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SPDE LIMIT OF THE GLOBAL FLUCTUATIONS
IN RANK-BASED MODELS1

BY PRAVEEN KOLLI AND MYKHAYLO SHKOLNIKOV

Carnegie Mellon University and Princeton University

We consider systems of diffusion processes (“particles”) interacting
through their ranks (also referred to as “rank-based models” in the math-
ematical finance literature). We show that, as the number of particles be-
comes large, the process of fluctuations of the empirical cumulative distri-
bution functions converges to the solution of a linear parabolic SPDE with
additive noise. The coefficients in the limiting SPDE are determined by the
hydrodynamic limit of the particle system which, in turn, can be described
by the porous medium PDE. The result opens the door to a thorough inves-
tigation of large equity markets and investment therein. In the course of the
proof, we also derive quantitative propagation of chaos estimates for the par-
ticle system.

1. Introduction. We study systems of interacting diffusion processes (“parti-
cles”) on the real line whose dynamics are given by the SDEs

(1.1)
dX

(n)
i (t) = b

(
Fρ(n)(t)

(
X

(n)
i (t)

))
dt + σ

(
Fρ(n)(t)

(
X

(n)
i (t)

))
dB

(n)
i (t),

i = 1,2, . . . , n.

Here b, σ are functions from [0,1] to R, (0,∞), respectively, ρ(n)(t) :=
1
n

∑n
i=1 δ

X
(n)
i (t)

is the empirical measure of the particle system at time t , Fρ(n)(t) is

the cumulative distribution function of ρ(n)(t), and B
(n)
1 ,B

(n)
2 , . . . ,B

(n)
n are inde-

pendent standard Brownian motions. Note that the drift and diffusion coefficients
of a process X

(n)
i take the values b( k

n
) and σ( k

n
) whenever the rank (from the left)

of X
(n)
i (t) within (X

(n)
1 (t),X

(n)
2 (t), . . . ,X

(n)
n (t)) is k. This allows to identify (1.1)

with the so-called rank-based models of stochastic portfolio theory introduced by
Fernholz and Karatzas (see [14], Section 13).

Rank-based models have recently received much attention in pure and applied
probability theory. Originally, they appeared as a special case in the context of
the piecewise linear filtering problem in [2] where weak uniqueness for (1.1) is
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established (weak existence being a consequence of the general result in [32], Ex-
ercise 12.4.3). The recent renewed interest in rank-based models stems from the
fact that they are the first ones to capture the shape and stability of the capital
distribution among companies in the U.S. We refer to [13], Figure 5.1, for a plot
of the U.S. capital distribution curves over seventy years and to [5] and [18] for
the mathematical results on their shape and stability in the setting of rank-based
models. In this context, one is particularly interested in the large n behavior of
the system (1.1) which describes the evolution of the capital distribution when one
takes thousands of companies into account. The stocks of the latter comprise typi-
cal portfolios of institutional investors and the change in the capital distribution is
central to their investment decisions.

We point out that (1.1) falls into the general framework of particle systems
interacting through their mean field whose analysis originates with the seminal
work [27] of McKean. The results on the subject related to the case of interact-
ing diffusion processes, as studied in the present paper, can be summarized as
follows. A law of large numbers as n → ∞ (“hydrodynamic limit”) has been ob-
tained assuming the joint continuity of the drift and diffusion coefficients with
respect to the current location of the particle and the empirical measure by Gärt-
ner in [16] (see also [26], [28] for previous results under more restrictive as-
sumptions). Gaussian fluctuations around the hydrodynamic limit have been estab-
lished by Tanaka in [35] for general drift coefficients

∫
R

b(X
(n)
i (t), y)ρ(n)(t)(dy)

with a twice continuously differentiable function b and constant diffusion coeffi-
cients, by Sznitman in [33] in the absence of drift and with diffusion coefficients∫
R

σ(X
(n)
i (t), y)ρ(n)(t)(dy) with a twice continuously differentiable function σ ,

and by Jourdain in [19] for the system of (1.1) with σ ≡ 1 (see also [29] for the
case of Rd and drift coefficients of gradient type, [7] for the special case of an-
harmonic oscillators interacting through their average, and [6] for the case of spin
systems evolving by a Glauber dynamics of mean field type). These papers do not
address interaction through nonsmooth diffusion coefficients and therefore rely on
tools different from ours (such as Girsanov’s Theorem and Taylor expansion of the
coefficients). Finally, large deviations around the hydrodynamic limit have been
studied by Dawson and Gärtner [8] in the case of a jointly continuous drift coeffi-
cient and a continuous diffusion coefficient depending only on the current location
of the particle.

None of the described results can be applied to the system (1.1) due to the dis-
continuity of both the drift and the diffusion coefficients. Nonetheless, the special
structure of the coefficients in (1.1) made it possible to derive the hydrodynamic
limit of that system (see [20], Proposition 2.1 and also [10], Corollary 1.6, [31],
Theorem 1.2). More specifically, let M1(R) be the space of probability measures
on R equipped with the Lévy metric (inducing the topology of weak convergence)
and C([0,∞),M1(R)) be the space of continuous functions from [0,∞) to M1(R)

endowed with the topology of locally uniform convergence. Given that the initial
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positions X
(n)
1 (0),X

(n)
2 (0), . . . ,X

(n)
n (0) are i.i.d. according to a probability mea-

sure λ with a finite first moment and that b and σ in (1.1) are continuous, the
functions t �→ ρ(n)(t), n ∈ N converge in probability in C([0,∞),M1(R)) to a de-
terministic limit t �→ ρ(t). Moreover, the associated cumulative distribution func-
tions R(t, ·) := Fρ(t)(·), t ≥ 0 form the generalized solution to the Cauchy problem
for the porous medium equation:

(1.2) Rt = −B(R)x + �(R)xx, R(0, ·) = Fλ(·),
where B(r) := ∫ r

0 b(a)da and �(r) := ∫ r
0

1
2σ(a)2 da ([17], Definition 3 of a gen-

eralized solution to (1.2) is briefly recalled in Definition 2.4 below). In fact, under
additional moment and regularity assumptions it has been shown in [10], Theo-
rem 1.4 that the sequence t �→ ρn(t), n ∈ N satisfies a large deviation principle in
C([0,∞),M1(R)).

In this paper, we are concerned with the fluctuations of the particle system (1.1).
To this end, we introduce the space Mfin(R) of finite signed measures on R, viewed
as the dual of C0(R) and endowed with the associated weak-∗ topology. Similarly,
we define the spaces Mfin([0, t]×R) for t > 0 and equip each of them with the re-
spective weak-∗ topology. The fluctuations of the particle system (1.1) are studied
via the Mfin(R)-valued processes

(1.3) t �→ Gn(t)(dx) := √
n
(
Fρ(n)(t)(x) − R(t, x)

)
dx, n ∈N

indexed by t ∈ [0,∞), as well as the processes

(1.4) t �→ Hn(t)(ds,dx) := √
n
(
Fρ(n)(s)(x) − R(s, x)

)
dx ds, n ∈ N

taking values in Mfin([0, t] × R), t > 0, respectively. Note that the measures
Gn(t), t ≥ 0 belong to Mfin(R) and the measures Hn(t), t > 0 are elements of
Mfin([0, t] × R), t > 0 as soon as the first moments of the probability measures
ρ(t), t ≥ 0 are finite and uniformly bounded on compact intervals of t’s. This
turns out to be the case under the following assumption [see the estimate (2.11)
below].

ASSUMPTION 1.1. (a) There exist η > 0 and λ ∈ M1(R) such that λ has a
bounded density and finite moments up to order (2 + η) and the initial positions
X

(n)
1 (0),X

(n)
2 (0), . . . ,X

(n)
n (0) are i.i.d. according to λ for all n ∈ N.

(b) The functions b and σ in (1.1) are differentiable with locally Hölder contin-
uous derivatives.

