = κ0

2

2π
θ2

0 .

Then,

�0 = 1

1 − θ2
0

(
1 0
0 θ4

0

)
, �∗

0 = 1

1 − θ2
0

(
0 −θ2

0
−θ2

0 0

)
,

since

ϕ1(β1, α1;λ) =

⎛
⎜⎜⎜⎜⎝

eiλ

1 + θ0eiλ

− eiλ

1 + θ−1
0 eiλ

+ θ0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

eiλ

1 + θ0eiλ

θ2
0 e−iλ

1 + θ0e−iλ

⎞
⎟⎟⎟⎠ .

REMARK 3. In the case of restricted estimation of an all-pass model of order
r with

φ(θ;λ) = eiλrθ(−λ)

−θrθ(λ)
,
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and θ = (θ1, . . . , θr)
′, θ(λ) = 1 − θ1e

iλ · · · − θre
irλ, we can obtain that

ϕ1
j (β1, α1;λ) = − e−iλj

θ(−λ)
+ eiλj

θ(λ)
, j = 1, . . . , r,

so that

�0,j,k = 1

2π

∫ π

−π

2 cos(j − k)λ

|θ(λ)|2 dλ,

which is twice the value for typical AR or MA coefficients, and �∗
0 = −�0, so

�0 + �∗
0 = 0. Hence, second moments do not provide information at all as f2 is

constant for all θ , while the asymptotic variances of θ
(3)
T and θ

(4)
T are, respectively,

μ̄4 − 1 − ν2
3

ν2
3

�−1
0 and

μ̄6 − ν2
3 − μ̄2

4

ν2
4

�−1
0 .

4.3. Efficient estimation based on second, third and fourth moments. Imple-
mentation of the estimator θwT requires selecting optimally the weights w. In the
absence of a priori information, the weights should be selected using sample infor-
mation. Given the complex structure of the asymptotic covariance matrix in (19),
determining the optimal weights for the general non causal/non invertible case is
an impossible task. In the working paper version of the article,3 we address op-
timally selecting the weights w in the invertible and causal case. That result is
obviously of limited interest for the general problem studied in this article.

In this subsection, we propose an alternative approach to construct a feasible
estimator that is consistent and optimally weights the information contained in
L∗

2T , L∗
3T and L∗

4T . The motivation for this estimator comes from observing that
the FOC that defines the estimator θwT is an arbitrary linear combination of the
scores of L∗

2T , L∗
3T and L∗

4T . Hence, a more efficient estimator than θwT can be
constructed by optimally combining the information contained in these scores. In
particular, denote the gradient vector by

ST (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂θ
L∗

2T (θ)

∂

∂θ
L∗

3T (θ)

∂

∂θ
L∗

4T (θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and recall that the asymptotic variance of T 1/2
ST (θ0) is the matrix V defined in

(18). We consider the objective function

(22) QT (θ) = ST (θ)′V̂−
T ST (θ),

3Available at https://sites.google.com/site/ignacionlobato/.

https://sites.google.com/site/ignacionlobato/
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where V̂
−
T is a consistent estimator of the matrix V

−, which is a reflexive general-
ized inverse of V, and hence, it satisfies VV−

V = V and V
−
VV

− = V
−. A lead-

ing example of V
− is the Moore–Penrose inverse, V+. We employ generalized

inverses to take account of cases where the asymptotic variance of ST (θ) is de-
fault rank due to some higher order cumulant being zero. The OF (22) optimally
weights the information on θ0 contained in the score vector ST (θ). Hence, the
proposed consistent and efficient estimator of θ0 is

(23) θ̂T = θ̃T − (
HT (θ̃T )′V̂−

T HT (θ̃T )
)−1

HT (θ̃T )′V̂−
T ST (θ̃T ),

where HT (θ) = (∂/∂θ ′)ST (θ), and θ̃T satisfies

(24) θ̃T − θ0 = Op

(
T −1/2)

.

Finally, define H = (�0 +�∗
0, ν

2
3�0, ν

2
4�0)

′, and notice that, using the same argu-
ments as for Theorem 3,

HT (θ̃T ) = ∂

∂θ ′ST (θ0) + op(1) = H+ op(1).

For implementing (23), we can employ for θ̃T some version of θwT , which, as
we have seen in the previous section, verifies condition (24) and is robust to a
zero higher order cumulant. For instance, in the simulations in the next section we
employ as θ̃T the estimator that minimizes L∗

3T + L∗
4T .

Given (24), the consistency of θ̂T is trivial. The next theorem states its asymp-
totic distribution.

