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ON THE MIXING TIME OF KAC’S WALK AND OTHER
HIGH-DIMENSIONAL GIBBS SAMPLERS WITH CONSTRAINTS

BY NATESH S. PILLAI∗,1 AND AARON SMITH†,2

Harvard University∗ and University of Ottawa†

Determining the total variation mixing time of Kac’s random walk on the
special orthogonal group SO(n) has been a long-standing open problem. In
this paper, we construct a novel non-Markovian coupling for bounding this
mixing time. The analysis of our coupling entails controlling the smallest
singular value of a certain random matrix with highly dependent entries. The
dependence of the entries in our matrix makes it not amenable to existing
techniques in random matrix theory. To circumvent this difficulty, we extend
some recent bounds on the smallest singular values of matrices with inde-
pendent entries to our setting. These bounds imply that the mixing time of
Kac’s walk on the group SO(n) is between C1n2 and C2n4 log(n) for some
explicit constants 0 < C1,C2 < ∞, substantially improving on the bound of
O(n5 log(n)2) in the preprint of Jiang [Jiang (2012)]. Our methods may also
be applied to other high dimensional Gibbs samplers with constraints, and
thus are of independent interest. In addition to giving analytical bounds on
the mixing time, our approach allows us to compute rigorous estimates of the
mixing time by simulating the eigenvalues of a random matrix.
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1. Introduction. Mark Kac introduced a random walk on the sphere in his
1954 paper [39] as a model for a Boltzmann gas. In this paper, we study Kac’s walk
on the special orthogonal group SO(n), which was first introduced in a statistical
context [27] and has been studied as a generalization of Kac’s walk on the sphere
since [17] (see also, e.g., [8, 32, 35, 45, 46]).

Kac’s walk on SO(n) is a discrete-time Markov chain {Xt }t∈N that evolves as
follows. Fix an ordering of the N ≡ n(n−1)

2 planes generated by two coordinates
in R

n and choose X1 ∈ SO(n). For t ∈ N, choose 1 ≤ it ≤ N and θt ∈ [0,2π)

uniformly at random and set

(1.1) Xt+1 = R(it , θt )Xt ,

where R(i, θ) denotes a rotation by the angle θ in the ith coordinate plane. If the
ith coordinate plane is associated with the coordinate axes 1 ≤ k < � ≤ n, R(i, θ)

is an n × n matrix with entries

R(i, θ)jj = cos(θ), j ∈ {k, �},
R(i, θ)k� = sin(θ), R(i, θ)�k = − sin(θ),

R(i, θ)jj = 1, j /∈ {k, �},
R(i, θ)jj ′ = 0, j ′ /∈ {j, k, �}.

(1.2)
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If we write Xt = [v(1)
t v

(2)
t . . . v

(n)
t ], the law of {v(1)

t }t∈N is known as Kac’s
walk on the sphere Sn−1. Physically, Kac motivated this random walk by consid-
ering n particles in a one-dimensional box. He assumed that these particles were
uniformly distributed in space, and the vector v

(1)
t models the change in their ve-

locities over time as collisions occur; the condition that v
(1)
t be constrained to the

sphere corresponds to the principle of conservation of energy. Understanding the
mixing properties of this process is central to Kac’s program in kinetic theory (see
[44] for a useful description of this program). Kac’s walks on the sphere and on
SO(n) have attracted great attention and estimating their mixing times has been
a long standing open problem (see Sections 1.1 and 1.2). Recently, in [47], the
authors of this paper obtained a matching upper bound and lower bound for the
mixing time of Kac’s walk in Sn−1, thus settling this problem up to a constant
factor.

To state our main result, we recall some standard definitions. For measures
ν1, ν2 on a measure space (�,F), the total variation distance between ν1, ν2 is
given by

‖ν1 − ν2‖TV = sup
A∈F

(
ν1(A) − ν2(A)

)
.

We denote the distribution of a random variable X by L(X) and write X ∼ ν as
a shorthand for L(X) = ν. For a Markov chain {Xt }t∈N with unique associated
stationary distribution ν on state space �, we define the associated mixing profile
by

τ(ε) = inf
{
t ∈ N : sup

X1=x∈�

∥∥L(Xt) − ν
∥∥

TV < ε
}

and the mixing time by τmix = τ(0.25).
Let μ denote the normalized Haar measure on SO(n). Our main result is the

following bound on the mixing time of Kac’s walk on SO(n).

THEOREM 1.1. Let {Xt }t≥0 be a copy of Kac’s walk on SO(n). Then for all
sequences T = T (n) > 107n4 log(n),

(1.3) lim sup
n→∞

sup
X1=x∈SO(n)

∥∥L(XT ) − μ
∥∥

TV = 0,

and for all sequences T = T (n) < N ,

(1.4) lim inf
n→∞ sup

X1=x∈SO(n)

∥∥L(XT ) − μ
∥∥

TV = 1.

We have not tried to optimize the constant 107 appearing in Theorem 1.1.
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1.1. Motivations outside of physics. Kac’s random walk has been studied in a
wide range of fields including computer science, statistics and numerical analysis.
To our knowledge, the Markov chain that we call Kac’s walk on SO(n) was ini-
tially proposed in [27] as a Gibbs sampler targeting the Haar measure on SO(n).
The problem of sampling from Haar measure on SO(n) was motivated by [33],
but the walk itself has been suggested as a computationally efficient method for
finding projections onto random small-dimensional subspaces [2]. Bounds on the
mixing time of Kac’s walk are required to check that this approach is, in fact,
computationally efficient.

Our analysis of Kac’s walk is also interesting as a worked example that belongs
to several active areas of research. The Markov chains we study are a sequence
of high-dimensional Gibbs samplers (see [10]). Despite three decades of extensive
work in this area, there are few effective bounds on the mixing times of Gibbs
samplers in high dimensions (see [16, 38] for an introduction to the large liter-
ature on this problem). Of the existing effective bounds on the mixing times of
high-dimensional Gibbs samplers on continuous state spaces, almost all target dis-
tributions with support equal to a union of quadrants of Rn (e.g., [38]) or involve
explicitly computing spectral information for the transition kernel (e.g., the anal-
yses [32, 48, 50] of other random walks on SO(n)). Our analysis gives one of
relatively few results for Gibbs samplers on a complicated sample space for which
spectral information cannot easily be used. Some closely related papers are [41,
42] on Gibbs samplers on convex sets, as well as the papers [36, 53] directly mo-
tivated by the study of Kac’s walk on the sphere. There is also a large number of
papers studying the mixing time of Markov chains on groups [15, 24, 32, 50, 51]
using Fourier analysis and representation theory. Unlike these papers, we do not
use Fourier analytic tools, and thus our methods are in principle generalizable to
other Gibbs samplers in R

n for which spectral information is not available.

1.2. Previous work. The central question in the study of Kac’s walk is to de-
termine the speed at which it converges to equilibrium. This question is somewhat
vague, as it does not specify the metric under which convergence is to be mea-
sured. Early work focused on proving that the spectral gap of the chain was large.
In [17], the authors showed that the spectral gap of the walk on SO(n) was at least
order of n−3. Janvresse first showed in [34] that the spectral gap of the walk on
the sphere was exactly on the order of n−1. Janvresse also showed in [35] that the
spectral gap of the walk on SO(n) was on the order of n−2. The exact spectral gap
for both walks was found in [8], and the full spectrum was computed in [43]. Some
of this work was generalized in [7]. Although these bounds imply a convergence
rate for Kac’s walk in L2, and a bound on the distance to stationarity in L2 implies
a bound on the total variance distance to stationarity, these bounds do not imply
any bound at all on the total variation mixing time of Kac’s walk. This is because,
when L(X1) is concentrated at a point, the initial L2 distance to stationarity is not
finite.
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Later work has focused on stronger metrics for convergence or more demanding
versions of the problem. In [9], a very strong convergence condition as measured
by entropy was discovered. These bounds, like the bounds relating to spectral gap,
only imply convergence for sufficiently smooth initial distribution L(X1). In this
note, we focus on convergence bounds that do not depend on the initial distribution
L(X1). The first bound with this property was obtained [46], in which the authors
showed a convergence time of order O(n2.5) in the L1 Wasserstein metric, and
[45] improved this bound to O(n2 log(n)) in the stronger L2 Wasserstein metric.
This latter bound is tight up to factors of log(n), and will be essential to our work.
Related Wasserstein bounds have also been found in [12] for several similar mod-
els. However, a mixing bound in the Wasserstein metric does not directly imply
any mixing bound in the total variation metric.

Thus the bounds obtained in [45, 46], despite their strength, do not give any
information at all about the mixing time in total variation distance. The first bound
on convergence in total variation was on the order of 4n2

steps, obtained by Di-
aconis and Saloff-Coste in [17]. No progress was made on this problem until the
recent unpublished work of Yunjiang Jiang [37], in which the author obtained a
mixing bound of order n5 log2(n).

Theorem 1.1 of our paper also implies a mixing bound on the order of n4 log(n)

for Kac’s walk on Sn−1. This improves upon all bounds prior to the present author’s
recent work [47], which shows matching upper and lower bounds on the order
of n log(n) for this walk. The papers [28, 32, 44, 48, 50] all study variants or
projections of Kac’s walk on SO(n).

1.3. Our contributions. We have three main contributions: an order of mag-
nitude improvement on the previous best bound for the convergence rate of Kac’s
walk in the strong total variation metric, new bounds on the smallest singular val-
ues of certain random matrices with dependent entries, and a general approach to
bounding the mixing times of Gibbs samplers on spaces that are not “rectangular”.
Our method also gives a way to compute effective mixing bounds via simulation.
We now give a broad overview of our approach, and its relationship to some pre-
vious work.

The upper bound of O(n4 log(n)) on the mixing time of Kac’s walk is proved by
using the popular coupling technique: we run two copies {Xt }t∈N, {Yt }t∈N of Kac’s
walk, and study the first time inf{t ∈ N : Xt = Yt } that they collide. Like many non-
Markovian couplings (see, e.g., [13, 29, 47, 53]), the main idea is to construct a
coupling in two passes: an initial Markovian coupling of “most” of the randomness
in the chain, followed by a very general coupling of some “leftover” randomness.
Our initial coupling is exactly the one constructed in [45]. Under this coupling,
two copies of Kac’s walk mix in Wasserstein distance after after O(n2 log(n))

steps. Our contribution is in the construction and analysis of the second stage of
the coupling.



2350 N. S. PILLAI AND A. SMITH

The usual approach to converting a Wasserstein mixing bound for a high-
dimensional Gibbs sampler to a total variation mixing bound is via a greedy cou-
pling: one attempts to match more and more coordinates as time progresses. Un-
fortunately, this approach works poorly for Kac’s walk on SO(n). Indeed, as the
authors discuss in [47], the greedy approach does not even work in the simpler case
of Kac’s walk on the sphere. Instead, we first imagine running two coupled copies
of Kac’s walk (X̃t , Ỹt ) according to a coupling from [45]. These will act as “scaf-
folding” for our final coupling. We then construct an N -dimensional perturbation
of this scaffold by adding a small amount of additional randomness at each of N

time steps. The key point here is that it turns out to be easier to analyze the cou-
pling probability of our two chains by using the N bits of randomness all at once,
rather than analyzing the coupling probability of the individual coordinate at each
step as done in [47]. Our approach is somewhat reminiscent of the “sprinkling”
strategy used in random graph theory [3], which also involves coupling “most”
random variables in an intuitive way and then carefully analyzing a small amount
of “leftover” randomness.

We expect that a non-Markovian coupling with the properties described in Sec-
tion A.3 should exist for any Gibbs sampler that satisfies certain rather weak tech-
nical conditions (see Section 10.2 for discussion), though we do not give a formal
statement of a result of this form. We believe that a similar analysis should also be
applicable for other constrained high-dimensional Gibbs samplers, with the main
technical difficulties being a bound on the singular value of a certain random ma-
trix (see Lemma 8.10) and certain continuity conditions (see Lemma 5.6). This is
in stark contrast to our previous work [47] on Kac’s walk on the sphere, which
used a similar approach that could not easily be extended.

Our simple results on random matrices in Section 8 are novel, giving bounds
on the smallest singular values of random matrices with significant dependence
between entries. These bounds are closely related to the results of [20, 22] on the
smallest singular values of random matrices with independent entries, and give
bounds that are qualitatively similar to [22].

In addition to giving asymptotic results on mixing times, our method allows us
to numerically estimate the mixing time of Kac’s walk for fixed n by simulating
the singular values of a certain random matrix (see Section 10.3). This is useful for
those interested in knowing the mixing time of a particular Gibbs sampler, and will
generally give sharper results than our mathematical analysis. Note that estimating
the mixing time of a Markov chain in this way is not trivial—a priori it is not
obvious how to obtain any rigorous bounds on the mixing time of Kac’s walk by a
finite computation; see, e.g., [11] for further discussion on estimating mixing times
via simulation, and [52] for tests of weak mixing on SO(n).

2. Preliminaries. We give notation that will be used throughout the paper, in-
cluding a review of some important definitions and results from probability, differ-
ential geometry and the theory of Lie groups. For functions f,g : N �→R, we write
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f = O(g) if lim supn→∞
|f (n)|
|g(n)| < ∞. We also write f = �(g) if g = O(f ) and

we write f = 
(g) if both f = O(g) and f = �(g). Finally, we write f = o(g) if
lim supn→∞

|f (n)|
|g(n)| = 0. Unless otherwise noted, the terms inside of such “big-O”

notation should always be taken with respect to the problem dimension n.

2.1. Coupling. Recall that a coupling of two probability measures π1, π2 on
measure spaces (�1,F1), (�2,F2) is a probability measure � on the product
space (�1 × �2,F1 ⊗F2) with marginals

�(A,�2) = π1(A),

�(�1,B) = π2(B)

for all A ∈ F1 and B ∈ F2 (where F1 ⊗ F2 is the smallest σ -algebra containing
F1 × F2). Although we define couplings in terms of measures, we sometimes
slightly abuse notation and refer to a coupling of a pair of random variables X,Y ,
possibly on different probability spaces. This should always be interpreted in the
following way: we construct a measure π that is a coupling of the two measures
L(X), L(Y ) and replace the random variables X, Y with a new pair of random
variables (X̃, Ỹ ) ∼ π on the same probability space.

In constructing our coupling, we sometimes have to combine two transition
kernels (sometimes also called “probability kernels”). For a pair of transition ker-
nels μ : �1 �→ �2 and ν : �2 �→ �3, we denote by μ ⊗ ν : �1 �→ �2 × �3 the
“usual” combination of two probability kernels; see Lemma 1.38 of [40] and
the discussion around it for a careful definition. Informally, for x ∈ �1 a sam-
ple (X2,X3) ∼ (μ ⊗ ν)(x, ·) can be thought of as being obtained by first sampling
X2 ∼ μ(x, ·) and then sampling X3 ∼ ν(X2, ·). This informal description corre-
sponds exactly to the precise definition when �1,�2,�3 are all finite and have the
usual σ -algebras. Similarly, when μ is a a measure on �1 and ν : �1 �→ �2 is a
transition kernel, we denote by μ ⊗ ν the “usual” combined measure on �1 × �2.
Informally, a sample (X1,X2) ∼ μ⊗ν can be thought of as being obtained by first
sampling X1 ∼ μ and then sampling X2 ∼ ν(X1, ·).