Before proceeding it is worth it to point out that the processes of (1.3) and (1.4)
provide access to observables of the forms∫

R

γ (x)Gn(t)(dx) = −√
n

∫
R

(∫ x

0
γ (y)dy

)(
ρ(n)(t)(dx) − ρ(t)(dx)

)
,(1.5)
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∫ t

0

∫
R

γ (s, x)Hn(t)(ds,dx)

= −√
n

∫ t

0

∫
R

(∫ x

0
γ (s, y)dy

)(
ρ(n)(s)(dx) − ρ(s)(dx)

)
ds

(1.6)

for functions γ ∈ C0(R) ∩ L1(R) and

(1.7) γ ∈ C0
([0, t] ×R

) : γ (s, ·) ∈ L1(R) for Lebesgue a.e. s ∈ [0, t],
respectively.

Our main result can be stated as follows.

THEOREM 1.2. Suppose that Assumption 1.1 holds and consider the mild so-
lution G of the SPDE

(1.8)
Gt = −(

b(R)G
)
x +

(
σ(R)2

2
G

)
xx

+ σ(R)R1/2
x Ẇ ,

G(0, ·) = β
(
Fλ(·)),

where R is the unique generalized solution to the Cauchy problem (1.2), Ẇ is a
space-time white noise and β is a standard Brownian bridge independent of Ẇ .
More specifically, let G be the random field defined by

G(t, x) =
∫
R

β
(
Fλ(y)

)
p(0, y; t, x)dy

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2p(s, y; t, x)dW(s, y),

(t, x) ∈ [0,∞) ×R,

(1.9)

where p denotes the transition density of the solution to the martingale problem

associated with the operators b(R(t, ·)) d
dx

+ σ(R(t,·))2

2
d2

dx2 , t ≥ 0 and the double
integral should be understood in the Itô sense.

Then, one has the following convergences:

(a) The Mfin(R)-valued processes Gn, n ∈ N tend in the finite-dimensional dis-
tribution sense to t �→ G(t, x)dx.

(b) The processes Hn, n ∈ N taking values in Mfin([0, t] × R), t > 0 converge
in the finite-dimensional distribution sense to t �→ G(s, x)1[0,t]×R(s, x)ds dx, also
jointly with the processes in (a).

REMARK 1.3. The result of Theorem 1.2 shows that the evolution of the cap-
ital distribution in a large equity market, in which the logarithmic capitalizations
follow (1.1), can be approximated by t �→ R(t, ·) + n−1/2G(t, ·) up to an error
of o(n−1/2). This suggests that, if one combines the unnormalized versions of the
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capital distribution curves as in [13], Figure 5.1 to a surface whose height en-
codes the relative rank associated with any given logarithmic capitalization at any
given time, that surface should resemble a typical realization of the random sur-
face R + n−1/2G indexed by [0,∞) ×R. Consequently, properties of large equity
markets, as captured by the observables of (1.5), (1.6), can be accessed through
the corresponding observables of the random surface R + n−1/2G.

REMARK 1.4. It is immediate from (1.9) that the mild solution G of the SPDE
(1.8) is a mean zero Gaussian process with a covariance of∫

R

∫
R

(
Fλ

(
min(y1, y2)

) − Fλ(y1)Fλ(y2)
)

× p(0, y1; t1, x1)p(0, y2; t2, x2)dy1 dy2

+
∫ min(t1,t2)

0

∫
R

σ
(
R(s, y)

)2
Rx(s, y)

× p(s, y; t1, x1)p(s, y; t2, x2)dy ds

(1.10)

between any G(t1, x1), G(t2, x2).

REMARK 1.5. For constant b and σ (when the particles are independent) and
a fixed t ≥ 0 the convergence of Gn(t), n ∈ N falls into the framework of [9],
Theorem 2.1 (see also [4], Corollary 3.9). The topology used there is the weak
topology on L1(R) and the result is established using the central limit theorem
in cotype 2 spaces. Due to the dependence between the particles in the general
case, we cannot use the same machinery and instead need to start by establishing
the tightness of Gn(t), n ∈ N directly. For this reason, we chose to work with
the space Mfin(R) rather than L1(R), as it admits a more amenable compactness
criterion.

In the course of the proof of Theorem 1.2, we obtain the first quantitative prop-
agation of chaos result for the particle system (1.1). The general propagation of
chaos paradigm (see [34]) suggests that for large n the weak solution of (1.1)
should be close to the strong solution of

dX̄
(n)
i (t) = b

(
R

(
t, X̄

(n)
i (t)

))
dt + σ

(
R

(
t, X̄

(n)
i (t)

))
dB

(n)
i (t),

X̄
(n)
i (0) = X

(n)
i (0),

i = 1,2, . . . , n,

(1.11)

where B
(n)
1 ,B

(n)
2 , . . . ,B

(n)
n are the standard Brownian motions from (1.1). We refer

to the discussion following Proposition 2.5 below for the existence of a unique
strong solution of (1.11). Writing ρ̄(n)(t) := 1

n

∑n
i=1 δ

X̄
(n)
i (t)

, t ≥ 0 for the path of
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empirical measures associated with the i.i.d. particles X̄
(n)
1 , X̄

(n)
2 , . . . , X̄

(n)
n we aim

to compare ρ(n)(·) to ρ̄(n)(·). As a notion of distance, we introduce for p ≥ 1
the Wasserstein metric Wp on the space of probability measures on R with finite
moments up to order p:

(1.12) Wp(μ,ν) = inf
(Y1,Y2)

E
[|Y1 − Y2|p]1/p

,

where the infimum is taken over all random vectors (Y1, Y2) such that Y1 is dis-
tributed according to μ and Y2 according to ν. Our quantitative propagation of
chaos result then reads as follows.

THEOREM 1.6. Suppose that Assumption 1.1 holds. Then, for all p > 0 and
T > 0 there exists a constant C = C(p,T ) < ∞ such that

(1.13) ∀n ∈ N,1 ≤ i ≤ n : E

[
sup

0≤t≤T

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p]
≤ Cn−p/2.

In particular, when p ≥ 1 one has

(1.14) ∀n ∈N : E

[
sup

0≤t≤T

Wp

(
ρ(n)(t), ρ̄(n)(t)

)p]
≤ Cn−p/2.

The rest of the paper is structured as follows. In Section 2, we prepare various
results that are used in the proofs of Theorems 1.2 and 1.6: some properties of
Wasserstein distances and relations of the latter to empirical measures (from [4]
and [9]), as well as a PDE estimate for the solution of (1.2) (from [17]) and its im-
plications for the associated diffusion process (including Gaussian lower and upper
bounds on the transition density based on the results in [1] and [24]). In Section 3,
we prove Theorem 1.6 by reducing it to the estimate of [4], Theorem 4.8 on the
expected Wasserstein distance between the empirical measure of an i.i.d. sample
from the uniform distribution and the uniform distribution itself. Theorem 1.6 is
then used in Section 4 to establish the tightness of the finite-dimensional distri-
butions of the processes Gn, n ∈ N and Hn, n ∈ N via a representation of W1 for
probability measures on R in terms of their cumulative distribution functions. In
Section 5, we conclude the proof of Theorem 1.2 by identifying the limit points
of the finite-dimensional distributions of Gn, n ∈ N and Hn, n ∈ N. Our argument
relies on a prelimit version of the martingale problem associated with the SPDE
(1.8) (see Lemma 5.2) and an appropriate coupling construction (see the proof of
Proposition 5.4).

2. Preliminaries.

2.1. Wasserstein distances and empirical measures. For p ≥ 1 consider two
probability measures μ, ν on R having finite moments up to order p. Let Fμ, Fν
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be their cumulative distribution functions and qμ, qν be their quantile functions.
The following well-known representations of Wp(μ,ν) (see, e.g., [4], Section 2.3)
are used repeatedly below.

PROPOSITION 2.1. In the setup of the preceding paragraph, it holds

W1(μ, ν) =
∫
R

∣∣Fμ(x) − Fν(x)
∣∣ dx,(2.1)

Wp(μ,ν) =
(∫ 1

0

∣∣qμ(a) − qν(a)
∣∣p da

)1/p

, p ≥ 1.(2.2)

In addition, we prepare estimates on the expected Wasserstein distances be-
tween the empirical measure of an i.i.d. sample from the uniform distribution and
the uniform distribution itself. These are taken from [4], Theorem 4.8.

