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LATTICE APPROXIMATION TO THE DYNAMICAL �4
3 MODEL1
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Beijing Institute of Technology∗, Beijing Jiaotong University† and
University of Bielefeld‡

We study the lattice approximations to the dynamical �4
3 model by para-

controlled distributions proposed in [Forum Math. Pi 3 (2015) e6]. We prove
that the solutions to the lattice systems converge to the solution to the dynam-
ical �4

3 model in probability, locally uniformly in time. Since the dynamical

�4
3 model is not well defined in the classical sense and renormalisation has to

be performed in order to define the nonlinear term, a corresponding suitable
drift term is added in the stochastic equations for the lattice systems.
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1. Introduction. Recall that the usual continuum Euclidean �4
d -quantum

field is heuristically described by the following probability measure:

(1.1) N−1
∏

x∈Td

dφ(x) exp
(
−

∫
Td

(∣∣∇φ(x)
∣∣2 + φ2(x) + φ4(x)

)
dx

)
,

where N is a normalization constant and φ is the real-valued field and Td is the
d-dimensional torus. There have been many approaches to the problem of giving a
meaning to the above heuristic measure for d = 2 and d = 3 (see [10, 14] and refer-
ences therein). In [31], Parisi and Wu proposed a program for Euclidean quantum
field theory of getting Gibbs states of classical statistical mechanics as limiting
distributions of stochastic processes, especially as solutions to nonlinear stochas-
tic differential equations. Then one can use the stochastic differential equations to
study the properties of the Gibbs states. This procedure is called stochastic field
quantization (see [25]). The �4

d model is the simplest nontrivial Euclidean quan-
tum field (see [10] and the reference therein). The issue of the stochastic quantiza-
tion of the �4

d model is to solve the following equation:

(1.2) d� = (
�� − �3)

dt + dW(t), �(0) = �0,

where W is a cylindrical Wiener process on L2(Td). The solution � is also called
dynamical �4

d model. (1.2) is ill-posed in both two and three dimensions.
In two spatial dimensions, the dynamical �4

2 model was previously treated in
[2, 9] and [29]. In three spatial dimensions, this equation (1.2) is ill-posed and
the main difficulty in this case is that W, and hence the solutions are so singular
that the nonlinear term is not well defined in the classical sense. It was a long-
standing open problem to give a meaning to equation (1.2) in the three-dimensional
case. A breakthrough result was achieved recently by Martin Hairer in [18], where
he introduced a theory of regularity structures and gave a meaning to equation
(1.2) successfully. He also proved existence and uniqueness of a local (in time)
solution. By using the paracontrolled distributions proposed by Gubinelli, Imkeller
and Perkowski in [12], existence and uniqueness of local solutions to (1.2) has
also been obtained in [7]. Recently, these two approaches have been successful
in giving a meaning to several other ill-posed stochastic PDEs like the Kardar–
Parisi–Zhang (KPZ) equation [4, 17, 26], the Navier–Stokes equation driven by
space–time white noise [37, 38], the dynamical sine-Gordon equation [23] and so
on (see [22] for further interesting examples). From a philosophical perspective,
the theory of regularity structures and the paracontrolled distributions are inspired
by the theory of controlled rough paths [11, 28]. The main difference is that the
regularity structure theory considers the problem locally, while the paracontrolled
distribution method is a global approach using Fourier analysis. In [27], the author
also uses renormalization group techniques to make sense of the dynamical �4

3
model.
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The lattice approximation is an important tool in constructing and study-
ing the continuum �4

3 field (see [1, 32, 33]). It also preserves Osterwalder–
Schrader positivity and also the ferromagnetic nature of the measure (see [10]
and the references therein). Let us set �ε := {εx ∈ T3, x ∈ Z3}. Heuristically,
the quantities

∫ |∇φ(x)|2 dx,
∫

φ2(x) dx, and
∫

φ4(x) dx can be approximated by
ε

∑
|x−y|=ε,x,y∈�ε

(φ(x) − φ(y))2, ε3 ∑
x∈�ε

φ(x)2 and ε3 ∑
x∈�ε

φ(x)4, respec-
tively, as ε tends to zero. Thus heuristically (1.1) can be approximated by the
following probability measure με:

(1.3)

N−1
ε

∏
x∈�ε

dφx exp
(

2ε
∑

|x−y|=ε,x,y∈�ε

φ(x)φ(y)

− (
ε3 + 12ε

) ∑
x∈�ε

φ2(x) − ε3
∑

x∈�ε

φ4(x)

)
,

where Nε is a normalization constant. (1.3) is still just a heuristic expression, but
one can give a rigorous meaning to it since it is a finite dimensional Gaussian
measure with a density (see [10] and the references therein). We call this the lat-
tice �4

3-field measure. From με by deriving suitable bounds on its moments and
choosing subsequences if necessary, one gets limit measures by weak convergence.
These are then the continuum �4

3-field measures.
The following stochastic PDE on �ε , ε > 0, is the stochastic quantization asso-

ciated to the lattice �4
3-field measure:

(1.4)

d�ε(t, x) = (
�ε�

ε(t, x) − (
�ε)3

(t, x) + (
3Cε

0 − 9Cε
1
)
�ε(t, x)

)
dt

+ ε−3/2 dWε(t, x),

�ε(0) = �ε
0.

Here, Wε(t) = {W(t, x)}x∈�ε is a family of independent Brownian motions, �ε
0

and Wε are independent and Cε
0 and Cε

1 are constants defined in (6.3) and (1.10)
below. For x ∈ �ε , define

�εf (x) := ε−2
∑

y∈�ε,y∼x

(
f (y) − f (x)

)
,

and the nearest neighbor relation x ∼ y is to be understood with periodic boundary
conditions on �ε .

The aim of this paper is to prove that as ε → 0 the dynamical lattice approxi-
mation, that is, the solution to (1.4), converges to the dynamical �4

3 model. This
problem is also related to the convergence of a rescaled discrete spin system to
the solution of the dynamical �4

3 model (see [30] for the dynamical �4
2 model).

We emphasize that to make sense of (1.2) we need to renormalise some ill-defined
terms in (1.2). This is done by adding the renormalisation terms Cε

0�ε and Cε
1�ε

in the approximating equation (1.4).
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In the one-dimensional case, approximations to general stochastic partial dif-
ferential equations driven by space–time white noise have been very well studied
(see [8, 15, 16, 19, 20, 24] and the reference therein). In [13], the authors study
the Sasamoto–Spohn-type discretizations of the conservative stochastic Burgers
equation. In the three-dimensional case, we have also studied the discrete approx-
imations to stochastic Navier–Stokes equations driven by space–time white noise
(see [37]).

In this paper, we use the paracontrolled distribution method to prove that the so-
lutions to the lattice approximation equation converge to the dynamical �4

3 model.
The theory of paracontrolled distributions combines the idea of Gubinelli’s con-
trolled rough path [11] and Bony’s paraproduct [5], which is defined as follows:
Let �jf be the j th Littlewood–Paley block of a (Scharwtz) distribution f . For its
definition, we refer to Section 2. Define for distributions f and g

π<(f, g) = π>(g,f ) = ∑
j≥−1

∑
i<j−1

�if �jg, π0(f, g) = ∑
|i−j |≤1

�if �jg.

Formally, fg = π<(f,g) + π0(f, g) + π>(f,g). Observing that, if f is regular,
π<(f,g) behaves like g and is the only term in the Bony’s paraproduct not im-
proving the regularities, the authors in [12] consider a paracontrolled ansatz of the
type

u = π<

(
u′, g

) + u�,

where π<(u′, g) represents the “bad-part” of the solution, u′ is some suitable func-
tion and g is some functional of the Gaussian field and u� is regular enough to
define the multiplication required. Then to make sense of the product of uf we
only need to define gf .

Using the paracontrolled distribution method, to perform the lattice approxima-
tion of the dynamical �4

3 model we shall meet the projection operators PN , which
do not commute with the paraproduct. Here, we use a random operator technique
from [13] to handle these operators. However, for the dynamical �4

3 model this
technique is not enough and we have to estimate an additional error term DN by
stochastic calculations in Section 6.4 (see Remark 4.4).

Framework and main result. For N ≥ 1, let �N = {−N,−(N − 1), . . . ,N}3.
Set ε = 2

2N+1 . Every point k ∈ �N can be identified with x = εk ∈ �ε =
{x = (x1, x2, x3) ∈ εZ3 : −1 < x1, x2, x3 < 1}. We view �ε as a discreti-
sation of the continuous three-dimensional torus T3 identified with [−1,1]3.
In the following for simplicity, we fix a cylindrical Wiener process in (1.2)

on L2(T3) given by 2− 3
2
∑

k βke
ιπk·x for x ∈ T3 and restrict it to L2(�ε) as

WN(x) = 2− 3
2
∑

|k|∞≤N βke
ιπk·x for x ∈ �ε , which is also a cylindrical Wiener

process on L2(�ε). Here, {βk} is a family of complex-valued Brownian mo-
tions with β̄−k(t) = βk(t) and E[βk1(t1)βk2(t2)] = 1{k1+k2=0}t1 ∧ t2 and |k|∞ =
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max(|k1|, |k2|, |k3|). For fixed N , (1.4) is a finite dimensional SDE and we can
easily obtain existence and uniqueness of solutions to (1.4) by [34], which implies
that the solution to (1.4) has the same distribution as the solution to the following
equation:

(1.5)

d�ε(t, x) = (
�ε�

ε(t, x) − (
�ε)3

(t, x) + (
3Cε

0 − 9Cε
1
)
�ε(t, x)

)
dt

+ dWN(t, x),

�ε(0) = �ε
0.

Following [30], we discuss a suitable extension of functions defined on �ε onto
all of the torus T3 (which we identify with the interval [−1,1]3). For any function
Y : �ε →R, we define the discrete Fourier transform Ŷ through

Ŷ (k) =
⎧⎪⎨
⎪⎩

∑
x∈�ε

ε3Y(x)e−ıπk·x if k ∈ {−N, . . . ,N},3

0 if k ∈ Z3 \ {−N, . . . ,N}3.

In this context, Fourier inversion states

(1.6) Y(x) = 1

8

∑
k∈Z3

Ŷ (k)eıπk·x for all x ∈ �ε.

It is thus natural to extend Y to all of T3 by taking (1.6) as a definition of Y(x) for
x ∈ T3 \ �ε . More explicitly, for Y : �ε →R we define (ExtY) : T3 →R as

ExtY(x) = 1

23

∑
k∈{−N,...,N}3

∑
y∈�ε

ε3eıπk·(x−y)Y (y).

By the definition of the operators �ε , we have

êt�εv(k) =
{
e−|k|2f (εk)v̂(k) if k ∈ {−N, . . . ,N}3,

0 if k ∈ Z3 \ {−N, . . . ,N}3.

Here, for x = (x1, x2, x3),

f (x) = 4

|x|2
(

sin2 x1π

2
+ sin2 x2π

2
+ sin2 x3π

2

)
.

Now we extend the solutions to all of T3. It is easy to see that

(1.7)
Ext�ε(t) = P ε

t Ext�ε
0 −

∫ t

0
P ε

t−sQN

[(
Ext�ε)3 − (

3Cε
0 − 9Cε

1
)

Ext�ε]ds

+
∫ t

0
P ε

t−s Ext dWN.

Here, P ε
t = Ext et�ε and QNu(x) = PNu(x) + �Nu(x) with

(1.8) PN = F−11|k|∞≤NF,
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and �N is defined for u satisfying suppFu ⊂ {k : |k|∞ ≤ 3N} as follows:

(1.9)

�Nu(x) = ∑
i1,i2,i3∈{−1,0,1},∑3

j=1 i2
j =0

e
i1i2i3
N (x)F−11k∈P i1i2i3Fu(x)

= ∑
i1,i2,i3∈{−1,0,1},∑3

j=1 i2
j =0

PN

[
e
i1i2i3
N u

]
(x),

where P i1i2i3 = {k = (k1, k2, k3) : kj ij > N if ij = −1,1; |kj | ≤ N, if ij =
0, j = 1,2,3} is a rectangular division of Z3 \ {k ∈ Z3, |k|∞ ≤ N}, e

i1i2i3
N (x) =∏3

j=1 e−ıπ(2N+1)ij xj
and |k|∞ = max(|k1|, |k2|, |k3|). Here and in the following,

the Fourier transform and the inverse Fourier transform are denoted by F and F−1,
respectively.

REMARK 1.1. When we use (1.6) to write f and g in terms of discrete Fourier
transform and take the product of f and g, it is easy to see where the �N part
comes from. When suppF(Extf Extg) � {k ∈ Z3 : |k|∞ ≤ N}, we should multi-

ply e
i1i2i3
N to make suppF(Extf Extge

i1i2i3
N ) belong to the set {k ∈ Z3 : |k|∞ ≤ N}.

Now choose Cε
0 as in (6.3) and

(1.10) Cε
1 = Cε

11 + ∑
i1,i2,i3∈{−1,0,1},∑3

j=1 i2
j =0

C
ε,i1i2i3
12 ,

with Cε
11,C

ε,i1i2i3
12 defined in (6.4) and (6.5), respectively. In the following, we omit

the summation with respect to i1, i2, i3 if there is no confusion.
The main result of this paper is the following theorem.

THEOREM 1.2. Let z ∈ (1/2,2/3) and �0 ∈ C−z. Let (�, τ) be the unique
(maximal in time) solution to (1.2) and let for ε ∈ (0,1) the function �ε be the
unique solution to (1.5) on [0,∞). If the initial data satisfies Ext�ε

0 − �0 →
0 in C−z, then there exists a sequence of random times τL such that limL→∞ τL =
τ and

sup
t∈[0,τL]

∥∥Ext�ε − �
∥∥−z → 0 in probability, as ε → 0.

REMARK 1.3. (i) Existence and uniqueness of (�, τ) has been obtained in [7,
18]. For the definition of C−z and the norm ‖ · ‖−z, see Section 2 below.

(ii) The constant Cε
1 is the corresponding renormalization constant of order

− log ε and is divided into two parts: Cε
11 and Cε

12 which come from terms with
PN and �N defined in (1.8) and (1.9), respectively. Moreover,

Cε
0 � 1

ε
, Cε

11 � − log ε, C
ε,i1i2i3
12 � 1.
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(iii) After our original paper was published on arXiv, Hairer and Matetski in
[21] also obtained similar results by using the theory of regularity structure. More-
over, by using the results in [6] they obtained the existence of a global solution
to the dynamical �4

3 model starting from almost every point and the �4
3 field is

an invariant measure of the solution to (1.2) when the coupling constant is small
in their Corollary 1.2. By a similar argument as in the proof of Corollary 1.2 in
[21], we can also obtain these results. Compared to the piecewise constant exten-
sion in [21], Corollary 1.2, our extension is smooth and based on discrete Fourier
transform and does not change the inner product from L2(�ε) to L2(T3), which
coincides with the extension considered in [10]. Moreover, we use the lattice ap-
proximation and this extension to study the Dirichlet form associated with the �4

3
field in our forthcoming paper.

The structure of the paper is organized as follows. In Section 2, we recall some
basic notions and results for the paracontrolled distribution method. In Section 3,
we prove some estimates for the approximating operators. In Section 4, we use the
paracontrolled distribution method to prove uniform bounds for the lattice approx-
imation equations. In Section 5, we give the proof of our main result Theorem 1.2.
In Section 6, convergence of several stochastic terms is proved.

2. Besov spaces and paraproduct. In the following, we recall the definitions
and some properties of Besov spaces and paraproducts. For a general introduction,
we refer to [3, 12]. First, we introduce the following notation. Throughout the
paper, we use the notation a � b if there exists a constant c > 0 such that a ≤ cb,
and we write a � b if a � b and b � a. Given a Banach space E with norm ‖ · ‖E

and T > 0, we write CT E = C([0, T ];E) for the space of continuous functions
from [0, T ] to E, equipped with the supremum norm ‖ · ‖CT E . For α ∈ (0,1), we
also define Cα

T E as the space of α-Hölder continuous functions from [0, T ] to E,
endowed with the seminorm ‖f ‖Cα

T E = sups,t∈[0,T ],s =t
‖f (s)−f (t)‖E|t−s|α .

The space of real valued infinitely differentiable functions of compact support
is denoted by D(Rd) or D. The space of Schwartz functions is denoted by S(Rd).
Its dual, the space of tempered distributions is denoted by S ′(Rd).

Let χ, θ ∈ D be nonnegative radial functions on Rd , such that:

i. the support of χ is contained in a ball and the support of θ is contained in
an annulus;

ii. χ(z) + ∑
j≥0 θ(2−j z) = 1 for all z ∈ Rd .

iii. supp(χ) ∩ supp(θ(2−j ·)) = ∅ for j ≥ 1 and supp(θ(2−i ·)) ∩
supp(θ(2−j ·)) = ∅ for |i − j | > 1.

