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A GAUSSIAN SMALL DEVIATION INEQUALITY
FOR CONVEX FUNCTIONS

BY GRIGORIS PAOURIS1 AND PETROS VALETTAS2

Texas A&M University and University of Missouri

Let Z be an n-dimensional Gaussian vector and let f : Rn → R be a
convex function. We prove that

P
(
f (Z) ≤ Ef (Z) − t

√
Varf (Z)

) ≤ exp
(−ct2)

,

for all t > 1 where c > 0 is an absolute constant. As an application we derive
variance-sensitive small ball probabilities for Gaussian processes.

1. Introduction. The purpose of this note is to establish a sharp distributional
inequality for convex functions on Gauss’ space (Rn,‖ · ‖2, γn). Our goal and mo-
tivation stems from the attempt to strengthen the classical Gaussian concentration
for special cases that are of interest in high-dimensional geometry. The Gaussian
concentration phenomenon (see [1] and [20]) states that for any L-Lipschitz map
f :Rn →R one has

P
(∣∣f (Z) − M

∣∣ > t
) ≤ exp

(
−1

2
t2/L2

)
,(1.1)

for all t > 0, where Z is n-dimensional standard Gaussian random vector and
M is a median for f (Z). The above inequality follows from the solution to the
isoperimetric problem in Gauss’ space, which was proved independently by Borell
in [2] and Sudakov and Tsirel’son in [33] and can be described by the following
inequality:

γn

(
A + tBn

2
) ≥ �

(
�−1(

γn(A)
) + t

)
, t > 0,(1.2)

for all Borel sets A ⊆ R
n, where � is the cumulative distribution function of a

Gaussian random variable. Applying (1.2) for A = {f ≤ M}, where M is a median
of f and by taking into account that A + tBn

2 ⊆ {f ≤ M + tL} we obtain

γn(f ≤ M + tL) ≥ �(t) =⇒ γn(f > M + tL) ≤ 1 − �(t).

Finally, standard estimates for the function �, such as (2.3), yield the result (we
work similarly for the deviation below the median). In turn, this implies bounds on
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the variance Varf (Z) for any Lipschitz map f in terms of the Lipschitz constant
L (alternatively we may employ the Gaussian Poincaré inequality [6]):

Var
[
f (Z)

] ≤ L2.(1.3)

The above inequalities are sharp for linear functionals. However, one can eas-
ily construct examples of convex functions (see Section 2) for which the above
estimates are far from being optimal. On the other hand, the observation in
[21], Corollary 3.2, that for f being a norm, one has the stochastic dominance
P(f (Z) ≥ t) ≥ P(|�(Z)| ≥ t) for all norm one linear functionals �, implies that
(1.1) is sharp (up to absolute constants) in the large deviation regime t > M (see
also [22] and [30], Proposition 2.9, for details). Therefore, in this note the focus is
on the one-sided small deviation inequality:

P
(
f (Z) − M < −t

) ≤ 1

2
exp

(
−1

2
t2/L2

)
,(1.4)

which holds for all t > 0 and for any L-Lipschitz map f . This inequality is of
great importance in asymptotic geometric analysis, hence one would be interested
in refined forms of (1.4). For different ranges of t , one can replace the Lipschitz
constant ‖‖∇f ‖2‖L∞ by appropriately chosen moments of ‖∇f ‖2. This is based
on various Gaussian functional inequalities such as the logarithmic Sobolev in-
equalities, the Poincaré inequalities, the (p, q)-Poincaré inequalities and more
(see [4, 20]). Even in that case, there exist examples of convex functions [e.g.,
f (x) = maxi≤n |xi |] for which the L2 norm of the gradient is much larger than the
variance, therefore, these inequalities fail to capture the right order of concentra-
tion (see [5] for a detailed discussion of this phenomenon). Ideally, one would like
to replace the Lipschitz constant in (1.4) by a statistical measure of dispersion, for
example, the variance. Indeed this is the case for convex functions. Our main result
reads as follows: For any convex map f ∈ L2(γn), one has

P
(
f (Z) − M < −t

) ≤ 1

2
exp

(
− π

1024
t2/Var

[
f (Z)