PROPOSITION 2.2. Let U1,U2, . . . be i.i.d. according to the uniform distribu-
tion υ on [0,1]. Then, there exists a constant C < ∞ such that

(2.3) E

[
Wp

(
1

n

n∑
i=1

δUi
, υ

)p]1/p

≤ Cp1/2n−1/2, p ≥ 1, n ∈ N.

Finally, we recall the functional central limit theorem for empirical cumulative
distribution functions from [9], Theorem 2.1 (see also [4], Corollary 3.9 and the
discussion of the functional J1 on page 25). This result gives rise to the initial
condition in (1.8).

PROPOSITION 2.3. Let Assumption 1.1(a) be satisfied. Then, the sequence
Gn(0, ·), n ∈ N converges in law weakly in L1(R) [and therefore in Mfin(R)] to
β(Fλ(·)), where β is a standard Brownian bridge.

2.2. Porous medium equation and associated diffusion process. We turn to
the properties of the generalized solution to the problem (1.2) and the associated
diffusion process. First, we briefly recall [17], Definition 3 of such a generalized
solution (see also the original reference [11], Definition 1.1).

DEFINITION 2.4. A bounded continuous nonnegative function R with R(0,

·) = Fλ(·) is called a generalized solution of the Cauchy problem (1.2) if∫ t2

t1

∫ x2

x1

ζxB(R) + ζxx�(R) + ζtR dx dt

=
∫ x2

x1

ζ(t2, ·)R(t2, ·)dx −
∫ x2

x1

ζ(t1, ·)R(t1, ·)dx

+
∫ t2

t1

ζx(t, x2)�
(
R(t, x2)

)
dt −

∫ t2

t1

ζx(t, x1)�
(
R(t, x1)

)
dt

(2.4)
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for all 0 ≤ t1 < t2, x1 < x2 and functions ζ : [t1, t2] × [x1, x2] → R which are
continuously differentiable in t , twice continuously differentiable in x and satisfy
ζ(·, x1) = ζ(·, x2) = 0.

In view of Assumption 1.1 and mina∈[0,1] �′(a) = mina∈[0,1] 1
2σ(a)2 > 0, we

can combine [17], Theorems 4 and 7 to obtain the following proposition.

PROPOSITION 2.5. Let Assumption 1.1 be satisfied. Then, the Cauchy prob-
lem (1.2) admits a unique generalized solution R. Moreover, its distributional
derivative Rx can be represented by a bounded function on any strip of the form
[0, T ] ×R.

We conclude the subsection with a discussion of the SDE

(2.5) dX̄(t) = b
(
R

(
t, X̄(t)

))
dt + σ

(
R

(
t, X̄(t)

))
dB(t)

satisfied by each of the processes X̄
(n)
i . Assumption 1.1 and Proposition 2.5 guar-

antee that the functions x �→ b(R(t, x)) and x �→ σ(R(t, x)) are Lipschitz with
uniformly bounded Lipschitz constants on every compact interval of t’s. Conse-
quently, there exists a unique strong solution of (2.5) for the initial condition λ

of Assumption 1.1 or any deterministic initial condition (see, e.g., [22], Chapter 5,
Theorems 2.5 and 2.9). In addition, X̄ is the unique solution of the martingale prob-

lem associated with the operators b(R(t, ·)) d
dx

+ σ(R(t,·))2

2
d2

dx2 , t ≥ 0 and therefore
a strong Markov process (see [32], Theorems 7.2.1 and 6.2.2). For the initial con-
dition λ, Assumption 1.1 allows us to apply [20], Corollary 1.13 to identify the
one-dimensional distributions of the solution to the nonlinear martingale problem
therein with ρ(t), t ≥ 0, so that the solution itself is given by the law L(X̄) of X̄

and therefore

(2.6) L
(
X̄(t)

) = ρ(t), t ≥ 0.

We now aim to apply the results of [1] to conclude that under Assumption 1.1
the transition density of X̄ exists and satisfies Gaussian lower and upper bounds.
To identify the transition density of X̄ with the weak fundamental solution of a
parabolic PDE as in [1], Theorem 5, we fix a T > 0 and consider the Cauchy
problem

(2.7) ut + b(R)ux + σ(R)2

2
uxx = f, u(T , ·) = 0,

where f ∈ L2([0, T ] × R) ∩ L∞([0, T ] × R). We note that b(R) and σ(R)2

2 are

bounded and that x �→ σ(R(t,x))2

2 are Lipschitz with uniformly bounded Lipschitz
constants for t ∈ [0, T ]. Hence, according to [24], Theorem 2.1 and Remark 2.2
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there exists a unique solution u of (2.7) with u,ut , ux, uxx ∈ L2([0, T ] × R) and
it is given by

(2.8) u(t, x) = −E

[∫ T

t
f

(
r, X̄(r)

)
dr

∣∣∣ X̄(t) = x

]
, (t, x) ∈ [0, T ] ×R.

In particular, u ∈ L∞([0, T ]×R), so that with g(t, x) := −f (T − t, x), S(t, x) :=
R(T − t, x), (t, x) ∈ [0, T ] × R the function v(t, x) := u(T − t, x), (t, x) ∈
[0, T ] ×R is a weak solution of

(2.9) vt − (
b(S) − σ(S)σ ′(S)Sx

)
vx −

(
σ(S)2

2
vx

)
x

= g, v(0, ·) = 0

in the sense of [1], Theorem 5(ii). The latter theorem is applicable, since b(S) −
σ(S)σ ′(S)Sx and σ(S)2

2 are bounded on [0, T ]×R and σ(S)2

2 is bounded away from
0 on [0, T ]×R by Assumption 1.1 and Proposition 2.5. Comparing the conclusion
of [1], Theorem 5(ii) with (2.8) we obtain the existence of the transition density
p(t, x; r, z) of X̄ and recognize p(T − r, x;T − t, z) as the weak fundamental
solution corresponding to the PDE in (2.9). Thus, [1], Theorem 10(ii) yields the
following result.

PROPOSITION 2.6. Let Assumption 1.1 be satisfied. Then, the process X̄ has
a transition density p such that

∀T > 0 : C−1(r − t)−1/2e−C(z−x)2/(r−t)

≤ p(t, x; r, z) ≤ C(r − t)−1/2e−C−1(z−x)2/(r−t),

0 ≤ t < r ≤ T ,x, z ∈ R

(2.10)

with C ∈ (1,∞) possibly depending on T . In particular, if X̄(0) is distributed
according to λ, then

(2.11) ∀T > 0 : sup
0≤t≤T

E
[∣∣X̄(t)

∣∣2+η]
< ∞.

3. Propagation of chaos estimates. This section is devoted to the proof of
Theorem 1.6.

PROOF OF THEOREM 1.6. Step 1. Fix any p ≥ 2 and T > 0. We aim to em-
ploy Proposition 2.2 and to do so we are going to estimate the left-hand side of
(1.13) by a quantity involving the left-hand side of (2.3). To this end, we first ob-
serve that the pairs (X

(n)
i , X̄

(n)
i ), i = 1,2, . . . , n have the same distribution [due to

the weak uniqueness for (1.1) and the strong uniqueness for (1.11)] and therefore
the left-hand side of (1.13) can be rewritten in the symmetrized form

(3.1)
1

n

n∑
i=1

E

[
sup

0≤t≤T

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p]
.
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Next, we use the SDEs (1.1) and (1.11) satisfied by X
(n)
i and X̄

(n)
i , the elemen-

tary inequality

(3.2) (r1 + r2)
p ≤ 2p−1(

r
p
1 + r

p
2

)
, r1, r2 ≥ 0,

the Burkholder–Davis–Gundy inequality (see, e.g., [22], Chapter 3, Theorem 3.28)
and the Lipschitz property of b and σ to find for all t ∈ [0, T ] and i = 1,2, . . . , n:

E

[
sup

0≤s≤t

∣∣X(n)
i (s) − X̄

(n)
i (s)

∣∣p]

≤ CE

[(∫ t

0

∣∣Fρ(n)(s)

(
X

(n)
i (s)

) − R
(
s, X̄

(n)
i (s)

)∣∣ ds

)p]

+ CE

[(∫ t

0

∣∣Fρ(n)(s)

(
X

(n)
i (s)