We call the pair (χ, θ) a dyadic partition of unity, and refer to [3], Proposi-
tion 2.10, for its existence. The Littlewood–Paley blocks are now defined as

�−1u =F−1(χFu), �ju = F−1(
θ
(
2−j ·)Fu

)
.
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For α ∈ R, the Hölder–Besov space Cα is given by Cα = Bα∞,∞(Rd), where for
p,q ∈ [1,∞] we define

Bα
p,q

(
Rd) =

{
u ∈ S ′(Rd) : ‖u‖Bα

p,q
=

( ∑
j≥−1

(
2jα‖�ju‖Lp

)q)1/q

< ∞
}
,

with the usual interpretation as l∞ norm in case q = ∞. For α ∈R, we write ‖ · ‖α

instead of ‖ · ‖Bα∞,∞ in the following for simplicity.
We point out that everything above and everything that follows can be applied

to distributions on the torus (see [35, 36]). More precisely, let S ′(Td) be the space
of distributions on Td . Therefore, Besov spaces on the torus with general indices
p,q ∈ [1,∞] are defined as

Bα
p,q

(
Td) =

{
u ∈ S ′(Td) : ‖u‖Bα

p,q
=

( ∑
j≥−1

(
2jα‖�ju‖Lp(Td )

)q)1/q

< ∞
}
.

We will need the following Besov embedding theorem on the torus (cf. [12],
Lemma 41).

LEMMA 2.1. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R.

Then Bα
p1,q1

(Td) is continuously embedded in B
α−d( 1

p1
− 1

p2
)

p2,q2 (Td).

Now we recall the following paraproduct introduced by Bony (see [5]). In gen-
eral, the product fg of two distributions f ∈ Cα, g ∈ Cβ is well defined if and
only if α + β > 0. In terms of Littlewood–Paley blocks, the product fg of two
distributions f and g can be formally decomposed as

fg = ∑
j≥−1

∑
i≥−1

�if �jg = π<(f,g) + π0(f, g) + π>(f,g),

with

π<(f,g) = π>(g,f ) = ∑
j≥−1

∑
i<j−1

�if �jg, π0(f, g) = ∑
|i−j |≤1

�if �jg.

For j ≥ 0, we also use the notation

Sjf = ∑
i≤j−1

�if,

and for k1, k2 ∈ Z3

ψ<(k1, k2) = ∑
j≥−1

∑
i<j−1

θi(k1)θj (k2), ψ0(k1, k2) = ∑
|i−j |≤1

θi(k1)θj (k2),

with θi = θ(2−i ·) for i ≥ 0 and θ−1 = χ . We will use without comment that ‖·‖α ≤
‖ · ‖β for α ≤ β , that ‖ · ‖L∞ � ‖ · ‖α for α > 0, and that ‖ · ‖α � ‖ · ‖L∞ for α ≤ 0.
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We will also use that ‖Sju‖L∞ � 2−jα‖u‖α for α < 0, j ≥ 0 and u ∈ Cα , where
‖ · ‖α denotes the norm in Cα,α ∈ R.

The basic results about these bilinear operations are given by the following es-
timates: From these estimates, we know that π<(f,g) part is the only term in the
paraproduct not improving the regularity even if f is regular. π0(f, g) part is the
only term in the paraproduct not well defined for arbitrary distributions f,g.

LEMMA 2.2 (Paraproduct estimates, [5], [12], Lemma 2). For any β ∈ R we
have ∥∥π<(f,g)

∥∥
β � ‖f ‖L∞‖g‖β, f ∈ L∞, g ∈ Cβ,

and for α < 0 furthermore∥∥π<(f,g)
∥∥
α+β � ‖f ‖α‖g‖β, f ∈ Cα, g ∈ Cβ.

For α + β > 0, we have∥∥π0(f, g)
∥∥
α+β � ‖f ‖α‖g‖β, f ∈ Cα, g ∈ Cβ.

The following basic commutator lemma is important for our use.

LEMMA 2.3 ([12], Lemma 5). Assume that α ∈ (0,1) and β,γ ∈ R are such
that α + β + γ > 0 and β + γ < 0. Then for smooth f,g,h, the trilinear operator

C(f,g,h) = π0
(
π<(f,g), h

) − f π0(g,h)

satisfies the bound ∥∥C(f,g,h)
∥∥
α+β+γ � ‖f ‖α‖g‖β‖h‖γ .

Thus, C can be uniquely extended to a bounded trilinear operator from Cα × Cβ ×
Cγ to Cα+β+γ .

Now we recall the following properties of the heat semigroup Pt := et�, which
corresponds to the smoothing effect of the heat semigrop.

LEMMA 2.4 ([12], Lemma 47). Let u ∈ Cα for some α ∈ R. Then for every
δ ≥ 0

‖Ptu‖α+δ � t−
δ
2 ‖u‖α.

LEMMA 2.5 ([7], Lemma A.1). Let u ∈ Cα for some α < 1 and v ∈ Cβ for
some β ∈ R. Then for δ ≥ α + β∥∥Ptπ<(u, v) − π<(u,Ptv)

∥∥
δ � t

α+β−δ
2 ‖u‖α‖v‖β.
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LEMMA 2.6 ([7], Lemma 2.5). Let u ∈ Cα+δ for some α ∈ R, δ > 0. Then for
every t ≥ 0, ∥∥(Pt − I )u

∥∥
α � t

δ
2 ‖u‖α+δ.

We also have the following result, which will be used later.

LEMMA 2.7 (Bernstein-type lemma). Let u ∈ Cα for some α ∈ R.

(1) If suppFu ⊂ {k : |k| ≤ CN} for some C > 0, then for β > α

‖u‖β �Nβ−α‖u‖α.

(2) If suppFu ⊂ {k : |k| > CN} for some C > 0, then for β < α

‖u‖β �Nβ−α‖u‖α.

Here, all the constants we omit are independent of N .

PROOF. We have

‖u‖β = sup
j

2jβ‖�ju‖L∞ = sup
j

2j (β−α)2jα‖�ju‖L∞ .

For the first case, we have that �ju = 0 iff 2j � N , which implies the first result.
If suppFu ⊂ {k : |k| > CN}, we have that �ju = 0 iff 2j � N , which implies the
second result. �

3. Estimates for the approximating operators. In this section, we prove the
estimates for the approximating operators on T3, which will be used to prove the
main result. First, we prove estimates for PN and �N defined in (1.8) and (1.9).
Compared to the estimates proved in the one dimensional case in [13], we prove
them here in the three-dimensional case. Moreover, we prove a commutator esti-
mate for P ε

t whereas in [13] a commutator estimate for �N was proved.

LEMMA 3.1. Let u ∈ Cα for some α ∈ R. Then for any κ > 0 small enough
we have the following estimates:

(1) (Estimates for PN )

‖PNu‖α−κ � ‖u‖α,
∥∥(I − PN)u

∥∥
α−κ � N− κ

2 ‖u‖α.

(2) (Estimates for �N ) If α > 5κ
4 , then for u satisfying suppFu ⊂ {k : |k|∞ ≤

3N}
‖�Nu‖α−κ � N− κ

2 ‖u‖α.

If α < 0 and suppFu ⊂ {k : |k|∞ ≤ N}, then∥∥ei1i2i3
N u

∥∥
α−κ �N− κ

2 ‖u‖α.
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Here, all the constants we omit are independent of N .

PROOF. We have for p > 1 large enough

‖PNu‖α−κ � ‖PNu‖Bα
p,∞ � ‖u‖Bα

p,∞ � ‖u‖α,

where in the first inequality we used Lemma 2.1 and in the second inequality we
used that F−11|k|∞≤NF is an Lp-multiplier. Similarly,∥∥(I − PN)u

∥∥
α−κ �N− κ

2
∥∥(I − PN)u

∥∥
α− κ

2
� N− κ

2 ‖u‖α,

where in the first inequality we used Lemma 2.7 and in the second inequality we
used the result for PN . For (2), we have that for α > 5κ

4

‖�Nu‖α−κ �Nα− 5κ
4 ‖�Nu‖ κ

4
�Nα−κ

∥∥F−11k∈P i1i2i3Fu
∥∥

κ
4

�N− κ
2
∥∥F−11k∈P i1i2i3Fu

∥∥
α− κ

4
�N− κ

2 ‖u‖α.

Here, in the first and third inequalities we used Lemma 2.7, in the second inequality
we used that ‖ei1i2i3

N ‖ κ
4
�N

κ
4 and in the last inequality we used a similar argument

for PN since F−11k∈P i1i2i3F is an Lp-multiplier. Similarly, for α < 0∥∥ei1i2i3
N u

∥∥
α−κ �Nα−3 κ

2
∥∥ei1i2i3

N u
∥∥

κ
2
� Nα−κ‖u‖ κ

2
� N− κ

2 ‖u‖α.

Here, we used suppF(e
i1i2i3
N u) ⊂ {k : |k| > N} and Lemma 2.7 in the first inequal-

ity as well as Lemma 2.7 in the last inequality. Thus the results in (2) follows.
�

Now we prove several properties for the approximating semigroup P ε
t =

Ext et�ε such as smoothing effect, commutator estimate, which are parallel to the
properties of the heat semigroup in Lemmas 2.4–2.6. In fact,

P ε
t = F−11|k|∞≤Ne−t |k|2f (εk)F = F−11|k|∞≤Ne−t |k|2f (εk)ϕ(εk)F = PNP̃ ε

t ,

with

P̃ ε
t := F−1e−t |k|2f (εk)ϕ(εk)F,

where ϕ is a smooth function and equals 1 on {|x|∞ ≤ 1} with suppϕ ⊂ {|x| ≤
1.8}. Here, we introduce P̃ ε

t for the following technique calculations. Then by
similar arguments as in [12], Lemma 47, we have the following results.

LEMMA 3.2. Let u ∈ Cα for some α ∈R. Then for every δ ≥ 0, κ > 0, t > 0,∥∥P ε
t u

∥∥
α+δ−κ � t−

δ
2 ‖u‖α,

∥∥(
P ε

t − Pt

)
u
∥∥
α+δ−κ � ε

κ
2 t−

δ
2 ‖u‖α.

Here, the constants we omit are independent of N .
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PROOF. To obtain the first result, by Lemma 3.1 it suffices to prove that for
every δ ≥ 0

(3.1)
∥∥P̃ ε

t u
∥∥
α+δ � t−

δ
2 ‖u‖α.

In the following, we prove (3.1) and have that for j ≥ 0∥∥�jP̃
ε
t u

∥∥
L∞ = ∥∥F−1θjφ

εFu
∥∥
L∞ = ∥∥F−1θj θ̃

(
2−j ·)φεFu

∥∥
L∞

≤ ∥∥F−1(
φεθ̃

(
2−j ·))∥∥L1‖�ju‖L∞ .

Here and in the following

(3.2) φε(ξ) = e−t |ξ |2f (εξ)ϕ(εξ), φ(ξ) = e−t |ξ |2,
and θ̃ is a smooth function supported in an annulus such that θ̃ θ = θ . Then we get
that for δ ≥ 0,∥∥F−1(

φεθ̃
(
2−j ·))∥∥L1 = ∥∥F−1(

φε(2j ·)θ̃)∥∥
L1 �

∥∥(1 − �)2(
φε(2j ·)θ̃)∥∥

L1

�
∑

0≤|m|≤4

2j |m|∥∥(
Dmφε)(2j ·)∣∣·∈supp θ̃

∥∥
L∞

�
∑

0≤|m|≤4

2j |m| 1

2j |m|(2j
√

t)δ
�

(
2j

√
t
)−δ

.

Here, in the third inequality we used that f (εξ) ≥ c > 0 and |εξ | � 1 on the sup-
port of φε , which implies that for any multiindex m satisfying |m| ≤ 4 and every
δ ≥ 0 we have |Dmφε(ξ)|� 1

|ξ ||m|+δ tδ/2 . For j = −1, we can use Bernstein’s lemma

to obtain the estimate. Thus (3.1) follows.
For the second result, we have

P ε
t − Pt = PN

(
P̃ ε

t − Pt

) + (I − PN)Pt .

By Lemmas 2.4 and 3.1, it is sufficient to consider P̃ ε
t − Pt . Since φε(ξ) −

φ(ξ) = ϕ(εξ)(e−t |ξ |2f (εξ) − e−t |ξ |2) + (ϕ(εξ) − 1)e−t |ξ |2 and |ϕ(εξ) − 1| �
|εξ |η, |f (εξ) − π2| � |εξ |η for every 0 < η < 1, we obtain that for any multiin-
dex m satisfying |m| ≤ 4 and every δ ≥ 0,0 < η < 1, we have |Dm(φε − φ)(ξ)| ≤

(ε|ξ |)η
|ξ ||m|+δ t

δ
2

. Thus the second result follows by a similar argument as in the proof

of (3.1). �

In the following, we prove a commutator estimate for P ε
t . However, PN does

not commute with paraproduct and we can only obtain the following.

LEMMA 3.3. Let u ∈ Cα for some α < 1 and v ∈ Cβ for some β ∈ R. Then for
δ ≥ α + β and any κ > 0,∥∥P ε

t π<(u, v) − PNπ<

(
u, P̃ ε

t v
)∥∥

δ−κ � t
α+β−δ

2 ‖u‖α‖v‖β,(3.3)
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∥∥(
P ε

t − Pt

)
π<(u, v) − PNπ<

(
u, P̃ ε

t v
) + π<(u,Ptv)

∥∥
δ−κ

� ε
κ
2 t

α+β−δ
2 ‖u‖α‖v‖β.

(3.4)

Here, the constants we omit are independent of N .

PROOF. We have

P ε
t π<(u, v) − PNπ<

(
u, P̃ ε

t v
) = PN

(
P̃ ε

t π<(u, v) − π<

(
u, P̃ ε

t v
))

.

By Lemma 3.1, it suffices to prove that

(3.5)
∥∥P̃ ε

t π<(u, v) − π<

(
u, P̃ ε

t v
)∥∥

δ � t
α+β−δ

2 ‖u‖α‖v‖β.

In fact, we have that

P̃ ε
t π<(u, v) − π<

(
u, P̃ ε

t v
) =

∞∑
j=−1

(
P̃ ε

t (Sj−1u�jv) − Sj−1uP̃ ε
t �jv

)
,

and that the Fourier transform of P̃ ε
t (Sj−1u�jv) − Sj−1uP̃ ε

t �jv has its support
in a suitable annulus 2jA. Let ψ ∈ D(R3) with support in an annulus Ã be such
that ψ = 1 on A.

Thus by the same argument as in the proof of [7], Lemma A.1, we obtain that∥∥P̃ ε
t (Sj−1u�jv) − Sj−1uP̃ ε

t �jv
∥∥
L∞

�
∑

η∈Nd ,|η|=1

∥∥xηF−1(
ψ

(
2−j ·)φε)∥∥

L1

∥∥∂ηSj−1u
∥∥
L∞‖�jv‖L∞,

where φε is introduced in (3.2). Now we have that∥∥xηF−1(
ψ

(
2−j ·)φε)∥∥

L1

≤ 2−j
∥∥F−1((

∂ηψ
)(

2−j ·)φε)∥∥
L1 + ∥∥F−1(

ψ
(
2−j ·)∂ηφε)∥∥

L1

= 2−j
∥∥F−1(

∂ηψ(·)φε(2j ·))∥∥L1 + ∥∥F−1(
ψ(·)∂ηφε(2j ·))∥∥L1

� 2−j
∥∥(

1 + | · |2)2F−1(
∂ηψ(·)φε(2j ·))∥∥L∞

+ ∥∥(
1 + | · |2)2F−1(

ψ(·)∂ηφε(2j ·))∥∥L∞

= 2−j
∥∥F−1(

(1 − �)2(
∂ηψ(·)φε(2j ·)))∥∥L∞

+ ∥∥F−1(
(1 − �)2(

ψ(·)∂ηφε(2j ·)))∥∥L∞

� 2−j
∥∥(1 − �)2(

∂ηψ(·)φε(2j ·))∥∥L1 + ∥∥(1 − �)2(
ψ(·)∂ηφε(2j ·))∥∥L1

� 2−j
∑

0≤|m|≤4

(
2j )|m| t−μ2−2jμ

(2j )|m| + ∑
|m|≤5

(
2j )|m| t−μ2−2jμ

(2j )|m|+1

� 2−j t−μ2−2jμ,
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where in the fourth inequality we used that |Dmφε(ξ)| � |ξ |−|m|t−μ|ξ |−2μ,μ ≥ 0,
for any multiindex m satisfying |m| ≤ 5. Hence we get that∥∥P̃ ε

t (Sj−1u�jv) − Sj−1uP̃ ε
t �jv

∥∥
L∞ � t

α+β−δ
2 2j (α+β−δ)2−j (α+β)‖u‖α‖v‖β,

which yields (3.5) by [3], Lemma 2.69.
Moreover, we have(

P ε
t − Pt

)
π<(u, v) − PNπ<

(
u, P̃ ε

t v
) + π<(u,Ptv)

= PN

[(
P̃ ε

t − Pt

)
π<(u, v) − π<

(
u,

(
P̃ ε

t − Pt

)
v
)]

− (I − PN)
(
Ptπ<(u, v) − π<(u,Ptv)

)
.