THEOREM 4. Under Assumptions 1 and 2 (irrespective of the values of κ0
3 and

κ0
4 ), (24) and V̂

−
T →p V

− as T → ∞,
√

T (θ̂T − θ) →d N
(
0,

(
H

′
V

−
H

)−1)
.

REMARK 4. The asymptotic variance matrix (H′
V

−
H)−1 is positive defi-

nite because �0 is so, even when κ0
3 = κ0

4 = 0. Note that the matrices V
− and

H
′
V

−
H are not unique in general. However, (H′

V
−
H)−1 is invariant to the partic-

ular choice of V− when H belongs to the column space of V; see, for example, Rao
and Mitra (1972), page 615. Furthermore, in this case, using the same argument
as in Theorem 5 of Schneeweiss (2014), it can be showed that θ̂T is efficient in
the class of estimators that minimize ST (θ)′WT ST (θ), where WT is any weight-
ing matrix sequence that preserves identification asymptotically, that is, for which
H

′
WH is positive definite, where W = plimT →∞WT .

REMARK 5. It is immediate to show that H belongs to the column space of V
for invertible and causal processes, since for these processes �∗

0 = 0 and both H

and V are multiples of �0, irrespective of whether κ0
3 and/or κ0

4 are zero or not.
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In this situation, it is also simple to show, using the Cauchy–Schwarz inequality,
that, for any choice of weights, �−1

0 �0�
−1
0 − (H′

V
−
H)−1 is a positive semi-

definite matrix, so that θ̂T is asymptotically at least as efficient as θwT for any w.
The efficiency condition is also satisfied when κ0

3 = κ0
4 = 0 and when p + q = 1,

because the structure or the dimensions of H and V guarantee that there always
exists a matrix A so that VA = H. Hence, the estimator θ̂T is consistent, efficient
for a large class of processes, and simple to calculate since it avoids the optimal
selection of the weights required for implementation of θwT .

REMARK 6. Note that Theorem 4 allows for the case where both higher order
cumulants are zero, κ0

3 = κ0
4 = 0, given (24). In this case, all blocks of V are equal

to zero except the top left one, and if we choose the Moore–Penrose inverse V
+

for V
−, it has the same shape in terms of the inverse of this block, so that the

asymptotic variance is just given by

(
H

′
V

+
H

)−1 = (
�0 + �∗

0
)−1

,

which is the one obtained by using only L∗
2T under the assumption of the correct

knowledge of the exact location with respect to the unit circle of the roots of the
lag polynomials implied by θ0; cf. Corollary 1.

REMARK 7. Notice that Theorem 4 requires that V̂−
T →p V

− as T → ∞.
For constructing estimators V̂

−
T that satisfy this condition, it is not sufficient to

consider the generalized inverse of any consistent estimate V̂T of V, since gen-
eralized inverses are not necessarily continuous. There are several approaches to
guarantee that V̂−

T →p V
−. One simple solution is to require that Pr(rank(V̂T ) =

rank(V)) → 1 as T → ∞, when using the Moore–Penrose inverse V
+; cf. The-

orem 2 in Andrews (1987). Notice that in our problem V becomes singular only
when κ0

k = 0, k = 3 and/or 4, and similarly for V̂T in terms of the estimates of the
standardized cumulants νk . Hence, for our case it is simple to provide explicitly an
estimator V̂T that guarantees the previous rank condition. In particular, we could
choose as V̂T the sample analogue of (18), where we replace νk by

ν̃kT = κ
†
kT (θ̃T )

κ
†
2T (θ̃T )k/2

1
(∣∣κ†

kT (θ̃T )
∣∣ > ζT

)
, k = 3,4,

for some threshold parameter ζT such that ζT + T −1/2ζ−1
T → 0 as T → ∞. Sim-

ilarly for the other components for V̂T , population moments would be replaced
by the corresponding expressions using consistent cumulants estimates κ

†
kT (θ̃T ),

k = 2, . . . ,6 (which would entail strengthening the moment conditions in Assump-
tion 2), and �0 and �∗

0 would be replaced by the same expressions using θ̃T instead



574 C. VELASCO AND I. N. LOBATO

of θ0. Then, using the methods in the proof of Theorem 3 it is simple to prove that
under (24)

T 1/2(
κ

†
kT (θ̃T ) − κ0

k

) = Op(1), k = 2,3,4,

so that ζ−1
T κ

†
kT (θ̃T ) = op(1) when κ0

k = 0, while ζ−1
T κ

†
kT (θ̃T ) = ζ−1

T κ0
k + op(1)

when κ0
k �= 0, k = 3,4, and therefore,

Pr
(
rank(V̂T ) �= rank(V)

)
≤ Pr

( ⋂
k:κ0

k =0

{∣∣κ†
kT (θ̃T )

∣∣ > ζT

}) + Pr
( ⋂

k:κ0
k �=0

{∣∣κ†
kT (θ̃T )

∣∣ ≤ ζT

})

→ 0,

as T → ∞ and therefore V̂
+
T →p V

+.