])
,(1.5)

for all t > 0. In view of (1.3), this obviously improves the one-sided concentration
inequality in the small deviation regime. We want to emphasize that the above
inequality, unlike to most concentration inequalities which are isoperimetric in
nature, does not follow by the Gaussian isoperimetry. Instead it is obtained by the
convexity properties of the Gaussian measure, thus it could be viewed as a “new
type” of concentration. The last but not least is that the function is not required to
be Lipschitz in (1.5); instead it is valid for any convex function f ∈ L2(γn) [in fact,
we may even prove a similar inequality to (1.5) by assuming weaker integrability
condition for f ; see Remark 2.4.1].

The rest of the paper is organized as follows: In Section 2, we present a proof
of the main result. The key ingredient in our argument is Ehrhard’s inequality [8],
inspired by the approach of Kwapien in [17]. We conclude in Section 3 with some
applications.
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2. Proof of the main result. Let � be the cumulative distribution function of
a standard Gaussian random variable, that is,

�(x) = 1√
2π

∫ x

−∞
e−z2/2 dz, x ∈ R.

Ehrhard’s inequality [8] states that for any two convex sets A, B on R
n and for any

0 < λ < 1 one has

�−1[
γn

(
(1 − λ)A + λB

)] ≥ (1 − λ)�−1[
γn(A)

] + λ�−1[
γn(B)

]
.

Ehrhard’s result was extended by Latała in [18] to the case that one of the two sets
is Borel and the other is convex. Finally, in [3], Borell proved that it holds for all
pairs of Borel sets. Recently, many different proofs of this fundamental inequality
have appeared in the literature; see, for example, [12, 26, 34] and the references
therein.

Our goal is to prove the following.

THEOREM 2.1. Let Z be an n-dimensional standard Gaussian vector. Let f

be a convex function on R
n with f ∈ L1(γn) and let M be a median for f (Z).

Then we have

P
(
f (Z) − M < −tE

(
f (Z) − M

)
+

) ≤ �

(
−

√
2π

32
t

)
,

for all t > 0.

PROOF. Since M is a median, we have P(f (Z) ≤ M) ≥ 1/2. We may assume
without loss of generality that P(f (Z) ≤ M) = 1/2. Otherwise we have P(f =
M) > 0, and since f is convex, we get f ≥ M , thus the conclusion is trivially
true. Note that the convexity of f implies that the sub-level sets {f ≤ t}, t ∈ R are
convex and the function F(t) := P(f (Z) ≤ t) is log-concave. The latter follows
by the following inclusion:

(1 − λ){f ≤ t} + λ{f ≤ s} ⊆ {
f ≤ (1 − λ)t + λs

}
,

for t, s ∈ R and 0 ≤ λ ≤ 1 and the fact that γn is log-concave measure (see [1],
Section 1.8, for the related definition). Now, we may use Ehrhard’s inequality from
[8] (see also [1], Theorem 4.2.1) to get that the map s �→ �−1 ◦ F(s), s ∈ R is
concave (for a proof see [1], Theorem 4.4.1). Therefore, we obtain(

�−1 ◦ F
)
(M + s) = (

�−1 ◦ F
)
(M + s) − (

�−1 ◦ F
)
(M)

≤ s
(
�−1 ◦ F

)′
(M+)(2.1)

= s
√

2πF ′(M+), s ∈ R.

Now we give a lower bound for F ′(M+) in terms of the standard deviation of
f (Z).
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CLAIM. We have the following:

F ′(M+) ≥ 1

32E(f (Z) − M)+
.

PROOF. Fix δ > 0 (that will be chosen appropriately later). Using the log-
concavity of F , we may write

δ
F ′(M+)

F (M)
≥ logF(M + δ) − logF(M)

= log
(
1 + 2P

(
M < f (Z) ≤ M + δ

))
≥ P

(
M < f (Z) ≤ M + δ

)

= 1

2
− P

(
f (Z) > M + δ

)
,

where we have used the elementary inequality log(1 + u) ≥ u/2 for all 0 < u ≤ 1.
Now we apply Markov’s inequality to get

P
(
f (Z) > M + δ

) ≤ E(f (Z) − M)+
δ

.