The estimate for the second term can be obtained by Lemmas 2.5 and 3.1. By a
similar argument as the proof of Lemma 3.2, we obtain that for any multiindex
m satisfying |m| ≤ 5 and every δ ≥ 0,0 < η < 1; we have |Dm(φε − φ)(ξ)| ≤

(ε|ξ |)η
|ξ ||m|+δ t

δ
2

. Thus (3.4) follows by a similar argument as in the proof of (3.5). Here,

φε and φ are introduced in (3.2). �

The continuity result for P ε
t takes as follows.

LEMMA 3.4. Let u ∈ Cα+δ for some α ∈ R,0 < δ < 1. Then for every ε ∈
(0,1), κ > 0, t > s > 0.∥∥(

P ε
t − P ε

s

)
u
∥∥
α−κ � (t − s)

δ
2 ‖u‖α+δ.

Here, the constants are independent of N .

PROOF. We have (P ε
t −P ε

s )u = PN(P̃ ε
t − P̃ ε

s )u. By Lemma 3.1, it suffices to
prove that ∥∥(

P̃ ε
t − P̃ ε

s

)
u
∥∥
α � (t − s)

δ
2 ‖u‖α+δ.

Since |1 − e−(t−s)f (εξ)|ξ |2 | ≤ (t − s)
δ
2 |ξ |δ , we obtain that for any multiindex m

satisfying |m| ≤ 4 and any δ ≥ 0, we have |Dm(φε
t − φε

s )(ξ)| � (t−s)
δ
2 |ξ |δ

|ξ ||m| , where
φε is introduced in (3.2). Thus by a similar argument as in the proof of Lemma 3.2
the result follows. �

4. Paracontrolled analysis for the approximating equations. Now for sim-
plicity let uε = Ext�ε . Then we have the following equation:

(4.1)
uε(t) = P ε

t Ext�ε
0 −

∫ t

0
P ε

t−sQN

[(
uε)3 − (

3Cε
0 − 9Cε

1
)
uε]ds

+
∫ t

0
P ε

t−sPN dW.
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Therefore, it suffices to prove the convergence result for solutions to (4.1). In this
section, we give a uniform estimate for solutions to (4.1) by using paracontrolled
analysis.

In this section, we fix κ, γ > 0 satisfying

z − 1

2
> 2κ, 6κ < γ, 10κ + 3γ < 2 − 3z.

Here, we recall that �0 ∈ C−z and z ∈ (1
2 , 2

3). Parameters κ, γ satisfying the
above conditions can always be found. Indeed, we first choose γ < 2−3z

3 then
the conditions are satisfied if we choose κ > 0 small enough satisfying κ <
γ
6 ∧ 2z−1

4 ∧ 2−3z−3γ
10 .

Paracontrolled analysis of solutions to (4.1). Now we split (4.1) into the fol-
lowing three equations. We also use the graph notation similar as in [18]: Here, the
symbol · corresponds to the white noise and corresponds to convolution with the
kernel associated with P ε

t . Moreover, corresponds to the operator
∫ t

0 P ε
t−sQN ·ds

and corresponds to convolution with the kernel associated with P̃ ε
t :

uε
1(t) =

∫ t

−∞
P ε

t−sPN dW = ,

uε
2(t) = −

∫ t

0
P ε

t−sQN

[(
uε

1
)�,3]

ds = − ,

and

(4.2)

uε
3(t) = P ε

t

(
Ext�ε

0 − uε
1(0)

)

−
∫ t

0
P ε

t−s

[
QN

[−6 uε
3 + 3

(
uε

3
)2 + 3 ( )2 + (− + uε

3
)3]

+ PN

[
3
(− + � uε

3
) + 3

(− + � uε
3
) − 9ϕεuε]]ds.

Here,

:= 2 − Cε
0,

:= 3 − 3Cε
0 ,

:= ,

:= − 3
(
Cε

11 + ϕε
1
)
,

� uε
3 := uε

3 + 3
(
Cε

11 + ϕε
1
)(− + uε

3
)
,
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:= e
i1i2i3
N ,

:= − 3
(
C

ε,i1i2i3
12 + ϕ

ε,i1i2i3
2

)
,

� uε
3 := uε

3 + 3
(
C

ε,i1i2i3
12 + ϕ

ε,i1i2i3
2

)(− + uε
3
)
,

ϕε := ϕε
1 + ϕε

2 = ϕε
1 + ∑

ϕ
ε,i1i2i3
2 ,

where Cε
0 ∈ R,Cε

1i ∈ R, ϕε
i ∈ C((0, T ];R) are defined as in Section 6 below

and there exists ϕ1 ∈ C((0, T ];R) such that for every ρ > 0 small enough

supt∈[0,T ] tρ |ϕε
1 −ϕ1| → 0 and supt∈[0,T ] tρ |ϕε

2| → 0 as ε → 0. In fact, , ,

and denote (uε
1)

�,2, (uε
1)

�,3, −(uε
1)

�,2 �uε
2 and −e

i1i2i3
N (uε

1)
�,2 �uε

2, respec-
tively. Furthermore,

π0,�( , ) := π0( , ) − 3
(
Cε

11 + ϕε
1
)
,

π0,�
(
uε

3,
) := π0

(
uε

3,
) + 3

(
Cε

11 + ϕε
1
)(− + uε

3
)
,

π0,�( , ) := π0( , ) − 3
(
C

ε,i1i2i3
12 + ϕ

ε,i1i2i3
2

)
,

π0,�
(
uε

3,
) := π0

(
uε

3,
) + 3

(
C

ε,i1i2i3
12 + ϕ

ε,i1i2i3
2

)(− + uε
3
)
.

In (4.2), the most difficult term to be handled is u3 � , which requires us to
use paracontrolled ansatz and the commutator estimates. For this, we introduce the
following notation:

Kε(t) :=
∫ t

0
P ε

t−s ds := , K̃ε(t) :=
∫ t

0
P̃ ε

t−s ds := ,

and

Kε
1(t) :=

∫ t

0
P ε

t−s ds := , K̃ε
1(t) :=

∫ t

0
P̃ ε

t−s ds := .

Also define

π0,�( , ) := π0( , ) − Cε
11 − ϕε

1,

and

π0,�( , ) := π0( , ) − C
ε,i1i2i3
12 − ϕ

ε,i1i2i3
2 .
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Here, we introduce and since Lemma 3.3 about the commutator estimates
only holds for P̃ ε

t , not for P ε
t . Now we introduce the following notation: for T > 0,

Cε
W(T ) := sup

t∈[0,T ]
[‖ ‖− 1

2 −2κ
+ ‖ ‖−1−2κ + ‖ ‖ 1

2 −2κ
+ ∥∥π0( , )

∥∥−2κ

+ ∥∥π0,�( , )
∥∥− 1

2 −2κ
+ ‖π0,�( , )‖−2κ

] + ‖ ‖
C

1
8
T C

1
4 −2κ

,

and

Eε
W(T ) := sup

t∈[0,T ]
[‖ ‖−1−2κ + ∥∥π0

(
, e

i1i2i3
N

)∥∥−2κ + ∥∥π0,�( , )
∥∥− 1

2 −2κ

+ ∥∥π0( , )
∥∥−2κ + ∥∥π0( , )

∥∥−2κ + ∥∥π0,�( , )
∥∥−2κ

]
.

In the following, we write Cε
W and Eε

W for simplicity if there is no confu-
sion. Here, Eε

W appears as an error term for the lattice approximations, which
goes to 0 in probability (see Section 6.2). Lemma 3.2 and (3.1) imply that for
t ∈ [0, T ]

(4.3)
∥∥ (t)

∥∥
1−3κ + ∥∥ (t)

∥∥
1−3κ � Cε

W

and

(4.4)
∥∥ (t)

∥∥
1−3κ + ∥∥ (t)

∥∥
1−3κ �Eε

W .

Now we write the paracontrolled ansatz as follows:

uε
3 = −3PN

[
π<

(− + uε
3, + )] + uε,�

with uε,�(t) ∈ C1+3κ for t > 0. Then Lemma 2.2 yields that, for t > 0,

(4.5) ∥∥uε
3(t)

∥∥
1−3κ �

∥∥− (t) + uε
3(t)

∥∥
γ

(
Cε

W + Eε
W

) + ∥∥uε,�(t)
∥∥

1−3κ .
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Furthermore, uε
3 solves (4.2) if and only if uε,� solves the following equation:

(4.6)

uε,�(t) = P ε
t

(
Ext�ε

0 − uε
1(0)

)

−
∫ t

0
P ε

t−s

[
QN

[−6 uε
3 + 3

(
uε

3
)2 + 3 ( )2 + (− + uε

3
)3]

+ 3PN

[
(π> + π0,�)

(− + uε
3, + )] − 9ϕεuε]ds

− 3
∫ t

0
P ε

t−sPN

[
π<

(− + uε
3, + )]

ds

+ 3PN

[
π<

(− + uε
3, + )]

:= P ε
t

(
Ext�ε

0 − uε
1(0)

)
+

∫ t

0
P ε

t−s

[
QNφ

ε,�
1 + PNφ

ε,�
2 + 9ϕεuε]ds + Fε,

where Fε represents the last two terms.
In the following, we give estimates of terms on the right-hand side of (4.6).

Estimates of φ
ε,�
i . First, we prove an estimate for φ

ε,�
1 .

PROPOSITION 4.1. For φ
ε,�
1 defined in (4.6), the following estimate holds:∥∥QNφ

ε,�
1

∥∥− 1
2 −4κ

� C
(
Cε

W ,Eε
W

)(
1 + ∥∥uε

3

∥∥ 1
2 +4κ

(∥∥uε
3

∥∥
γ + 1

) + ∥∥uε
3

∥∥3
γ

)
.

Here, the constant we omit is independent of N .

PROOF. Since

�N

[
uε

3
] = PN

[
uε

3e
i1i2i3
N

]
,

we have
∥∥�N

[
uε

3
]∥∥− 1

2 −4κ

�
∥∥uε

3 e
i1i2i3
N

∥∥− 1
2 −3κ

�
(∥∥ei1i2i3

N

∥∥− 1
2 −3κ

‖ ‖ 1
2 −2κ

+ ∥∥π0
(

, e
i1i2i3
N

)∥∥−2κ

)∥∥uε
3

∥∥ 1
2 +4κ

�
(
N−κ/2‖ ‖ 1

2 −2κ
‖ ‖− 1

2 −2κ
+ ∥∥π0

(
, e

i1i2i3
N

)∥∥−2κ

)∥∥uε
3

∥∥ 1
2 +4κ

,

where we used Lemma 3.1 in the first and last inequalities as well as Lemma 2.2
in the second inequality.
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Using the paraproduct, one has

�N

[ (
uε

3
)2] = PN

[
e
i1i2i3
N

(
uε

3
)2]

= PN

[
π<

((
uε

3
)2

, e
i1i2i3
N

) + π0
((

uε
3
)2

, e
i1i2i3
N

) + π>

((
uε

3
)2

, e
i1i2i3
N

)]
= PN

[
π<

((
uε

3
)2

, e
i1i2i3
N

) + π0
(
π0

(
uε

3, u
ε
3
)
, e

i1i2i3
N

)
+ π>

((
uε

3
)2

, e
i1i2i3
N

) + 2C
(
uε

3, u
ε
3, e

i1i2i3
N

) + 2uε
3π0

(
uε

3, e
i1i2i3
N

)]
.

Here, C(uε
3, u

ε
3, e

i1i2i3
N ) is the trilinear operator as defined in Lemma 2.3. Then by

using Lemmas 2.2, 2.3 and 3.1 we obtain

(4.7)
∥∥�N

[(
uε

3
)2 ]∥∥− 1

2 −4κ
� N− κ

2
∥∥uε

3

∥∥ 1
2 +4κ

∥∥uε
3

∥∥
γ ‖ ‖− 1

2 −2κ
.

Moreover, by a similar argument as for (4.7) we have

∥∥�N

[
( )2 ]∥∥− 1

2 −4κ

�N− κ
2 ‖ ‖2

1
2 −2κ

‖ ‖− 1
2 −2κ

+ ‖ ‖ 1
2 −2κ

∥∥π0
(

, e
i1i2i3
N

)∥∥−2κ .

Furthermore, Lemma 3.1 implies that

∥∥QN

[(− + uε
3
)3]∥∥

γ−κ �
∥∥− + uε

3

∥∥3
γ .

Estimates for the terms containing PN can be obtained similarly. Hence the result
follows from the above estimates. �

Now we consider φ
ε,�
2 . To prove an estimate for π0,�(uε

3, + ), we have
to use the paracontrolled ansatz. However, the Fourier cutoff operator PN does not
commute with the paraproduct. Here, we follow the random operator technique
from [13], Lemma 8.16, and prove the following result.

LEMMA 4.2. Let α + β + γ > 0, β + γ < 0, assume that α ∈ (0,1) and let
f ∈ Cα, g ∈ Cβ,h ∈ Cγ . Define the operators

A1
N(g,h)(f ) := −π0

(
(I − PN)π<(f,PNg),h

)
and

A2
N(g,h)(f ) := π0

(
PNπ<

(
f, (P3N − PN)g

)
, h

)
.

Then for all η < 0∥∥π0
(
PNπ<(f,P3Ng),h

) − f π0(PNg,h)
∥∥
η

� ‖f ‖α‖PNg‖β‖h‖γ + ∥∥A1
N(g,h) + A2

N(g,h)
∥∥
L(Cα,Cη)‖f ‖α.

Here, the constant we omit is independent of N and L(Cα,Cη) denotes the space
of bounded operators between Cα and Cη, equipped with the operator norm.
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PROOF. We have that

π0
(
PNπ<(f,P3Ng),h

) = A2
N(g,h)(f ) + π0

(
π<(f,PNg),h

) + A1
N(g,h)(f ).

Thus the result follows from Lemma 2.3. �

By using Lemma 4.2, we have the following estimate for φ
ε,�
2 .

PROPOSITION 4.3. For φ
ε,�
2 defined in (4.6), the following estimate holds:∥∥PNφ

ε,�
2

∥∥− 1
2 −6κ

� C
(
Cε

W ,Eε
W ,AN,DN

)(
1 + ∥∥uε

3

∥∥ 1
2 +4κ

+ ∥∥uε,�
∥∥

1+3κ

)
with

AN(T ) := ∥∥(
A1

N + A2
N

)
( + , + )

∥∥
CT L(C1−3κ ,C− 1

2 −5κ
)

and

DN(T ) := sup
t∈[0,T ]

(∥∥π0
(
(I − PN)π<( , + ), + )

− π0
(
PNπ<

(
, (P3N − PN)( + )

)
, + )∥∥−κ

)
.

PROOF. First, we consider π0(u
ε
3, + ). By the paracontrolled ansatz,

we obtain

π0
(
uε

3, + )

= − 3π0
(
PN

[
π<

(− + uε
3,P3N( + )

)]
, + )

+ π0
(
uε,�, + )

.

Here, in the equality we used that P3N( + ) = + . Then by using

Lemma 4.2 and that PN( + ) = + , we obtain that∥∥π0,�
(
uε

3, + )∥∥− 1
2 −5κ

�
(‖ ‖ 1

2 −2κ
+ ∥∥uε

3

∥∥ 1
2 +4κ

)[‖ + ‖1−3κ‖ + ‖−1−2κ

+ ∥∥π0,�( + , + ∥∥−2κ

]
+ AN

∥∥uε
3

∥∥
1−3κ + DN + ∥∥uε,�

∥∥
1+3κ‖ + ‖−1−2κ .

The estimate for π>(− +uε
3, + ) can be obtained by Lemma 2.2. Thus

the result follows from (4.3), (4.4) and (4.5). �
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REMARK 4.4. (i) In this paper, we split equation (4.2) by using QN(uv) =
PN(uv + uve

i1,i2,i3
N ) and introduce a new random operator which is different from

[13]. In fact, by using QN((uε
2 + uε

3)(u
ε
1)

�,2) = QN((uε
2 + uε

3)QN [(uε
1)

�,2]), we
can use the paracontrolled ansatz and use a random operator similar as in [13] to
deduce the result. We would like to thank the referee for pointing out this to us.
However, the idea of these two operators is the same and the calculations for these
two operators are essentially similar.

(ii) By the calculations in Section 6.3, we know that in order to get ‖A1
N +

A2
N‖L(Cα,Cη) → 0 we need α > η + 3/2. Also the regularity of uε,� requires that

η > −1 + 3κ , which implies that α > 1/2 + 3κ . However, the best regularity
we can obtain for uε

2 is C1/2−. Thus, for the error terms including uε
2 we have

to bound them directly by stochastic calculations, which corresponds to DN (see
Section 6.4).

Estimates of Fε . We now turn to Fε: We divide Fε into two parts:∥∥Fε(t)
∥∥

1+3κ

�
∥∥∥∥
∫ t

0
P ε

t−sπ<

(− (s) + uε
3(s) − (− (t) + uε

3(t)
)
,

(s) + (s)
)
ds

∥∥∥∥
1+3κ

+
∥∥∥∥
∫ t

0
P ε

t−sπ<

(− (t) + uε
3(t), (s) + (s)

)
ds

− PNπ<

(− (t) + uε
3(t), (t) + (t)

)∥∥∥∥
1+3κ

:= I1 + I2.