2.2. Random mapping representation of Kac’s walk. We recall the definition
of a random mapping representation of a Markov chain. Let Q be the transi-
tion kernel of a time-homogenous Markov chain on measure space (�1,F1), let
(�2,F2, ν) be a probability space, and let Z ∼ ν. We call a measurable function
f : �1 ×�2 �→ �1 a random mapping representation of Q if it satisfies the equal-
ity

P
[
f (x,Z) ∈ A

]= Q(x,A)

for all x ∈ �1 and all A ∈ F1. We recall that it is possible to construct a Markov
chain by its random mapping representation as follows. Let {Zt }t∈N be a sequence
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of i.i.d. random variables with common distribution ν, and let x ∈ �1 be a starting
point. Then the sequence {Xt }t∈N defined by the recursion

X1 = x,

Xt+1 = f (Xt ,Zt )
(2.1)

is a Markov chain with transition kernel Q and starting point X1 = x. If a Markov
chain is constructed in terms of a random mapping, we call the associated se-
quence of i.i.d. random variables {Zt }t∈N the update sequence associated with
{Xt }t∈N. Conversely, if {Zt }Tt=1 is a sequence of update variables for a random
mapping representation f , we call the sequence {Xt }T +1

t=1 defined in equation (2.1)
the Markov chain associated with random mapping representation f and update
sequence {Zt }Tt=1.

Throughout, we denote by unif(S) the uniform probability measure on a set S

when there is an obvious uniform measure on S, for example, when S is finite, or
S inherits a natural measure from Haar or Lebesgue measure.

We use the following random mapping representation F of Kac’s walk:

�1 = SO(n),

�2 = A ≡ {1,2, . . . ,N} × [0,2π),

ν = Unif(A),

F
(
x, (i, θ)

)= R(i, θ)x,

(2.2)

where �1, �2 are given their usual topologies, F1, F2 are the usual completions
of the associated Borel σ -algebras on their respective spaces, and N ≡ n(n−1)

2 and
R are as defined following equation (1.1). For T ∈ N, and vector

V = (
x, (i1, θ1), . . . , (iT , θT )

) ∈ SO(n) ×AT ,

we define the iterated map FT : SO(n) ×AT �→ SO(n)T +1 by the recursion

FT (V )[1] = x,

FT (V )[t + 1] = F
(
FT (V )[t], (it , θt )

)
, 1 ≤ t ≤ T .

(2.3)

Finally, we denote by K the transition kernel of Kac’s walk.

2.3. Lie groups and SO(n). For x, y ∈ R
m, we write 〈x, y〉 for the Euclidean

inner product and ‖x − y‖ for the associated norm. We also use “0” as a shorthand
for the vector (0,0, . . . ,0) ∈ R

m. Denote by M(n) the collection of n×n matrices
with real valued entries. For h ∈ M(n), let h† denote its transpose. For a linear
map T :Rk �→R

�, define the operator norm

‖T ‖Op = sup
‖v‖=1

‖T v‖.
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For elements X1,X2, . . . belonging to SO(n), we use the convention

t∏
s=1

Xs ≡ X1X2 · · ·Xt−1Xt.

Note that the order of multiplication matters due to the noncommutativity. We
write ∂S for the usual topological boundary of any set S (the relevant topology will
always be clear from the context). For any smooth manifold M and any x ∈ M,
we denote by TxM the tangent space of M at x. We will often identify TxR

m

with R
m. For any pair of smooth manifolds M, N and any smooth function f :

M �→ N , we define for p ∈ M the usual associated derivative map dfp : TpM →
Tf (p)N . We recall an explicit construction of the derivative dfp . Fix v ∈ TpM and
let γ : [0,1] → M satisfy γ (0) = p, γ ′(0) = v. Then

dfp(v) = (f ◦ γ )′(0).

The quantity dfp(v) is independent of the path γ as long as γ ′(0) = v. The rank
of the linear map dfp is denoted by Rank(dfp).

Let G be a Lie group G with Lie algebra G. For a ∈ G, let La : G �→ G be the
left multiplication map

La(g) = ag.

The exponential map, denoted by exp, maps G to G. When G is a matrix group and
G is identified with a subset of M(n), the exponential map has the explicit form

(2.4) exp(A) =
∞∑
i=0

Ai

i! , A ∈ G

(see Section 1.1 of [1]). The Hilbert–Schmidt inner product on M(n) is

〈A,B〉HS = Tr
(
A†B

)
,

where Tr is the trace. The corresponding inner product is denoted by 〈·, ·〉HS.
Throughout the paper, we will use the convention that the addition of angles

θ, θ ′ is always done modulo 2π , and that the distance between two angles is mea-
sured with respect to the usual metric on the torus with 0 curvature, rather than the
usual metric on the line.

The Lie algebra G = so(n) of SO(n) is the set of n×n skew-symmetric matrices

so(n) = {
h ∈ M(n) : h = −h†}.

We denote by DHS the Riemannian metric on SO(n) induced by the inner product
〈·, ·〉HS on so(n). We recall two important facts about the exponential map and this
metric. Since DHS is a bi-invariant metric on SO(n), we have that for any fixed
A ∈ so(n), sets of the form {exp(tA)}t∈R are geodesic paths with respect to the
metric DHS (see, e.g., Corollary 1 of [18]). We also have that the exponential map
is a surjective map from so(n) to SO(n) (see, e.g., Theorem 6.9.3 of [1]).
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The Haar measure μ on SO(n) is also induced by the inner product 〈·, ·〉HS. We
denote by P : SO(n) �→ so(n) the orthogonal projection operator into so(n) with
respect to the Hilbert–Schmidt norm, that is,

P(g) = arg min
A∈so(n)

‖g − A‖HS.

We construct an orthonormal basis for so(n) as follows. For 1 ≤ i ≤ N , Ri (θ) ≡
R(i, θ) [see equation (1.1)] is a map from the N -dimensional torus T = [0,2π)N

to SO(n). Set

ai = 1√
2

dRi (0) ∈ so(n).

The set {ai}1≤i≤N constitute an orthonormal basis in so(n).

2.4. Key distance scales. Throughout the paper, the quantities φn, εn and ωn

will control the three distance scales that are key to our coupling proof. The quan-
tity

φn = 4−5NN−120N

controls the scale on which a certain function “looks flat”. The quantity

εn = φ30
n

will control the total amount of “injected randomness” available to our coupling.
Finally,

ωn = ε30
n

controls the typical distance between the two Markov chains that we are trying to
couple.

3. Proof strategy. We give an overview of the proof of Theorem 1.1. The
basic plan is to directly construct and analyze, for any pair of starting positions
x, y ∈ SO(n) and large time n4 log(n) � T � n5, a coupling of two random vari-
ables XT +1 ∼ KT +1(x, ·), YT +1 ∼ KT +1(y, ·). The goal is for this construction to
satisfy

(3.1) P[XT +1 = YT +1] = 1 − o(1).

The most common approach to proving an inequality of the form (3.1) directly
is to construct a coupling between two copies {Xt }t∈N, {Yt }t∈N of the Markov
chain of interest and force more and more of their coordinates to agree over time.
Unfortunately, because the moves of Kac’s walks occur on 1-dimensional slices
of the N -dimensional curved space SO(n), it is difficult to write down an explicit
coupling that has this property. Instead of doing this, we build a two-step cou-
pling: we begin with a standard coupling, due to Oliveira [45], that forces the two
copies of Kac’s walk to become close; we then give a very nonexplicit but small
perturbation of this coupling, which forces two copies to actually meet.

Below, we give an informal summary of the main ingredients of the proof.
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• Step 1: Construction of perturbed map. For x ∈ SO(n) and X̃T +1 ∼ KT (x, ·),
we construct a (random) family of small and smooth high-dimensional perturba-
tions {fAx (·)} of X̃T +1 on SO(n) that preserves the distribution of X̃T +1. More
precisely, for any δ ∈ [−ε, ε]N , fAx (δ) ∈ SO(n) will satisfy

(3.2)
∥∥fAx (δ) − X̃T +1

∥∥
HS � εn, L

(
fAx (δ)

)= KT (x, ·).
See Definition 4.1 and Lemma A.1.

• Step 2: Coupling and overlap. Fix x, y ∈ SO(n) and let Ix ≡ fAx ([−εn, εn]N)

and Iy ≡ fAy ([−εn, εn]N) be the (random) images of fAx , fAy on SO(n). For
εn � 1, the maps fAx , fAy are approximately linear. Thus if δx , δy are sampled
from unif([−εn, εn]N), then fAx (δx), fAy (δy) are approximately uniformly dis-
tributed on Ix, Iy . Thus, equality (3.2) and Taylor approximation at δx, δy = 0
suggests that∥∥KT (x, ·) − KT (y, ·)∥∥TV

� 1 − |Ix ∩ Iy |
min(|Ix |, |Iy |)

≈ 1 − |{fAx (0) exp(Jx[−εn, εn]N)} ∩ {fAy (0) exp(Jy[−εn, εn]N)}|
(2εn)N min(|Det(Jx)|, |Det(Jy)|) ,

(3.3)

where Jx = dfAx (0), Jy = dfAy (0) are the Jacobians of fAx , fAy at 0. Thus
‖KT (x, ·) − KT (y, ·)‖TV � 1 as long as

(3.4) ‖Jx − Jy‖ + ∥∥fAx (0) − fAy (0)
∥∥

HS � min
(
σ1(Jx), σ1(Jy)

)
,

where σ1(Jx), σ1(Jy) are the smallest singular values of Jx, Jy ; see Theorems 4.3
and 1.

• Step 3: Bounds on singular values. Using some ideas from random matrix
theory, we show that σ1(Jx), σ1(Jy) � n−n2

with high probability; see Theorem
8.10.

• Step 4: Using the contractive coupling. The only remaining step is to have a
coupling of (X̃T +1, ỸT +1) ∼ (KT (x, ·),KT (y, ·)) so that

‖X̃T +1 − ỸT +1‖HS ≈ ∥∥fAx (0) − fAy (0)
∥∥

HS � n−n2 � min
(
σ1(Jx), σ1(Jy)

)
.

We use the contractive coupling from [45] to achieve the above.

Thus the main idea is to reduce the (highly nonlinear) problem of optimally cou-
pling two copies of Kac’s walk to the (linear) problem of analyzing the singular
values of a random matrix.

4. Coupling inequality. In this section, we prove a variant of the standard
coupling inequality for Markov chains. We also construct some of the functions
and measures that will be used to define our coupling.
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4.1. Coupling inequality. We state and prove a coupling inequality. The fol-
lowing map defines a family of small perturbations of a single chain of Kac’s walk.

DEFINITION 4.1 (Perturbed map of Kac’s walk). Fix T ∈ N and a set of inte-
gers S = {s1 < · · · < sN } with 1 ≤ s1 < sN < T . Fix a sequence I = {i1, . . . , iT }
with it ∈ {1,2, . . . ,N} and a sequence θ = {θ1, . . . , θT } with θt ∈ [0,2π). Fix
x ∈ SO(n) and let

(4.1) A = {x,T ,S,I, θ}.
Define the maps eA,t : [0,2π)N �→ [0,2π) by

eA,t (δ1, . . . , δN) =
{
θt , t /∈ S,

θt + δ�, t = s� ∈ S.

Define the map fA : [0,2π)N �→ SO(n) by

(4.2) fA(δ1, . . . , δN) = FT

(
x, (i1, eA,1), . . . , (iT , eA,T )

)[T + 1],
where FT is the iterative map defined in (2.3). For an i.i.d. sequence δ1, . . . , δN ∼
unif[−εn, εn], define the following probability measure on SO(n):

(4.3) μA = L
(
fA(δ1, . . . , δN)

)
.

REMARK 4.2. Since we perform addition modulo 2π , for θ̃ ∼ unif((0,2π ]),
we have θ̃ + δ̃ ∼ unif((0,2π ]) for any independent real valued random variable δ̃.
This fact is key to our use of the perturbed map in Definition 4.1 in constructing
an alternative random representation of Kac’s walk (see Lemma A.1).

We use this map to state a coupling inequality. Fix x, y ∈ SO(n), T ∈ N. Define

(4.4) BT = {
S ⊂ {1,2, . . . , T } : |S| = N

}
to be the collection of size-N subsets of {1,2, . . . , T }, and let R : {1,2, . . . ,N}T �→
BT be any map. Define the associated collection GR of “good” sequences by

GR = {{jt }Tt=1 ∈ {1,2, . . . ,N}T : {jr}r∈R({jt }Tt=1)
= {1,2, . . . ,N}}.

We will discuss our choice of R in Section 4.2.
For I ∈ {1,2, . . . ,N}T , we denote by νI any measure on [0,2π)T × [0,2π)T

that is a coupling of two copies of unif([0,2π)T ); denote by κ = {νI}I∈{1,2,...,N}T
this collection of couplings. We will discuss our choice of κ in Section 4.3. Using
this notation, we have the following.

THEOREM 4.3 (Coupling inequality). Let

(I,
(x),
(y)) ∼ unif({1,2, . . . ,N}) ⊗ κ.
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Let S = R(I). Let Ax = {x,T ,S,I,
(x)} and Ay = {y,T ,S,I,
(x)} be as in
equation (4.1), and let μAx ,μAy be the associated (random) measures as given in
equation (4.3). Then

(4.5)
∥∥KT (x, ·) − KT (y, ·)∥∥TV ≤ E

[‖μAx − μAy‖TV1I∈GR
]+ P[I /∈ GR],

where the expectation is taken over the random choice of (I,
(x),
(y)).

PROOF. The proof is deferred to Appendix A. �

REMARK 4.4. It is not obvious that the expression on the right-hand side
of inequality (4.5) exists. In particular, it is not obvious that the integrand
‖μAx − μAy‖TV1I∈GR is measurable. We do not assume that this expression ex-
ists; its existence is part of the conclusion of Theorem 4.3.

In order to use Theorem 4.3, we must fix the function R : {1,2, . . . ,N}T �→BT

and the collection of couplings κ = {νI}I∈{1,2,...,N}T . We describe our choices in
the next two sections.

4.2. Choice of R. In this section, we describe the function R :
{1,2, . . . ,N}T �→BT for choosing the set S .

DEFINITION 4.5 (Choice of marked times). Fix constant Q > 0 and running
time T > N . Let {it }t∈N be a sequence with it ∈ {1,2, . . . ,N}. We inductively
define the sequence {s�}N�=1 by setting

s1 = min{t ≥ 1 : it = 1},
s�+1 = min

{
t ≥ s� +Qn2 log(n) : it = � + 1

}
.

Define

(4.6) Rmarked
({it }Tt=1

)=
{{s1, . . . , sN }, if T ≥ sN + 1,

{1,2, . . . ,N}, otherwise.