) − R
(
s, X̄

(n)
i (s)

)∣∣2 ds

)p/2]
,

(3.3)

where C < ∞ depends only on p and the Lipschitz constants of b and σ . Applying
Jensen’s inequality to each of the summands on the right-hand side of (3.3), we
obtain the further upper bound

(3.4) CE

[∫ t

0

∣∣Fρ(n)(s)

(
X

(n)
i (s)

) − R
(
s, X̄

(n)
i (s)

)∣∣p ds

]
,

where C < ∞ can be chosen in terms of T , p and the Lipschitz constants of b

and σ .
Another application of (3.2) gives

CE

[∫ t

0

∣∣Fρ(n)(s)

(
X

(n)
i (s)

) − R
(
s,X

(n)
i (s)

)∣∣p ds

]

+ CE

[∫ t

0

∣∣R(
s,X

(n)
i (s)

) − R
(
s, X̄

(n)
i (s)

)∣∣p ds

]
,

(3.5)

where C < ∞ is still a function of T , p and the Lipschitz constants of b and σ

only. Now, we take the average of the first summands in (3.5) over i = 1,2, . . . , n

and get

C

n

n∑
i=1

E

[∫ t

0

∣∣Fρ(n)(s)

(
X

(n)
i (s)

) − R
(
s,X

(n)
i (s)

)∣∣p ds

]

= C

∫ t

0
E

[
1

n

n∑
k=1

∣∣Fρ(n)(s)

(
X

(n)
(k) (s)

) − R
(
s,X

(n)
(k) (s)

)∣∣p]
ds,

(3.6)

where X
(n)
(1) (s) ≤ X

(n)
(2) (s) ≤ · · · ≤ X

(n)
(n)(s) are the order statistics of the vector

(X
(n)
1 (s),X

(n)
2 (s), . . . ,X

(n)
n (s)).

At this point, [23], Theorem on page 439 for the function y �→ ∑
1≤i<j≤n 1{yi=yj }

on R
n reveals that with probability one it holds Fρ(n)(s)(X

(n)
(k) (s)) = k

n
, k =
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1,2, . . . , n for Lebesgue a.e. s ∈ [0, T ]. This and (3.2) allow to estimate the end
result of (3.6) from above by

(3.7)

C

∫ t

0
E

[
1

n

n∑
k=1

∣∣∣∣kn − R
(
s, X̄

(n)
(k) (s)

)∣∣∣∣p
]

+E

[
1

n

n∑
k=1

∣∣R(
s, X̄

(n)
(k) (s)

) − R
(
s,X

(n)
(k) (s)

)∣∣p]
ds,

where X̄
(n)
(1) (s) ≤ X̄

(n)
(2) (s) ≤ · · · ≤ X̄

(n)
(n)(s) are the order statistics of the vector

(X̄
(n)
1 (s), X̄

(n)
2 (s), . . . , X̄

(n)
n (s)) and C < ∞ depends on T , p and the Lipschitz

constants of b and σ only.
Step 2. Relying on the representation (2.2) we readily identify the quantity

E[ 1
n

∑n
k=1 | k

n
− R(s, X̄

(n)
(k) (s))|p] in (3.7) as

(3.8) E

[
Wp

(
1

n

n∑
k=1

δk/n,
1

n

n∑
k=1

δ
R(s,X̄

(n)
(k) (s))

)p]
.

The observation (2.6) reveals R(s, X̄
(n)
(1) (s)) ≤ R(s, X̄

(n)
(2) (s)) ≤ · · · ≤ R(s, X̄

(n)
(n)(s))

as the order statistics of an i.i.d. sample from the uniform distribution on [0,1].
This, the triangle inequality for Wp and (3.2) imply that the expectation in (3.8) is
bounded above by

(3.9) 2p−1Wp

(
1

n

n∑
k=1

δk/n, υ

)p

+ 2p−1
E

[
Wp

(
υ,

1

n

n∑
i=1

δUi

)p]

in the notation of Proposition 2.2. Using the representation (2.2) for the first ex-
pectation in (3.9) and Proposition 2.2 for the second expectation in (3.9) we end
up with the upper bound

(3.10) 2p−1n−p + 2p−1Cppp/2n−p/2,

where C is the constant in Proposition 2.2.
Step 3. Putting the estimates (3.5), (3.7) and (3.10) together we arrive at the

inequality

1

n

n∑
i=1

E

[
sup

0≤s≤t

∣∣X(n)
i (s) − X̄

(n)
i (s)

∣∣p]

≤ C

∫ t

0

(
n−p + n−p/2 +E

[
1

n

n∑
k=1

∣∣R(
s,X

(n)
(k) (s)

) − R
(
s, X̄

(n)
(k) (s)

)∣∣p]

+E

[
1

n

n∑
i=1

∣∣R(
s,X

(n)
i (s)

) − R
(
s, X̄

(n)
i (s)

)∣∣p])
ds

(3.11)
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for all t ∈ [0, T ], where C < ∞ is a function of T , p and the Lipschitz constants
of b and σ . Moreover, the functions x �→ R(s, x) are Lipschitz with uniformly
bounded Lipschitz constants as s varies in [0, T ] by Proposition 2.5 and

(3.12)

1

n

n∑
k=1

∣∣X(n)
(k) (s) − X̄

(n)
(k) (s)

∣∣p = Wp

(
ρ(n)(s), ρ̄(n)(s)

)p

≤ 1

n

n∑
i=1

∣∣X(n)
i (s) − X̄

(n)
i (s)

∣∣p
by the representation (2.2) and the definition of Wp in (1.12), so that for all t ∈
[0, T ]:

1

n

n∑
i=1

E

[
sup

0≤s≤t

∣∣X(n)
i (s) − X̄

(n)
i (s)

∣∣p]

≤ C
(
n−p + n−p/2)

t

+ C

∫ t

0

1

n

n∑
i=1

E

[
sup

0≤r≤s

∣∣X(n)
i (r) − X̄

(n)
i (r)

∣∣p]
ds,

(3.13)

where C < ∞ depends on T , p, the Lipschitz constants of b and σ and the supre-
mum of Rx on [0, T ] × R only. The desired estimate (1.13) is a consequence of
(3.13) due to the representation (3.1) and Gronwall’s lemma.

Step 4. For p ∈ (0,2), we choose a p′ ∈ [2,∞) and deduce (1.13) for p from
(1.13) for p′ by means of the inequality

(3.14)

1

n

n∑
i=1

E

[
sup

0≤t≤T

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p]

≤
(

1

n

n∑
i=1

E

[
sup

0≤t≤T

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p′])p/p′

.

Finally, we obtain (1.14) from (1.13) via the chain of estimates

E

[
sup

0≤t≤T

Wp

(
ρ(n)(t), ρ̄(n)(t)

)]p ≤ E

[
sup

0≤t≤T

Wp

(
ρ(n)(t), ρ̄(n)(t)

)p]

≤ E

[
sup

0≤t≤T

1

n

n∑
i=1

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p]

≤ 1

n

n∑
i=1

E

[
sup

0≤t≤T

∣∣X(n)
i (t) − X̄

(n)
i (t)

∣∣p]
(3.15)

valid for all p ≥ 1. �
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4. Existence of subsequential limits. The main result of this section is the
next proposition establishing the existence of subsequential limits for the finite-
dimensional distributions of the fluctuation processes Gn, n ∈ N and Hn, n ∈ N. It
serves as a key ingredient in the proof of Theorem 1.2.

PROPOSITION 4.1. Suppose that Assumption 1.1 is satisfied. Then, for all m ∈
N and 0 < t1 < · · · < tm every subsequence of

(4.1)
(
Gn(0),Gn(t1), . . . ,Gn(tm),Hn(t1),Hn(t2), . . . ,Hn(tm)

)
, n ∈ N

has a further subsequence which converges in law in

Mfin(R)m+1 × Mfin
([0, t1] ×R

) × Mfin
([0, t2] ×R

) × · · · × Mfin
([0, tm] ×R

)
.