Estimate of I2 can be obtained by Lemma 3.3:

(4.8) I2 � t
γ−6κ

2
∥∥− (t) + uε

3(t)
∥∥
γ

(
Cε

W + Eε
W

)
,

where by the condition on γ we have γ > 6κ .
For I1, we will use the regularity of uε

2 + uε
3 with respect to time to control it.

Lemmas 2.2 and 3.2 yield that

I1 �
∫ t

0
(t − s)−1−3κ

∥∥ (s) + (s)
∥∥−1−2κ

× ∥∥− (t) + uε
3(t) + (s) − uε

3(s)
∥∥

κ
2
ds

�
(
Cε

W + Eε
W

)(
Cε

W +
∫ t

0
(t − s)−1−3κ

∥∥uε
3(t) − uε

3(s)
∥∥

κ
2
ds

)
,
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and we note that by (4.2), Lemmas 3.2 and 3.4 that, for t > s > 0,∥∥uε
3(t) − uε

3(s)
∥∥

κ
2

�
∥∥(

P ε
t
2
− P ε

s
2

)(
P ε

t
2
+ P ε

s
2

)(
Ext�ε

0 − uε
1(0)

)∥∥
κ
2

+
∥∥∥∥
∫ s

0

(
P ε

t−r − P ε
s−r

)
Gε(r) dr

∥∥∥∥
κ
2

+
∥∥∥∥
∫ t

s
P ε

t−rG
ε(r) dr

∥∥∥∥
κ
2

� (t − s)b0s− z+2κ+2b0
2

∥∥Ext�ε
0 − uε

1(0)
∥∥−z

+ (t − s)b
∫ s

0
(s − r)−

1+4κ+2b
2

∥∥Gε(r)
∥∥−1−3κ dr

+ (t − s)b1

(∫ t

s
(t − r)

− 1+4κ
2(1−b1)

∥∥Gε(r)
∥∥ 1

1−b1−1−3κ dr

)1−b1

,

where in the last inequality for the third term we used Hölder’s inequality. Here,
6κ < 2b0 < 2 − z − 2κ , 6κ < 2b < 1 − 4κ , 3κ < b1 < 1 − 3(γ+z+κ)

2 < 1
2(1 − 4κ)

and

Gε = QN

[
3 ( )2 − 6 uε

3 + 3
(
uε

3
)2 + (− + uε

3
)3]

+ PN

[
3
(− + � uε

3
) + 3

(− + � uε
3
)] − 9ϕεuε.

Moreover, by Propositions 4.1 and 4.3 and Lemma 2.2 one has the following esti-
mate:

(4.9)
∥∥Gε(t)

∥∥−1−3κ � C
(
Cε

W ,Eε
W ,AN,DN

)
Uε

0 (t) + t−ρ(
Cε

W + ∥∥uε
3(t)

∥∥
γ

)
.

Here and in the following

Uε
0 (t) = 1 + ∥∥uε

3(t)
∥∥ 1

2 +4κ

(∥∥uε
3(t)

∥∥
γ + 1

) + ∥∥uε
3(t)

∥∥3
γ + ∥∥uε,�(t)

∥∥
1+3κ .

Thus we obtain that

I1 �
(
Cε

W + Eε
W

)(
Cε

W + t−
z
2 −4κ

∥∥Ext�ε
0 − uε

1(0)
∥∥−z

+
∫ t

0

∫ t

r
(t − s)−1−3κ+b(s − r)−

1+4κ+2b
2 ds

∥∥Gε(r)
∥∥−1−3κ dr

+
(∫ t

0
(t − s)−1−3κ+b1 ds

)b1
(∫ t

0

∫ r

0
(t − s)−1−3κ+b1(t − r)

− 1+4κ
2(1−b1)

× ∥∥Gε(r)
∥∥ 1

1−b1−1−3κ ds dr

)1−b1
)
,
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where for the last term we used Hölder’s inequality. Then by changing variable
s = r + (t − r)σ for the third term and using (4.9) we have

(4.10)

I1 �
(
Cε

W + Eε
W

)
t−

z
2 −4κ

∥∥Ext�ε
0 − uε

1(0)
∥∥−z + C

(
Cε

W ,Eε
W ,AN,DN

)
+ C

(
Cε

W ,Eε
W ,AN,DN

) ∫ t

0
(t − r)−

1
2 −5κ(

Uε
0 (r) + r−ρ

∥∥uε
3

∥∥
γ

)
dr

+ C
(
Cε

W ,Eε
W ,AN,DN

)
×

[∫ t

0
(t − r)

− 1+4κ
2(1−b1)

(
Uε

0 (r) + r−ρ
∥∥uε

3

∥∥
γ

) 1
1−b1 dr

]1−b1

.

Combining (4.8) and (4.10), we could control ‖Fε‖1+3κ by the right-hand side of
(4.8) and (4.10).

In the following, we will bound ‖uε
3‖ 1

2 +4κ
and ‖uε

3‖γ . Estimates for these two
terms are much easier. We do not need to use Lemma 3.3 and can obtain the fol-

lowing estimates for
∫ t

0 P ε
t−sPN [π<(− + uε

3, + )]ds by Lemmas 2.2
and 3.2 directly:

(4.11)

∥∥∥∥
∫ t

0
P ε

t−sPN

[
π<

(− + uε
3, + )]

ds

∥∥∥∥ 1
2 +4κ

�
(
Cε

W + Eε
W

) ∫ t

0
(t − s)−

3
4 − 7κ

2
∥∥uε

3

∥∥
γ ds + C

(
Cε

W ,Eε
W

)
and

(4.12)

∥∥∥∥
∫ t

0
P ε

t−sPN

[
π<

(− + uε
3, + )]

ds

∥∥∥∥
γ

�
(
Cε

W + Eε
W

) ∫ t

0
(t − r)−

1+3κ+γ
2

∥∥uε
3

∥∥
γ dr + C

(
Cε

W ,Eε
W

)
.

Uniform estimates of the solutions to (4.2). Now we introduce the following
random times: Define for any L ≥ 1

τ ε
L := inf

{
t ≥ 0 : ∥∥uε(t)

∥∥−z ≥ L
} ∧ L,

ρε
L := inf

{
t ≥ 0 : Cε

W(t) + Eε
W(t) + AN(t) + DN(t) ≥ L

}
.

PROPOSITION 4.5. For any L,L1 ≥ 1, we have

sup
t∈[0,τ ε

L∧ρε
L1

]
(
t

3(γ+z+κ)
2

∥∥uε,�(t)
∥∥

1+3κ + t

1
2 +z+5κ

2
∥∥uε

3(t)
∥∥ 1

2 +4κ
+ t

γ+z+κ
2

∥∥uε
3(t)

∥∥
γ

)

� C(L,L1).
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Moreover, before τ ε
L ∧ ρε

L1
one has that uε

3(t) depends in a Lipschitz continuous
way on the data Ext�ε

0 and terms in (Cε
W ,Eε

W ,AN,DN). Here, we consider uε
3(t)

with respect to ‖ · ‖−z norm and the Lipschitz constant can be chosen uniformly
over t ∈ [0, τ ε

L ∧ ρε
L1

].

PROOF. It follows from Propositions 4.1, 4.3 and (4.8), (4.10) that for
3(γ+z+κ)

2 < 1 and t ∈ [0, τ ε
L ∧ ρε

L1
],

t
3(γ+z+κ)

2
∥∥uε,�(t)

∥∥
1+3κ

� C
∥∥Ext�ε

0 − uε
1(0)

∥∥−z

+ t
3(γ+z+κ)

2 C

∫ t

0
(t − r)−

3
4 −5κ(

r− 3(γ+z+κ)
2 Uε(r) + r−ρ

∥∥uε
3(r)

∥∥
γ

)
dr + C(4.13)

+ Ct
3(γ+z+κ)

2

∫ t

0
(t − r)−

1
2 −5κ(

r− 3(γ+z+κ)
2 Uε(r) + r−ρ

∥∥uε
3(r)

∥∥
γ

)
dr

+ t
3(γ+z+κ)
2(1−b1)

∫ t

0
(t − r)

− 1+4κ
2(1−b1)

(
r− 3(γ+z+κ)

2 Uε(r) + r−ρ
∥∥uε

3(r)
∥∥
γ

) 1
1−b1 dr

+ t
γ+z+κ

2
∥∥uε

3(t)
∥∥
γ .

Here and in the following, C = C(L1) and Uε(r) = r
3(γ+z+κ)

2 Uε
0 (r). A similar

argument is that for (4.13) and using (4.11), (4.12) one also has that, for t ∈ [0, τ ε
L∧

ρε
L1

] and 0 < 9κ < 3
2 − 2z − 3γ ,

(4.14)

t

1
2 +z+5κ

2
∥∥uε

3(t)
∥∥ 1

2 +4κ

�
∥∥Ext�ε

0 − uε
1(0)

∥∥−z

+ t

1
2 +z+5κ

2 C

∫ t

0
(t − r)−

1+11κ
2

(
r− 3(γ+z+κ)

2 Uε(r) + r−ρ
∥∥uε

3(r)
∥∥
γ

)
dr

+ C + Ct

1
2 +z+5κ

2

∫ t

0
(t − r)−

3
4 − 7κ

2 r− γ+z+κ
2 r

γ+z+κ
2

∥∥uε
3(r)

∥∥
γ dr

and

t
γ+z+κ

2
∥∥uε

3(t)
∥∥
γ

�
∥∥Ext�ε

0 − uε
1(0)

∥∥−z
(4.15)

+ t
γ+z+κ

2 C

∫ t

0
(t − r)−

1
4 − γ+7κ

2
(
r− 3(γ+z+κ)

2 Uε(r) + r−ρ
∥∥uε

3(r)
∥∥
γ

)
dr

+ C + Ct
γ+z+κ

2

∫ t

0
(t − r)−

1+γ+3κ
2 r− (γ+z+κ)

2 r
γ+z+κ

2
∥∥uε

3(r)
∥∥
γ dr.
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Since
1
2 +5κ+z

2 ≤ γ + z + κ , combining with (4.13)–(4.15), we get that by Hölder’s
inequality and Bihari’s inequality there exists some T0 (depending on L1) such
that

sup
t∈[0,T0]

(
t

3(γ+z+κ)
2

∥∥uε,�(t)
∥∥

1+3κ + t

1
2 +z+5κ

2
∥∥uε

3(t)
∥∥ 1

2 +4κ
+ t

γ+z+κ
2

∥∥uε
3(t)

∥∥
γ

)
� C(L,L1),

which combined with Propositions 4.1 and 4.3 implies that

(4.16) sup
t∈[0,T0]

t
3(γ+z+κ)

2
∥∥QNφ

ε,�
1 + PNφ

ε,�
2

∥∥− 1
2 −6κ

� C(L,L1).

Moreover, by (4.2) and Lemma 2.2 we obtain that for t ∈ [0, T0] and 10κ + 3γ <
3
2 − 2z

∥∥uε
3(t)

∥∥−z � C + ∥∥Ext�ε
0 − uε

1(0)
∥∥−z +

∫ t

0
s−ρ

∥∥uε
3(s)

∥∥
γ ds

+
∫ t

0

[
(t − s)−

1
2 +7κ−z

2 ∨ 1
]
s− 3(γ+z+κ)

2 s
3(γ+z+κ)

2

× ∥∥QNφ
ε,�
1 + PNφ

ε,�
2

∥∥− 1
2 −6κ

ds

+
∫ t

0
(t − s)−

1+3κ−z
2 s− γ+κ+z

2 ds sup
s∈[0,t]

s
γ+κ+z

2
∥∥uε

2 + uε
3

∥∥
γ

� C(L,L1).

Here in the last inequality we used (4.16). Moreover, similar arguments as above
imply that uε

3(t) before T0 depends in a Lipschitz continuous way on the data
Ext�ε

0 and terms in (Cε
W ,Eε

W ,AN,DN). The Lipschitz constant can be chosen
uniformly for t ∈ [0, T0]. Furthermore, we can extend the time from T0 to τ ε

L ∧ρε
L1

as we did in [37]. �

5. Proof of main result. In [7], it is proved that the solution to (1.1) can be
obtained as a limit of solutions �̄ε to the following equation:

d�̄ε = ��̄ε dt + PN dW − (
�̄ε)3

dt + (
3C̄ε

0 − 9C̄ε
1
)
�̄ε dt,

�̄ε(0) = �0.

Here, C̄ε
0 and C̄ε

1 are defined in Section 6.1 below. For this equation, we can
also divide it into three equations and define ūε

1, ū
ε
2, ū

ε
3, K̄

ε and other terms sim-
ilarly as uε

1, u
ε
2, u

ε
3,K

ε and the associated terms, respectively. For L ≥ 0, de-
fine τL := inf{t ≥ 0 : ‖�(t)‖−z ≥ L} ∧ L. Then τL increases to the explosion
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TABLE 1

uε
1 ūε

1 uε
2 ūε

2 (uε
1)�,2 (ūε

1)�,2 Kε K̄ε

− −

time τ as L → ∞. Moreover, define τ̄ ε
L := inf{t ≥ 0 : ‖�̄ε(t)‖−z ≥ L} ∧ L and

ρ̄ε
L := inf{t ≥ 0 : C̄ε

W (t) ≥ L}. Here, C̄ε
W defined similarly as Cε

W with uε
i replaced

by corresponding ūε
i . A similar argument as in the proof in [7] implies that for

L,L3,L4 ≥ 1

(5.1) sup
t∈[0,τL∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥�̄ε(t) − �(t)

∥∥−z →P 0 as ε → 0.

Here, � is the solution to (1.2). To make our paper more readable, we also intro-
duce the graph notation similarly as in [18] for ūε

i and we also recall the graph for
uε

i in Table 1.
Define

δCε
W := sup

t∈[0,T ]
[‖ − ‖− 1

2 −2κ
+ ‖ − ‖−1−2κ + ‖ − ‖ 1

2 −2κ

+ ∥∥π0( , ) − π0( , )
∥∥−2κ + ∥∥π0,�( , ) − π0,�( , )

∥∥− 1
2 −2κ

+ ∥∥π0,�( , ) − π0,�( , )
∥∥−2κ

] + ‖ − ‖
C

1
8
T C

1
4 −2κ

.

In Section 6, we will prove that δCε
W →P 0,Eε

W →P 0,AN →P 0 and DN →P 0
as ε → 0. Then using the estimates for P ε

t − Pt obtained in Section 3 and by
similar arguments as in Section 4 we have that for L,Li ≥ 1 with i = 1,2,3,4
that

(5.2) sup
t∈[0,τL∧τ ε

L1
∧ρε

L2
∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥uε(t) − �̄ε(t)

∥∥−z →P 0, ε → 0.

Here, Eε
W ,AN,DN appear as error terms for the lattice approximations. Then (5.1)

and (5.2) imply that

(5.3) sup
t∈[0,τL∧τ ε

L1
∧ρε

L2
∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥uε(t) − �(t)

∥∥−z →P 0, ε → 0.
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Moreover, we have the following estimate: for each ε > 0,

(5.4)

P
(

sup
t∈[0,τL]

∥∥uε − �
∥∥−z > ε

)

≤ P
(

sup
t∈[0,τL∧τ ε

L1
∧ρε

L2
∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥uε − �

∥∥−z > ε
)

+ P
(
τL ∧ ρε

L2
∧ ρ̄ε

L3
∧ τ̄ ε

L4
> τε

L1

)
+ P

(
τL ∧ ρ̄ε

L3
> τ̄ε

L4

) + P
(
τL > ρε

L2

) + P
(
τL > ρ̄ε

L3

)
.

The first term goes to zero as ε → 0 by (5.3). Also for L1 > L + ε,

P
(
τL ∧ ρε

L2
∧ ρ̄ε

L3
∧ τ̄ ε

L4
> τε

L1

) ≤ P
(

sup
t∈[0,τL∧τ ε

L1
∧ρε

L2
∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥uε − �

∥∥−z > ε
)
,

which goes to zero as ε → 0 by (5.3). Furthermore, for L4 > L + ε we have

P
(
τL ∧ ρ̄ε

L3
> τ̄ε

L4

) ≤ P
(

sup
t∈[0,τL∧ρ̄ε

L3
∧τ̄ ε

L4
]
∥∥�̄ε − �

∥∥−z > ε
)

which goes to zero by (5.1) as ε → 0. The last two terms on the right-hand side
of (5.4) go to zero uniformly over ε ∈ (0,1) as L2,L3 go to ∞. Thus the result
follows.

6. Stochastic convergence. In this section, we will prove that δCε
W →

0,Eε
W → 0,AN → 0,DN → 0 in probability as ε → 0.

To simplify the arguments below, we assume that FW(0) = 0 and restrict our-
selves to the flow of

∫
T3 u(x) dx = 0. We follow the notation from [13], Section 9.