Henceforth, we use the above choice of Rmarked, with Q � 1 and T ≈ n4 log(n).
Requiring s�+1 − s� � n2 log(n) ensures that the chain mixes fairly well between
times s� and s�+1. This is crucial for our random matrix comparison arguments in
Section 8, and in particular the bound (8.18). See Section 10.3 for a discussion of
a different construction that we conjecture to give sharper bounds on the mixing
time.
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4.3. Choice of κ . We use a small modification of the contractive coupling de-
scribed by Oliviera in [45] for the choice of κ . This coupling has the following
properties.

LEMMA 4.6. Fix T ∈ N and x, y ∈ SO(n). There exists a collection of mea-
sures κ = {νI}I∈{1,2,...,N}T with the following properties. For

({it }Tt=1,
{
θ

(x)
t

}T
t=1,

{
θ

(y)
t

}T
t=1

)∼ unif
({1,2, . . . ,N}T )⊗ κ,

we have the following:

1. Marginally, both {(it , θ (x)
t )}Tt=1 and {(it , θ (y)

t )}Tt=1 are draws from unif(AT ),
where A is as in (2.2).

2. Fix 0 < A < ∞. For all T > n2(20A log(n) − log(ωn)),

(4.7) P
[‖XT +1 − YT +1‖HS ≤ n−5ωn

]≥ 1 − n−A

holds, where {Xt }T +1
t=1 , {Yt }T +1

t=1 are the Markov chains associated to the ran-
dom mapping representation (2.2), initial points x, y and update sequences
{(it , θ (x)

t )}Tt=1, {(it , θ (y)
t )}Tt=1.

PROOF. This lemma essentially follows from the calculations in the proof of
Theorem 1 of [45]. We give a summary of the results of [45] and how they imply
this lemma in Appendix B. �

5. Technical lemmas. We give a collection of general estimates that will be
used throughout the paper. The proofs are deferred to Appendix C, and can be
safely skipped on a first reading of this paper.

5.1. Matrix estimates. We use the following result repeatedly.

LEMMA 5.1. Fix k ≥ 1 and let P1, . . . ,Pk and Q1, . . . ,Qk be two sequences
of elements of M(n). Then

(5.1)

∥∥∥∥∥
k∏

i=1

Qi −
k∏

i=1

Pi

∥∥∥∥∥
HS

≤
k∑

i=1

∥∥∥∥∥
i−1∏
�=1

Q�

∥∥∥∥∥
Op

‖Qi − Pi‖HS

∥∥∥∥∥
k∏

�=i+1

P�

∥∥∥∥∥
Op

.

We also have the elementary bound.

LEMMA 5.2. Let M1,M2 be two N by N symmetric matrices. For a general
matrix M , denote by σ1(M) ≤ σ2(M) ≤ · · · ≤ σN(M) the ordered singular values
of M . Assume that

(5.2) ‖M1 − M2‖Op ≤ δσ1(M1)
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for some 0 < δ < 1. Then the determinants of M1, M2 satisfy∣∣∣∣det(M2)

det(M1)
− 1

∣∣∣∣≤ N
N
2 δN .

Our next collection of bounds will require further notation. For fixed constant
c > 0, fixed sequences θk, θ̃k ∈ [0,2π), Rk, R̃k ∈ SO(n) and ak ∈ so(n), define the
two functions f : [−c, c]N �→ SO(n) and g : [−c, c]N �→ SO(n):

f (u1, u2, . . . , uN) =
N∏

k=1

Rk exp
(
(θk + uk)ak

)
,

g(v1, v2, . . . , vN) =
N∏

k=1

R̃k exp
(
(θ̃k + vk)ak

)
.

(5.3)

For 1 ≤ i + 1 < j ≤ N , define

Mi,j = Mi,j (u1, . . . , uN) ≡
j−1∏

k=i+1

Rke
(θk+uk)ak ,

for 1 ≤ j + 1 < i ≤ N , define

Mi,j =
i−1∏

k=j+1

Rke
(θk+uk)ak ,

and for 1 ≤ i < N define Mi,i+1 = Mi+1,i = Id. The derivative map df :
Tp[−c, c]N �→ Tf (p) SO(n) in the direction h =∑

k hk
∂

∂ek
is

(5.4) dfu(h) =
N∑

j=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=j

)
.

We note that the functions f,g are essentially of the same form as those given
in equation (4.2), with small differences in notation that will make the expressions
in this section simpler to work with [e.g., we combine the products of certain se-
quences of matrices of the form R(i, θ) into individual elements Rk , and explicitly
write the remaining matrices of the form R(i, θ) in terms of elements of the Lie
algebra so(n)]. We state two lemmas that bound various approximations related to
f and g.

LEMMA 5.3 (Closeness of tangent maps). Let f : [−c, c]N �→ SO(n) be of
the form given in equation (5.3). Assume that c < N−3 and maxk |θk − θ̃k| ≤ c2,
where θk, θ̃k ∈ [0,2π) are as in equation (5.3). Then for all u, v ∈ [−c, c]N and
all h ∈R

N with ‖h‖ ≤ 1, ∥∥dfu(h) − dfv(h)
∥∥

HS ≤ 4N2c,∥∥dLf (v)(f (u))−1dfu(h) − dfv(h)
∥∥

HS ≤ 8N2c.
(5.5)
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LEMMA 5.4 (Approximation by exponential map). Let f be of the form given
in equation (5.3). Then for c < N−3,

∥∥f (u) − f (0) exp
(
dLf (0)−1df0(u)

)∥∥2
HS ≤ 8N2c2.

We need the following expression for the Jacobian of f and g.

LEMMA 5.5 (Jacobian formula). Let f be the function defined in equation
(5.3). For 1 ≤ i < j ≤ N , define

(5.6) Di,j = −Tr
[
aiMi,j Rj aj R−1

j M−1
i,j

];
for 1 ≤ j < i ≤ N , define

Di,j = Dj,i .

Finally, set Di,i = 1 for all 1 ≤ i ≤ N and let D be the matrix with entries [Di,j ].
Then for all h = (h1, . . . , hN) ∈ R

N \ {0}, h′ = (h′
1, . . . , h

′
N) ∈ R

N \ {0}, and all
u ∈ [−c, c]N ,

(5.7)
〈
dfu(h),dfu

(
h′)〉

HS = 〈
h,h′〉+∑

i �=j

hih
′
jDi,j = h†Dh′.

We next show that f is generally a diffeomorphism for c sufficiently small.

LEMMA 5.6. Let f be of the form given in equation (5.3) and assume that it
satisfies

(5.8) inf
h �=0

2‖df0(h)‖
‖h‖ ≥ φn, sup

h �=0

‖df0(h)‖
‖h‖ ≤ N.

Then there exist constants 0 < C0 < 1, N0 < ∞ such that the function f is a
diffeomorphism whenever c < C0n

−6φn for all n > N0 sufficiently large.

5.2. Probability estimates. We note that the “marked times” in Definition 4.5
are generally not too large.

LEMMA 5.7. Fix k ≥ 2, Q ≥ 1 and T > N�Qn2 log(n)� + kN2. Let sN be
defined as in Definition 4.5. Then, for all k ≥ 2,

(5.9) P[sN > T ] ≤ e−N
4 .
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6. Coupling argument. We now give a generic bound on the total variation
distances appearing in equation (4.5), under the assumption that nothing “too bad”
happened. This formalizes the heuristic calculation (3.3).

LEMMA 6.1 (Coupling construction). Fix n ∈ N and a constant 0 < C <
log(ωn)
log(εn)

− 6. Fix T ∈ N, Q > 0, x, y ∈ SO(n), I ∈ {1,2, . . . ,N}T , S ∈ BT and

two sets 
(x),
(y) ∈ [0,2π)T . For z ∈ {x, y}, let Az = A(z, T ,S,I,
(z)) be de-
fined as in Definition 4.1. Finally, let f = fAx and g = fAy be as defined following
equation (4.1). Assume that

(6.1)
∥∥f (0) − g(0)

∥∥
HS ≤ ωnn

5+C

and that for w ∈ {f,g}, we have for all ζ ∈ [−c, c]N

(6.2) inf
h �=0

2‖dwζ (h)‖
‖h‖ ≥ φn, sup

h �=0

‖dwζ (h)‖
‖h‖ ≤ N.

For all n > N0 sufficiently large, it is possible to couple two sequences of i.i.d.
random variables U1, . . . ,UN ∼ unif(−εn, εn) and V1, . . . , VN ∼ unif(−εn, εn) so
that

P
[
f (U1, . . . ,UN) �= g(V1, . . . , VN)

]= 513N2φ−1
n εn = o(1).

PROOF. By Lemma 5.4,∥∥f (p) − f (0) exp
(
dLf (0)−1 ◦ df0(p)

)∥∥
HS ≤ 8N2ε2

N,∥∥g(p) − g(0) exp
(
dLg(0)−1 ◦ dg0(p)

)∥∥
HS ≤ 8N2ε2

N

(6.3)

for all p ∈ (−εn, εn)
N . For 0 < r < ∞, define

Hf (r) = {
f (0) exp

(
dLf (0)−1 ◦ df0(p)

) : p ∈ [−r, r]N},
Hg(r) = {

g(0) exp
(
dLg(0)−1 ◦ dg0(p)

) : p ∈ [−r, r]N}.
We claim the following.

PROPOSITION 6.2. Fix a satisfying 1
2εn ≤ a ≤ 2εn and set

u1 = a − 32N2φ−1
n ε2

n,

u2 = a + 32N2φ−1
n ε2

n.
(6.4)

Then for all n > N0 sufficiently large,

Hf (u1) ⊂ f
([−a, a]N )⊂ Hf (u2),

Hg(u1) ⊂ g
([−a, a]N )⊂ Hg(u2).

(6.5)
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PROOF. Assume without loss of generality that f (0) = Id. Fix p ∈
∂([−a, a]N). Since the exponential map is surjective (see, e.g., Theorem 6.9.3
of [1]), we can write f (p) = exp(h) for some h ∈ so(n). By taking a solution h

to f (p) = exp(h) with small norm, we can also assume that ‖h‖HS ≤ 2N2φ−1
n εn.

Since df0 has full rank, we can write h = df0(q) for some q . We calculate

‖p − q‖∞ ≤ ‖p − q‖ ≤ 2φ−1
n

∥∥df0(p) − df0(q)
∥∥

HS

= 2φ−1
n

∥∥h − df0(p)
∥∥

HS

≤ 4φ−1
n

∥∥ exp(h) − exp
(
df0(p)

)∥∥
HS

= 4φ−1
n

∥∥f (p) − exp
(
df0(p)

)∥∥
HS

≤ 32N2φ−1
n ε2

n.

(6.6)

The first line follows from inequality (6.2). The third line follows for n sufficiently
large from a Taylor expansion and the fact that εn � n−4. The last line follows
from inequality (6.3). This proves that if p ∈ ∂[−a, a]N and f (p) = exp(df0(q)),
then q /∈ [−u1, u1]N .

Thus we have shown f (∂[−a, a]N) ⊂ Hf (u1)
c. Since f is a diffeomorphism

(by Lemma 5.6) and a map between manifolds of the same dimension N , this im-
plies f (∂[−a, a]N) = ∂f ([−a, a]N) ⊂ Hf (u1)

c. Using the fact that both f and
the exponential map are diffeomorphisms, the condition ∂f ([−a, a]N) ⊂ Hf (u1)

c

together with the fact that f (0) ⊂ f ([−a, a]N) ∩ Hf (u1) �= ∅, implies the con-
tainment condition Hf (u1) ⊂ f ([−a, a]N). This is exactly the left-hand side of
the first containment condition (6.5).

To prove the right-hand side (6.5), essentially the same calculation shows that
for any p = exp(df0(q)) ∈ f ([−a, a]N), we have q ∈ [−u2, u2]N . This immedi-
ately implies the right-hand side of the first containment condition (6.5).

The proof of the second containment condition (6.5) is identical, so this com-
pletes the proof of the proposition. �

Since the exponential map is surjective and df0 has full rank, there exists some
h so that g(0) = Lf (0) exp(dLf (0)−1df0(h)). By the fact that the exponential map
takes geodesic paths in the bi-invariant metric DHS on SO(n) (see, e.g., Corollary
1 of [18]) and the assumption that εn = o(n−5), followed by inequality (6.1), we
have

(6.7) ‖h‖HS ≤ DHS
(
f (0), g(0)

)≤ ∥∥f (0) − g(0)
∥∥

HS ≤ ωnn
5+C.

We claim the following.

PROPOSITION 6.3. Fix a, u1, and u2 as in Proposition 6.2, and set

v1 = u1 − 64N2φ−1
n ε2

n,

v2 = u2 + 64N2φ−1
n ε2

n.
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Then for all n > N0 sufficiently large,

(6.8) Hf (v1) ⊂ Hg(u1) ⊂ Hg(u2) ⊂Hf (v2).

PROOF. We prove the left-most containment in (6.8) by contradiction. Assume
this containment is not true. Then there exists � ∈ Hf (v1) \ Hg(u1). Write � =
f (0) exp(dLf (0)−1 ◦ df0(p)) for some p ∈ [−v1, v1]N . By the local surjectivity of
the exponential map, we can write � = g(0) exp(dLg(0)−1 ◦ dg0(q)) for some q .
Since � /∈ Hg(u1), we have q /∈ [−u1, u1]N . However, by essentially the same
calculation as in (6.6) combined with inequality (6.7),

‖p − q‖∞ ≤ ‖p − q‖ ≤ 32N2φ−1
n ε2

n + ωnn
5+C ≤ 64N2φ−1

n ε2
n.

Thus

v1 ≥ ‖p‖∞ ≥ ‖q‖∞ − 64N2φ−1
n ε2

n > u1 − 64N2φ−1
n ε2

n = v1.

This is a contradiction, and so no such � exists. This completes the proof of the
first containment relationship in (6.8). The second containment is trivial, and the
third is proved in essentially the same way as the first. This completes the proof of
the proposition. �

Combining Propositions 6.2 and 6.3, we have

(6.9) f
([−εn, εn]N )⊃ Hg(a1) ⊃ g

([−a2, a2]N ),
where a1 = εn − 256N2φ−1

n ε2
n and a2 = a1 − 256N2φ−1

n ε2
n.

Let ρf and ρg denote the densities of L(f (U1, . . . ,UN)) and ρg of
L(g(V1, . . . , VN)). By Lemma 5.2,∣∣∣∣ρg(p)

ρf (q)
− 1

∣∣∣∣≤ N
N
2

(‖dfp − dgq‖Op

σ1(dfp)

)N

uniformly in p (resp., q) in the range of f (resp., g).
By Lemma 5.3 and Assumption (6.2),

‖dfp−dgq‖Op
σ1(dfp)

≤ 32φ−1
n N2εn, and so

(6.10)
∣∣∣∣ρg(p)

ρf (q)
− 1

∣∣∣∣≤ (
32N2.5φ−1

n εn

)N � N−N.

Combining inequality (6.10) with the containment condition (6.9),∥∥L(f (U1, . . . ,UN)
)−L

(
g(V1, . . . , VN)

)∥∥
TV

≤ 1 − μ(f ([−εn, εn]N) ∩ g([−εn, εn]N))

μ(g([−εn, εn]N))

(
1 + N−N )

≤ 1 − μ(g([−a2, a2]N))

μ(g([−εn, εn]N))

(
1 + N−N )(6.11)
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= 1 − (2a2)
N

(2εN)N

(
1 + N−N )

≤ 1 − (2εn − 1024N2φ−1
n ε2

n)
N

(2εn)N

(
1 + N−N )

≤ 513N2φ−1
n εn = o(1).