PROOF. By Prokhorov’s theorem in the form of [15], Corollary on page 119
it suffices to show that the laws of the random vectors in (4.1) form a uniformly
tight sequence. Moreover, since products of compact sets are compact, we only
need to prove that for all s ≥ 0 and t > 0 the laws associated with the sequences
Gn(s), n ∈ N and Hn(t), n ∈N are uniformly tight. In view of the Banach–Alaoglu
theorem (see, e.g., [25], Chapter 12, Theorem 3), this is the case for any fixed s ≥ 0
and t > 0 if for all ε > 0 there exists a Cε < ∞ such that

(4.2) ∀n ∈N : P
(∥∥Gn(s)

∥∥
TV > Cε

)
< ε and P

(∥∥Hn(t)
∥∥

TV > Cε

)
< ε,

where ‖ · ‖TV stands for the total variation norm.
By the definitions of Gn(s), n ∈ N and Hn(t), n ∈ N in (1.3) and (1.4) the two

inequalities of (4.2) can be rewritten as

P

(√
n

∫
R

∣∣Fρ(n)(s)(x) − R(s, x)
∣∣ dx > Cε

)
< ε,(4.3)

P

(√
n

∫ t

0

∫
R

∣∣Fρ(n)(r)(x) − R(r, x)
∣∣ dx dr > Cε

)
< ε.(4.4)

The representation (2.1) allows to rewrite these further as

(4.5)
P

(√
nW1

(
ρ(n)(s), ρ(s)

)
> Cε

)
< ε,

P

(√
n

∫ t

0
W1

(
ρ(n)(r), ρ(r)

)
dr > Cε

)
< ε.

Applying Markov’s inequality, the triangle inequality for W1 and Fubini’s theorem
we bound the two probabilities in (4.5) from above by√

n

Cε

E
[
W1

(
ρ(n)(s), ρ̄(n)(s)

)] +
√

n

Cε

E
[
W1

(
ρ̄(n)(s), ρ(s)

)]
,(4.6)

√
n

Cε

E

[∫ t

0
W1

(
ρ(n)(r), ρ̄(n)(r)

)
dr

]
+

√
n

Cε

∫ t

0
E

[
W1

(
ρ̄(n)(r), ρ(r)

)]
dr,(4.7)

respectively. In view of (1.14), [4], Theorem 3.2 and the discussion of the func-
tional J1 on page 25, (2.11) and (2.6), we can make the estimates (4.6), (4.7)
smaller than ε for all n ∈ N by choosing a large enough Cε < ∞. �
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5. Identification of subsequential limits. In this section, we identify the sub-
sequential limits of Proposition 4.1 and complete the proof of Theorem 1.2. The
next proposition is the first step towards such an identification.

PROPOSITION 5.1. Suppose that Assumption 1.1 holds and let

(5.1)
(
G∞(0),G∞(t1), . . . ,G∞(tm),H∞(t1),H∞(t2), . . . ,H∞(tm)

)
be a limit point in law of the sequence in (4.1). Then, with the notation of Theo-
rem 1.2 and

(5.2)
(Asγ )(s, x) := γs(s, x) + γx(s, x)b

(
R(s, x)

) + γxx(s, x)
σ (R(s, x))2

2
,

(s, x) ∈ [0, t] ×R,

the joint distribution of∫
R

γ (t�, x)G∞(t�)(dx) −
∫
R

γ (0, x)G∞(0)(dx)

−
∫ t�

0

∫
R

(Asγ )(s, x)H∞(t�)(ds,dx),

∫
R

γ (0, x)G∞(0)(dx),

(5.3)

as � and γ vary over {1,2, . . . ,m} and the space of functions on [0, t�] ×R which
are continuously differentiable in s, twice continuously differentiable in x and
compactly supported, coincides with that of

(5.4)

∫ t�

0

∫
R

γ (s, x)σ
(
R(s, x)

)
Rx(s, x)1/2 dW(s, x),

∫
R

γ (0, x)β
(
Fλ(x)

)
dx.

The proof of Proposition 5.1 relies on a suitable prelimit version of its statement.
For every fixed n ∈ N let Bn, �n be the piecewise constant functions on [0,1] with
jumps at 1

n
, 2

n
, . . . ,1 and

(5.5)

Bn(k/n) = 1

n

k∑
j=1

b(j/n),

�n(k/n) = 1

n

k∑
j=1

σ(j/n)2

2
, k = 0,1, . . . , n.
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LEMMA 5.2. Suppose that Assumption 1.1 is satisfied. Then, for any n ∈ N,
t > 0 and function γ on [0, t] ×R which is continuously differentiable in s, twice
continuously differentiable in x and compactly supported it holds∫

R

γ (t, x)Gn(t)(dx) −
∫
R

γ (0, x)Gn(0)(dx)

−
∫ t

0

∫
R

∫ 1

0

(
γs(s, x) + γx(s, x)b

(
aFρ(n)(s)(x) + (1 − a)R(s, x)

)

+ γxx(s, x)
σ (aFρ(n)(s)(x) + (1 − a)R(s, x))2

2

)
daHn(t)(ds,dx)

= − 1√
n

n∑
i=1

∫ t

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s)

+ √
n

∫ t

0

∫
R

(
γx(s, x)(Bn − B)

(
Fρ(n)(s)(x)

)
+ γxx(s, x)(�n − �)

(
Fρ(n)(s)(x)

))
dx ds.

(5.6)

PROOF OF LEMMA 5.2. Fixing n, t and γ as described we observe that Defi-
nition 2.4 of a generalized solution to the Cauchy problem (1.2) implies∫

R

γ (t, x)R(t, x)dx −
∫
R

γ (0, x)R(0, x)dx

=
∫ t

0

∫
R

γs(s, x)R(s, x) + γx(s, x)B
(
R(s, x)

)
+ γxx(s, x)�

(
R(s, x)

)
dx ds.

(5.7)

To find a version of the identity (5.7) with Fρ(n)(·)(·) in place of R(·, ·), we apply
Itô’s formula for �(s, x) := − ∫ ∞

x γ (s, y)dy and obtain∫
R

�(t, x)ρ(n)(t)(dx) −
∫
R

�(0, x)ρ(n)(0)(dx)

= 1

n

n∑
i=1

∫ t

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s)

+
∫ t

0

∫
R

(
�s(s, x) + �x(s, x)b

(
Fρ(n)(s)(x)

)

+ �xx(s, x)
σ (Fρ(n)(s)(x))2

2

)
ρ(n)(s)(dx)ds.

(5.8)

Next, we use summation by parts (note that limx→∞ �(s, x) = 0 and
limx→∞ �s(s, x) = 0 for all s ∈ [0, t] by the compact support assumption on γ ) to
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compute

∫
R

�(s, x)ρ(n)(s)(dx)

= −
∫
R

γ (s, x)Fρ(n)(s)(x)dx, s ∈ {0, t},
(5.9)

∫
R

�s(s, x)ρ(n)(s)(dx)

= −
∫
R

γs(s, x)Fρ(n)(s)(x)dx, s ∈ [0, t],
(5.10)

∫
R

�x(s, x)b
(
Fρ(n)(s)(x)

)
ρ(n)(s)(dx)

= −
∫
R

γx(s, x)Bn

(
Fρ(n)(s)(x)

)
dx, s ∈ [0, t],

(5.11)

∫
R

�xx(s, x)
σ (Fρ(n)(s)(x))2

2
ρ(n)(s)(dx)

= −
∫
R

γxx(s, x)�n

(
Fρ(n)(s)(x)

)
dx, s ∈ [0, t],

(5.12)

where Bn, �n are defined according to (5.5). Inserting the identities (5.9)–(5.12)
into (5.8), we arrive at

∫
R

γ (t, x)Fρ(n)(t)(x)dx −
∫
R

γ (0, x)Fρ(n)(0)(x)dx

= −1

n

n∑
i=1

∫ t

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s)

+
∫ t

0

∫
R

(
γs(s, x)Fρ(n)(s)(x) + γx(s, x)Bn

(
Fρ(n)(s)(x)

)
+ γxx(s, x)�n

(
Fρ(n)(s)(x)

))
dx ds.