REMARK 8. The analytic expressions for the components of the score vector
are given by

∂

∂θ
L∗

kT (θ) = −(2π)2(k−1)

kκk
2T T k−1

T −1∑
j=1

Re{(Ik(λj ) − f
†
kT (θ;λj )) ∂

∂θ
f

†
kT (θ;−λj )}

|φk(θ̄T ;λj )|2 ,

where here we can set θ̄T = θ̃T and κ2T = κ
†
2T (θ̃T ), while HT (θ̃T ) can be replaced

by its probability limit H. Hence, we can avoid the analytical evaluation of the
second order derivatives by using consistent estimates of �0 and �∗

0 as in the
estimation of V. In addition, in the Appendix B we proportionate approximating
expressions for ST (θ) in terms of residuals. These approximations can be used to
obtain direct expressions of all its components in the time domain.

5. Simulations. In this section we report a short simulation exercise to assess
two issues: first, the ability of L∗

3T + L∗
4T to identify the proper location of the

roots, and second, the finite sample performance (bias and root mean squared er-
ror) of the efficient estimator (23). We focus on a simple MA(1) process, and con-
sider three innovation distributions: an exponential, a Student’s t with 5 degrees
of freedom, and a Uniform. The last two distributions are symmetric, so ν3 = 0,
whereas the exponential distribution is highly asymmetric, ν3 = 2. The first two
distributions have the same positive kurtosis ν4 = 6, while the uniform has nega-
tive kurtosis, ν4 = −6/5. Moments higher than the fourth are not defined for the
Student’s t case, and so the theoretical results are not readily applicable for this
example, but otherwise Assumption 2 holds in all cases.

Table 1 reports the percentage of replications where the estimator based on min-
imizing L∗

3T + L∗
4T identifies correctly the location of the root of the MA compo-

nent, that is, L∗
3T (θ) + L∗

4T (θ) is minimized for a value θT so that I{|θT | < 1} =
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TABLE 1
Percentage correct root identification using L∗

3T + L∗
4T

θ0

Distribution T 0.5 0.9 0.9−1 0.5−1

Exp(1) 100 96.3 79.8 80.7 96.0
200 99.5 86.0 87.1 98.9

t5 100 85.0 70.4 69.8 86.5
200 93.0 77.9 79.5 93.6

Uniform 100 73.6 55.9 56.3 73.9
200 93.7 59.2 59.4 93.2

Note: Percentage of replications in which L∗
3T (θ) + L∗

4T (θ) is minimized for a value θT so that
I{|θT | < 1} = I{|θ0| < 1}.

I{|θ0| < 1}. We consider two sample sizes (T = 100 and 200), four values for θ0
(0.5, 0.9 and their inverse values) and the number of replications is 3000. We just
report the results for the estimator that minimizes L∗

3T + L∗
4T since that is the one

that we employ as θ̃T when computing (23) in the second part of the simulations re-
sults. Obviously, alternative versions of θwT could be employed as θ̃T , for instance
L∗

2T could also be added, but the inclusion of L∗
2T does not theoretically add any

benefit for the correct identification of the location of the roots. From Table 1, it is
clear that correct identification is easiest for the exponential case, which could be
expected given that both the third and fourth cumulants are non zero. Obviously,
L∗

3T does not provide any identification information for the uniform and the Stu-
dent t distributions since the third cumulant is zero, ν3 = 0, for these two cases, as
was confirmed in the working paper version of the article where the results using
L∗

3T and L∗
4T individually were reported. Note also that for moderate sample sizes

the uniform case is more complicated than the Student’s t case, most likely due to
the much smaller value of ν2

4 . In addition, as could be expected, identification is
always easier when the parameter is further away of the unit root circle.

For the cases where the estimator based on minimizing L∗
3T + L∗

4T properly
identifies the location of the MA root, we can compare the bias and the RMSE of
the proposed estimator θ̂T and of the unfeasible version of the θ

(2)
T estimator, which

is asymptotically as efficient as the Whittle estimator. This version imposes correct
knowledge of the location of the roots (since identification is impossible using just
L∗

2T ). Implementation of the proposed estimator (23) has employed plugging in
estimators for the unknown cumulants for constructing V̂T and HT , and a numer-
ical approximation for the score vector ST . In addition, the usual inverse of V̂T

was employed for constructing (23) in all cases. Implementing the estimator V̂−
T

described in Remark 7 is hampered by the selection of the threshold parameter ζT ,
and we leave this matter for future research. Table 2 reports the bias and the RMSE
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TABLE 2
Bias and RMSE for θ