This completes the proof of the lemma. �

7. Relating mixing times to singular values. In this section, we show that
a bound on the smallest singular value of the Jacobian of the map fA given in
Definition 4.1 implies a bound on the mixing time of Kac’s walk.

Fix time T ∈ N and function R : {1,2, . . . ,N}T �→ BT . Let {(it , θt )}Tt=1 ∼
unif(AT ), fix x ∈ SO(n) and then set A = {x,T ,R({it}Tt=1), {it }Tt=1, {θt }Tt=1}. Fi-
nally, let fA be as in equation A.1 and let D be the Jacobian of fA at (0,0, . . . ,0).
Define the critical scale

(7.1) ψn = min
(
(2n)−30, sup

{
r > 0 : P[σ1(D) ≤ r

]
<

1√
n

})
,

where the probability is taken over the random variables {(it , θt )}Tt=1. Note that
ψn = ψn(x,T ,R) is a (deterministic) function of our choice of x,T and R. We
now have the following bound on the mixing time of Kac’s walk.

THEOREM 1 [Intermediate bound on the mixing time of Kac’s walk on SO(n)].
Let {Tn}n∈N, {Rn}n∈N be sequences that satisfy:

1. for {it }Tn

t=1 ∼ unif({1,2, . . . ,N}),
(7.2) lim

n→∞P
[
Rn

({it }Tn

t=1

) ∈ GRn

]= 1,

and
2. the bounds on the smallest singular values satisfy

(7.3) ψn ≥ φn

for all x ∈ SO(n), and
3. the sequence of times satisfies Tn > n2(40 log(n) − log(ωn)).

Then

lim sup
n→∞

sup
X1=x∈SO(n)

∥∥L(XTn) − μ
∥∥

TV = 0.

PROOF. This will be a consequence of Theorem 4.3, Lemma 4.6 and
Lemma 6.1. We will need to confirm that the conditions (6.1) and (6.2) of
Lemma 6.1 are satisfied with high probability.
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Fix y ∈ SO(n) and let (I,
(x),
(y)) ∼ unif({1,2, . . . ,N}T )⊗ κ , where κ is as
defined in Lemma 4.6. Let fAx , fAy be the usual associated maps as in equation
(4.2). Let E1 be the event that either inequality (6.1) holds with constant C = 15,
or Rn({it }Tn

t=1) /∈ GRn . Applying Lemma 4.6,

(7.4) P[E1] = 1 − o(1)

as n goes to infinity.
Next, let E2 be the event that inequality (6.2) holds. The first line of this inequal-

ity holds with probability at least 1 − 1√
n

by the definition (7.1) of φn. We claim
that the second part of this inequality holds with probability 1. To see this, note
that the entries of the matrix D, as given by equation (5.6), satisfy

|Di,j | ≤ 1.

This implies ‖D‖Op ≤ maxi

∑
j |Di,j | ≤ N . Therefore,

(7.5) P[E2] = 1 − o(1).

Next, let E3 = {I /∈ GRn}. By assumption,

(7.6) P[E3] = o(1).

By Theorem 4.3 and Lemma 6.1,

sup
X1=x∈SO(n)

∥∥L(XTn) − μ
∥∥

TV ≤ sup
x,y∈SO(n)

∥∥KTn(x, ·) − KTn(y, ·)∥∥TV

≤ E
[‖μAx − μAy‖TV1I∈GRn

]+ P[I /∈ GRn]
≤ (

1 − P[E1])+ (
1 − P[E2])+ P[E3] + o(1).

Applying inequalities (7.4), (7.5) and (7.6) to this bound completes the proof. �

REMARK 7.1. This result is correct, with proof as stated, for any pair of se-
quences {φn,ωn}n∈N with 0 < ωn < φ30

n < n−900. This is useful for the simulation
discussion in Section 10.3.

8. Singular values of random matrices. The last ingredient in the proof of
our upper bound on the mixing time of Kac’s walk is a lower bound on the smallest
singular value σ1(D) of the matrix D defined in equation (8.15). In this section,
we use some ideas from random matrix theory to obtain the required bound.

The notation used in this section is essentially independent of the notation of
the remainder of the paper, except where explicitly noted. This section begins by
giving a generic bound on the smallest singular value of a random matrix whose
entries have continuous but strongly dependant entries (see Section 8.1), then ap-
plies this bound to a simple random matrix D∞ for which some exact calculations
are possible (see Section 8.2), and finally compares the smallest singular value of
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D∞ to that of the matrix D defined in equation (8.15) (see Section 8.3). This argu-
ment gives us a lower bound on the constant ψn that is defined in equation (7.1),
and which has a critical role in the conclusion of Theorem 1.

We believe that the bounds in this section may be of independent interest, and
so we give a brief overview of the results and their relationship to the existing
literature. Our main abstract result, given in Lemma 8.3, is qualitatively similar to
the main bound, Theorem 1.1, of [22]. In [22], the authors show that, if the diagonal
entries {M[i, i]} of a random matrix M are independent and have distributions
with densities uniformly bounded by a constant C < ∞, then M cannot have a
“very small” determinant. Their proof is essentially an inductive argument on the
k by k upper submatrices Mk ≡ {M[i, j ]}1≤i,j≤k: an analysis of the polynomial
det(Mk+1) shows that it cannot concentrate on any interval much smaller than
C−1 det(Mk), which implies det(Mk+1) � (Cn)−1 det(Mk) for all 1 ≤ k ≤ n with
moderately high probability.

Unfortunately, Theorem 1.1 of [22] does not apply in our situation for several
reasons. Trivially, the matrices we are interested in are symmetric and have deter-
ministic diagonals, and their off-diagonal entries are not independent. More im-
portantly, the densities of the conditional distributions of the near-diagonal entries
M[k, k + 1] given the “previous” entries {M[i, j ]}i<k are sometimes concentrated
on a very small interval. Our Lemma 8.3 relaxes the conditions of [22], allow-
ing for symmetric matrices with dependant entries. Most importantly, it allows for
the conditional distribution of the near-diagonal entries M[k, k + 1] to be concen-
trated on a small interval for some values of the previous entries, as long as it is
not concentrated for most values of the previous entries. Like [22], our proof is a
simple inductive argument. Our Lemma 8.4 gives a simple restatement of the main
criterion of Lemma 8.3 when the conditional distributions of M[k, k + 1] have
densities.

While Lemma 8.3 does give useful bounds for the random matrix D of interest,
it is difficult to obtain them directly. The main problem is that the densities of
the conditional distributions of the near-diagonal entries D[k, k + 1] are extremely
complicated and sometimes very large, and we see no plausible way to obtain
useful bounds on them. To avoid this calculation, we define a closely related matrix
D∞ for which we can find explicit and simple formulas for the required conditional
densities (see Lemma 8.6). These calculations immediately imply that D∞ satisfies
the conditions of Lemma 8.3, and it is straightforward to check that the nearby
matrix D must also satisfy the conditions of Lemma 8.3 with similar constants
(see the proof of Lemma 8.10).

8.1. Bounds on determinant of random matrices. Let M be an n × n symmet-
ric random matrix with associated measurable space (�,�). Let F0 denote the
σ -algebra generated by the entries of M . For 1 ≤ i ≤ n − 1, let Fi be a σ -algebra
under which M[k, �] is Fi-measurable for all (k, �) satisfying either i ≤ k and
i + 2 ≤ �, or k = � ∈ {i, i + 1}. Finally, let ζi ∼ L(M[i, i + 1]|Fi ). We make the
following assumptions for the matrix M .
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ASSUMPTION 8.1. 1. The random variable ζi satisfies the anti-concentration
bound

P

[
sup
w∈R

sup
β∈R,(α,ε)∈R(C)

P
[∣∣α(ζi)

2 + βζi − w
∣∣< ε|Fi

]
<

4C
√

ε√
α

+ n−2
]

> 1 − n−2

(8.1)

for some fixed 1 ≤ C < ∞, where

R(C) = {
(α, ε);α > 0, ε ≥ (

4C2n4)−1
α
}
.

2. We have

P
[∣∣M[n,n]∣∣< (4Cn)−4]≤ 1

n2 , n odd.

P
[∣∣M[n − 1, n − 1]M[n,n] − M[n − 1, n]2∣∣< (4Cn)−4]≤ 1

n2 , n even.

(8.2)

REMARKS 8.2. The assumption given by inequality (8.1) is often easy to ver-
ify in practice. For example, it holds if the conditional density ρi of ζi is bounded
by the constant 1 ≤ C < ∞ with high probability (see Lemma 8.4). The second
part of Assumption 8.1 is often straightforward to check by hand.

Let |M| denote the determinant of the matrix M .

LEMMA 8.3. For a matrix M satisfying the hypotheses of Assumption 8.1,

P
[|M| < (4Cn)−4(n+1)]≤ 3

n

for all n ∈ N.

PROOF. For an n × n matrix A and indices 1 ≤ i, j ≤ n, denote by A(i,j) the
matrix obtained by removing the ith row and j th column from A, and A(i,j),(k,�)

the matrix obtained by removing the ith and kth rows and the j th and �th columns.
Let m = n−1

2 when n is odd, and let m = n
2 − 1 when n is even. Let M(1) = M .

We inductively define {M(k)}mk=1 by setting

M(k+1) = M
(k)
(1,2),(2,1).

Observe that M(k) is just the (n − 2k + 2) by (n − 2k + 2) lower right-hand
submatrix of M = M(1). We define the events

Uk = {∣∣M(k)
∣∣2 > (4Cn)−4(m−k+2)},

Vk =
{

sup
w∈R

sup
β∈R,(α,ε)∈R(C)

P
[∣∣α(ζ2k−1)

2 + βζ2k−1 − w
∣∣< ε|F2k−1

]

<
4C

√
ε√

α
+ n−2

}
.
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By definition, Uk ∈ F2k−2 and Vk ∈ F2k−1. We now expand the determinant of
M(k): ∣∣M(k)

∣∣= −M(k)[1,2]∣∣M(k)
(1,2)

∣∣+ C1

= −M(k)[1,2]M(k)[2,1]∣∣M(k)
(1,2),(2,1)

∣∣+ M(k)[1,2]C2 + C1

= −M(k)[1,2]2∣∣M(k+1)
∣∣+ M(k)[1,2]C2 + C1,

(8.3)

where

C1 = ∑
1≤j≤n,j �=2

(−1)j+1M(k)[1, j ]∣∣M(k)
(1,j)

∣∣,
C2 = ∑

3≤j≤n

(−1)jM(k)[2, j ]∣∣M(k)
(1,2),(2,j)

∣∣.
By assumption, C1,C2 ∈ F2k−1. Thus from equation (8.3) and choosing ε2 =
1

16C−4n−8|M(k+1)|2 and α = |M(k+1)| in equation (8.1), we obtain

(8.4) P

(∣∣M(k)
∣∣2 <

1

16
C−4n−8∣∣M(k+1)

∣∣2∣∣∣Vk

)
> 1 − 2

n2 .

Using equation (8.4), we deduce that

P
[
Uc

k ∩ Uk+1 ∩ Vk

]= E[1Uc
k
1Uk+11Vk

]
≤ E[1Uc

k
|Vk,Uk+1]

≤ 4C(4Cn)−2(m−k+2)

(4Cn)−2(m−k+1)
+ n−2 ≤ 2n−2.

(8.5)

Using this inequality repeatedly, and defining V =⋃
i Vi , we have

P
[
Uc

1
]≤ P

[
Uc

1 ∩ V
]+ P

[
V c]

≤ P
[
Uc

1 ∩ V
]+ m

n2

= P
[
Uc

1 ∩ U2 ∩ V
]+ P

[
Uc

1 ∩ Uc
2 ∩ V

]+ P
[
V c]

= · · ·

=
m∑

j=2

P
[
Uc

1 ∩ · · · ∩ Uc
j−1 ∩ Uj ∩ V

]+ P
[
Uc

m

]+ P
[
V c]

≤ 2
m − 1

n2 + 1

n2 + m

n2 ≤ 3

n
,

where the first few lines are repeated use of exact equalities and union bounds, and
the three terms in the last line use, respectively, inequality (8.5), inequality (8.2)
and the assumption in inequality (8.1) that P[V c] ≤ n−2. This completes the proof.

�
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We give a simple sufficient condition for the assumption given by inequality
(8.1) to hold.

LEMMA 8.4 (Nonconcentration). Define f : R �→R by

f (w) = αw2 + βw + γ

and let W be a random variable with density ρ satisfying supw ρ(w) < C < ∞.
Then for any w ∈ R and ε > 0,

P
[∣∣f (W) − w

∣∣< ε
]≤ 4C

√
ε√|α| .

PROOF. Assume without loss of generality that α > 0, and let η be the density
of f (W). Fix r ∈ R and define the quantity

� = �(r) ≡ r

α
+ β2

4α2 − γ

α
.

We have

P
[
f (W) ≤ r

]= P

[(
W − β

2α

)2
≤ �

]

= P

[
W ≤ β

2α
+ √

�

]
− P

[
W ≤ β

2α
− √

�

]
.

Thus

η(r) = d

dr
P
[
f (W) ≤ r

]

= ρ

(
β

2α
+ √

�

)
1

2α
√

�
+ ρ

(
β

2α
− √

�

)
1

2α
√

�

≤ C

α

1√
�

.

Thus we have

P
[∣∣f (W) − w

∣∣≤ ε
]= ∫ w+ε

w−ε
η(r) dr

≤ C

α

∫ w+ε

w−ε

1√
�(r)

dr

≤ C

α

∫ ε

−ε

√
α√|r| dr

= 4C
√

ε√
α

.

This completes the proof of the bound. �
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We next show that the assumption given by inequality (8.1) remains true under
small perturbations. For two probability measures ν1, ν2 on R

d , define the Wasser-
stein distance

W2(ν1, ν2)
2 = inf

(U,V )∈C,U∼ν1,V ∼ν2
E
[‖U − V ‖2],

where C is the set of all couplings on R
d × R

d with marginal distributions ν1
and ν2.

Let M ′ be another n×n symmetric random matrix, and let F ′
i , ζ

′
i , etc. be defined

analogously to Fi , ζi . For fixed 1 ≤ i ≤ n and sequence {mk,�}k,�≥i+2, let Gi =
Gi({mk,�}) be an event in the σ -algebra generated by {M[k, �]}k,�≥i+2 on which

M[k, �] = mk,�, k, � ≥ i + 2.

Let G′
i = G′

i ({mk,�}) be defined analogously. We then have the following.

LEMMA 8.5. Let the density ρi of ζi satisfies

(8.6) P

[
sup
w

ρi(w) > C
]
≤ 1

2n5

for some fixed 1 ≤ C < ∞. Let M ′ satisfy (8.2) of Assumption 8.1 for this choice
of C. Assume that

W2
(
L
(
M
[
i, (i + 1) : n]|Gi

)
,L
(
M ′[i, (i + 1) : n]|G′

i

))2
≤ δ <

1

8n5 (4Cn)−4.
(8.7)

Then there exists a universal constant N0 so that the determinant |M ′| of M ′ sat-
isfies

P
[∣∣M ′∣∣< (

4Cn3)−4(n+1)]≤ 3

n

for all n > N0.