(5.13)

At this point, we take the difference between the equations (5.13) and (5.7),
multiply the resulting equation by

√
n, use the fundamental theorem of calculus in

the forms

Bn

(
Fρ(n)(s)(x)

) − B
(
R(s, x)

)
= Bn

(
Fρ(n)(s)(x)

) − B
(
Fρ(n)(s)(x)

)
+

∫ 1

0
b
(
aFρ(n)(s)(x) + (1 − a)R(s, x)

)(
Fρ(n)(s)(x) − R(s, x)

)
da,

(5.14)
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�n

(
Fρ(n)(s)(x)

) − �
(
R(s, x)

)
= �n

(
Fρ(n)(s)(x)

) − �
(
Fρ(n)(s)(x)

)

+
∫ 1

0

σ(aFρ(n)(s)(x) + (1 − a)R(s, x))2

2

(
Fρ(n)(s)(x) − R(s, x)

)
da

(5.15)

and rearrange terms to end up with (5.6). �

We are now ready to give the proof of Proposition 5.1.

PROOF OF PROPOSITION 5.1. Step 1. By definition the random variables in
(5.3) are the limits in law of∫

R

γ (t�, x)Gn(t�)(dx) −
∫
R

γ (0, x)Gn(0)(dx)

−
∫ t�

0

∫
R

(Asγ )(s, x)Hn(t�)(ds,dx),

∫
R

γ (0, x)Gn(0)(dx)

(5.16)

along a suitable sequence of n ∈N.
To proceed we note that the convergence ρ(n) → ρ in probability in C([0,∞),

M1(R)) and the regularity result of Proposition 2.5 imply the convergences in
probability

(5.17) sup
(s,x)∈[0,t�]×R

∣∣Fρ(n)(s)(x) − R(s, x)
∣∣ → 0, � = 1,2, . . . ,m.

To this end, we apply the Skorokhod Representation theorem in the form of [12],
Theorem 3.5.1 to the sequence ρ(n), n ∈ N, and use Prokhorov’s theorem for the
compact set {ρ(s), s ∈ [0, t�]} to find for every fixed ε > 0 some −∞ < x < x <

∞ such that max(R(s, x),1−R(s, x)) ≤ ε, s ∈ [0, t�]. Moreover, by the regularity
result of Proposition 2.5 the ε-modulus of continuity θ = θ(ε) > 0 of the function
R on [0, t�] × [x, x] is well defined. In addition, for every n ∈ N large enough the
Lévy distance between ρ(n)(s) and ρ(s) is less than θ for all s ∈ [0, t�]. Finally,
choosing points x = x1 < x2 < · · · < xJ = x at most θ apart, with a suitable J ∈ N,
we have with the conventions x0 := −∞, xJ+1 := ∞,

sup
(s,x)∈[0,t�]×R

∣∣Fρ(n)(s)(x) − R(s, x)
∣∣

≤ sup
s∈[0,t�]

max
1≤j≤J+1

max
(∣∣Fρ(n)(s)(xj ) − R(s, xj−1)

∣∣,
∣∣Fρ(n)(s)(xj−1) − R(s, xj )

∣∣)
≤ θ + sup

s∈[0,t�]
max

1≤j≤J+1
max

(∣∣R(s, xj − θ) − R(s, xj−1)
∣∣,
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∣∣R(s, xj + θ) − R(s, xj−1)
∣∣,∣∣R(s, xj−1 − θ) − R(s, xj )
∣∣, ∣∣R(s, xj−1 + θ) − R(s, xj )

∣∣).
The latter bound is at most θ + 2ε, and (5.17) follows from the arbitrariness of
ε > 0.

The convergences of (5.17) in conjunction with the Lipschitz property of b, σ 2

2
[cf. Assumption 1.1(b)] show that the limit in law of the random variables in (5.16)
along a sequence of n ∈N is the same as the limit in law of∫

R

γ (t�, x)Gn(t�)(dx) −
∫
R

γ (0, x)Gn(0)(dx)

−
∫ t�

0

∫
R

∫ 1

0

(
γs(s, x) + γx(s, x)b

(
aFρ(n)(s)(x) + (1 − a)R(s, x)

)

+ γxx(s, x)
σ (aFρ(n)(s)(x) + (1 − a)R(s, x))2

2

)
daHn(t�)(ds,dx),

∫
R

γ (0, x)Gn(0)(dx)

along the same sequence of n ∈N.
Next, we apply Lemma 5.2 and find that the latter limit in law must be equal to

the limit in law of

− 1√
n

n∑
i=1

∫ t�

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s)

+ √
n

∫ t�

0

∫
R

(
γx(s, x)(Bn − B)

(
Fρ(n)(s)(x)

)
+ γxx(s, x)(�n − �)

(
Fρ(n)(s)(x)

))
dx ds,∫

R

γ (0, x)Gn(0)(dx)

along the same sequence of n ∈ N. Moreover, since the functions b and σ 2

2 are
Lipschitz by Assumption 1.1(b), the suprema sup[0,1] |Bn − B| and sup[0,1] |�n −
�| can be bounded above by Cn−1 with a constant C < ∞ depending only on the
Lipschitz constants of b and σ 2

2 . Consequently, it suffices to study the limit in law
of

(5.18)

− 1√
n

n∑
i=1

∫ t�

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s),

∫
R

γ (0, x)Gn(0)(dx)

along the same sequence of n ∈N as before.
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Step 2. Consider the sequences of continuous martingales

(5.19)

∫
R

γ (0, x)Gn(0)(dx)

− 1√
n

n∑
i=1

∫ t

0
γ

(
s,X

(n)
i (s)

)
σ

(
Fρ(n)(s)

(
X

(n)
i (s)

))
dB

(n)
i (s),

t ∈ [0, t�]
indexed by n ∈ N, where � and γ vary over {1,2, . . . ,m} and a countable dense
subset C� of the space of functions on [0, t�] ×R which are continuously differen-
tiable in s, twice continuously differentiable in x and compactly supported. One
easily verifies the tightness of each such sequence via the tightness criterion of
[3], Theorem 7.3 by recalling Proposition 2.3, writing each of the martingales as
a time-changed standard Brownian motion with the same initial value (cf. [22],
Chapter 3, Problem 4.7) and using the assumed boundedness of γ and σ . In par-
ticular, every sequence of n ∈ N admits a subsequence along which the continu-
ous martingales of (5.19) converge to the respective limiting processes Mγ for all
γ ∈ C�, � ∈ {1,2, . . . ,m}.

Now, letting �(s, x) := − ∫ ∞
x γ (s, y)dy as before, integrating by parts, recall-

ing Assumption 1.1(a), applying the inequality (3.2) with p = 2 and using the Itô
isometry we arrive at the estimate

2
(
E

[
�

(
0,X

(n)
1 (0)

)2] −E
[
�

(
0,X

(n)
1 (0)

)]2)
+ 2E

[∫ t

0

∫
R

γ (s, x)2σ
(
Fρ(n)(s)(x)

)2
ρ(n)(s)(dx)ds

](5.20)

on the second moment of the random variable in (5.19) with the same value of t .
The latter quantities tend to

(5.21)
2
(
E

[
�

(
0,X

(1)
1 (0)

)2] −E
[
�

(
0,X

(1)
1 (0)

)]2)
+ 2E

[∫ t

0

∫
R

γ (s, x)2σ
(
R(s, x)

)2
ρ(s)(dx)ds

]

in the limit n → ∞, as can be seen by applying the Skorokhod Representation
theorem in the form of [12], Theorem 3.5.1 to the sequence ρ(n), n ∈ N, using the
almost sure weak convergences

σ
(
Fρ(n)(s)(x)

)2
ρ(n)(s)(dx) = 2 d�n

(
Fρ(n)(s)(·)

) →
2 d�

(
R(s, ·)) = σ

(
R(s, x)

)2
ρ(s)(dx),

s ∈ [0, t]
(5.22)

and appealing to the Dominated Convergence theorem (recall that γ and σ are
bounded by assumption). In particular, the one-dimensional distributions of the
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continuous martingales in (5.19) are uniformly integrable as n varies, so that the
limiting processes Mγ must be themselves continuous martingales for all γ ∈ C�,
� ∈ {1,2, . . . ,m}.