Combing the above, we conclude that

F ′(M+) ≥ 1

2δ

(
1

2
− E(f (Z) − M)+

δ

)
.

The choice δ = 4E(f (Z) − M)+ yields the assertion of the claim. �

Going back to (2.1), we readily see that [for s = −tE(f (Z) − M)+]:

�−1[
P

(
f (Z) − M ≤ −tE

(
f (Z) − M

)
+

)] ≤ −t

√
2π

32
,

as required. �

Let us note that one can prove a similar inequality for the n-dimensional ex-
ponential measure but for 1-unconditional functions f , that is, functions which
satisfy f (x1, . . . , xn) = f (|x1|, . . . , |xn|) for all x = (x1, . . . , xn) ∈R

n.
We fix W for an n-dimensional exponential random vector, that is, W =

(ξ1, . . . , ξn), where (ξi)
n
i=1 are independent identically distributed according to the

measure ν1 with density function dν1(x) = 1
2e−|x| dx. Note that if g1, g2 are i.i.d.

standard normals and ξ is independent exponential random variable then |ξ | and
g2

1+g2
2

2 have the same distribution (follows easily by checking the moment gen-
erating functions). Based on this remark, we have the following consequence of
Theorem 2.1:
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THEOREM 2.2. Let f be an 1-unconditional and convex function on R
n. If W

is an exponential random vector on R
n, then one has

P
(
f (W) − M < −tE

(
f (W) − M

)
+

) ≤ 1 − �(ct) ≤ exp
(−c′t2)

,

for all t > 0.

PROOF. Consider the function F :R2n →R defined as

F(x1, . . . , xn, y1, . . . , yn) := f

(
x2

1 + y2
1

2
, . . . ,

x2
n + y2

n

2

)
.

Since f is convex and 1-unconditional, it follows that f is convex and coordinate-
wise nondecreasing3 in the octant Rn+ = {z = (z1, . . . , zn) : zi ≥ 0}. Hence F is
convex on R

2n. Therefore, a direct application of Theorem 2.1 yields

P
(
f (W̃ ) − M < −tE

(
f (W̃ ) − M

)
+

) ≤ �(−ct),

for all t > 0, where W̃ = (|ξ1|, . . . , |ξn|) and ξi are i.i.d. exponential random vari-
ables. The fact that f (x1, . . . , xn) = f (|x1|, . . . , |xn|) completes the proof. �

REMARK 2.3. In the above argument, it is clear that we may also consider
longer sums of the form g2

1 + · · · + g2
k . That is, if f : Rn+ →R is a coordinatewise

nondecreasing and convex function, then

P
(
f (χ) < M − tE

(
f (χ) − M

)
+

) ≤ �(−t/2),

for all t > 0, where χ ∼ χ2(k) is a chi squared random variable with k degrees of
freedom.

We conclude this section with some remarks on the main result.

REMARKS 2.4. 1. The advantage of this one-sided concentration inequality
is that it can be applied for the wide class of convex functions which are not nec-
essarily (globally) Lipschitz or which are not even in L2(γn); for example, the
function f (t) = exp(−t + t2/2) is (logarithmically) convex, belongs to L1(γ1)

but f /∈ L2(γ1). Moreover, a careful inspection of the argument shows that it is
enough to have f ∈ L1,∞(γn) (see, e.g., [10] for the definition of the weak Lp

space) and the conclusion still holds:

P
(
f (Z) < M − t

∥∥(f − M)+
∥∥

1,∞
) ≤ �(−ct), t > 0,(2.2)

where c > 0 is an absolute constant.4

3A real valued function H defined on U ⊆ R
k is said to be coordinatewise nondecreasing if it is

nondecreasing in each variable while keeping all the other variables fixed at any value.
4Here and everywhere else, C and c, c1, . . . stand for absolute constants whose values may change

from line to line. We write c(p) if the constant depends only on p.
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2. Assuming that P(f ≤ M) = 1/2, then (2.1) shows that the variable f (Z)

stochastically dominates the normal random variable ζ := M + a · g, where g is a
standard normal variable and 1/a := (2π)1/2F ′(M+) > 0, that is,

P
(
f (Z) ≤ s

) ≤ P(ζ ≤ s),

for all s ∈ R. Hence one gets Ef (Z) ≥ Eζ = M . If P(f ≤ M) > 1/2, then inff =
M and the latter is again true. This result is due to Kwapien [17]. In fact, our proof
steps on the same starting line as in [17].