PROOF. We begin with a generic bound. Let U,V ∈ R be two random vari-
ables, and define f : R �→ R by f (w) = αw2 + βw for some α > 0, β ∈ R. Fix
ε > 0. Then

sup
w∈R

P
[∣∣f (U) − w

∣∣< ε
]= sup

w∈R
P
[∣∣αU2 + βU − w

∣∣≤ ε
]

≤ sup
w∈R

P

[
U ∈

(
w −

√
ε

α
,w +

√
ε

α

)]

≤ sup
w∈R

P

[
V ∈

[
w −

√
ε

4α
,w +

√
ε

4α

]]
(8.8)
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+ P

[
|U − V | >

√
ε

4α

]

≤ sup
w∈R

P

[
V ∈

(
w −

√
ε

4α
,w +

√
ε

4α

)]

+ 4α

ε
W2

(
L(U),L(V )

)2
.

By equation (8.6) and Lemma 8.4, Assumption 8.1 is satisfied the by the matrix M .
For ε, f as above, equation (8.8) then implies

sup
w∈R

P
[
f
(
M ′[i, i + 1]) ∈ [w − ε,w + ε]|G ′

i

]
≤ sup

w∈R
P
[
f
(
M[i, i + 1]) ∈ [w − ε,w + ε]|Gi

]

+ 4α

ε
W2

(L(M[
i, (i + 1) : n]|Gi

)
,L(M ′[i, (i + 1) : n]|G ′

i

))2

≤ 1

2n5 + 4C
√

ε

α
+ 4α

ε
W2

(L(M[
i, (i + 1) : n]|Gi

)
,L(M ′[i, (i + 1) : n]|G ′

i

))2

≤ 1

2n5 + 4C
√

ε

α
+ 4αδ

ε
,

where the first term in the second-last line comes from inequality (8.6) and the
other terms come from an application of Lemma 8.4, and where the last line comes
from inequality (8.7). This bound implies

E

[
sup
w∈R

P
[
f
(
M ′[i, i + 1]) ∈ [w − ε,w + ε]|F ′

i

]∣∣G′
i

]

≤ 1

2n5 + 4C
√

ε

α
+ 4αδ

ε
≤ 1

n5 + 4C
√

ε

α
.

By Markov’s inequality, this implies

P

[
sup
w∈R

P
[
f
(
M ′[i, i + 1]) ∈ [w − ε,w + ε]|F ′

i

]
> n2

(
n−5 + 4C

√
ε

α

)]
≤ n−2.

Thus M ′ satisfies Assumption 8.1 with constant C̃ = n2C. Applying Lemma 8.3
now completes the proof. �

8.2. Bounding the smallest singular value of D∞. In this section, we de-
fine a specific random matrix D∞, and show that it satisfies the requirements of
Lemma 8.3. Define the n-sphere

S(n−1) =
{
w ∈R

n :
n∑

i=1

w[i]2 = 1

}
.

Denote the Euclidean inner product by 〈·, ·〉. We begin with the technical lemma.
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LEMMA 8.6 (Conditional densities on spheres). Fix 0 ≤ k ≤ n − 2. Let
W,v1, . . . , vn−1 ∼ Unif(S(n−1)) be i.i.d. For 0 ≤ k ≤ n−2, let Gk be the σ -algebra
generated by 〈W,v1〉, . . . , 〈W,vk〉 and v1, . . . , vn−1. Let

Z ∼ L
(〈W,vn−1〉|Gk

)
,

and let ρ be the density of Z. We have

P

[
sup

z
ρ(z) > n20

]
≤ n−2

for all n > N0 sufficiently large, uniformly in 0 ≤ k ≤ n − 2.

PROOF. We first prove the claim for k = n − 2, the maximum value. Let F =
Gn−2. We can write down the dependence of supz ρ(z) on F explicitly. Let H =
span(v1, . . . , vn−2) be the hyperplane spanned by v1, . . . , vn−2. Let PH :Rn �→ H

be the operator associated with orthogonal projection onto H , and define

v0 = PH(vn−1),

v+ = vn−1 −PH(vn−1).

We note that 〈W,v0〉 and v+ are both F -measurable. Let WH = ‖PHW‖2. The
random variable WH is also F -measurable.

Let Z+ = 〈W,v+〉, so that

(8.9) L(Z) = L
(
Z+ + 〈

W,v0〉|Gk

)
.

Let W ′ = ‖v+‖√1 − WH‖S‖, where S ∼ Unif(S(1)). Then Z+ D= W ′[1]. Thus the
density ρ+ of Z+ satisfies

ρ+(z) = 2

π

√
‖v+‖2(1 − WH) − z2

‖v+‖2(1 − WH)

≤ 2

π

1√
‖v+‖2(1 − WH)

.

By equation (8.9) and the fact that 〈W,v0〉 ∈ F , it follows that

(8.10) sup
z

ρ(z) = sup
z

ρ+(z) ≤ 2

π

1√
‖v+‖2(1 − WH)

.

Thus, to complete the proof, it suffices to bound 1√
‖v+‖2(1−WH )

with high proba-

bility.
First, we bound 1 − WH . Since WH = ‖PH‖2 where W ∼ Unif(S(n−1)) and H

is an independently and randomly chosen hyperplane of dimension n − 2, we can
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assume without loss of generality that H = {w ∈ R
n : w[n− 1] = w[n] = 0}. Thus

P
[
1 − WH ≤ n−20]= P

[
1 − W [1]2 − · · · − W [n − 2]2 ≤ n−20]

= P
[
W [n − 1]2 + W [n]2 ≤ n−20]

= O
(
n−15).

(8.11)

By exactly the same reasoning, we deduce that

P
[∥∥v+∥∥2 ≤ n−5]= P

[
W [n]2 ≤ n−20]

= O
(
n−15).(8.12)

Combining inequalities (8.11) and (8.12) with inequality (8.10), we conclude that

P

[
sup

z
ρ(z) > n−20

]
= O

(
n−15).

This completes the proof of the lemma. �

Let P1, . . . ,PN be i.i.d. draws from the Haar measure on SO(N). Define a sym-
metric N × N matrix D∞ by

D∞[i, i] = 1,

D∞[i, j ] = −Tr

[
ai

( j∏
�=i+1

P�

)
aj

( j∏
�=i+1

P�

)−1]
, i < j,

D∞[i, j ] = D∞[j, i], i > j.

(8.13)

For i < j , let Pi,j =∏j
�=i+1 P�. We note that, for 1 ≤ i < j ≤ n,

D∞[i, j ] = −Tr
[
aiPi,j aj (Pi,j )

−1].
REMARK 8.7. The matrix D∞ has two useful properties. First, the appearance

of the Haar measure in the definition of D∞ means that it is easier to make exact
calculations involving the entries of D∞ than those of D. Second, D∞ is “close” to
D, and so bounds on D∞ can easily be transferred to bounds on D. More precisely,
Theorem 1 of [45] implies that the entries of D converge to those of D∞ as Q goes
to infinity. The 
(n2 log(n)) scaling of the lower bound si+1 − si ≥ Qn2 log(n) in
Definition 4.5 was chosen so that we could guarantee that D and D∞ must be
close in distribution.

For 1 ≤ i < N , we define Fi to be the σ -algebra generated by the matrices {Pj }
and the inner products {−Tr[aiPi,j aj (Pi,j )

−1]} for j > i + 1.
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LEMMA 8.8. The matrix D∞ and σ -algebras {Fi}1≤i<n given above satisfy
Assumption 8.1 with

C = N20

for all N > N0 sufficiently large. Thus for all N > N0 sufficiently large,

P
[|D∞| < (

4N21)−4(N+1)]≤ 3

N
.

PROOF. We make some initial observations. Let

Sn = {
a ∈ so(n) : ‖a‖HS = 1

}
,

and define the bijection M :Sn �→ S(N−1) by

M(a) = (〈a, a1〉HS, . . . , 〈a, aN 〉HS
)
.

We note that, if P ∼ μ [the Haar measure on SO(n)] and a ∈ Sn, then

(8.14) M
(
PaP −1)∼ unif

(
S(N−1)).

We first prove inequality (8.2). When N is odd, this is trivial. When N is even, we

let W ∼ unif(S(n−1)). By equation (8.14), we have that D∞[N − 1,N] D= W [1], so

P
[∣∣D∞[N,N]D∞[N − 1,N − 1] − D∞[N − 1,N]2∣∣< (

4N6)−4]
= P

[∣∣1 − W [1]2∣∣< (
4N6)−4]

= O
(
N−3).

We next prove inequality (8.1). Observe that:

1. Pi+1 is independent of {Pj }j>i+1.
2. By equality (8.14), the vectors {M((Pi+2 · · ·Pj )aj (Pi+2 · · ·Pj )

−1)}j>i+1

are i.i.d. choices from the sphere S(N−1), and the entries {D∞[i, j ]}j>i+1 are inner
products of these vectors with M(ai):

D∞[i, j + 1] = −Tr

[
ai

( j∏
�=i+1

P�

)
aj

( j∏
�=i+1

P�

)−1]

= −〈M(ai),M
(
(Pi+2 · · ·Pj )aj (Pi+2 · · ·Pj )

−1)†〉.
3. Combining the previous two observations, the distribution of

Z ∼ L
(−〈M(ai),M

(
Pi+1ai+1P

−1
i+1

)〉|Fi

)
satisfies the hypotheses of Lemma 8.6.
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Thus, by Lemmas 8.4 and Lemma 8.6, the matrix D∞ satisfies inequality (8.1)
of Assumption 8.1 with constant C = N20. The conclusion follows immediately
from Lemma 8.3. This completes the proof. �

We apply our results to obtain a bound on the smallest singular value of D∞.

LEMMA 8.9 (Smallest singular values of D∞). Let D∞ be the matrix defined
as in (8.13), and let σ1(D∞) ≤ σ2(D∞) ≤ · · · ≤ σN(D∞) be its singular values.
Then

P
[
σ1(D∞) ≤ N−N (4N21)−4(N+1)]= o(1).

PROOF. Using the trivial bound σi(D∞) ≤ N maxk,� |D∞[k, �]| ≤ N , we
have

σ1(D∞) = |D∞|
n∏

i=2

σi(D∞)−1

≥ |D∞|N−N.

Thus, for any 0 < r < ∞.

P
[
σ1(D∞) ≤ r

]≤ P
[|D∞| ≤ rNN ].

Choosing r = N−N(4N21)−4(N+1) and applying Lemmas 8.3 and 8.8, we have

P
[
σ1(D∞) ≤ N−N (4N21)−4(N+1)]≤ P

[|D∞| ≤ N−N (4N21)−4(N+1)
NN ]

= P
[|D∞| ≤ (

4N21)−4(N+1)]
≤ 3

N
.

This completes the proof. �

8.3. Application to Kac’s walk. We show that the sequence {ψ−1
n }n≥1 defined

in equation (7.1) does not grow too quickly, and thus complete our proof of Theo-
rem 1.1. We do this by comparing the matrix D of interest, defined as in equation
(5.6), with the matrix D∞ studied in Section 8.2.

LEMMA 8.10. Let Q > 100, Tb = 0, T > �QN2 log(N) + 2N2�. Then the
sequence {ψ−1

n }n≥1 defined in equation (7.1) and associated with the coupling
Rmarked defined in equation (4.6) satisfies

φn ≥ ψn

for all n > N0 sufficiently large.
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REMARK 8.11. We believe that Lemma 8.10 may hold with ψ−1
n = O(nk)

for some k < ∞.

PROOF OF LEMMA 8.10. Define the matrix D as in equation (5.6):

(8.15) D[i, j ] = −Tr

[
ai

( j∏
�=i+1

M�

)
aj

( j∏
�=i+1

M�

)−1]
, i < j,

where

M� =
s�+1∏

t=s�+1

R(is, θs).

Note that, by an application of Lemma 5.5, this matrix is the Jacobian matrix D

that appears in equation (7.1). We will now relate D to D∞. Recall that the off-
diagonal entries of D∞ are written

D∞[i, j ] = −Tr

[
ai

( j∏
�=i+1

M ′
�

)
aj

( j∏
�=i+1

M ′
�

)−1]
, i < j,

where {M ′
�}N�=1 are an i.i.d. sequence from the Haar measure on SO(n). Applying

Lemma 5.1, we have for 1 ≤ i < j ≤ N ,

∣∣D[i, j ] − D∞[i, j ]∣∣≤ √
N

∥∥∥∥∥ai

( j∏
�=i+1

M�

)
aj

( j∏
�=i+1

M�

)−1

− ai

( j∏
�=i+1

M ′
�

)
aj

( j∏
�=i+1

M ′
�

)−1∥∥∥∥∥
HS

≤ 8
√

N

j∑
�=i+1

∥∥M� − M ′
�

∥∥
HS.

(8.16)

Let {M�}N�=1, {M ′
�}N�=1 ∈ SO(n) be the matrices associated to D, D∞ as above.

By Theorem 1 of [45] and the Markov property, for fixed Q ≥ 4 it is possible to
couple these two sequences so that

(8.17) E
[∥∥M� − M ′

�

∥∥
HS|{Mk,M

′
k

}
k>�

]≤ 4n−Q+3.

Note that we are approximating an i.i.d. sequence {M ′
�} by the dependent sequence

{M�}, which is essentially a very sparse subsequence of a run of Kac’s walk. The
fact that a very sparse sequence of elements from a Markov chain can approximate
an i.i.d. sequence from that Markov’s chain stationary distribution should not be
completely surprising – indeed we should expect that any sufficiently sparse sub-
sequence should approximate such an i.i.d. sequence as long as the Markov chain
has sufficiently strong mixing properties.
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For fixed 1 ≤ i < N and sequence {m�}�≥i+2 ∈ SO(n), let Gi (resp., G′
i) be the

event {M� = m�, � ≥ i + 2} (resp., {M ′
� = m�, � ≥ i + 2}). By inequalities (8.16)

and (8.17),

(8.18) W2
(
L
(
D
[
i, (i + 1) : n]|Gi

)
,L
(
D∞

[
i, (i + 1) : n]|G′

i

))2 ≤ 32n−Q+3.5

for all Q ≥ 4.
With this initial calculation complete, we can now prove Lemma 8.10. Fix no-

tation as in Lemma 8.18. We will apply Lemma 8.5, with D∞ playing the role
of M and D playing the role of M ′. By Lemma 8.8, D∞ satisfies the conditions
of Lemma 8.5 with constant C = N20. By inequality 8.18, D∞,D satisfy Condi-
tion (8.7) of Lemma 8.5 for all Q > 95. Thus, for fixed Q > 95,

P
[|D| > (

4N23)5N ]≤ 3

n

for all n > N0 sufficiently large. By a calculation identical to that in Lemma 8.9,
we conclude that

P
[
σ1(D) >

(
4N24)5N ]≤ 3

n
,

completing the proof. �

9. Proof of Theorem 1.1. We first prove inequality (1.3), the upper bound
in Theorem 1.1. Fix constant Q = 101 and sequence T = Tn ≡ �n2(40 log(n) −
log(ωn))�. Let the sequence Rn be the associated sequence as in Definition 4.5,
and let the sequence κ = κn be as in Lemma 4.6. Inequality (1.3) will follow im-
mediately from verifying that Conditions (7.2) and (7.3) in Theorem 1 for this
choice.