Finally, for any γ ∈ C�, γ̃ ∈ C
�̃

another application of the Skorokhod Repre-
sentation theorem to the sequence ρ(n), n ∈ N, the convergences in (5.22) and the
Dominated Convergence theorem show that the quadratic covariation process on
[0,min(t�, t�̃)] between the continuous martingales of (5.19) associated with γ , γ̃

converges in law to

(5.23)
∫ t

0

∫
R

γ (s, x)γ̃ (s, x)σ
(
R(s, x)

)2
ρ(s)(dx)ds, t ∈ [

0,min(t�, t�̃)
]

in the limit n → ∞. Moreover, another uniform integrability argument relying
on integration by parts, Assumption 1.1(a), the inequality (3.2) with p = 4, the
Burkholder–Davis–Gundy inequality (see, e.g., [22], Chapter 3, Theorem 3.28)
and the boundedness of γ and σ allows to identify the process in (5.23) as the
quadratic covariation process between Mγ and Mγ̃ . This and Proposition 2.3
lead to the conclusion that the probability space supporting Mγ , γ ∈ C�, � ∈
{1,2, . . . ,m} admits an orthogonal martingale measure dM(s, x) on [0, tm] × R

in the sense of [36], definitions on pages 287–288 with the quadratic variation
measure

(5.24) d〈M〉(s, x) = σ
(
R(s, x)

)2
ρ(s)(dx)ds on [0, tm] ×R

and a reparametrized Brownian bridge β(Fλ(·)) independent of dM(s, x) satisfy-
ing

(5.25)
Mγ (t) =

∫
R

γ (0, x)β
(
Fλ(x)

)
dx +

∫ t

0

∫
R

γ (s, x)dM(s, x),

t ∈ [0, t�]
for all γ ∈ C�, � ∈ {1,2, . . . ,m}. It remains to use the positivity of σ throughout
[0,1] and the existence of a positive density Rx(s, ·) of ρ(s) for s > 0 [cf. (2.6)
and the lower bound of (2.10)] in order to define the white noise

(5.26) dW(s, x) := σ
(
R(s, x)

)−1
Rx(s, x)−1/2 dM(s, x) on [0, tm] ×R,

ending up with the identification

(5.27)

Mγ (t) =
∫
R

γ (0, x)β
(
Fλ(x)

)
dx

+
∫ t

0

∫
R

γ (s, x)σ
(
R(s, x)

)
Rx(s, x)1/2 dW(s, x), t ∈ [0, t�]

for all γ ∈ C�, � ∈ {1,2, . . . ,m}. The statement of the proposition for such � and γ

readily follows. To obtain the statement for arbitrary � and γ it suffices to pick a
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sequence of functions from C� converging to γ , use the statement for the latter and
pass to the limit. �

We proceed to an analogue of Proposition 5.1 for the mild solution G from
(1.9).

PROPOSITION 5.3. Suppose that Assumption 1.1 holds. Then, for any t > 0
the measures G(t, x)dx on R and G(s, x)1[0,t]×R(s, x)ds dx on [0, t]×R, defined
in terms of the mild solution G from (1.9), are finite almost surely and for every
function on [0, t] ×R which is continuously differentiable in s, twice continuously
differentiable in x and compactly supported one has∫

R

γ (t, x)G(t, x)dx −
∫
R

γ (0, x)G(0, x)dx

−
∫ t

0

∫
R

(Asγ )(s, x)G(s, x)dx ds

=
∫ t

0

∫
R

γ (s, x)σ
(
R(s, x)

)
Rx(s, x)1/2 dW(s, x).

(5.28)

PROOF. Step 1. We fix a t > 0 and aim to verify in this first step that

(5.29) E

[∫
R

∣∣G(t, x)
∣∣dx

]
< ∞ and E

[∫ t

0

∫
R

∣∣G(s, x)
∣∣ dx ds

]
< ∞.

To this end, we insert the right-hand side of (1.9) into the first expectation and
bound the result using the triangle inequality, Fubini’s Theorem and Jensen’s in-
equality by

(5.30)

E

[∫
R

∣∣β(
Fλ(y)

)∣∣ dy

]

+
∫
R

(∫ t

0

∫
R

σ
(
R(s, y)

)2
Rx(s, y)p(s, y; t, x)2 dy ds

)1/2
dx.

Fubini’s Theorem and the scaling property of Gaussian distributions reveals further
that the first summand in (5.30) is the product of the first absolute moment of the
standard Gaussian distribution and

∫
R

√
Fλ(y)(1 − Fλ(y))dy. The latter integral is

finite due to Assumption 1.1(a) and [4], discussion of the functional J1 on page 25.
To estimate the second summand in (5.30) we combine the boundedness of σ

[cf. Assumption 1.1(b)], the inequality p(s, y; t, x) ≤ C(t − s)−1/2 [cf. (2.10)] and
the identity

(5.31)
∫
R

Rx(s, y)p(s, y; t, x)dy = Rx(t, x)
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(due to the Markov property of the diffusion X̄, see Section 2.2) to arrive at the
upper bound

(5.32) C

∫
R

(∫ t

0

1

2
(t − s)−1/2Rx(t, x)ds

)1/2
dx = Ct1/4

∫
R

Rx(t, x)1/2 dx,

where C < ∞ depends only on sup[0,1] σ and the constant in (2.10). At this point,
Jensen’s inequality with respect to the Cauchy distribution

(5.33)

∫
R

Rx(t, x)1/2 dx = π

∫
R

Rx(t, x)1/2(
1 + x2) 1

π(1 + x2)
dx

≤ π1/2
(∫

R

Rx(t, x)
(
1 + x2)

dx

)1/2

and the estimate (2.11) imply that the first expectation in (5.29) is finite. More-
over, in view of Fubini’s theorem and since the just obtained estimate is uniformly
bounded on every compact interval of t’s, the second expectation in (5.29) is also
finite.

Step 2. To derive the identity (5.28), we fix a function γ as described and deduce
from the definition of G in (1.9) that∫

R

γ (t, x)G(t, x)dx =
∫
R

γ (t, x)

∫
R

G(0, y)p(0, y; t, x)dy dx

+
∫
R

γ (t, x)

∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2

× p(s, y; t, x)dW(s, y)dx.

(5.34)

Moreover, the boundedness of γ and σ and the estimates∫
R

∫
R

∣∣G(0, y)
∣∣p(0, y; t, x)dy dx =

∫
R

∣∣G(0, y)
∣∣ dy < ∞,(5.35)

∫
R

∫ t

0

∫
R

Rx(s, y)p(s, y; t, x)2 dy ds dx

≤ C

∫
R

∫ t

0
(t − s)−1/2Rx(t, x)ds dx < ∞

(5.36)

(see Step 1 for more details) allow us to use the classical and the stochastic Fubini’s
theorems (see [36], Theorem 2.6 and note that the dominating measure therein is
δỹ(dy)dỹ ds in our case) and to rewrite the right-hand side of (5.34) as∫

R

G(0, y)

∫
R

γ (t, x)p(0, y; t, x)dx dy

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2

∫
R

γ (t, x)p(s, y; t, x)dx dW(s, y).

(5.37)
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Next, we employ Itô’s formula and Fubini’s theorem to find∫
R

γ (t, x)p(s, y; t, x)dx = E
[
γ

(
t, X̄(t)

) | X̄(s) = y
]

= γ (s, y) +E

[∫ t

s
(Arγ )

(
r, X̄(r)

)
dr

∣∣ X̄(s) = y

]

= γ (s, y) +
∫ t

s

∫
R

(Arγ )(r, x)p(s, y; r, x)dx dr.

Applying this observation to the expression in (5.37), we get∫
R

G(0, y)γ (0, y)dy +
∫
R

G(0, y)

∫ t

0

∫
R

(Arγ )(r, x)p(0, y; r, x)dx dr dy

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2γ (s, y)dW(s, y)

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2

×
∫ t

s

∫
R

(Arγ )(r, x)p(s, y; r, x)dx dr dW(s, y).