(2)
T and θ̂T

θ0

Distribution T 0.5 0.9 0.9−1 0.5−1

Bias

Exp(1) 100 θ
(2)
T −0.008 −0.108 0.093 0.093

θ̂T 0.004 −0.030 0.083 0.080

200 θ
(2)
T 0.001 −0.072 0.073 0.037

θ̂T 0.002 −0.002 0.023 0.027

t5 100 θ
(2)
T −0.010 −0.106 0.092 0.111

θ̂T −0.008 −0.037 0.076 0.101

200 θ
(2)
T −0.002 −0.056 0.072 0.029

θ̂T 0.001 −0.027 0.034 0.023

Uniform 100 θ
(2)
T −0.014 −0.093 0.108 0.102

θ̂T 0.003 −0.085 0.079 0.081

200 θ
(2)
T −0.001 −0.059 0.065 0.039

θ̂T −0.000 −0.022 0.041 0.022

RMSE

Exp(1) 100 θ
(2)
T 0.089 0.158 0.288 0.423

θ̂T 0.098 0.146 0.284 0.438

200 θ
(2)
T 0.068 0.125 0.170 0.268

θ̂T 0.068 0.120 0.164 0.264

t5 100 θ
(2)
T 0.109 0.147 0.219 0.510

θ̂T 0.103 0.140 0.221 0.498

200 θ
(2)
T 0.064 0.106 0.150 0.275

θ̂T 0.066 0.102 0.143 0.271

Uniform 100 θ
(2)
T 0.090 0.115 0.218 0.416

θ̂T 0.082 0.100 0.172 0.386

200 θ
(2)
T 0.069 0.094 0.141 0.267

θ̂T 0.059 0.082 0.119 0.221

Note: θ
(2)
T is obtained searching only for |θ | < 1 or |θ | > 1 as appropriate given the true value θ0,

while θ̂T uses as θ̃T the estimate obtained minimizing L∗
3T + L∗

4T .
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for both estimators for two sample sizes T = 100 and 200, and 1000 replications.
Table 2 shows that bias is larger for values of θ0 closer to one, and that the sign
of the bias depends on θ0: for values of θ0 less than one bias is typically nega-
tive, while for θ0 larger than one the bias is positive. In general, the estimator θ̂T

exhibits less bias than the θ
(2)
T estimator. In addition, in terms of RMSE, the bias

plays a minor role. The RMSE is increasing with the values for θ0 (though roughly
constant in relative terms) and appears to be somewhat smaller for the uniform dis-
tribution. For the uniform platykurtic distribution, the θ̂T efficient estimator clearly
dominates the infeasible θ

(2)
T estimator in terms of RMSE for the considered sam-

ple sizes. This might indicate that at least for symmetric platykurtic distributions
there are potential efficiency improvements, which the working paper version of
the article confirmed theoretically for the causal and invertible case. However, for
the other two, leptokurtic, distributions θ̂T only presents slightly smaller RMSE
than the unfeasible θ

(2)
T estimator for most of the cases.

6. Conclusions and extensions. This article introduces frequency domain
minimum distance procedures for performing inference in general time series
linear models that may be noncausal and noninvertible. We propose a minimum
distance approach that combines the information contained in second, third, and
fourth moments. Contrary to existing estimators, as long as the third or the fourth
order cumulant is different from zero, the proposed estimator is consistent under
general assumptions. Furthermore, we provide one-step valid inference irrespec-
tive of exact knowledge of the location of the ARMA roots and even for the case
when the third or the fourth or both cumulants are zero. In addition, our proce-
dures are efficient for a large class of processes, which include the case where
both the third and fourth cumulants are zero. In that case, we have shown that our
procedures are asymptotically as efficient as the unfeasible Whittle estimator that
imposes correct knowledge of the location of the roots.

This article has focused in ARMA models with independent innovations, but
the analysis can be extended to other linear models, such as Bloomfield, and, es-
pecially to nonlinear models since information contained in higher order spectra
is particularly relevant for this case, an example would be ARMA-GARCH mod-
els. Additional extensions of interest are the use of the bootstrap to estimate the
standard errors of the estimates, the analysis of the multivariate case, which is of
special interest in Economics, and the study of the implementation of automatic
criteria, such as AIC or BIC, to select the order of the ARMA model.
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SUPPLEMENTARY MATERIAL

Technical Appendices to “Frequency domain minimum distance inference
for possibly noninvertible and noncausal ARMA models” (DOI: 10.1214/17-
AOS1560SUPP; .pdf). This Supplementary Material contains three appendices
with proofs of main results, technical lemmas and comparison with Whittle es-
timation.
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