Condition (7.2) follows immediately from Lemma 5.7. Condition (7.3) follows
immediately from Lemma 8.10. This completes the proof of inequality (1.3).

Next, we prove inequality (1.4), the lower bound in Theorem 1.1. The proof is
essentially a matter of counting dimensions. Fix T < N and x ∈ SO(n). For fixed
sequence I = {it }Tt=1 ∈ {1,2, . . . ,N}T , define �I,T : [0,2π)T �→ SO(n) by

�I,T

({θt }Tt=1
)= 1∏

t=T

R(it , θt )x.

From this definition, Rank((d�I,T )u) ≤ T < N for all u ∈ [0,2π)T . Let
AI,T = �I,T ([0,2π)T ). By Sard’s theorem (see page 205 of [26]), this implies

(9.1) π(AI,T ) = 0.

Next, define

MaxT = ⋃
I∈{1,2,...,N}T

AI,T .



2378 N. S. PILLAI AND A. SMITH

Since this is a union of only
(n
2

)T elements, equation (9.1) implies

π(MaxT ) = 0.

Let {Xt }t∈N be a copy of Kac’s walk with initial point x ∈ SO(n). We have, deter-
ministically, the inclusion XT ∈ MaxT . Thus∥∥L(XT ) − π

∥∥
TV ≥ ∣∣P[XT ∈ MaxT ] − π(MaxT )

∣∣= 1,

completing the proof of the lower bound. Thus the proof of Theorem 1.1 is com-
pleted.

REMARK 9.1 (Dimension counting and curved spaces). A natural approach
for obtaining a lower bound is to count the rank of the tangent map associated
with the function ft at 0 rather than bounding the dimension of the image of ft

itself. This approach suggests that the chain will not have mixed until the first time
T that the span of {ai1, ai2, . . . , aiT } has dimension N with high probability; by the
usual coupon collector argument, this requires T � n2 log(n).

While this approach works for Gibbs samplers where all moves are straight
lines in Euclidean space (for which the rank of the tangent map of ft at 0 is an
upper bound on the dimension of the image of ft ), and it works for Kac’s walk
on the sphere for a slightly different reason (see [47]), it does not work for Kac’s
walk on SO(n). In particular, it is possible for ft to have full dimension N , despite
Dimension(span({ai1, ai2, . . . , ait })) < N . See the famous “Euler angle” decom-
position of SO(3) for an illustration of this fact [25].

10. Discussion. We mention some consequences of our approach, as well as
some open questions.

10.1. Open problems. Our work leaves open the question as to whether the
mixing time of Kac’s walk is indeed 
(n2 log(n)) as conjectured, and whether it
exhibits the cutoff phenomenon.

The main difficulty in applying our method is obtaining a bound on ψn, which
measures the smallest singular value σ1(D) of the matrix D. In this paper, we were
only able to bound σ1(D) by comparing D to a simpler limiting matrix D∞ for
which exact calculations were available. To improve this bound further, we believe
that it is necessary to analyze σ1(D) directly. To obtain an O(n2 log(n)) bound on
the mixing time of Kac’s walk using our method, it would be enough to obtain
any polynomial bound ψn = O(nk) for some 0 < k < ∞. The main obstacles to
proving such a bound are:

1. Our weak random matrix bound in Lemma 8.3. Our argument for Lemma 8.3,
like that in [22], only takes advantage of the randomness of entries within distance
1 of the diagonal of an n by n random matrix M . Unfortunately, no argument that
only analyzes these entries can give any bound that is stronger than |M|−2 = 2O(n).
Since the matrix D of interest has “many more” than 3n “pieces” of randomness,
we can hope to take advantage of them and obtain a stronger bound, as in [4, 20].
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2. We bound the determinant |D| of the random matrix D and use this to obtain
a bound on the smallest singular value σ1(D); we give up a factor of NN−1 in the
process (see Lemma 8.9). To avoid this loss, we must either obtain stronger bounds
on the joint distribution of the remaining singular values σ2(D) ≤ σ3(D) ≤ · · · ≤
σN(D) � log(n), or to bound σ1(D) directly as in [4, 20].

3. Our bound on σ1(D) is obtained through a comparison of D and the related
matrix D∞ (see Theorem 8.10). While D, D∞ are nearby under the choice of
R in Definition 4.5, they are very far for more reasonable choice of R (see e.g.,
Definition 10.1 below). Thus, to get a better mixing bound, the matrix D should
be studied directly.

It seems possible to extend our arguments to resolve any two of these three
obstacles together; however, we see no route to resolving all three simultaneously
without substantial changes.

10.2. Applications to other Gibbs samplers. We suspect that a result that is
qualitatively similar to Theorem 4.3 can hold for many other Gibbs samplers.
Roughly speaking, we expect that the following three ingredients should be enough
to obtain such a result:

1. a random mapping representation of the form (2.3) must exist, and
2. the representation must be sufficiently “nice” that the measurability results

given in Lemmas A.1–A.6 hold with the obvious modifications, and
3. there must be a candidate contractive coupling κ .

Informally, these requirements do not appear to be onerous. Condition (1) is the
usual way to write down a Gibbs sampler, condition (2) consists of technical mea-
surability issues that we do not expect to provide difficulties for “natural” Gibbs
samplers, while any optimal 1-step coupling is a reasonable candidate for (3).

The key ingredients in extending our bounds to new examples are the analysis of
an underlying “scaffolding” coupling ν, the analysis of the smallest singular value
of the Jacobian of the “perturbation map” fA, and soft bounds on the smoothness
of fA.

10.3. Applications to simulation. Although we have improved on the best
mixing time bound for Kac’s walk, we strongly suspect that our upper bound is
far from optimal. In this section, we mention that our bounds can be combined
with computer simulation to obtain improved bounds on the mixing time.

Recall that in Section A.3, we defined our coupling in terms of a function
R : {1,2, . . . ,N}T �→ BT . In that section, we chose the function R according
to Definition 4.5. We then analyzed this choice of coupling for the remainder of
the paper. We now consider the following alternative choice of function.
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DEFINITION 10.1 (Greedy subset choice). Fix T ∈ N. Let {it }Tt=1 be a se-
quence with it ∈ {1,2, . . . ,N}. For 1 ≤ t ≤ T , define Vt = span({ai(1), ai(2),

. . . , ait }). Then define s1 = 1 and inductively define

s�+1 = inf{s > s� : Vs �= Vs�}.
Then define Rgreedy by

Rgreedy
({it }Tt=1

)=
{{s1, . . . , sN }, if T ≥ sN + 1,

{1,2, . . . ,N}, otherwise.

We give the following analogue to Lemma 5.7.

LEMMA 10.2. Fix c > 0 and T = �N log(N) + cN�. Let sN be defined as in
Definition 10.1. Let {it }Tt=1 ∼ Unif({1,2, . . . ,N}T ). Then

(10.1) lim
n→∞P[sN < T ] = e−ec

.

PROOF. As with Lemma 5.7, the proof is deferred to Appendix C.2. �

Recall the definition of ψn from equation (7.1), with choice T = n3 and R =
Rgreedy. By a minor modification of Theorem 1 with these choices, combined with
Remark 7.1, we find that

τmix = O
(
n2(− log

(
min

(
n−1,ψn

))))
as long as ψn = O(n−n). We do not know how to prove that ψn = O(n−n). How-
ever, we can directly simulate the random matrix D that appears in equation (7.1)
easily on a computer. Thus, the quantiles of the distribution of σ1(D) can be es-
timated by simulation, which allows us to calculate upper bounds on the constant
ψn with high confidence.

We point out that, a priori, it is not clear how to obtain, via simulation, any
reasonable estimate on the mixing time of a Gibbs sampler on a continuous state
space. For this reason, we hope that this bound and its extension to other Gibbs
samplers may be of independent interest.

APPENDIX A: PROOF OF THEOREM 4.3

We prove Theorem 4.3, our main coupling inequality. This largely entails check-
ing that all of the random variables have the claimed distributions, and that the
“usual” maximal coupling of measures can be extended in a measurable way to
our setting.

We begin by showing that the map fA constructed in Definition (4.1) can be
used to give an alternative random mapping representation of Kac’s walk.
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LEMMA A.1. Fix T ∈ N and x ∈ SO(n). Let {it , θt }Tt=1 ∼ Unif(AT ), and let
{δi}Ni=1 be any sequence of independent random variables that is independent of
the sequence {it , θt }Tt=1. Finally, let R : {1,2, . . . ,N}T �→BT be arbitrary and set
S = R({it }Tt=1).

Then for A and fA as given in Definition 4.1,

P
[
fA(δ1, . . . , δN) ∈ B

]= KT (x,B)

for all measurable B ⊂ SO(n).

REMARK A.2. In the hypothesis of Lemma A.1, we do not require {δi}Ni=1 to
be identically distributed.

PROOF OF LEMMA A.1. We follow the notation of Definition 4.1 and define
the sequence {Xt }T +1

t=1 by the recursion:

X1 = x,

Xt+1 = F
(
Xt,

(
it , eA,t (δ1, . . . , δN)

))
, 1 ≤ t ≤ T ,

(A.1)

where F is the random mapping representation of Kac’s walk given in equa-
tion (2.2). Note that, under this definition, XT +1 = fA(δ1, . . . , δN). Therefore, to
check that XT +1 ∼ KT (x, ·), it is sufficient to check that the update sequence
{(it , eA,t (δ1, . . . , δN))}Tt=1 used in equation (A.1) has the correct distribution. The
sequence {it }Tt=1 is defined to be an i.i.d. sequence of unif({1,2, . . . ,N}) random
variables, so the marginal distribution of this sequence is correct.

To check that {eA,t (δ1, . . . , δN)}Tt=1 is an i.i.d. sequence of unif[0,2π) random

variables conditional on {it }Tt=1, we note that conditional on {δ(x)
i }Ni=1, {it }Tt=1 and

S = R({it }Tt=1), the sequence {θt }Tt=1 is an i.i.d. sequence of unif[0,2π) random
variables. Since the sum (modulo 2π ) of any random variable and an independent
unif[0,2π) random variable is itself uniformly distributed on [0,2π), this implies
{eA,t (δ1, . . . , δN)}Tt=1 is, conditional on {it }Tt=1, an i.i.d. sequence of unif[0,2π)

random variables. This completes the proof. �

A.1. Density of random mapping representation. We now check that the
random mapping representation described in Lemma A.1 has a useful density for-
mula. Fix T ∈ N and x ∈ SO(n). Fix {it }Tt=1 ∈ {1,2, . . . ,N}T and S ∈ BT that
satisfy

(A.2)
⋃
s∈S

{is} = {1,2, . . . ,N}.

For fixed {θt }Tt=1 ∈ [0,2π)T , set

A = {
x,T ,S, {it}Tt=1, {θt }Tt=1

}
,
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and let fA be as in Definition 4.1. Let δ ≡ {δt }Nt=1 ∼ Unif([−εn, εn]N) be a se-
quence of i.i.d. random variables, and define the set of “nonsingular” angles by

(A.3) 
ns = {{θt }Tt=1 ∈ [0,2π)T : P[det
(
dfA(δ)

)= 0
]= 0

}
,

where in equation (A.3), x, {it }Tt=1 ∈ {1,2, . . . ,N}T and S ∈ BT are viewed as
fixed parameters and the only random variables are (δ1, . . . , δN). In particular,
in equation (A.3), fA is viewed as a deterministic function of the arguments
{(it , θt )}Tt=1 ∈ AT .

For v ∈ SO(n), define

PA(v) = {
u ∈ [−εn, εn]N : fA(u) = v,det

(
dfA(u)

) �= 0
}

to be the set of pre-images of v that are not critical points of fA.

THEOREM 2 (Density of random mapping representation). We have the fol-
lowing:

1. The Lebesgue measure of the set [0,2π)T \ 
ns is zero.
2. For every v ∈ SO(n), the set PA(v) ⊂ [0,2π)T has only countably many

elements.
3. For any fixed {θt }Tt=1 ∈ 
ns, the random variable fA(δ1, . . . , δN) has a den-

sity ρA with respect to the Haar measure μ on SO(n)

(A.4) ρA(v) ∝ ∑
u∈PA(v)

1

det(dfA(u))

for μ-almost every v ∈ SO(n).

The remainder of this section will be dedicated to the proof of Theorem 2. We
note that we use several calculations and facts that are stated in Section 5. Although
Section 5 appears after the statement of Theorem 4.3 in our paper, the results in
Section 5 do not make use of Theorem 4.3.

We begin by recalling the following change of variables formula.

PROPOSITION A.3. Fix constants 0 < b < ∞ and k ∈ N and a diffeomor-
phism f : [−b, b]k �→ SO(n). Let U1, . . . ,Uk ∈ unif([−b, b]) be i.i.d. Then the
random variable f (U1, . . . ,UN) has density

ρ(v) ∝ 1

det(df )(f −1(v))

with respect to the Haar measure μ on SO(n).

We will use the following extension of Proposition A.3. We suspect that this
extension is standard, but are not aware of any references, and so provide a proof.
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PROPOSITION A.4 (Formula for densities). Fix constants 0 < b < ∞ and a
smooth function f : [−b, b]N �→ SO(n) for which the complement of the set

�f = {
u ∈ [−b, b]N : det

(
df (u)

) �= 0
}

has measure 0. Let U1, . . . ,UN ∈ unif([−b, b]) be i.i.d. Then:

1. For every v ∈ SO(n), the set {u ∈ �f : f (u) = v} has only countably many
elements.

2. The random variable f (U1, . . . ,UN) has density

ρ(v) ∝ ∑
u∈�f :f (u)=v

1

det(df (u))

with respect to the Haar measure on SO(n).

PROOF. We set some notation. For a set S ⊂ [−b, b]N , we denote by f |S the
restriction of f to S, that is, the function with domain S that agrees with f at
every point. Also, for a point x in Euclidean space and radius r > 0, we denote by
Br(x) = {y : ‖x − y‖ ≤ r} the ball of radius r around x.

Next, for u ∈ �f , let

r(u) = 1

2
sup

{
r ′ : f |Br′ (u) is a diffeomorphism

}
.