3. Taking into account the fact that E(f (Z) − M)+ ≤ E|f (Z) − M| ≤√
Varf (Z) and

1 − �(u) = �(−u) ≤ 1

2
e−u2/2(2.3)

for all u > 0 (for a proof see [19], Lemma 1) we immediately get

P
(
f (Z) − M < −t

√
Varf (Z)

) ≤ �

(
−t

√
2π

32

)
≤ 1

2
exp

(
− π

1024
t2

)
,

for all t > 0, which is the announced estimate (1.5) provided that f ∈ L2(γn).
Furthermore, using the fact M ≥ Ef (Z)−√

Varf (Z) once more, we may con-
clude the following “Central Limit type” normalization in Theorem 2.1: For any
convex function f on R

n with f ∈ L2(γn), one has the following distributional
inequality:

P
(
f (Z) −Ef (Z) < −t

√
Varf (Z)

)

≤ 1

2
exp

(
− π

1024
(t − 1)2

)
(2.4)

< e−t2/1000,

for all t > 1.
4. Let us note that in all the above statements, one can derive the reverse distri-

butional inequality for concave functions. Namely, if f is a concave function on
R

n with f ∈ L1(γn), then

P
(
f (Z) − M > tE

(
M − f (Z)

)
+

) ≤ �(−ct),

for all t > 0, where M is a median for f (Z).
5. We should stress the fact that in the statement of Theorem 2.1 we refer to

convex functions in L1. Thus it is pointless to ask about a similar upper estimate
other than the L1-estimate. However, in various significant applications the func-
tions under consideration are norms or more generally Lipschitz functions, which
are known to belong in Lψ2(γn). In fact, ‖f − M‖ψ2 ≤ C Lip(f ) [where the Lψ2

norm stands for the Orlicz norm with Young function ψ2(t) = et2 − 1, t ≥ 0].
However, there are many examples of norms f for which Var[f (Z)] � Lip(f )2.
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Therefore, it is natural to ask if there is one-sided concentration estimate (in the
large deviation regime), which takes into account both the variance and the Lips-
chitz constant. A naive approach which puts these remarks together is to combine
Chebyshev’s inequality with the concentration estimate in terms of the Lipschitz
constant:

P
(∣∣f (Z) − M

∣∣ > t
) ≤ exp

(
−1

2
max

{
log

(
t/

√
Varf (Z)

)
, t2/L2})

.

Even in the case of a norm as above this bound depends continuously on t > 0
and seems to be the right one. Example of such a norm is the �p norm on R

n with
p = c0 logn, for sufficiently small absolute constant c0 > 0 (see [30], Section 3).

6. (Nonoptimality in �n∞.) Note that Theorem 2.1 for f (x) = ‖x‖∞, x ∈ R
n

only yields

P
(‖Z‖∞ < (1 − ε)M∞,n

) ≤ 1

2
e−cε2 log2 n,

for all 0 < ε < 1, where M∞,n is the median of ‖Z‖∞. This estimate is far from
being the sharp one: It is known (see [32], Claim 3) that one has

exp
(−Cec′ε logn) ≤ P

(‖Z‖∞ < (1 − ε)M∞,n

) ≤ C exp
(−cecε logn)

,

for all 0 < ε < 1/2.
7. (Optimality in �n

p , 1 ≤ p < ∞.) In [30], it is proved that for any 1 ≤ p < ∞
one has vp,n := Var‖Z‖p/M2

p,n ≤ c(p)/n, where Mp,n is the median for ‖Z‖p

(see also [28] for an extension of this result to any finite dimensional subspace of
Lp). On the other hand, for any norm ‖ · ‖ on R

n we can deduce that

P
(‖Z‖ < (1 − ε)E‖Z‖) ≥ c exp

(−Cε2n
)
,

for all 0 < ε < 1/2. Therefore, we obtain

P
(‖Z‖p < (1 − ε)Mp,n

) ≥ c′ exp
(−C(p)ε2/vp,n

)
.