We represent the white noise in terms of its spatial Fourier transform. More pre-

cisely, let E = Z3 \ {0} and let W(s, k) = 〈W(s), ek〉 for ek(x) = 2− 3
2 eıπx·k, x ∈

T3, and we view W(s, k) as a Gaussian process on R × E with covariance given
by

E

[∫
R×E

f (η)W(dη)

∫
R×E

g
(
η′)W (

dη′)] =
∫
R×E

g(η1)f (η−1) dη1,

where ηa = (sa, ka), s−a = sa, k−a = −ka and the measure dηa = dsa dka is the
product of the Lebesgue measure dsa on R and of the counting measure dka on E.
Then

uε
1(t, x) =

∫
R×E

ek(x)P ε
t−s(k)W(dη), ūε

1(t, x) =
∫
R×E

ek(x)P̄ ε
t−s(k)W(dη),

where pε
t (k) = e−|k|2f (εk)t1{t≥0}, P ε

t (k) = pε
t (k)1{|k|∞≤N}, pt(k) =

e−|k|2π2t1{t≥0}, and P̄ ε
t (k) = pt(k)1{|k|∞≤N}. Moreover,

(6.1)
∫

P ε
t−s(k)P ε

σ−s(k) ds = e−|k|2f (εk)|t−σ |1{|k|∞≤N}
2|k|2f (εk)

:= V ε
t−σ (k)
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and

(6.2)
∫

P̄ ε
t−s(k)P̄ ε

σ−s(k) ds = e−|k|2π2|t−σ |1{|k|∞≤N}
2π2|k|2 := V̄ ε

t−σ (k).

Now we introduce the following notation: k[1...n] = ∑n
i=1 ki , η1...n = (η1, . . . ,

ηn) ∈ (R × E)n, dη1...n = dη1 · · ·dηn, dk1...n = dk1 · · ·dkn, k̃i1i2i3 = (kj −
ij (2N + 1))j=1,2,3 for ij = 1,0,−1 and

∑3
j=1 i2

j = 0. In the following, we al-

ways omit the superscript of k̃ if there is no confusion. Denote by∫
(R×E)n

f (η1...n)W(dη1...n)

a generic element of the nth chaos of W on R× E. By [13], Section 9.2, we know
that

E

[∣∣∣∣
∫
(R×E)n

f (η1...n)W(dη1...n)

∣∣∣∣2
]

≤ (n!)
∫
(R×E)n

∣∣f (η1...n)
∣∣2 dη1...n.

Hence for bounding the variance of the chaos, it is enough to bound the L2 norm
of the unsymmetrized kernels. To obtain the results, we first recall the following
lemma from [38] for our later use.

LEMMA 6.1 ([38], Lemma 3.10). Let 0 < l,m < d, l + m − d > 0. Then we
have ∑

k1,k2∈Zd\{0},k1+k2=k

1

|k1|l|k2|m � 1

|k|l+m−d
.

By similar arguments as in the proof of [38], Lemma 3.11, we have the follow-
ing results.

LEMMA 6.2. For every 0 < κ < 1, i ≥ 0, t ≥ 0, k1, k2 ∈ E we have∣∣e−|k[12]|2π2t θ
(
2−ik[12]

) − e−|k2|2π2t θ
(
2−ik2

)∣∣ � |k1|κ2−iκ .

LEMMA 6.3. For every 0 < κ < 1, i ≥ 0, t ≥ 0, we have that for k1, k2 ∈ E

with |k[12]|∞ ≤ N, |k2|∞ ≤ N :∣∣e−|k12|2tf (εk[12])θ
(
2−ik[12]

) − e−|k2|2tf (εk2)θ
(
2−ik2

)∣∣ � |k1|κ2−iκ .

Now we prove the following estimate for the approximating operators.

LEMMA 6.4. For any 0 < κ < 1 and t > 0, k ∈ E, ε > 0:

(i)∣∣pε
t (k) − pt(k)

∣∣ � e−|k|2c̄f t |εk|κ ,
∣∣P ε

t (k) − pt(k)
∣∣ � e−|k|2c̄f t |εk|κ ;
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(ii)

∣∣P ε
t (k) − P̄ ε

t (k)
∣∣ � e−|k|2c̄f t |εk|κ ,

∣∣V ε
t (k) − V̄ ε

t (k)
∣∣ � e−|k|2c̄f t |εk|κ

|k|2 .

Here, c̄f = cf ∧ π2 > 0, cf = min{f (x) : |x| ≤ 1.8}.

PROOF. The results follow from |f (εk) − π2|� |εk|κ and∣∣e−|k|2tf (εk) − e−|k|2π2t
∣∣ � e−|k|2c̄f t [1 ∧ (

tκ
∣∣f (εk) − π2∣∣κ |k|2κ )]

� e−|k|2c̄f t |εk|κ . �

We prove the following two lemmas for the convergence of the error terms.

LEMMA 6.5. For every q ≥ 0,0 < r < 3,∫
E

θ
(
2−q k̃

)2 1

|k|r dk � 2(3−r)q and
∫
E

θ
(
2−q ˜̃

k
)2 1

|k|r dk � 2(3−r)q .

PROOF. We only treat the first, the second can be obtained by a similar argu-
ment. We have∫

θ
(
2−q k̃

)2 1

|k|r dk �
∫

1|k|≤2q θ
(
2−q k̃

)2 1

|k|r dk +
∫

1|k|>2q θ
(
2−q k̃

)2 1

|k|r dk

� 2(3−r)q

Here, in the last inequality we used that the cardinality of k with θ(2−q k̃) = 0 is of
order 23q . �

LEMMA 6.6. For every q ≥ 0,0 < r < 3,∫
θ
(
2−q k̃

)2 1

|k|r dk � εκ2(3−r+κ)q .

Here, κ > 0 is small enough.

PROOF. We have∫
θ
(
2−q k̃

)2 1

|k|r dk �
∫

1|k|≤Nθ
(
2−q k̃

)2 1

|k|r dk

+ εκ
∫

1|k|≥Nθ
(
2−q k̃

)2 1

|k|r−κ
dk

� εκ2(3−r+κ)q,

where in the last inequality we used that |k| ≤ N � |k̃|� 2q and Lemma 6.5. �
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6.1. Convergence of renormalization terms. In this subsection, we prove
δCε

W → 0 in probability as ε → 0. In the following, we use the graph notation

similar as in [18] to make this paper more readable. We use or to

represent a factor P ε
σ−s(k) for η = (s, k) and use to represent V ε

t−σ (k) or
V̄ ε

t−σ (k) for simplicity. We use to represent a factor P̄ ε
σ−s(k) for η = (s, k),

and use to represent P̄ ε
t−σ (k) or pt−σ (k) if there is no confusion. We also

use the convention that if a vertex is drawn in grey, then the corresponding vari-
able is integrated out. Here, we use two different graphs to denote P ε

σ−s(k) and
P̄ ε

σ−s(k). The second one is to emphasize the appearance of k.
For the terms containing uε

2, there are error terms (J i
t in the following) appears.

For these terms, we use |ki | � N or Lemma 6.6 to produce εκ .

Convergence of −
In this part, we prove the convergence of − . We have

E
∣∣�q

[
(t) − (t)

]∣∣2
�

∫
R×E

θ
(
2−qk

)2∣∣ek

(
P ε

t−s(k) − P̄ ε
t−s(k)

)∣∣2 dη

�
∫

θ
(
2−qk

)2(
ε|k|)κ |k|−2 dk � εκ2q(κ+1).

Here, κ > 0 is small enough and in the second inequality we used Lemma 6.4.
Similarly, by using ∣∣1 − e−|t2−t1|f (εk)|k|2 ∣∣ � |t1 − t2|κ |k|2κ ,

we get the desired estimates for E|�q [( (t2)− (t2))− ( (t1)− (t1))]|2 with t1, t2 ∈
[0, T ], which combined with Gaussian hypercontractivity implies that for p > 1,
ε > 0 small enough,

E
[∥∥(

(t2) − (t2)
) − (

(t1) − (t1)
)∥∥p

B
− 1

2 −κ−ε

p,p

]

� εpκ/2|t2 − t1|κp/4.

Then by Lemma 2.1, we obtain that for every δ > 0,p > 1, − → 0 in
Lp(�;CT C−1/2−δ) as ε → 0.

Convergence of −
In this part, we prove the convergence of . Recall that = 2 − Cε

0 and

= − C̄ε
0 . Now take

(6.3) Cε
0 = 2−3

∫
E

1{|k|∞≤N}
2|k|2f (εk)

dk, C̄ε
0 = 2−3

∫ 1{|k|∞≤N}
2|k|2π2 dk.
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Then we have

E
∣∣�q

[
(t) − (t)

]∣∣2
�

∫
(R×E)2

θ
(
2−qk[12]

)2∣∣(P ε
t−s1

(k1)P
ε
t−s2

(k2) − P̄ ε
t−s1

(k1)P̄
ε
t−s2

(k2)
)∣∣2 dη12

� εκ
∫

θ
(
2−qk[12]

)2 |k1|κ + |k2|κ
|k1|2|k2|2 dk12 � εκ2(κ+2)q .

Here, κ > 0 is small enough and in the second inequality we used Lemma 6.4
and in the last inequality we used Lemma 6.1. Then by Gaussian hypercontrac-
tivity and Lemma 2.1, we obtain that for every δ > 0,p > 1, − → 0 in
Lp(�;CT C−1−δ) as ε → 0.

Convergence of −
In this part, we consider the convergence of uε

2. Recall that

(t) − (t) = I 3
t − Ī 3

t + J 3
t .

Here,

I 3
t = 2−3

∫
(R×E)3

ek[123]

∫ t

0
P ε

t−σ (k[123])P ε
σ−s1

(k1)

× P ε
σ−s2

(k2)P
ε
σ−s3

(k3) dσW(dη123),

and Ī 3
t is defined similarly as I 3

t with P ε
t−σ (k[123]) replaced by pt−σ (k[123]) and

with other P ε replaced by P̄ ε and J 3
t is defined similarly as I 3

t with ek[123], k[123]
replaced by e

k̃[123], k̃[123], respectively. We use a graph notation to indicate the main

part in I 3
t and Ī 3

t :

to indicate
∫ t

0
P ε

t−σ (k[123]) · · ·dσ,

for the corresponding term in Ī 3
t .
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The graph for J 3
t is the same as that for I 3

t with k[123] replaced by k̃[123]. By
Lemma 6.4 and a straightforward calculation, we obtain that

E
∣∣�q

(
I 3
t − Ī 3

t

)∣∣2
�

∫
(R×E)2

θ
(
2−qk[123]

)2

∣∣∣∣∣
∫ t

0

(
P ε

t−σ (k[123])
3∏

i=1

P ε
σ−si

(ki)

− pt−σ (k[123])
3∏

i=1

P̄ ε
σ−si

(ki)

)
dσ

∣∣∣∣∣
2

dη123

�
∫

θ
(
2−qk[123]

) εκ ∑3
i=1 |ki |κ + |k[123]|κεκ

|k1|2|k2|2|k3|2[|k1|2 + |k2|2 + |k3|2]|k[123]|2 dk123

�
∫
E

θ
(
2−qk

) εκ

|k|4−κ
dk � εκ2q(−1+κ),

where we used Lemma 6.1 in the third inequality and we used the graph nota-
tion in the second inequality. From the graph, we can use Lemma 6.4 to control
each − , and εκ |ki |κ is produced. Then for each integral w.r.t. time si ,
|ki |−2e−|σ−σ̄ ||ki |2 is produced and taking integrals w.r.t. σ and σ̄, we obtain the
second inequality. Similar calculations also imply that

E
∣∣�qJ 3

t

∣∣2 � ∫
θ
(
2−q k̃[123]

) 1{|k123|>N,2q�N}
|k1|2|k2|2|k3|2[|k1|2 + |k2|2 + |k3|2]|k̃[123]|2

dk123

�
∫
E

θ
(
2−q k̃

)1{|k|>N,2q�N}
|k|2|k̃|2 dk � εκ2q(−1+κ).

Here, we use |k| > N and 1
|k|2 to produce εκ . By a similar argument as above,

we also obtain that for every δ > 0,p > 1, − → 0 in Lp(�;CT C
1
2 −δ).

Similarly, we obtain that − → 0 in Lp(�;C
1
8
T C

1
4 −δ).

Convergence of π0,�( , ) − π0,�( , )

In this part, we focus on π0( , ) and prove that π0,�( , ) −
π0,�( , ) → 0 in CT C−δ for every δ > 0. Now we have the following identity
for t ∈ [0, T ]:

π0( , )(t) − π0( , )(t) = I 1
t + 4I 2

t + 2I 3
t − [

Ī 1
t + 4Ī 2

t + 2Ī 3
t

]
,



LATTICE APPROXIMATION TO THE DYNAMICAL �4
3 MODEL 429

where

I 1
t = 2− 9

2

∫
ek[1234]ψ0(k[12], k[34])

∫ t

0
dσP ε

t−σ (k[12])P ε
σ−s1

(k1)

× P ε
σ−s2

(k2)P
ε
t−s3

(k3)P
ε
t−s4

(k4)W(dη1234),

I 2
t = 2− 9

2

∫ ∫
ek[23]ψ0(k[12], k3 − k1)

∫ t

0
dσP ε

t−σ (k[12])P ε
σ−s2

(k2)

× P ε
t−s3

(k3)V
ε
t−σ (k1) dk1W(dη23),

I 3
t = 2−6

∫
E2

∫ t

0
dσV ε

t−σ (k1)V
ε
t−σ (k2)P

ε
t−σ (k[12]) dk12,

and for i = 1,2,3, Ī i
t is defined similarly with P ε

t−σ (k[12]) replaced by pt−σ (k[12])
and other P ε,V ε replaced by P̄ ε, V̄ ε , respectively. We use a graph notation to
indicate the main part in I 1

t and I 2
t , I 3

t :

, , .

The graphs for Ī 1
t , Ī 2

t and Ī 3
t should be the same with replaced by .

In fact, choose

(6.4) Cε
11 = 2−5

∫ ∫ t

−∞
dσV ε

t−σ (k1)V
ε
t−σ (k2)P

ε
t−σ (k[12]) dk12

and C̄ε
1 is defined with each P ε,V ε replaced by p, V̄ ε , respectively. Choose

ϕε
1(t) = 2I 3

t − Cε
11 and ϕ̄ε

1(t) = 2Ī 3
t − C̄ε

1 and

ϕ1(t) = −2−7
∫

e−tπ2(|k1|2+|k2|2+|k[12]|2)

|k1|2|k2|2(|k1|2 + |k2|2 + |k[12]|2)π6 dk12.

Then we easily obtain that

sup
t∈[0,T ]

tρ
∣∣ϕε

1 − ϕ1
∣∣ � εκ, sup

t∈[0,T ]
tρ

∣∣ϕ̄ε
1 − ϕ1

∣∣ � εκ,

for every ρ > 0,0 < κ < 2ρ.
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Terms in the second chaos: Now we consider I 2
t and by graph notation and (6.1),

(6.2) we have

E
∣∣�q

(
I 2
t − Ī 2

t

)∣∣2
�

∫
ψ0(k[12], k3 − k1)ψ0(k[24], k3 − k4)θ

(
2−qk[23]

)2

× |εk[12]|κ/2|εk[24]|κ/2 + |εk1|κ/2|εk4|κ/2 + |εk2|κ + |εk3|κ
|k1|2|k2|2|k3|2|k4|2(|k1|2 + |k[12]|2)(|k4|2 + |k[24]|2) dk1234

� εκ
∫

θ
(
2−qk[23]

)2 2−2q+2κ

|k2|2−κ |k3|2 dk23

� εκ2q3κ ,

with κ > 0 small enough. Here, we used that |k[i2]| � 2q on the support of
ψ0(k[i2], k3 − ki)θ(2−qk[23]) for i = 1,4 in the second inequality and Lemma 6.1
in the last inequality.

Terms in the fourth chaos: Now for I 1
t by (6.1), (6.2) and graph notation we

have

E
[∣∣�q

(
I 1
t − Ī 1

t

)∣∣2]
� εκ

∫
θ
(
2−qk[1234]

)2 ψ0(k[12], k[34])
|k1|2|k2|2|k3|2|k4|2|k[12]|4

×
(
|k[12]|κ +

4∑
i=1

|ki |κ
)

dk1234

�
∫

θ
(
2−qk[1234]

)2
ψ0(k[12], k[34])

×
(

εκ

|k[34]||k[12]|5−κ
+ εκ

|k[34]|1−κ |k[12]|5
)

dk[12][34]

�
∫

θ
(
2−qk

)22−q(2+κ) εκ

|k|1−2κ
dk � εκ2qκ ,

where we used Lemma 6.1 in the second inequality and that |k[12]| � 2q on the
support of θ(2−qk[1234]) ψ0(k[12], k[34]) in the third inequality. Now we have that
for κ > 0 small enough

E
[∣∣�q

(
I 1
t − Ī 1

t

)∣∣2]
� 2qκεκ .