By the inverse function theorem and the definition of f , we have 0 < r(u) < 3Nb

for all u ∈ �f . It is clear that

�f ⊂ ⋃
u∈�f

Br(u)(u),

and so by the Besicovitch covering theorem (see, e.g., [23]) there exists a countable
set {ui}i∈N with the properties that r(ui) > 0 for all i ∈N, and also

(A.5) �f ⊂ ⋃
i∈N

Br(ui)(ui),

with

sup
u∈[−b,b]N

∣∣{i : u ∈ Br(ui)(ui)
}∣∣≤ C < ∞

for some constant 0 < C < ∞. Thus (A.5) implies that the set �f has a count-
able subcover, for which f is a diffeomorphism on each piece. Because f |Si

is
a diffeomorphism for every i ∈ N, we know that for every v ∈ SO(n), the set
�f ∩ Si ∩ f −1(v) has at most one element. This implies that the set �f ∩ f −1(v)

is countable, proving the first assertion.
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Define the sequence of disjoint sets

S1 = Br(u1)(u1),

Si = Br(ui)(ui) \ ⋃
1≤j<i

Br(uj )(uj ), i > 1.

Since {Si}i∈N cover �f , the set E defined by

E ≡ [−b, b]N \ ⋃
i∈N

Si = [−b, b]N \ ⋃
i∈N

Br(ui)(ui)

has measure 0 by assumption. Denoting fi = f |Si
, for all measurable A ⊂ SO(n)

we have that

P
[
f (U1, . . . ,UN) ∈ A

]=∑
i∈N

P
[
fi(U1, . . . ,UN) ∈ A & (U1, . . . ,UN) ∈ Si

]

=Z
∑
i∈N

∫
A∩f (Si)

1

det(dfi(f
−1
i (v)))

dv

=Z
∫
A

∑
i∈N

1

det(dfi(f
−1
i (v)))

1v∈f (Si) dv

=Z
∫
A

∑
u∈�f :f (u)=v

1

det(d(f )(u))
dv,

where the second equality follows from Proposition A.3, the constant Z is the
normalizing constant that appears in the statement of Proposition A.3, and the third
equality is an application of Fubini’s theorem. This proves the second assertion and
the proof is completed. �

We now prove Theorem 2.

PROOF OF THEOREM 2. Denote by 
s = [0,2π)T \ 
ns the set of singular
angles. Viewing {θt }Tt=1 ∈ [0,2π)T as parameters, inspection of the determinant
formula in equation (5.6) yields three important facts about the determinant

DA(θ1, . . . , θT , δ1, . . . , δN) ≡ det(dfA)(δ1, . . . , δN)

of dfA at a point {δt }Nt=1 ∈ [0,2π)T :

1. The determinant DA(θ1, . . . , θT , δ1, . . . , δN) is a multivariate polynomial in
the 2(T + N) variables

(z1, . . . , z2(N+T )) ≡ (
cos(θ1), sin(θ1), . . . , sin(θT ), cos(δ1), . . . , sin(δN)

)
.

2. The polynomial DA = DA(z1, . . . , z2(T +N)) can be written (via the usual
formula for determinants and product-sum formula for trigonometric functions) as
the sum of polynomials in the same variables with degree at most (4T )N .
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3. Finally, due to our requirement of (A.2), dfA(0) is the identity matrix, and
thus

DA(0, . . . ,0) = 1.

Fix ε > 0, and denote by λ the Lebesgue measure on [0,2π)T +N . By a multi-
variate generalization of the Turan theorem (see Theorem 2 of [21]), these three
facts imply the very weak bound

λ
({

� ∈ [0,2π)T +N : ∣∣DA(�)
∣∣≤ ε

})≤ 14(T + N)ε(4T )−N

.

In particular, this immediately implies

(A.6) λ
(
� ∈ [0,2π)T +N : ∣∣DA(�)

∣∣= 0})= 0,

which in turn implies that 
s is measure 0. This completes the proof of the first
claim in Theorem 2. Applying Proposition A.4 completes the proof of the main
claim of Theorem 2. �

A.2. Coupling construction. Recall the measures μA from Definition 4.1.
Now, we will use the density functions of the measures μA from Theorem 2 to
construct the standard “maximal coupling” of two such measures. Roughly speak-
ing, the following coupling proceeds by trying to force the two random variables
to be equal with maximal probability. This is a standard construction; see for in-
stance, Theorem 2.12 of [14].

Fix T ∈ N, x, y ∈ SO(n). Fix three sequences I = {i1, . . . , iT } and 
(z) =
{θ(z)

1 , . . . , θ
(z)
T }, z ∈ {x, y}, with it ∈ {1,2, . . . ,N} and θ

(z)
t ∈ [0,2π). Fix R :

{1,2, . . . ,N} �→ BT and set S = R(I). Finally, let Az = {z, T ,S,I,
(z)} with
z ∈ {x, y} and write Ax,y = (Ax,Ay).

DEFINITION A.5 (Coupling of induced maps). Let 
ns be as in equation
(A.3). We now define a coupling μAx,y on SO(n) × SO(n) of the pair of mea-
sures μAx and μAy following the construction in Theorem 2.12 of [14]. We do
this in two cases.

1. Nonsingular case: The set S satisfies {is�}N�=1 = {1,2, . . . ,N} and {θ(z)
t }Tt=1 /∈


ns for both of z ∈ {x, y}. By Theorem 2, for z ∈ {x, y}, the measure μAz has a
density, with respect to the Haar measure μ on SO(n), that is given by the formula

ρ(z)(v) = ∑
u∈PA

1

det(dfAz (u))

v-almost everywhere. Define the “minorization” measure μ̃min on SO(n) by

Zmin =
∫

SO(n)
min

(
ρ(x)(v), ρ(y)(v)

)
μ(dv),

μ̃min(A) =
⎧⎪⎨
⎪⎩

1

Zmin

∫
A

min
(
ρ(x)(v), ρ(y)(v)

)
μ(dv), Zmin > 0,

μ(A), Zmin = 0
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for measurable A ⊂ SO(n). Let diag : SO(n) �→ SO(n) × SO(n) be given by
diag(x) = (x, x), and define

μmin = μ̃min ◦ diag−1,

a measure that concentrates on the diagonal of SO(n) × SO(n). Define the “re-
mainder” densities on SO(n) as

ρ(z)
rem(v) =

⎧⎪⎨
⎪⎩

1

1 − Zmin

(
ρ(z)(v) − min

(
ρ(x)(v), ρ(y)(v)

))
, Zmin < 1,

ρ(z)(v), Zmin = 1

and on SO(n) × SO(n) as

ρrem(v1, v2) = ρ(x)
rem(v1)ρ

(y)
rem(v2).

Finally, define for A ⊂ SO(n) × SO(n),

μAx,y (A) = Zminμmin(A) + (1 − Zmin)

∫
A

ρrem(v)μ(dv).

2. Singular case: The set S does not satisfy {is�}N�=1 = {1,2, . . . ,N}, or

{θ(z)
t }Tt=1 ∈ 
ns for one of z ∈ {x, y}. In this case, let μAx,y be product measure

of μAx and μAy .

We next verify that this coupling can be used to describe a transition kernel, and
that it has the desired optimal-coupling property.

LEMMA A.6. Fix x, y ∈ SO(n) and T ∈ N. Fix a measurable function R :
{1,2, . . . ,N}T �→ BT . For any sequence {it , θ (x)

t , θ
(y)
t }Tt=1 and S = R({it }Tt=1),

let

Ax,y = Ax,y

({
it , θ

(x)
t , θ

(y)
t

}T
t=1

)≡ (Ax,Ay),

where Ax,Ay are as in (4.1). Then collection of measures {μAx,y } from Defini-
tion A.5 is a transition kernel from {1,2, . . . ,N}T × [0,2π)2T to SO(n) × SO(n).
Furthermore, for (X,Y ) ∼ μAx,y ,

(A.7) P[X �= Y ] = ‖μAx − μAy‖TV

whenever {is}s∈S = {1,2, . . . ,N} and {θ(x)
t }Tt=1, {θ(y)

t }Tt=1 /∈ 
ns.

PROOF. It is clear from the construction that μAx,y is a measure for each

fixed {it }Tt=1 ∈ {1,2, . . . ,N}T , {θ(x)
t }Tt=1, {θ(y)

t }Tt=1 ∈ [0,2π)T . Thus, to check
that {μAx,y } is a transition kernel, it is enough to check that the map MB :
({1,2, . . . ,N} × [0,2π) × [0,2π))T �→ [0,1] given by

MB

({
it , θ

(x)
t , θ

(y)
t

}T
t=1

)≡ μAx,y (B)
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is measurable for each measurable B ⊂ SO(n)×SO(n). Since the variables {it }Tt=1

are discrete, it is enough to check that the dependence on {θ(x)
t , θ

(y)
t }Tt=1 is mea-

surable for each fixed sequence {it }Tt=1.
This follows immediately from the fact that Definition A.5 gives an explicit

(if rather complicated) formula for the distribution μAx,Ay density in terms of a

collection of measurable functions of the parameters {θ(x)
t , θ

(y)
t }Tt=1 and the argu-

ments {δ(x)
t , δ

(y)
t }Nt=1. In particular, in Definition A.5, all terms that appear in the

joint distribution are obtained by starting with the smooth functions fAx , fAy and
then making a finite number of measurable transformations. These transforma-
tions are limited to taking derivatives of smooth functions, replacing a measurable
function f with an indicator function of the form 1f (x)=c(x) or 1f (x)≤c(x), taking
products, differences, minima and inverses of measurable functions, and finally
taking integrals of the results. Since MB({it , θ (x)

t , θ
(y)
t }Tt=1) is defined in terms of

this measurable formula for μAx,y , it is also measurable. This completes our proof
that {μAx,y } is a transition kernel.

Finally, equality (A.7) follows immediately from Theorem 2.12 of [14], since
the coupling is constructed exactly as in the proof of that theorem. This completes
the proof of the lemma. �

A.3. Proof of Theorem 4.3. We now complete the proof of Theorem 4.3.
Since unif({1,2, . . . ,N}) is discrete, the measure unif({1,2, . . . ,N}) ⊗ κ exists,
where we recall that the symbol “⊗” denotes the usual combination of two kernels
(see again the notation of Theorem 5.17 of [40]). Let

κmin = {μAx,y }
be the collection of measures as given in Definition A.5. By Lemma A.6, this
collection of measures is in fact a transition kernel. Thus, by the Ionescu–Tulcea
theorem (see Theorem 5.17 of [40]), the combined measure unif({1,2, . . . ,N}) ⊗
κ ⊗ κmin also exists. Let

{it }Tt=1,
{
θ

(x)
t

}T
t=1,

{
θ

(y)
t

}T
t=1,XT +1, YT +1 ∼ unif

({1,2, . . . ,N})⊗ ν ⊗ κmin.

For any I ∈ {1,2, . . . ,N}T , we have by this construction

L
({

θ
(x)
t

}T
t=1,

{
θ

(y)
t

}T
t=1|{it }Tt=1 = I

)= νI .

Next, by Lemma A.1, the random variables XT +1, YT +1 have marginal distribu-
tions

(A.8) XT +1 ∼ KT (x, ·), YT +1 ∼ KT (y, ·).
Let A be as defined in Definition 4.1.
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By equality (A.7) in Lemma A.6, combined with the fact from Theorem 2 that
[−εn, εn]T \ 
ns has Lebesgue measure 0, we also have

P[XT +1 �= YT +1] ≤ ∑
J∈GR

E
[‖μAx − μAy‖TV|{it }Tt=1 = J

]
P
[{it }Tt=1 = J

]

+ ∑
J /∈GR

P
[{it }Tt=1 = J

]
(A.9)

≤ E
[‖μAx − μAy‖TV1{it }Tt=1∈GR

]+ P
[{it }Tt=1 /∈ GR

]
,

where {it }Tt=1, {θ(x)
t }Tt=1, and {θ(y)

t }Tt=1 are viewed as random variables in the above
expression, and all other parameters are viewed as fixed.

By equality (A.8) and inequality (A.9),∥∥KT (x, ·) − KT (y, ·)∥∥TV ≤ P[XT +1 �= YT +1]
≤ E

[‖μAx − μAy‖TV1I∈GR
]+ P[I /∈ GR].

This completes the proof the proof of Theorem 4.3.

APPENDIX B: PROOF OF LEMMA 4.6

Denote by DHS the Riemannian distance on SO(n) and by WD the Wasserstein
distance associated with this metric. In Lemma 1 of [45], the author shows that

WD

(
K(x, ·),K(y, ·))≤

√
1 − 2

n(n − 1)
DHS(x, y)

for all x, y ∈ SO(n). This implies (via the standard disintegration theorem—see
Theorem 5.4 of [40]) that, for any γ > 0 and x, y ∈ SO(n), it is possible to couple
(i(x), θ (x)) ∼ unif(A), (i(y), θ (y)) ∼ unif(A) so that

E
[
DHS

(
F
(
x,
(
i(x), θ (x))),F

(
y,
(
i(y), θ (y))))]

≤
√

1 − 2

n(n − 1)
DHS(x, y) + γ.

(B.1)

We note that this bound is not sufficient for our coupling, since Lemma 1 of [45]
allows for the possibility that i(x) �= i(y) in the associated coupling.

However, below we give an argument to show that inequality (B.1) can still hold
if we insist that i(x) = i(y). Fix x, y ∈ SO(n). This argument is based on Lemma 1
of [45] and an explicit version of the usual path coupling construction (see [6] for
the first version of this construction in the Markov chain literature).

In the proof of Lemma 1 of [45], the author constructs a coupling ν̃γ of i ∼
unif({1,2, . . . ,N}) and θ(x), θ (y) ∼ unif([0,2π)) with the property

E
[
DHS

(
F
(
x,
(
i, θ (x))),F

(
y,
(
i, θ (y))))2]

≤
(

1 − 2

n(n − 1)

)
DHS(x, y)2 + CDHS(x, y)3,

(B.2)
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where the constant C is bounded by a polynomial in n and is independent of x, y.
Fix 0 < γ < 0.1/C, and let x = x1, x2, . . . , xk = y be a sequence that satisfies

DHS(xj , xj+1) = γ, 1 ≤ j < k − 1,

DHS(xk−1, xk) ≤ γ,

k−1∑
j=1

DHS(xj , xj+1) = DHS(x, y).

The existence of such a sequence is an immediate consequence of the fact that there
exists a distance minimizing geodesic between any pair of points on SO(n) [see
the Hopf–Rinow theorem [31] for the proof that distance-minimizing geodesics
exist on SO(n)]. By the Ionescu–Tulcea theorem (see Theorem 5.17 of [40]), the
coupling ν̃γ that appears before inequality (B.2) can be extended to a coupling ν̂γ

of i ∼ unif({1,2, . . . ,N}) and θ(1), . . . , θ (k) ∼ unif([0,2π)) with the property

E
[
DHS

(
F
(
xj ,

(
i, θ (j))),F

(
xj+1,

(
i, θ (j+1))))2]

≤
(

1 − 2

n(n − 1)

)
DHS(xj , xj+1)

2 + CDHS(xj , xj+1)
3

≤
(

1 − 2

n(n − 1)

)
DHS(xj , xj+1)

2 + Cγ 3.