(5.38)

At this point, thanks to the boundedness of (Arγ ) and σ [cf. Assumption 1.1(b)]
and the estimates∫

R

∣∣G(0, y)
∣∣ ∫ t

0

∫
R

p(0, y; r, x)dx dr dy =
∫
R

∣∣G(0, y)
∣∣t dy < ∞,(5.39)

∫ t

0

∫
R

∫ r

0

∫
R

Rx(s, y)p(s, y; r, x)2 dy ds dx dr

≤ C

∫ t

0

∫
R

∫ r

0
(r − s)−1/2Rx(r, x)ds dx dr < ∞

(5.40)

the classical and the stochastic Fubini’s theorems are applicable to the second and
fourth summands in (5.38), so that the overall expression in (5.38) equals to∫

R

γ (0, y)G(0, y)dy

+
∫ t

0

∫
R

(Arγ )(r, x)

∫
R

G(0, y)p(0, y; r, x)dy dx dr

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2γ (s, y)dW(s, y)

+
∫ t

0

∫
R

(Arγ )(r, x)

∫ r

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2(5.41)

× p(s, y; r, x)dW(s, y)dx dr
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=
∫
R

γ (0, y)G(0, y)dy +
∫ t

0

∫
R

(Arγ )(r, x)G(r, x)dx dr

+
∫ t

0

∫
R

γ (s, y)σ
(
R(s, y)

)
Rx(s, y)1/2 dW(s, y).

This finishes the proof of the proposition. �

We can now identify the subsequential limits of Proposition 4.1.

PROPOSITION 5.4. Suppose that Assumption 1.1 is satisfied. Then, any sub-
sequential limit in law of the sequence in (4.1) has the same distribution as(

G(0, x)dx,G(t1, x)dx, . . . ,G(tm, x)dx,

G(s, x)1[0,t1]×R(s, x)ds dx,G(s, x)1[0,t2]×R(s, x)ds dx, . . . ,

G(s, x)1[0,tm]×R(s, x)ds dx
)
,

(5.42)

where G is the mild solution from (1.9).

PROOF. Step 1. We consider a probability space that supports a limit point in
law

(5.43)
(
G∞(0),G∞(t1), . . . ,G∞(tm),H∞(t1),H∞(t2), . . . ,H∞(tm)

)
of the sequence in (4.1) and aim to couple it with a mild solution of the SPDE
(1.8).

To this end, for each � ∈ {1,2, . . . ,m} we pick a countable dense subset C�

of the space of functions on [0, t�] × R which are continuously differentiable in
s, twice continuously differentiable in x and compactly supported. We note that
the random variables of (5.3) with � and γ varying over {1,2, . . . ,m} and C� are
defined on the underlying probability space. Moreover, by Proposition 5.1 their
joint distribution must be that of the random variables in (5.4). Hence, by [21],
Theorem 5.3 we can define on an enlargement of the underlying probability space a
countable collection of continuous processes whose conditional distribution given
the random variables in (5.3) with � and γ varying over {1,2, . . . ,m} and C� is the
same as the conditional distribution of the continuous processes

(5.44)

∫ t

0

∫
R

γ (s, x)σ
(
R(s, x)

)
Rx(s, x)1/2 dW(s, x),

t ∈ [0, t�], γ ∈ C�, � = 1,2, . . . ,m

given ∫ t�

0

∫
R

γ (s, x)σ
(
R(s, x)

)
Rx(s, x)1/2 dW(s, x),

γ ∈ C�, � = 1,2, . . . ,m,∫
R

γ (0, x)β
(
Fλ(x)

)
dx, γ ∈ C�, � = 1,2, . . . ,m.

(5.45)
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It follows that the enlarged probability space supports an orthogonal martingale
measure dM(s, x) on [0, tm]×R in the sense of [36], definitions on pages 287–288
with the quadratic variation measure

(5.46) d〈M〉(s, x) = σ
(
R(s, x)

)2
Rx(s, x)dx ds on [0, tm] ×R

and we can define a white noise dW(s, x) on [0, tm] ×R as in (5.26). Finally, we
let G be the mild solution of the SPDE (1.8) on [0, tm] ×R given by

G(t, x) =
∫
R

p(0, y; t, x)G∞(0)(dy)

+
∫ t

0

∫
R

σ
(
R(s, y)

)
Rx(s, y)1/2p(s, y; t, x)dW(s, y),

(t, x) ∈ [0, tm] ×R.

(5.47)

In particular, Proposition 5.3 and our coupling construction ensure that∫
R

γ (t�, x)G(t�, x)dx −
∫ t�

0

∫
R

(Asγ )(s, x)G(s, x)dx ds

=
∫
R

γ (t�, x)G∞(t�)(dx) −
∫ t�

0

∫
R

(Asγ )(s, x)H∞(t�)(ds,dx),

γ ∈ C�, � = 1,2, . . . ,m,

(5.48)

with the notation of (5.2).
Step 2. We fix an � ∈ {1,2, . . . ,m} and a continuous function g : [0, t�]×R→R

with compact support and consider the backward Cauchy problem

(5.49) Asu = g, u(t�, ·) = 0

on [0, t�] × R. As explained in the paragraph following (2.7), the conditions of
[24], Theorem 2.1 apply to the equation (5.49) and guarantee the existence of a
solution u with u,ut , ux, uxx ∈ L2([0, t�] ×R). We claim that (5.48) implies∫

R

u(t�, x)G(t�, x)dx −
∫ t�

0

∫
R

(Asu)(s, x)G(s, x)dx ds

=
∫
R

u(t�, x)G∞(t�)(dx) −
∫ t�

0

∫
R

(Asu)(s, x)H∞(t�)(ds,dx).

(5.50)

Since the first integrals on both sides of (5.50) vanish due to the terminal con-
dition in (5.49) and g = Asu can be chosen arbitrarily from a countable dense
subset of C0([0, t�]×R), it would follow from (5.50) that G(s, x)1[0,t�]×R ds dx =
H∞(t�)(ds,dx) for all � ∈ {1,2, . . . ,m} and then from (5.48) that G(t�, x)dx =
G∞(t�)(dx) for all � ∈ {1,2, . . . ,m}, finishing the proof of the proposition.

To obtain (5.50) from (5.48), it suffices to show that one can pick functions γ (κ),
κ ∈ N in C� with

(5.51)
γ (κ)(t�, ·) → u(t�, ·) and Asγ

(κ) → Asu = g

uniformly as κ → ∞.
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To this end, we recall the solution X̄ of the SDE (2.5) and observe that the time-
homogeneous Markov process (s, X̄(s)), s ∈ [0, t�] is the unique weak solution of
the associated SDE, hence also of the local martingale problem for the operator
As (see e.g. [21], Theorem 18.7). The latter has bounded continuous coefficients,
so that (s, X̄(s)), s ∈ [0, t�] is a Feller process and its generator is the unique ex-
tension of As from the space of infinitely differentiable functions with compact
support in [0, t�] × R to an appropriate domain within the space of continuous
functions on [0, t�] ×R vanishing at infinity (see, e.g., [21], Theorem 18.11).

Next, we employ the stochastic representation

(5.52) u(s, x) = −
∫ t

s
E

[
g
(
r, X̄(r)

) | X̄(s) = x
]
dr, (s, x) ∈ [0, t�] ×R

of the solution to (5.49) [cf. the explanation preceding (2.8)]. Together with the
Feller property of the process (s, X̄(s)), s ∈ [0, t] and the Dominated Convergence
Theorem it shows that u is continuous. Moreover, since g has compact support
and the diffusion X̄ has bounded coefficients, u vanishes at infinity. Finally, the
representation (5.52) reveals that the process

(5.53) u
(
s, X̄(s)

) − u
(
0, X̄(0)

) −
∫ s

0
g
(
r, X̄(r)

)
dr, s ∈ [0, t]

is a martingale, so that by the converse of Dynkin’s formula (see, e.g., [30], Chap-
ter VII, Proposition 1.7) u belongs to the domain of As with Asu = g. In particular,
u admits an approximation as described in (5.51). �

We conclude the section with the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. By Proposition 4.1, every subsequence of the se-
quence in (4.1) has a further subsequence which converges in law. Moreover, by
Proposition 5.4 the limit of the latter must have the distribution of the random vec-
tor in (5.42). Consequently, the whole sequence in (4.1) converges in law to the
random vector in (5.42), which is precisely the content of Theorem 1.2. �
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