By a similar calculation as above, Gaussian hypercontractivity and Lemma 2.1 we
obtain that for every δ > 0, p > 1,

π0,�( , ) − π0,�( , ) → 0 in Lp(
�;CT C−δ).
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Convergence of π0( , ) − π0( , )

In this part, we focus on π0( , ) and prove that π0( , ) − π0( , ) → 0 in
CT C−δ . We have the following identity for t ∈ [0, T ]:

−π0( , )(t) + π0( , )(t) = I 1
t + 3I 2

t − [
Ī 1
t + 3Ī 2

t

] + J 1
t + 3J 2

t ,

where

I 1
t = 2− 9

2

∫
ek[1234]ψ0(k[123], k4)

∫ t

0
dσP ε

t−σ (k[123])P ε
σ−s1

(k1)

× P ε
σ−s2

(k2)P
ε
σ−s3

(k3)P
ε
t−s4

(k4)W(dη1234),

I 2
t = 2− 9

2

∫ ∫
ek[23]ψ0(k[123], k1)

∫ t

0
dσP ε

t−σ (k[123])P ε
σ−s2

(k2)

× P ε
σ−s3

(k3)V
ε
t−σ (k1) dk1W(dη23),

and for i = 1,2, Ī i
t is defined with P ε

t−σ (k[123]) replaced by pt−σ (k[123]) and other
P ε,V ε replaced by P̄ ε, V̄ ε , respectively, and for i = 1,2, J i

t is defined similarly as
I i
t with k[123], ek[1234], ek[23] replaced by k̃[123], ek̃[1234], ek̃[23] , respectively. We also

use graph notation to indicate the main part in I 1
t and I 2

t :

, .

The graphs for Ī 1
t , Ī 2

t should be the same with replaced by and the
graphs for J 1

t , J 2
t should be the same as above only with k[123] replaced by

k̃[123].
Terms in the second chaos: First, we consider I 2

t and have the following calcu-
lations:

E
∣∣�q

(
I 2
t − Ī 2

t

)∣∣2
�

∫
ψ0(k[123], k1)ψ0(k[234], k4)θ

(
2−qk[23]

)2

× |εk[123]|κ/2|εk[234]|κ/2 + |εk1|κ/2|εk4|κ/2 + |εk2|κ + |εk3|κ
|k2|2|k3|2|k1|2(|k1|2 + |k[123]|2)|k4|2(|k4|2 + |k[234]|2) dk1234

� εκ
∫

2−q(2−2κ)θ
(
2−qk[23]

)2 1

|k2|2−κ |k3|2 dk23 � εκ23qκ ,

where κ > 0 is small enough. Here, we used (6.1), (6.2) and graph notation in the
first inequality and that |k[123]| � 2q , k[234] � 2q in the second inequality and we
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used Lemma 6.1 in the last inequality. By a similar calculation as above, we see
that

E
∣∣�qJ 2

t

∣∣2 � ∫
2−q(2−2κ)θ

(
2−q k̃[23]

)2 εκ

|k2|2−κ |k3|2 dk23 � εκ23κq .

Here, κ > 0 is small enough and in the first inequality we used |k[123]| � N to
deduce that |ki | � N for some i ∈ {1,2,3}, which produces εκ , and in the last
inequality we used Lemmas 6.1 and 6.5.

Terms in the fourth chaos: Now for I 1
t we have

E
[∣∣�q

(
I 1
t − Ī 1

t

)∣∣2]
� εκ

∫
θ(2−qk[1234])2ψ0(k[123], k4)(|k[123]|κ + ∑4

i=1 |ki |κ)

|k1|2|k2|2|k3|2|k4|2[|k1|2 + |k2|2 + |k3|2]|k[123]|2 dk1234

�
∫

2−q(2−κ)θ
(
2−qk

)2 εκ

|k| dk � εκ2qκ ,

where we used (6.1), (6.2) and graph notation in the first inequality, Lemma 6.1
and that |k[123]| � 2q in the second inequality. For J 1

t , using Lemma 6.5 and by a
similar argument, we also obtain that

E
∣∣�qJ 1

t

∣∣2 � εκ2κq .

Now by a similar calculation as above, Gaussian hypercontractivity and Lemma 2.1
we have that for every δ > 0, p > 1,

π0( , ) − π0( , ) → 0 in Lp(
�;CT C−δ).

Convergence of π0,�( , ) − π0,�( , )

In this part, we focus on π0,�( , ) and prove that π0,�( , ) −
π0,�( , ) → 0 in CT C− 1

2 −δ . We have the following identity for t ∈ [0, T ]:

π0,�( , )(t) − π0,�( , )(t)

= I 1
t + 6I 2

t + 6I 3
t − [

Ī 1
t + 6Ī 2

t + 6Ī 3
t

] + J 1
t + 6J 2

t + 6J 3
t ,
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where

I 1
t = 2−6

∫
ek[12345]ψ0(k[123], k[45])

∫ t

0
dσP ε

t−σ (k[123])

×
3∏

i=1

P ε
σ−si

(ki)

5∏
i=4

P ε
t−si

(ki)W(dη12345),

I 2
t = 2−6

∫ ∫
ek[234]ψ0(k[123], k4 − k1)

∫ t

0
dσP ε

t−σ (k[123])

×
3∏

i=2

P ε
σ−si

(ki)P
ε
t−s4

(k4)V
ε
t−σ (k1) dk1W(dη234),

I 3
t = 2−6

∫ ∫
ek3ψ0(k[123], k[12])

∫ t

0
dσP ε

σ−s3
(k3)

× V ε
t−σ (k1)V

ε
t−σ (k2)P

ε
t−σ (k[123]) dk12W(dη3),

and for i = 1,2,3, Ī i
t is defined similarly with P ε

t−σ (k[123]) replaced by
pt−σ (k[123]) and other P ε,V ε replaced by P̄ ε, V̄ ε , respectively, and for i = 1,2,3,
J i

t is defined similarly as I i
t with each k[123], ek[12345] , ek[234] , ek3 replaced by k̃[123],

e
k̃[12345] , e

k̃[234] , e
k̃3

, respectively. We use graph notation to indicate the main parts

in I 1
t and I 2

t , I 3
t :

, , .

The graph for Ī 1
t , Ī 2

t , Ī 3
t should be the same with replaced by and the

graph for J 1
t , J 2

t , J 3
t should be the same as above only with k[123] replaced by

k̃[123].
We consider the following term first:

I 3
t − Ī 3

t − [
Ĩ 3
t − ˜̄I 3

t

] + Ĩ 3
t − ˜̄I 3

t − Cε(t) (t) + C̄ε(t) (t),

where Ĩ 3
t , ˜̄I 3

t are defined similarly as I 3
t , Ī 3

t with P ε
σ−s3

(k3), P̄
ε
σ−s3

(k3) replaced by

P ε
t−s3

(k3), P̄
ε
t−s3

(k3), respectively, and Cε(t) = 1
2 [Cε

11 + ϕε
1(t)], C̄ε(t) = 1

2 [C̄ε
11 +

ϕ̄ε
1(t)]. We also use graph notation to indicate the main parts in Ĩ 3

t and Cε(t) (t):

, .

Since for κ > 0 small enough,
∫ |P ε

t−s3
(k3) − P ε

σ−s3
(k3)|2 ds3 � (t−σ)κ/2

|k3|2−κ and

∫ ∣∣P ε
t−s3

(k3) − P ε
σ−s3

(k3) − [
P̄ ε

t−s3
(k3) − P̄ ε

σ−s3
(k3)

]∣∣2 ds3 �
(t − σ)κ/2 ∧ εκ

|k3|2−κ
,
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by (6.1), (6.2) and graph notation we obtain that for κ > 0 small enough

E
[∣∣�q

(
I 3
t − Ī 3

t − [
Ĩ 3
t − ˜̄I 3

t

])∣∣2]
�

∫
θ
(
2−qk3

)2
[

1

|k3|2−2κ

(∫ t

0

∫
εκ/2(|k[123]|κ/2 + |k2|κ/2 + |k1|κ/2)

× e−(|k[123]|2+|k1|2+|k2|2)c̄f (t−σ)

|k1|2|k2|2 (t − σ)κ/2 dk12 dσ

)2

+ εκ

|k3|2−2κ

(∫ t

0

∫
e−(|k[123]|2+|k1|2+|k2|2)(t−σ)

|k1|2|k2|2 (t − σ)κ/4 dk12 dσ

)2]
dk3

� εκ2q(1+3κ).

Here, in the last inequality we used that supa≥0 are−a ≤ C for r ≥ 0 and
Lemma 6.1. Moreover, by Lemmas 6.2 and 6.3 and graph notation we obtain that

E
[∣∣�q

(
Ĩ 3
t − ˜̄I 3

t − (t)Cε(t) + (t)C̄ε(t)
)∣∣2]

�
∫ 1

|k3|2 θ
(
2−qk3

)(∫ ∫ t

0
|k[12]|−κ |k3|κ

× (
εκ/2|k2|κ/2 + εκ/2|k1|κ/2 + εκ/2|k3|κ/2)

× e−|k1|2(t−σ)c̄f −|k2|2(t−σ)c̄f

|k1|2|k2|2 dk12 dσ

)2
dk3

+
∫

εκ |k3|κ
|k|2 θ

(
2−qk3

)2

×
(∫ ∫ t

0

e−|k2|2(t−σ)−|k1|2(t−σ)

|k1|2|k2|2 |k3|κ |k[12]|−κ dk12 dσ

)2
dk3

� εκ
∫

θ
(
2−qk3

) 1

|k3|2−3κ
dk3 � εκ2q(1+3κ).

For J 3
t , we have

E
[∣∣�qJ 3

t

∣∣2]
�

∫ 1

|k3|2 θ
(
2−q k̃3

)

×
(∫ 1|k1|≤N,|k2|≤N,|k3|≤N

|k1|2|k2|2(|k1|2 + |k2|2 + |k̃[123]|2)
dk12

)2
dk3

� εκ2q(1+3κ).

Here, we used that 2q �N � |k̃3| and Lemma 6.6 in the last inequality.
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Terms in the third chaos: Now we focus on the bounds for I 2
t . We obtain the

following inequalities:

E
∣∣�q

(
I 2
t − Ī 2

t

)∣∣2
�

∫
θ
(
2−qk[234]

)
ψ0(k[123], k4 − k1)ψ0(k[235], k4 − k5)

×
5∏

i=1

1

|ki |2
|k[123]|κ/2|k[235]|κ/2εκ + ∑4

i=1(ε|ki |)κ
(|k1|2 + |k[123]|2 + |k2|2)(|k5|2 + |k[235]|2) dk12345

�
∫

2−q(1−κ) εκθ(2−qk[234])
|k2|3−2κ |k3|2|k4|2 dk234 � εκ2q(1+3κ),

where we used graph notation in the first inequality and Lemma 6.1 in the last
inequality. For J 2

t by a similar calculation as above, we know that

E
∣∣�qJ 2

t

∣∣2 � ∫
2−q(1−κ)θ

(
2−q k̃[234]

)2 1

|k2|3−κ |k3|2|k4|2 dk234 � εκ2(1+3κ)q .

Here, κ > 0 is small enough and in the last inequality we used Lemmas 6.1 and
6.6.

Terms in the fifth chaos: Now we focus on the bounds for I 1
t . By graph notation,

we obtain the following inequalities:

E
∣∣�q

(
I 1
t − Ī 1

t

)∣∣2
�

∫
θ
(
2−qk[12345]

)2
ψ0(k[123], k[45])2

×
5∏

i=1

1

|ki |2
(
∑5

i=1 |εki |κ + |εk[123]|κ)

|k[123]|2(|k1|2 + |k2|2 + |k[123]|2) dk12345

� εκ2q(1+2κ).

For J 1
t by similar calculations as for I 1

t and using the fact that |k[123]| � N �
|k̃[123]|, we obtain that

E
∣∣�qJ 1

t

∣∣2 � εκ2q(1+2κ).

By a similar calculation as above, we also obtain that there exist κ, ε, γ > 0 small
enough such that for any t1, t2 ∈ [0, T ]

E
[∣∣�q

(
π0,�( , )(t1) − π0,�( , )(t2)

− π0,�( , )(t1) + π0,�( , )(t2)
)∣∣2]

� εγ |t1 − t2|κ2q(1+ε),
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which by Gaussian hypercontractivity and Lemma 2.1 implies that for every δ >

0,p > 1, π0,�( , ) − π0,�( , ) → 0 in Lp(�;CT C− 1
2 −δ).

6.2. Convergence of error terms. In this subsection, we prove that Eε
W →P 0

as ε → 0. For the estimate, we use Lemma 6.6 or the fact that there exists some
|ki | � N to produce εκ . Due to this reason most error terms converge to zero.

However, for π0,�( , ) and π0,�( , ) we still need to do renormaliza-
tion such that it converges to zero. This is where Cε

12 comes from.

Convergence of π0( , )

We have the following identity for t ∈ [0, T ]:

π0( , )(t) = I 1
t + 4I 2

t + 2I 3
t ,

where

I 1
t = 2− 9

2

∫
e
k̃[1234]ψ0(k[12], k̃[34]) W(dη1234),

I 2
t = 2− 9

2

∫ ∫
e
k̃[23]ψ0(k[12], k̃3 − k1) dk1W(dη23)

I 3
t = 2−6

∫
e
i1i2i3
N ψ0(k[12], −̃k[12]) dk12.

Term in the 0th chaos: We have

E
[∣∣�qI 3

t

∣∣2]
�

(∫ 1|k[12]|�N�2q ψ0(k[12], k̃[12])
|k[12]|3 dk[12]

)2
� εκ2q(3κ).

Term in the second chaos: Now we consider I 2
t . We have

E
∣∣�qI 2

t

∣∣2 � ∫
ψ0(k[12], k̃3 − k1)ψ0(k[24], k̃3 − k4)θ

(
2−q k̃[23]

)2

× 1

|k2|2|k3|2|k1|2(|k1|2 + |k12|2)|k4|2(|k4|2 + |k[24]|2) dk1234

�
∫

2(−2+κ)qθ
(
2−q k̃[23]

)2 1

|k2|2|k3|2 dk23 � εκ2q2κ ,

where κ > 0 is small enough. Here, we used that |k[i2]| � 2q for i = 1,4 in the
second inequality and used Lemmas 6.1 and 6.6 in the third inequality.
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Term in the fourth chaos: Now for I 1
t we have

E
[∣∣�qI 1

t

∣∣2]
�

∫
θ
(
2−q k̃[1234]

)2
ψ0(k[12], k̃[34])

1

|k[34]||k[12]|5−κ
dk[12][34]

� 2−2q
∫

θ
(
2−q k̃[1234]

)2 1

|k[34]||k[12]|3−κ
dk[12][34] � εκ2qκ ,

where we used Lemmas 6.1 and 6.6 in the last inequality. By a similar calculation
as above, Gaussian hypercontractivity and Lemma 2.1 we obtain that for every
δ > 0, p > 1,

π0( , ) → 0 in Lp(
�;CT C−δ).

Convergence of π0( , )

Now we have the following identity for t ∈ [0, T ]:

π0( , )(t) = I 1
t + 4I 2

t + 2I 3
t ,

where

I 1
t = 2− 9

2

∫
e
k̃[1234]ψ0(k̃[12], k[34]) W(dη1234),

I 2
t = 2− 9

2

∫ ∫
e
k̃[23]ψ0(k̃[12], k3 − k1) dk1W(dη23),

I 3
t = 2−6

∫
e
i1i2i3
N ψ0(k̃[12],−k[12]) dk12.

I 3
t , I 2

t can be estimated similarly as for the case of π0( , ) and we only
consider Terms in the fourth chaos: Now for I 1

t we have

E
∣∣�qI 1

t

∣∣2 � ∫
ψ0(k̃[12], k[34])θ

(
2−q k̃[1234]

)2

× 1

|k2|2|k3|2|k1|2(|k1|2 + |k2|2)|k4|2|k̃[12]|2
dk1234

�
∫

2−2qθ
(
2−q k̃[1234]

)2 1

|k[12]|3−κ |k[34]| dk[12][34] � εκ2q2κ ,

where we used Lemmas 6.1 and 6.6 in the last inequality. By a similar calculation
as above, Gaussian hypercontractivity and Lemma 2.1 we obtain that for δ > 0,
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p > 1

π0( , ) → 0 in Lp(
�;CT C−δ).

Convergence of π0,�( , )

We have

π0( , )(t) = I 1
t + 4I 2

t + 2I 3
t .

Here, I i
t , i = 1,2 is defined similarly as for the case of π0( , ) with k[12],

e
k̃[1234] and e

k̃[23] replaced by k̃[12], e ˜̃
k[1234]

and e ˜̃
k[23]

, respectively, and

I 3
t = 2−6

∫
e
i1i2i3
N e

i′1i′2i′3
N ψ0

(
k̃
i′1i′2i′3[12] , −̃k[12]

i1i2i3) ∫ t

0
dσP ε

t−σ

(
k̃
i′1i′2i′3[12]

)
× V ε

t−σ (k1)V
ε
t−σ (k2) dk12,

for ij , i
′
j ∈ {−1,0,1} for j = 1,2,3 with

∑
j i2

j = 0,
∑

j (i
′
j )

2 = 0. Choosing

(6.5) C
ε,i1i2i3
12 = 2−5

∫ ∫ t

−∞
dσP ε

t−σ

(−̃k[12]
i1i2i3)

V ε
t−σ (k1)V

ε
t−σ (k2) dk12,

and ϕ
ε,i1i2i3
2 (t) = −2−5 ∫ ∫ 0

−∞ dσP ε
t−σ (−̃k[12]

i1i2i3
)V ε

t−σ (k1)V
ε
t−σ (k2) dk12, we

easily obtain that ∣∣Cε,i1i2i3
12

∣∣ � 1, sup
t∈[0,T ]

tρ
∣∣ϕε,i1i2i3

2 (t)
∣∣ � εκ,

for every ρ > κ/2 > 0. For the terms in 2I 3
t − C

ε,i1i2i3
12 − ϕ

ε,i1i2i3
2 , we know that

e
i1i2i3
N e

i′1i′2i′3
N = 1 and we easily obtain that

E
[∣∣�q

(
2I 3

t − Cε
12 − ϕε

2
)∣∣2]

� εκ2q(3κ).