(B.3)

Summing over j and applying Jensen’s inequality, we have

E
[
DHS

(
F
(
x,
(
i, θ (1))),F

(
y,
(
i, θ (k))))]

=
k−1∑
j=1

E
[
DHS

(
F
(
xj ,

(
i, θ (j))),F

(
xj+1,

(
i, θ (j+1))))]

≤
k−1∑
j=1

√
E
[
DHS

(
F
(
xj ,

(
i, θ (j)

))
,F
(
xj+1,

(
i, θ (j+1)

)))2]

≤
k−1∑
j=1

√(
1 − 2

n(n − 1)

)
DHS(xj , xj+1)2 + Cγ 3

≤ (k − 1)

√(
1 − 2

n(n − 1)

)
γ 2 + Cγ 3

≤ (k − 1)

√
1 − 2

n(n − 1)
γ + (k − 1)

√
Cγ 1.5

≤
√

1 − 2

n(n − 1)
DHS(x, y) + (1 + √

C)γ +√
Cγ DHS(x, y).
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We note that 0 < γ < 0.1/C above is arbitrary. Thus set 0 < γ ′ < 0.01ωnn
−nn ×

min( 1
C

, 1
diam(SO(n))

). The above inequality shows that it is possible to couple i ∼
unif({1,2, . . . ,N}) and θ(x) = θ(1), θ (y) = θ(k) ∼ unif([0,2π)) so that

(B.4) E
[
DHS

(
F
(
x,
(
i, θ (x))),F

(
y,
(
i, θ (y))))]≤

√
1 − 2

n(n − 1)
DHS(x, y) + γ ′.

Fix x, y ∈ SO(n), sample {it }Tt=1 ∼ unif({1,2, . . . ,N}), {θ(x)
t }Tt=1 ∼ unif([0,2π)T )

and {θ(y)
t }Tt=1 ∼ unif([0,2π)T ), and let {Xt }Tt=1 and {Yt }Tt=1 be the Markov chains

associated with these starting points and update sequences. For 1 ≤ t ≤ T , let
Ft be the σ -algebra generated by {Xt,Yt }. By the Ionescu–Tulcea theorem,
the single-step coupling of {i, θ(x), θ (y)} that satisfies equation (B.4) can be ex-
tended to a coupling νγ ′ of {it }Tt=1 ∼ unif({1,2, . . . ,N}) and {θ(x)

t }Tt=1, {θ(y)
t }Tt=1 ∼

unif([0,2π)T ) with the property that, for all 1 ≤ t ≤ T ,

E
[
DHS

(
F
(
Xt+1,

(
it , θ

(x)
t

))
,F
(
Yt+1,

(
it , θ

(y)
t

)))|Ft

]

≤
√

1 − 2

n(n − 1)
DHS(Xt , Yt ) + γ ′.

Thus, for all 1 ≤ t ≤ T , we have under this coupling

E
[
DHS(Xt+1, Yt+1)

]≤ E
[
E
[
DHS(Xt+1, Yt+1)|Ft

]]

≤ E

[√
1 − 2

n(n − 1)
DHS(Xt , Yt ) + γ ′

]

≤ . . .

≤
(√

1 − 2

n(n − 1)

)t

DHS(x, y) + n(n − 1)

2
γ ′.

Under the same coupling and this choice of γ ′, we have for all t ≥ n2(20A log(n)−
log(ωn)) that

E
[
DHS(Xt , Yt )

]≤ ωnn
−A−5.

Thus, by Markov’s inequality, we have for t ≥ n2(20A log(n) − log(ωn)) that

(B.5) P
[‖Xt − Yt‖HS ≤ n−5ωn

]≥ 1 − n−A

under the coupling νγ ′ . By the standard disintegration theorem (Theorem 5.4 of
[40]), there exists a transition kernel κ so that νγ ′ = unif({1,2, . . . ,N}) ⊗ κ . By
inequality (B.5), this kernel κ satisfies the requirements of the lemma, completing
our proof.

APPENDIX C: PROOFS OF TECHNICAL BOUNDS

We prove the bounds in Section 5.
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C.1. Matrix estimates. PROOF OF LEMMA 5.1. We note the “telescoping
sum” identity

k∏
i=1

Qi −
k∏

i=1

Pi =
k∑

i=1

(
i−1∏
�=1

Q�

)
(Qi − Pi)

(
k∏

�=i+1

P�

)
.

The result then follows immediately from application of the triangle inequality and
the inequality ‖ABC‖HS ≤ ‖A‖Op‖B‖HS‖C‖Op for any A,B,C ∈ M(n). �

PROOF OF LEMMA 5.2. By Fact 4 in Chapter 15 of [30],

n∑
i=1

(
σi(M1) − σi(M2)

)2 ≤
n∑

i=1

σi(M1 − M2)
2.

By Assumption (5.2), this implies

n∑
i=1

(
σi(M1) − σi(M2)

)2 ≤ Nδ2σ1(M1)
2.

In particular,

max
1≤i≤N

∣∣σi(M1) − σi(M2)
∣∣≤ √

Nδσ1(M1).

For a symmetric matrix M , let λ1(M), . . . , λN(M) denote the eigenvalues, ordered
so that |λi(M)| = σi(M). We have

∣∣∣∣det(M2)

det(M1)
− 1

∣∣∣∣=
∣∣∣∣
∏N

i=1 λi(M2)∏N
i=1 λi(M1)

− 1
∣∣∣∣

=
∣∣∣∣

N∏
i=1

λi(M1) + (λi(M2) − λi(M1))

λi(M1)
− 1

∣∣∣∣
=

N∏
i=1

∣∣∣∣(λi(M2) − λi(M1))

λi(M1)

∣∣∣∣
≤

N∏
i=1

∣∣∣∣
√

Nδσ1(M1)

σ1(M1)

∣∣∣∣
= N

N
2 δN

and the proof is complete. �
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PROOF OF LEMMA 5.3. Let u = (u1, . . . , uN), v = (v1, . . . , vN). By equation
(5.4) it follows that

∥∥dfu(h) − dfv(h)
∥∥

HS =
∥∥∥∥∥

N∑
j=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=j

)

−
N∑

j=1

N∏
k=1

R̃ke
(θ̃k+vk)ak

(
Id + (hkak − Id)1k=j

)∥∥∥∥∥
HS

≤
N∑

j=1

∥∥∥∥∥
N∏

k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=j

)

−
N∏

k=1

R̃ke
(θ̃k+vk)ak

(
Id + (hkak − Id)1k=j

)∥∥∥∥∥
HS

≤
N∑

j,k=1

∥∥∥∥∥Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=j

)

− R̃ke
(θ̃k+vk)ak

(
Id + (hkak − Id)1k=j

)∥∥∥∥∥
HS

≤ 2N2 max
(‖Rk − R̃k‖HS,

∥∥e(θk+uk)ak − e(θ̃k+vk)ak
∥∥

HS

)
≤ 4N2 max

1≤j≤N
max

(|uk|, |vk|, |θk − θ̃k|)≤ 4N2c,

where the third and fourth lines are both applications of Lemma 5.1. Applying
Lemma 5.1 once more, we have∥∥dLf (v)(f (u))−1dfu(h) − dfv(h)

∥∥
HS ≤ ∥∥f (v) − f (u)

∥∥
HS + ∥∥dfu(h) − dfv(h)

∥∥
HS

≤ 8N2c,

the second part of inequality (5.5). This completes the proof. �

PROOF OF LEMMA 5.4. Let u = (u1, . . . , uN) ∈ [−c, c]N . We calculate∥∥f (u) − f (0) exp
(
dLf (0)−1df0(u)

)∥∥
HS

=
∥∥∥∥∥

N∏
k=1

Rke
(θk+uk)ak

−
N∏

k=1

Rke
θkak exp

((
N∏

k=1

Rke
θkak

)−1
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×
N∑

i=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

))∥∥∥∥∥
HS

=
∥∥∥∥∥

N∏
k=1

Rke
(θk+uk)ak

−
N∏

k=1

Rke
θkak

∞∑
m=0

1

m!
((

N∏
k=1

Rke
θkak

)−1

×
N∑

i=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

))m∥∥∥∥∥
HS

=
∥∥∥∥∥

N∏
k=1

Rke
θkak

∞∑
m=0

(ukak)
m

m!

−
N∏

k=1

Rke
θkak

∞∑
m=0

1

m!
((

N∏
k=1

Rke
θkak

)−1

×
N∑

i=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

))m∥∥∥∥∥
HS

≤ 8N2 max
1≤k≤N

|uk|2

+
∥∥∥∥∥

N∑
i=1

N∏
k=1

Rke
θkak

(
Id + (hkak − Id)1k=i

)

−
N∑

i=1

N∏
k=1

Rke
θkak

(
Id + (hkak − Id)1k=i

)∥∥∥∥∥
HS

= 8N2 max
1≤k≤N

|uk|2 ≤ 8N2c2,

where the second-last line relies on the triangle inequality and repeated application
of Lemma 5.1 to remove all terms that are of second or higher order in {ak}1≤k≤N .
This completes the proof of the lemma. �

PROOF OF LEMMA 5.5. By equation (5.4),

〈
dfu(h),dfu

(
h′)〉

HS = Tr
[
dfu(h)dfu

(
h′)†]

= Tr

[(
N∑

i=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

))
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×
(

N∑
i=1

N∏
k=1

Rke
(θk+uk)ak

(
Id + (

h′
kak − Id

)
1k=i

))†]

=
N∑

i=1

Tr

[
N∏

k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

)
(C.1)

×
1∏

k=N

(
Id − (

h′
kak − Id

)
1k=i

)
e−(θk+uk)ak R−1

k

]

+ ∑
1≤i �=j≤N

Tr

[
N∏

k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

)

×
1∏

k=N

(
Id − (

h′
kak − Id

)
1k=j

)
e−(θk+uk)ak R−1

k

]

≡
N∑

i=1

Si + ∑
1≤i �=j≤N

Sij .

We calculate terms of the form Sj and Sij separately. For any Si , applying the
cyclic permutation property of the trace operator yields

Si = Tr

[
N∏

k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

)

×
1∏

k=N

(
Id − (

h′
kak − Id

)
1k=i

)
e−(θk+uk)ak R−1

k

]

= Tr
[
Ri (hiai)

(−h′
iai

)
R−1

i

]
= −hih

′
i Tr

[
Ria

2
i R−1

i

]= −hih
′
i Tr

[
a2
i

]= hih
′
i .

(C.2)

For any Sij with i < j ,

Sij = Tr

[
N∏

k=1

Rke
(θk+uk)ak

(
Id + (hkak − Id)1k=i

)

×
1∏

k=N

(
Id − (

h′
kak − Id

)
1k=j

)
e−(θk+uk)ak R−1

k

]

= −hih
′
j Tr

[
aiMij Rj e

(θj+uj )aj aj e
−(θj+uj )aj R−1

j M−1
i,j

]
= −hih

′
j Tr

[
aiMi,j Rj aj R−1

j M−1
i,j

]= hih
′
jDij .

(C.3)
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For j < i, a similar calculation gives

Sij = hih
′
jDi,j .

Combining equalities (C.1), (C.2) and (C.3) completes the proof. �

PROOF OF LEMMA 5.6. We note that f is clearly smooth, and so we must
only check that it is bijective. This result will follow almost immediately from
Lemma 10 of [49] and our bounds in Lemmas 5.4 and 5.5.

We begin to set up notation. For a point x in a metric space (�,d) and constant
δ > 0, let Bδ(x) = {y ∈ � : d(x, y) ≤ δ} be the ball of radius δ around x. We then
define a map F from Bn−6φn

(Id) ⊂ SO(n) to R
N as follows. Let x ∈ Bn−6φn

(Id).
Since the exp map is surjective and sends lines to geodesic curves, we can write
x = exp(h) for some h ∈ so(n) with ‖h‖HS ≤ 2n−6φn. Furthermore, we can write
h = √

2
∑N

i=1 hiai . We then define F(x) = (h1, h2, . . . , hN). Finally, we define the
map g = F ◦ f : [−c, c]N �→R

N .
We point out that F has small distortion: for x, y ∈ SO(n) with F(x) = hx ,

F(y) = hy ,

(C.4) ‖x − y‖HS = ∥∥ exp(hx) − exp(hy)
∥∥

HS = ‖hx − hy‖ + O
(
N2‖hx − hy‖2).

We now obtain the estimates required to use Lemma 10 of [49]. Following the
notation of that paper, we set ρ = 1

256n−6φn, δ = φn

8 and ρ∗ = δ
8ρ. For x, z ∈

[−c, c]N with ‖x − z‖ = ρ,∥∥g(x) − g(z)
∥∥

HS = ∥∥g(x) −F
(
f (0) exp

(
dLf (0)−1df0(x)

))
+F

(
f (0) exp

(
dLf (0)−1df0(x)

))
+F

(
f (0) exp

(
dLf (0)−1df0(z)

))
−F

(
f (0) exp

(
dLf (0)−1df0(z)

))− g(z)
∥∥

HS

≥ ∥∥F(f (0) exp
(
dLf (0)−1df0(x)

))
−F

(
f (0) exp

(
dLf (0)−1df0(z)

))∥∥
HS

− ∥∥F(f (x)
)−F

(
f (0) exp

(
dLf (0)−1df0(x)

))∥∥
HS

− ∥∥F(f (z)
)−F

(
f (0) exp

(
dLf (0)−1df0(z)

))∥∥
HS(C.5)

≥ ∥∥F(f (0) exp
(
dLf (0)−1df0(x)

))
−F

(
f (0) exp

(
dLf (0)−1df0(z)

))∥∥
HS

− 2
∥∥f (x) − f (0) exp

(
dLf (0)−1df0(x)

)∥∥
HS

− 2
∥∥f (z) − f (0) exp

(
dLf (0)−1df0(z)

)∥∥
HS

≥ ∥∥f (0) exp
(
dLf (0)−1df0(x)

)
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− f (0) exp
(
dLf (0)−1df0(z)

)∥∥
HS

− 32N2c2,

where the second-last inequality follows from inequality (C.4) and Lemma 5.4,
and the last inequality is due to Lemma 5.4. By inequalities (5.8) and (C.4),∥∥F(f (0) exp

(
dLf (0)−1df0(x)

))−F
(
f (0) exp

(
dLf (0)−1df0(z)

))∥∥
HS

≥ φn

4
‖x − z‖ − O

(
N3‖x − z‖2).(C.6)

Combining inequalities (C.5) and (C.6), we conclude

∥∥g(x) − g(z)
∥∥

HS ≥ φn

8
‖x − z‖.

This proves the first condition of Lemma 10 of [49]: {‖x − z‖HS > ρ} implies that
{‖g(x) − g(z)‖ > δρ}. The second condition of Lemma 10 of [49] follows imme-
diately from the second part of inequality (5.8). Thus g satisfies the requirements
of Lemma 10 of [49] with ρ, ρ∗, δ as above, and so g is an injective map. But this
implies that f is injective as well, completing the proof. �

C.2. Probability estimates. PROOF OF LEMMA 5.7. By observation, the
random variable sN − N�Qn2 log(n)� is stochastically dominated by a negative
binomial distribution with parameters (N,N−1). The desired inequality then fol-
lows immediately from the standard tail bound for the negative binomial distribu-
tion (see, e.g., the calculation in [5]). �

PROOF OF LEMMA 10.2. Note that sN is exactly the time it takes to collect
all N coupons in the standard “coupon collector problem” with N coupons, as
studied in [19]. Thus the desired bound follows immediately from equation (2) of
[19]. �
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