8. Probabilistic inequalities similar to (1.5), in the context of log-concave mea-
sures, will be presented elsewhere [29].

3. Small ball probabilities and applications. In this section, we show that
the small deviation inequality proved in Theorem 2.1 leads to new reverse Hölder
inequalities for negative moments and small ball probabilities. Toward this end,
we exploit once more convexity properties of the Gaussian measure by utilizing
the B-inequality proved by Cordero-Erausquin, Fradelizi and Maurey in [7]. The
latter states that for any centrally symmetric convex body5 K in R

n the function

t �→ P
(‖Z‖K ≤ et ), Z ∼ N(0, In)

5A subset K in R
n is said to be a centrally symmetric convex body, if it is convex, compact with

nonempty interior and K = −K .
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is log-concave, where ‖ · ‖K is the gauge of K . As this result is available only
for norms (the fact that the symmetry assumption is essential has been shown in
[25]) from now on we will work within this context. Using the aforementioned
result, and building on the ideas of Latała and Oleszkiewicz from [19], Klartag and
Vershynin in [15] introduced a parameter associated with any centrally symmetric
convex body which governs the small ball probability for the corresponding norm.
We recall the Klartag–Vershynin parameter (in the Gaussian setting) from [15]:
For any centrally symmetric convex body A in R

n, we define

d(A) := min
{
n,− logγn

(
M

2
A

)}
,

where M is the median of ‖Z‖,Z ∼ N(0, In). Their result reads as follows.

THEOREM 3.1 (Klartag–Vershynin). Let A be a centrally symmetric convex
body in R

n. Then one has

P
(‖Z‖A ≤ εM

) ≤ 1

2
εcd(A), 0 < ε < 1/2,

where M is the median of ‖Z‖A and Z is an n-dimensional standard Gaussian
vector.

In general, it is quite hard to estimate the quantity d(A) and the known lower
bounds are in general suboptimal (see Remark 3.6). The small deviation inequality
from Theorem 2.1 provides a variance-sensitive lower bound for the quantity d(A).
For this end, we associate with any centrally symmetric convex body A in R

n the
following parameter:

β(A) := Var‖Z‖A

M2 , Z ∼ N(0, In),(3.1)

where M is the median of ‖Z‖A. With this notation, we have the following.

PROPOSITION 3.2. Let A be a centrally symmetric convex body in R
n. Then

one has the one-sided concentration estimate

P
(‖Z‖A ≤ (1 − ε)M

) ≤ 1

2
exp

(−cε2/β(A)
)
, 0 < ε < 1,(3.2)

where M is the median of ‖Z‖A and Z is an n-dimensional standard Gaussian
random vector. In particular,

d(A) ≥ c1/β(A),(3.3)

therefore, we have the following small ball probability estimate:

P
(‖Z‖A ≤ εM

) ≤ 1

2
εc/β(A),(3.4)

for all ε ∈ (0,1/2).
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PROOF. We apply Theorem 2.1 for t = ε/
√

β(A) to get the first estimate. The
bound d(A) ≥ c/β(A) follows by the definition of d by plugging ε = 1/2 in (3.2).
Now the probabilistic estimate (3.4) follows from Theorem 3.1 and the obtained
lower bound on d(A). �

It is known that the small ball probability (3.4) can be easily translated to a small
ball probability for Gaussian processes (see, e.g., [20], Theorem 7.1), thus one has
the following formulation.

THEOREM 3.3. Let (Gt)t∈T be a centered Gaussian process indexed by a
countable set T such that supt∈T |Gt | < ∞ almost surely. Then, for any ε ∈
(0,1/2) we have

P

(
sup
t∈T

|Gt | ≤ εM
)

≤ 1

2
εcM2/v2

,

where M = med(supt∈T |Gt |) and v2 = Var(supt∈T |Gt |).