Term in the second chaos: Now we consider I 2
t . We have

E
∣∣�qI

2
t

∣∣2 � ∫
ψ0(k̃[12], k̃3 − k1)ψ0(k̃[24], k̃3 − k4)θ

(
2−q ˜̃

k[23]
)21|k[12]|>N,|k[24]|>N

× 1

|k2|2|k3|2|k1|2(|k1|2 + |k̃12|2)|k4|2(|k4|2 + |k̃[24]|2)
dk1234

� εκ
∫

2(−2+2κ)qθ
(
2−q ˜̃

k[23]
)2 1

|k2|2−κ |k3|2 dk23 � εκ23qκ ,

where κ > 0 is small enough and we used that |ki | � N for some i ∈ {1,2,4} in
the second inequality and Lemmas 6.1 and 6.5 in the third inequality.
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Term in the fourth chaos: Now for I 1
t we have

E
[∣∣�qI

1
t

∣∣2]
� εκ

∫
θ
(
2−q ˜̃

k[1234]
)2

ψ0(k̃[12], k̃[34])
1

|k[34]||k̃[12]|5−κ
dk[12][34]

� εκ2−2q
∫

θ
(
2−q ˜̃

k[1234]
)2 1

|k[34]||k̃[12]|3−κ
dk[12][34] � εκ2qκ ,

where we used that |k[12]| � N � |k̃[12]| in the first inequality as well as Lem-
mas 6.1 and 6.5 in the last inequality. By a similar calculation as above, Gaussian
hypercontractivity and Lemma 2.1 we obtain that for every δ > 0, p > 1,

π0,�( , ) → 0 in Lp(
�;CT C−δ).

Convergence of
By a similar calculation as that for in Section 6.1, we know that

E
∣∣�q[ ]∣∣2 � ∫

θ
(
2−q k̃[12]

)2 1

|k1|2|k2|2 dk12 � εκ2(κ+2)q .

Here, κ > 0 is small enough and in the last inequality we used Lemmas 6.1, 6.6.
Then by Gaussian hypercontractivity and Lemma 2.1 we obtain that for every δ >

0,p > 1, → 0 in Lp(�;CT C−1−δ).

Convergence of π0( , e
i1i2i3
N )

Now we have the following identity for t ∈ [0, T ]:

π0
(

, e
i1i2i3
N

)
(t) = I 1

t + 3I 2
t + J 1

t + 3J 2
t ,

where

I 1
t = 2− 9

2

∫
e
k̃[1234]ψ0(k[123], k̃4) W(dη1234),

I 2
t = 2− 9

2

∫ ∫
e
k̃[23]ψ0(k[123], k̃1) dk1W(dη23),

and for i = 1,2, J i
t is defined similarly as I i

t with each k[123], ek̃[1234], ek̃[23] replaced

by k̃[123], e ˜̃
k[1234]

, e ˜̃
k[23]

, respectively.

Terms in the second chaos: First, we consider I 2
t and by similar calculations as

that for π0( , ), we obtain

E
∣∣�qI 2

t

∣∣2 � εκ
∫

2−q(2−2κ)θ
(
2−q k̃[23]

)2 1

|k2|2|k3|2 dk23 � εκ22qκ ,
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where κ > 0 is small enough and we used that |k[123]| � |k̃1| � N in the first
inequality and we used Lemmas 6.1 and 6.5 in the last inequality. By a similar
calculation as above, we see that

E
∣∣�qJ 2

t

∣∣2 � εκ
∫

2−q(2−2κ)θ
(
2−q ˜̃

k[23]
)2 1

|k2|2|k3|2 dk23 � εκ22κq .

Here, κ > 0 is small enough and we used that |k̃[123]| � |k̃1| � N in the first in-
equality, we used Lemmas 6.1 and 6.5 in the last inequality.

Terms in the fourth chaos: Now for I 1
t , J 1

t we similarly get that

E
[∣∣�qI

1
t

∣∣2 + ∣∣�qJ 1
t

∣∣2]
� εκ2κq .

Here, for I 1
t we used that |k[123]| � |k̃4| � N and for J 1

t we used that |k[123]| �
N � |k̃[123]|. Now by a similar calculation as above, Gaussian hypercontractivity
and Lemma 2.1 we obtain that for every δ > 0, p > 1,

π0
(

, e
i1i2i3
N

) → 0 in Lp(
�;CT C−δ).

Convergence of π0,�( , )

Now we have the following identity for t ∈ [0, T ]:

π0( , )(t) = I 1
t + 6I 2

t + 6I 3
t + J 1

t + 6J 2
t + 6J 3

t ,

where

I 1
t = 2−6

∫
e
k̃[12345]ψ0(k[123], k̃[45]) W(dη12345),

I 2
t = 2−6

∫ ∫
e
k̃[234]ψ0(k[123], k̃4 − k1) dk1W(dη234),

I 3
t = 2−6

∫ ∫
e
k̃3

ψ0(k[123], k̃[12]) dk12W(dη3),

and for i = 1,2,3, J i
t is defined similarly as I i

t with each k[123], ek̃[12345], ek̃[234], ek̃3

replaced by k̃[123], e ˜̃
k[12345]

, e ˜̃
k[234]

, e ˜̃
k3

, respectively.

Terms in the first chaos: We consider J 3
t . I 3

t can be estimated similarly. We

decompose J 3
t = J 31

t + J 32
t , with J 31

t , J 32
t associated with the terms that ˜̃

k3 = k3
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and ˜̃
k3 = k3, respectively. For J 31

t , we have

E
[∣∣�qJ 31

t

∣∣2]
�

∫ 1|k3|∞≤N

|k3|2 θ
(
2−q ˜̃

k3
)(∫ 1|k1|�N,|k2|�N

|k1|2|k2|2(|k1|2 + |k2|2 + |k̃[123]|2)
dk12

)2
dk3

� εκ2q(1+3κ).

Here, we used that | ˜̃k3|� 2q � N in the last inequality. For J 32
t , we consider

J 32
t − J̃ 32

t + J̃ 32
t − Cε

2(t) (t),

where J̃ 32
t is defined as J 32

t with P ε
σ−s3

(k3) replaced by P ε
t−s3

(k3) and Cε
2(t) =

1
2(Cε

12 + ϕε
2(t)).

Since
∫ |P ε

t−s3
(k3)−P ε

σ−s3
(k3)|2 ds3 ≤ C (t−σ)κ/2

|k3|2−κ , by a straightforward calcula-
tion we obtain that for κ > 0 small enough

E
[∣∣�q

(
J 32

t − J̃ 32
t

)∣∣2]
�

∫
θ
(
2−qk3

)2 1

|k3|2−4κ

×
(∫ t

0

∫
e−(|k̃[123]|2+|k1|2+|k2|2)c̄f (t−σ)

|k1|2|k2|2 (t − σ)κ1|k[123]|�N dk12 dσ

)2
dk3

� εκ2q(1+5κ).

Here, in the last inequality we used that |k123|�N implies that |ki |�N for some
i ∈ {1,2,3} and that supa≥0 are−a ≤ C for r ≥ 0 and Lemma 6.1. Moreover, by
Lemmas 6.2 and 6.3 we obtain that

E
[∣∣�q

(
J̃ 32

t − (t)Cε
2(t)

)∣∣2]
�

∫ 1

|k3|2 θ
(
2−qk3

)(∫ ∫ t

0
|k̃[12]|−κ |k3|κ

× e−|k1|2(t−σ)c̄f −|k2|2(t−σ)c̄f

|k1|2|k2|2 dk12 dσ

)2
dk3

�
∫

θ
(
2−qk3

) 1

|k3|2−2κ
dk3

[∫
|k[12]|≤N

1

|k̃[12]|κ |k[12]|3
dk[12]

+ εκ/2
∫
|k[12]|>N

1

|k̃[12]|3+κ/2
dk[12]

]2

� εκ2q(1+2κ),
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where in the last inequality we used that if |k[12]| ≤ N , then |k̃[12]|� N .
Terms in the third and fifth chaos can be estimated similarly as done for the case

of π0,�( , ) and we also obtain that there exist κ, ε, γ > 0 small enough such
that for any t1, t2 ∈ [0, T ],

E
[∣∣�q

(
π0,�( , )(t1) − π0,�( , )(t2)

)∣∣2]
� εγ |t1 − t2|κ2q(1+ε),

which by Gaussian hypercontractivity and Lemma 2.1 implies that for every δ >

0,p > 1, π0,�( , ) → 0 in Lp(�;CT C− 1
2 −δ).

6.3. Convergence of random operators. The purpose of this subsection is to
prove that AN defined in Lemma 4.2 converges to zero in probability. Here, we
follow essentially the same arguments as in [13], Section 10.2.

THEOREM 6.7. For every T ≥ 0, 0 < η < κ/2, r ≥ 1, we have

E
[
(AN)r

]1/r � N− κ
2 +η.

Here, κ is fixed in Section 4.

To prove Theorem 6.7, we use similar arguments as in [13], Section 10.2, and
obtain the following two lemmas.

LEMMA 6.8. We have

(
A1

N + A2
N

)
( + , + )(f )(t, x)

= ∑
p,q

∫
T3

gN
p,q(t, x, y)�pf (y) dy

with

FgN
p,q(t, x, ·)(k) = ∑

k1,k2

�N
p,q(x, k, k1, k2)F( + )(t, k1)F( + )(t, k2).

Here,

�N
p,q(x, k, k1, k2)

= 2−9/2eı(k1+k2−k)πxθq(k1 + k2 − k)θ̃p(k)ψ<(k, k1)ψ0(k1 − k, k2)

× (−1|k1−k|∞>N1|k1|∞≤N + 1|k1−k|∞≤N1N<|k1|∞≤3N),

with θ̃p being a smooth function supported in an annulus 2pA such that θ̃pθp = θp .
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LEMMA 6.9. For all r ≥ 1, κ > 0, we have for A1
N := A1

N( + , +
), A2

N := A2
N( + , + ):

E
[∥∥A1

N(t) + A2
N(t) − (

A1
N(s) + A2

N(s)
)∥∥r

L(C1−3κ ,B
− 1

2 −4κ

r,r )

]

�
∑
p,q

2qr(− 1
2 −4κ)2−pr(1−3κ)

×
(

sup
x∈T3

∑
k

E
[∣∣(FgN

p,q(t, x, ·) −FgN
p,q(s, x, ·))(k)

∣∣2])r/2
.

LEMMA 6.10. For all p,q ≥ −1, all 0 ≤ t1 < t2, and all λ, κ ∈ (0,1], we
have ∑

k

E
[∣∣(FgN

p,q(t2, x, ·) −FgN
p,q(t1, x, ·))(k)

∣∣2]

� 12p,2q�N

(
23p22q + 22p23q)

N−2+2λ+κ |t1 − t2|λ.

PROOF. We only prove the estimate for
∑

k E[|FgN
p,q(t, x, ·)(k)|2]). The

above assertion can be obtained by essentially the same arguments. First, we con-

sider the term in AN containing and . We have the following chaos de-
composition:

F (t, l1)F (t, l2) = I 1
t + 4I 2

t + 2I 3
t .

Here,

I 1
t = 2−3

∫
1k[12]=l1,k[34]=l2

∫ t

0
dσpε

t−σ (k[12])ϕ(εk[12])P ε
σ−s1

(k1)

× P ε
σ−s2

(k2)P
ε
t−s3

(k3)P
ε
t−s4

(k4)W(dη1234),

I 2
t = 2−3

∫
1k[12]=l1,k3−k1=l2

∫ t

0
dσpε

t−σ (k[12])ϕ(εk[12])

× P ε
σ−s2

(k2)P
ε
t−s3

(k3)V
ε
t−σ (k1) dk1W(dη23),

I 3
t = 2−3

∫ ∫ t

0
dσ1k[12]=l1,−k[12]=l2V

ε
t−σ (k1)V

ε
t−σ (k2)p

ε
t−σ (k[12])ϕ(εk[12]) dk12.

The graph for I i
t , i = 1,2,3 is similar as that of π0( , ) and we omit them

here.
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Term in the chaos of order 0: By a similar calculation as in Section 6.1, we have

∑
k

∣∣∣∣ ∑
k1,k2

�N
p,q(x, k, k1, k2)1k1+k2=0I

3
t

∣∣∣∣2

�
∑
k

∣∣∣∣∑
k1

�N
p,q(x, k, k1,−k1)

1

|k1|3
∣∣∣∣2

�
∑
k

θ̃p(k)2θq(−k)2
∣∣∣∣∑

k1

(1|k1−k|∞>N1|k1|∞≤N + 1|k1−k|∞≤N1N<|k1|∞≤3N)

× ψ<(k, k1)ψ0(k1 − k, k1)
1

|k1|3
∣∣∣∣2.

In the first case without loss of generality, we may assume that |ki
1 − ki | > N for

some i. Then there are at most |ki | values of ki
1 with |ki

1| ≤ N and |ki
1 − ki | > N .

In the second case for 1|k1−k|∞≤N1N<|k1|∞≤3N without loss of generality, we may
assume that |ki

1| > N for some i. Then there are at most |ki | values of ki
1 with

|ki
1| > N and |ki

1 − ki | ≤ N . Moreover, observe that |k1| � N on the support
of (1|k1−k|∞>N1|k1|∞≤N + 1|k1−k|∞≤N1|k1|∞>N)ψ0(k − k1, k1) and that |k| � N

whenever 1|k1|∞≤3Nψ<(k, k1) = 0, which implies that the above term is bounded
by ∑

k

θ̃p(k)2θq(−k)2|k|21|k|�NN−2 � 12p,2q�N23p22qN−2.

Term in the second chaos: By a similar calculation as in Section 6.1, we have

∑
k

E

∣∣∣∣∑
l1,l2

�N
p,q(x, k, l1, l2)I

2
t

∣∣∣∣2

�
∑
k

12p,2q�N θ̃p(k)2
∫

θq(k[23] − k)2

×
3∏

i=2

1

|ki |2
[∫

ψ<(k, k[12])
1

(|k[12]|2 + |k1|2)|k1|2

× (1|k[12]−k|∞>N,|k[12]|∞≤N + 1|k[12]−k|∞≤N,N<|k[12]|∞≤3N)dk1

]2
dk23

�
∑
k

12p,2q�N θ̃p(k)2
∫

θq(k[23] − k)2 1

|k[23]|N
−2+κ dk[23]

�
∑
k

12p,2q�N θ̃p(k)2N−2+κ22q � 12p,2q�N23p22qN−2+κ .
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Here, in the second inequality we used that |k[12]| � N on the support of
1|k[12]−k|∞>N,|k[12]|∞≤Nψ<(k, k[12]) and in the third inequality we used Lemma 6.5.

Term in the fourth chaos: We have

∑
k

E

∣∣∣∣∑
l1,l2

�N
p,q(x, k, l1, l2)I

1
t

∣∣∣∣2

�
∑
k

θ̃p(k)2
∫

θq(k[1234] − k)2ψ<(k, k[12])2ψ0(k[12] − k, k[34])2

× 12p,2q�N

|k2|2|k3|2|k1|2|k4|2|k[12]|4
× (1|k[12]−k|∞>N,|k[12]|∞≤N + 1|k[12]−k|∞≤N,N<|k[12]|∞≤3N)dk1234

�
∑
k

θ̃p(k)2
∫

θq(k[1234] − k)2 12p,2q�N

|k[1234]|1−κ
dk[1234]N−2−κ

� 12p,2q�N

∑
k

θ̃p(k)2N−2−κ2(2+κ)q

� 12p,2q�N23p22qN−2,

where we used Lemma 6.1 and that |k[12]| � N in the second inequality.
Moreover, we consider

F (t, l1)F (t, l2) = J 1
t + 4J 2

t + 2J 3
t .

Here, J i
t , i = 1,2, is defined similarly as I i

t , i = 1,2, with k[12] replaced by k̃[12]
and

J 3
t = 2−3

∫ ∫ t

0
dσ1

k̃[12]=l1,−k[12]=l2
V ε

t−σ (k1)V
ε
t−σ (k2)p

ε
t−σ (k̃[12])ϕ(εk̃[12]) dk12.