The proof of the above theorem follows the same lines as in [19], Theorem 4,
with the obvious adaptations, thus it is omitted.

In view of Theorem 2.2, one can derive small ball estimates for 1-unconditional
norms with respect to the exponential measure νn

1 . This is promised by a re-
sult of Cordero-Erausquin, Fradelizi and Maurey, also proved in [7], that any 1-
unconditional log-concave measure μ and 1-unconditional convex body K in R

n

has the B-property, that is, t �→ μ(etK) is log-concave (recently it was proved in
[9] that the B-property is satisfied by the νn

1 and any centrally symmetric convex
body). Although the proof is the same as in the Gaussian context, we sketch it for
reader’s convenience.

PROPOSITION 3.4. Let K be an 1-unconditional convex body in R
n. If W is

a random vector distributed according to the n-dimensional exponential measure
νn

1 , then one has

P
(‖W‖K ≤ εm

) ≤ 1

2
εc/β, ε ∈ (0,1/2),

where m is the median of ‖W‖K and β = Var‖W‖K/m2.

PROOF. Applying Theorem 2.2 for x �→ ‖x‖K , we obtain

νn
1
({

x : ‖x‖K ≤ m/2
}) = νn

1

(
m

2
K

)
≤ 1

2
e−c/β .(3.5)

On the other hand, since t �→ νn
1 (etK) is log-concave, we may argue as follows:

given ε ∈ (0,1/2) we choose λ ∈ (0,1) such that 1/2 = ε1−λ, that is, 1 − λ =
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log 2
log(1/ε)

. The log-concavity implies

νn
1

(
m

2
K

)
≥ [

νn
1 (εmK)

]1−λ[
νn

1 (mK)
]λ =⇒ [

2νn
1 (εmK)

]1−λ ≤ 2νn
1

(
m

2
K

)
.

Plug (3.5) in the latter and we get the assertion. �

Now we turn in proving reverse Hölder inequalities for negative moments of
norms by using the small deviation (3.2) and the small ball probability (3.4):

COROLLARY 3.5. Let K be a centrally symmetric convex body in R
n. Then

one has

E‖Z‖K

(
E‖Z‖−q

K

)1/q ≤ exp(C
√

β + Cqβ),

for all 0 < q < c/β(K) where C,c > 0 are absolute constants and Z is an n-
dimensional standard Gaussian vector.

PROOF. We know that

P
(‖Z‖K ≤ εM

) ≤ 1

2
εc1/β, P

(‖Z‖K ≤ (1 − ε)M
) ≤ 1

2
e−c2ε

2/β,

for all ε ∈ (0,1/2), where M is the median for ‖Z‖K and Z ∼ N(0, In). Therefore,
we may write

E‖Z‖−q
K = M−q

∫ ∞
0

P
(‖Z‖K ≤ tM

) q

tq+1 dt

≤ M−q

(
q

2

∫ 1/2

0
ε

c1
β

−q−1
dε +

∫ 1

1/2

q

tq+1 P
(‖Z‖K ≤ tM

)
dt + 1

)

≤ M−q

((
1

2

) c1
β

−q qβ

c1 − qβ
+ q

∫ 1/2

0

1

(1 − ε)q+1 e−c2ε
2/β dε + 1

)

≤ M−q

(
1 + c3qβ + q

∫ 1/2

0
exp

(
2(q + 1)ε − c2ε

2/β
)
dε

)
,

for all 0 < q < c4/β , where we have also used the elementary inequality 1 − u ≥
e−2u for 0 ≤ u ≤ 1/2. It is easy to check that the last integral can be bounded as

∫ 1/2

0
exp

(
2(q + 1)ε − c2ε

2/β
)
dε ≤ c5

√
β exp

(
c5q

2β
)
,

for all 0 < q ≤ c6/β . The result follows. �

REMARK 3.6. Klartag and Vershynin in [15] observed that the concentration
of measure inequality (1.4) implies that d(A) ≥ ck(A) where k(A) is given by

k(A) := E‖Z‖2
A/b(A)2, b(A) = max

θ∈Sn−1
‖θ‖A.
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The quantity k(A) is introduced by V. Milman in [23] and it is usually referred to
as the critical dimension of the body A. We refer to [24] for further information
on this quantity. Although the quantity k(A) is easy to be computed, there are
several cases in which bounding d(A) by k(A) gives suboptimal results. Using
(1.3) and the fact E‖Z‖ ≤ cM , it is clear that 1