Terms in the chaos of order 0: We have

∑
k

∣∣∣∣ ∑
k1,k2

�N
p,q(x, k, k̃1, k2)1k1+k2=0J

3
t

∣∣∣∣2

�
∑
k

∣∣∣∣∑
k1

�N
p,q(x, k, k̃1,−k1)1|k1|∞�N

1

|k1||k̃1|2
∣∣∣∣2

�
∑
k

θ̃p(k)2θq(k̃)2
∣∣∣∣∑

k1

(1|k̃1−k|∞>N
1|k̃1|∞≤N

+ 1|k̃1−k|∞≤N
1
N<|k̃1|∞≤3N

)

× ψ<(k, k̃1)1|k1|∞�N

1

|k1||k̃1|2
∣∣∣∣2.
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Similarly, as above we obtain that there are at most |ki | values of k̃i
1 with

|k̃i
1| > N and |k̃i

1 − ki | ≤ N or |k̃i
1| ≤ N and |k̃i

1 − ki | > N . Moreover, observe
that |k̃1| � N on the support of 1|k̃1−k|∞>N

1|k̃1|∞≤N
ψ<(k, k̃1) and that |k| � N

whenever 1|k1|∞<3Nψ<(k, k1) = 0, which implies that the above term is bounded

by

∑
k

θ̃p(k)2θq(k̃)2|k|21|k|�NN−2 � 12p,2q�N22p23qN−2.

For the terms in the second chaos by a similar calculation as above, we obtain the

desired estimates.
Terms in the fourth chaos: We have

∑
k

E

∣∣∣∣∑
l1,l2

�N
p,q(x, k, l1, l2)J

1
t

∣∣∣∣2

�
∑
k

θ̃p(k)2
∫

θq(k̃[1234] − k)2ψ<(k, k̃[12])2ψ0(k̃[12], k[34])2

× 12p,2q�N

|k2|2|k3|2|k1|2|k4|2|k̃[12]|4
1|k[12]|�N,|k[34]|�N dk1234

× (1|k̃12−k|∞>N,|k̃12|∞≤N
+ 1|k̃12−k|∞≤N,N<|k̃12|∞≤3N

)

� 12p,2q�N

∑
k

θ̃p(k)2
∫

θq(k̃[1234] − k)2

× 1

|k1|2|k2|2|k3|2|k4|2 N−41|k[12]|�N,|k[34]|�N dk1234

� 12p,2q�N

∑
k

θ̃p(k)2
∫

θq(k̃[1234] − k)
1

|k[12]|2|k[34]|2 dk[12][34]N−2

� 12p,2q�N23p22qN−2.

Here, in the second inequality we used that |k̃[12]| � N and in the third inequality

we used that N−1 � |k[12]|−1,N−1 � |k[34]|−1 and in the last inequality we used
Lemma 6.5.

Furthermore, for the terms associated with and we obtain the

desired estimates by similar arguments. Thus the result follows. �
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PROOF OF THEOREM 6.7. For t, s ≥ 0, r > 0 large enough, we have for

A1
N := A1

N( + , + ), A2
N := A2

N( + , + ):

E
[∥∥(A1

N(t) + A2
N(t) − (

A1
N(s) + A2

N(s)
)∥∥r

L(C1−3κ ,C− 1
2 −5κ

)

]
�E

[∥∥(A1
N(t) + A2

N(t) − (
A1

N(s) + A2
N(s)

)∥∥r

L(C1−3κ ,B
− 1

2 −4κ

r,r )

]

�
∑
p,q

2qr(− 1
2 −4κ)2−pr(1−3κ)

× 12p,2q�N

[(
23p22q + 22p23q)|t − s|λN−2+2λ+κ]r/2

� |t − s|rλ/2N(−κ/2+λ+δ)r .

Here, κ
2 > δ + λ > 0. Thus the result follows by using Kolmogorov’s continuity

criterion. �

6.4. Convergence of DN . In this subsection, we prove that DN →P 0 as
ε → 0. Here, we use the fact that there exists some |kj | � N to produce εκ . We
have the following identity for t ∈ [0, T ]:

π0
(
(I − PN)π<( , ),

)
(t) − π0

(
PNπ<

(
, (P3N − PN)

)
,

)
(t)

=
4∑

i=1

(
I i
t + J i

t

)
,

where

I 1
t = 2−9

∫
ek[1234567]ψ0(k[12345], k[67])ψ<(k[123], k[45])

× (1|k[12345]|∞>N1|k[45]|∞≤N − 1|k[12345]|∞≤N1N<|k[45]|∞≤3N)

×
∫ t

0

∫ t

0
dσ dσ̄P ε

t−σ (k[123])
3∏

i=1

P ε
σ−si

(ki)p
ε
t−σ̄ (k[45])ϕ(εk[45])

×
5∏

i=4

P ε
σ̄−si

(ki)

7∏
i=6

P ε
t−si

(ki)W(dη1234567)

:=
∫

G(t, x, η1234567)W(dη1234567),

I 2
t =

3∑
i=1

I 2i
t , I 21

t = 6
∫ ∫

G(t, x, η123(−3)567) dη3W(dη12567),

I 22
t = 6

∫
G(t, x, η12345(−3)7) dη3W(dη12457),
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I 23
t = 4

∫
G(t, x, η12345(−5)7)]dη5W(dη12347),

I 3
t =

6∑
i=1

I 3i
t , I 31

t = 6
∫ ∫

G(t, x, η123(−3)(−2)67) dη23W(dη167),

I 32
t = 24

∫ ∫
G(t, x, η123(−3)5(−2)7) dη23W(dη157),

I 33
t = 12

∫ ∫
G(t, x, η123(−3)5(−5)7) dη35W(dη127)

I 34
t = 6

∫ ∫
G(t, x, η12345(−2)(−3)) dη23W(dη145),

I 35
t = 12

∫ ∫
G(t, x, η12345(−3)(−4)) dη34W(dη125)

I 36
t = 2

∫ ∫
G(t, x, η12345(−4)(−5)) dη45W(dη123),

I 4
t =

3∑
i=1

I 4i
t , I 41

t = 12
∫ ∫

G(t, x, η123(−1)(−2)(−3)7) dη123W(dη7),

I 42
t = 12

∫ ∫
G(t, x, η123(−3)5(−2)(−1)) dη123W(dη5),

I 43
t = 24

∫ ∫
G(t, x, η123(−3)5(−5)−2) dη235W(dη1),

and J 1
t is defined similarly as I 1

t with k[123], k[12345], ek[1234567] replaced by
k̃[123], k̃[12345], ek̃[1234567] , respectively, and J i

t , i = 2,3,4 is defined similarly as

I i
t with the G replaced by that associated with J 1. For the reader’s convenience,

we use the graph notation to denote G(t, x, η1234567) and the term for I 21
t . The

graphs for other terms are similar as the graph for I 21
t with the corresponding

lines connected. Here, we omit (I − PN),PN,π0, π< in the graph for simplic-
ity:

, .

Terms in the seventh chaos: We have

E
∣∣�qI 1

t

∣∣2 � ∫
θ
(
2−qk[1234567]

)
ψ0(k[12345], k[67])ψ<(k[123], k[45])

× (1|k[12345]|∞>N,|k[45]|∞≤N + 1|k[12345]|∞≤N,|k[45]|∞>N)
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× 1|k[1234567]|�N

7∏
i=1

1

|ki |2
(

1
/(

|k[123]|2|k[45]|2
(
|k[123]|2 +

3∑
i=1

|ki |2
)

×
(
|k[45]|2 +

5∑
i=4

|ki |2
)))

dk1234567.

Observe that |k45|∞ � N on the support of ψ<(k[123], k[45])1|k[12345]|∞>N , which
combined with Lemma 6.1 implies that the above term is bounded by∫

θ
(
2−qk[1234567]

)
1|k[45]|∞�N,2q�N

1

|k[123]|4|k[45]|5|k[67]| dk[123][45][67]

�
∫

12q�Nθ
(
2−qk[1234567]

) N−2−κ

|k[12345]|3−κ

1

|k[67]| dk[12345][67] � εκ22qκ .

Terms in the fifth chaos: Consider I 21
t first: by the formula we know that |k5 −

k3|� N , hence

E
∣∣�qI 21

t

∣∣2
� 12q�N

∫
θ
(
2−qk[12567]

) 7∏
i=5

1

|ki |2
1

|k1|2|k2|2

×
[(∫ 1

|k3|2(|k5 − k3|2 + |k3|2)(|k[123]|2 + |k5 − k3|2) dk3

)2

+
(∫ 1

|k3|2(|k5 − k3|2 + |k[123]|2)(|k[123]|2 + |k3|2) dk3

)2]

× 1{|k5−k3|�N,|k5|�N,|k[12]|�N} dk12567

�
∫

θ
(
2−qk[12567]

)
12q�N

N−4+2κ

|k[12]|3−κ |k5|2+2κ |k[67]| dk[12]5[67] � εκ22qκ .

Here, in the first inequality we consider σ > σ̄ and σ ≤ σ̄ separately and we used
that |k[123]|2 + |k3|2 � |k[12]|2 in the second inequality.

Now we consider I 22
t and in this case we have that |k[45]| � N , which implies

that

E
∣∣�qI 22

t

∣∣2 � 12q�N

∫
θ
(
2−qk[12457]

)
1|k45|�N

1

|k1|2|k2|2|k[45]|5|k7|2

×
(∫ 1

(|k[123]|2 + |k3|2)|k3|2 dk3

)2
dk12[45]7

� 12q�N

∫
θ
(
2−qk[12457]

) N−2−κ

|k[12]|3−κ |k[45]|3−κ |k7|2 dk[12][45]7

� εκ22qκ .
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Here, in the second inequality we used that |k[123]|2 + |k3|2 � |k[12]|2.
For I 23

t we have that |k[45]| � N , hence

E
∣∣�qI 23

t

∣∣2 � 12q�N

∫
θ
(
2−qk[12347]

)
1{|k[45]|�N}

4∏
i=1

1

|ki |2
1

|k7|2

× 1

(|k[123]|2 + ∑3
i=1 |ki |2)|k[123]|2

×
(∫ 1

(|k[45]|2 + |k5|2)|k5|2 dk5

)2
dk12347

�
∫

12q�Nθ
(
2−qk[12347]

) 1

|k[1234]|2−κ

N−2+κ

|k7|2 dk[1234]7 � εκ22qκ .

Terms in the third chaos: For I 31
t , we have that

E
∣∣�qI 31

t

∣∣2 � 12q�N

∫
θ
(
2−qk[167]

)
ψ0(k1, k[67])ψ<(k[123], k[23])

× (1|k1|∞>N,|k[23]|∞≤N + 1|k1|∞≤N,N<|k[23]|∞≤3N)

× 1

|k1|2
1

|k6|2|k7|2
(∫ 1

(|k[123]|2 + |k[23]|2)|k[23]|2|k2|2|k3|2 dk23

)2

× 1|k1|�N dk167

� 12q�N

∫
θ
(
2−qk[167]

) N−3−κ

|k1|3−κ |k[67]| dk1[67] � εκ22qκ .

Here, we used that |k[23]|2 � |k2|2 + |k3|2 in the first inequality and in the second
inequality we used that |k[23]| � N .

For I 32
t , we obtain that

E
∣∣�qI 32

t

∣∣2 � 12q�N

∫
θ
(
2−qk[157]

)
1{|k5−k3|∞�N}

1

|k1|2|k5|2|k7|2 1|k5|≤N

×
[(∫

1/
((|k5 − k3|2 + |k3|2)

× (|k[123]|2 + |k2|2 + |k5 − k3|2)|k2|2|k3|2)
dk23

)2

+
(∫

1/
((|k[123]|2 + |k2|2 + |k3|2)

× (|k[123]|2 + |k2|2 + |k5 − k3|2)|k2|2|k3|2)
dk23

)2]
dk157
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� 12q�N

∫
θ
(
2−qk[157]

)
N−3 1

|k1|2|k5|3−κ |k7|2 dk157 � εκ22qκ .

Here, in the first inequality we consider σ > σ̄ and σ ≤ σ̄ separately. For I 33
t , we

have that

E
∣∣�qI 33

t

∣∣2 � 12q�N

∫
θ
(
2−qk[127]

)
1|k5−k3|�N,|k[12]|�N

1

|k1|2|k2|2|k7|2

×
[(∫

1/
((|k3|2 + |k5 − k3|2 + |k5|2)

× (|k[123]|2 + |k5 − k3|2 + |k5|2)|k3|2|k5|2)
dk35

)2

+
(∫

1/
((|k3|2 + |k[123]|2)

× (|k[123]|2 + |k5 − k3|2 + |k5|2)|k3|2|k5|2)
dk35

)2]
dk127

� 12q�N

∫
θ
(
2−qk[127]

) N−2

|k[12]|3−κ |k7|2 dk[12]7 � εκ2qκ .

Here, in the first inequality we consider σ > σ̄ and σ ≤ σ̄ separately. For I 34
t , we

get that

E
∣∣�qI 34

t

∣∣2 � 12q�N

∫
θ
(
2−qk[145]

)
1|k[45]|�N

1

|k1|2|k[45]|5

×
(∫ 1|k[23]|�N

(|k[123]|2 + ∑3
i=2 |ki |2)|k2|2|k3|2

dk23

)2
dk145

� 12q�N

∫
θ
(
2−qk[145]

)
1|k[45]|�N

Nκ

|k[45]|5|k1|2 dk1[45] � εκ2qκ .

For I 35
t , we have

E
∣∣�qI 35

t

∣∣2 � 12q�N

∫
θ
(
2−qk[125]

)
1|k[45]|�N

1

|k1|2|k2|2|k5|2

×
(∫ 1

(|k[45]|2 + |k4|2)(|k[123]|2 + |k3|2)|k3|2|k4|2 dk34

)2
dk125

� 12q�N

∫
θ
(
2−qk[125]

) N−2+κ

|k5|2|k[12]|3−κ
dk[12]5 � εκ22qκ .
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Here, in the second inequality we used |k[123]|2 + |k3|2 � |k[12]|2. For I 36
t , we

obtain that

E
∣∣�qI 36

t

∣∣2 � 12q�N

∫
θ
(
2−qk[123]

) 1

|k[123]|4

×
(∫

(1|k[12345]|∞>N1|k[45]|∞≤N + 1|k[12345]|∞≤N1N<|k[45]|∞≤3N)

/((
|k[45]|2 +

5∑
i=4

|ki |2
)
|k4|2|k5|2

)
dk45

)2
dk123.

Now we use similar argument as in Section 6.3. For the case that 1|k[12345]|∞>N ×
1|k[45]|∞≤N without loss of generality we assume that |ki[123] + ki[45]| > N for

some i. Then there are at most |ki[123]| values of ki[45] with |ki[12345]| > N and

|ki[45]| ≤ N . For the case that 1|k[12345]|∞≤N1N<|k[45]|∞≤3N , similarly we obtain that

there are at most |ki[123]| values of ki[45] with |ki[45]| > N and |ki[12345]| ≤ N . Thus
we obtain

E
∣∣�qI 36

t

∣∣2 � 12q�N

∫
θ
(
2−qk[123]

)
N−2+κ 1

|k[123]|2 dk[123] � εκ22qκ .

Terms in the first chaos: For I 41, we obtain that

E
∣∣�qI

41
t

∣∣2 � 12q�N

∫
θ
(
2−qk7

) 1

|k7|2

×
[∫ 1|k[12]|�N

|k2|2|k3|2|k1|2(|k[123]|2 + |k3|2)|k[12]|2 dk123

]2
dk7

� 12q�N

∫
θ
(
2−qk7

)N−2+κ

|k7|2 dk7 � εκ22qκ .

For I 42, we have that

E
∣∣�qI 42

t

∣∣2 � 12q�N

∫
θ
(
2−qk5

)

×
(∫

1|k5−k3|�N

3∏
i=1

1

|ki |2
1{|ki |∞≤N,i=1,2,3}

(|k[123]|2 + ∑2
i=1 |ki |2)|k5 − k3|2

dk123

)2

× 1

|k5|2 dk5

� 12q�N

∫
θ
(
2−qk5

)N−2+κ

|k5|2 dk5 � εκ2qκ .
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For I 43, we get that

E
∣∣�qI 43

t

∣∣2 � 12q�N

∫
θ
(
2−qk1

) 1

|k1|2

×
(∫

1|k5−k3|�N1{|ki |∞≤N,i=2,3,5}

/
(|k2|2|k3|2|k5|2(|k[123]|2 + |k2|2 + |k3|2)
× (|k5 − k3|2 + |k5|2))

dk235

)2
dk1

� 12q�N

∫
θ
(
2−qk1

)N−2+κ

|k1|2 dk1 � εκ2qκ .

Similar arguments imply the same estimate for J i
t . By a similar calculation as

above, we also obtain that there exist κ, ε > 0 small enough such that for any
t1, t2 ∈ [0, T ],

E
[∣∣�q

(
π0

(
(I − PN)π<( , ),

)
(t1)

− π0
(
PNπ<

(
, (P3N − PN)

)
,

)
(t1)

− π0
(
(I − PN)π<( , ),

)
(t2)

+ π0
(
PNπ<

(
, (P3N − PN)

)
,

)
(t2)

)∣∣2]
� εκ |t1 − t2|κ2qε.

Moreover, for the other terms in DN we can use similar calculations and
Lemma 6.5 to obtain the same estimates. Then by using Gaussian hypercontractiv-
ity, Lemma 2.1 and Kolomogorov continuity criterion, we obtain that DN →P 0
as ε → 0.
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