β(A)
≥ c′k(A), thus Proposition 3.2

provides better bounds for the quantity d(A). We illustrate this in the following
example: Consider as convex body A the unit ball of some n-dimensional subspace
of Lp,2 < p < ∞. It is proven in [28] that there exists a linear image Ã of A with
β(Ã) ≤ C(p)/n while k(Ã) can be of the order n2/p (up to constants depending
only on p). In this case, the bounds given by Proposition 3.2 are sharp (up to
constants depending only on p).

The inequalities presented in the paper can be used to obtain refinements of sev-
eral classical results in asymptotic geometric analysis such as the random version
of Dvoretzky’s theorem [23]. These applications will appear elsewhere [29], [27].
We close this section by mentioning one interesting application of the results to
the Johnson–Linderstrauss flattening lemma.

The J–L lemma from [13] (see also [14]) asserts that: if ε ∈ (0,1) and
x1, . . . , xN ∈ �2, then there exists a linear mapping (which can be chosen to
be an orthogonal projection) P : �2 → F , where F is a subspace of �2 with
dimF ≤ cε−2 logN such that

(1 − ε)‖xi − xj‖2 ≤ ‖Pxi − Pxj‖2 ≤ (1 + ε)‖xi − xj‖2,

for all i, j = 1, . . . ,N .
This dimension reduction principle has found various applications in mathe-

matics and computer science, in addition to the original application in [13] for the
Lipschitz extension problem. We refer the interested reader to [11, 16, 35] and the
references therein for a partial list of its many applications.

The J–L lemma we are interested in applies for arbitrary target spaces, as was
formulated in [31]. Below we suggest a refined one-sided version of the latter.

PROPOSITION 3.7. Let X = (Rn,‖ · ‖) be a normed space and let T ⊆ �N
2 be

a finite set with T = {u1, . . . , uN }. The following hold:

(i) Let δ ∈ (0,1) and assume that log |T | ≤ cδ2/β(X). Then the random
Gaussian matrix G = (gij )

n,N
i,j=1 satisfies

‖Gui − Guj‖ ≥ (1 − δ) ·E‖Z‖ · ‖ui − uj‖2,

for all i, j,= 1, . . . ,N , where Z ∼ N(0, In), with probability greater than 1 −
ce−cδ2/β(X).
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(ii) Let ε ∈ (0,1/2) and assume that log |T | ≤ c log(1/ε)/β(X). Then the ran-
dom Gaussian matrix G = (gij )

n,N
i,j=1 satisfies

‖Gui − Guj‖ ≥ cε ·E‖Z‖ · ‖ui − uj‖2,

for all i, j,= 1, . . . ,N , where Z ∼ N(0, In), with probability greater than 1 −
cεc/β(X).

PROOF. Consider Z1, . . . ,ZN i.i.d. standard Gaussian vectors on R
n and de-

fine the random matrix G = [Z1, . . . ,ZN ]. Fix θ ∈ SN−1 and applying Theo-
rem 2.1 (as was formulated further in Remark 2.4.3) we get

P
(‖Gθ‖ < (1 − t)E‖Z‖) = P

(‖Z1‖ < E‖Z‖ − tE‖Z‖) ≤ C exp
(−ct2/β

)
,

for all t ∈ (0,1). If T = {u1, . . . , uN }, consider the set of points

� :=
{

ui − uj

‖ui − uj‖2
: 1 ≤ i < j ≤ N

}

on the Euclidean sphere SN−1. Then by the union bound we get

P
(∃θ ∈ � : ‖Gθ‖ < (1 − δ)E‖Z‖)

< C1N
2 exp

(−c1δ
2/β

) ≤ C2 exp
(−c2δ

2/β
)
,

as long as logN ≤ cδ2/β(X). The assertion follows.
The same reasoning as above, but using (3.4) instead, yields (ii). �
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