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SIZE BIASED COUPLINGS AND THE SPECTRAL GAP FOR
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Let λ be the second largest eigenvalue in absolute value of a uni-
form random d-regular graph on n vertices. It was famously conjectured
by Alon and proved by Friedman that if d is fixed independent of n, then
λ = 2

√
d − 1 + o(1) with high probability. In the present work, we show that

λ = O(
√

d) continues to hold with high probability as long as d = O(n2/3),
making progress toward a conjecture of Vu that the bound holds for all
1 ≤ d ≤ n/2. Prior to this work the best result was obtained by Broder, Frieze,
Suen and Upfal (1999) using the configuration model, which hits a barrier
at d = o(n1/2). We are able to go beyond this barrier by proving concen-
tration of measure results directly for the uniform distribution on d-regular
graphs. These come as consequences of advances we make in the theory of
concentration by size biased couplings. Specifically, we obtain Bennett-type
tail estimates for random variables admitting certain unbounded size biased
couplings.
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1. Introduction. Let A be the adjacency matrix of a d-regular graph (i.e., a
graph where every vertex has exactly d neighbors), and let λ1(A) ≥ · · · ≥ λn(A) be
the eigenvalues of A. The trivial eigenvalue λ1(A) is always equal to d; the second
eigenvalue λ2(A), on the other hand, has been the focus of much study over the
last thirty years. Alon and Milman demonstrated a close connection between a
graph’s second eigenvalue and its expansion properties [2]. Expander graphs were
seen to be extraordinarily useful for a range of applications in computer science
and beyond (see [37, 43] for good surveys). Alon and Boppana proved a lower
bound on λ2(A), showing it to be at least 2

√
d − 1(1−O(1/ log2 n)) [1, 46]. Alon

conjectured in [1] that if A is the adjacency matrix of a random d-regular graph,
the eigenvalue λ2(A) is at most 2

√
d − 1 + o(1) with probability tending to 1.

Now, take A to be the adjacency matrix of a random graph chosen uniformly
from all d-regular graphs on n vertices with no loops or parallel edges, which
from now on we call a uniform random d-regular simple graph on n vertices. Let
λ(A) = max(λ2(A),−λn(A)). After pioneering work by Broder and Shamir [14],
Kahn and Szemerédi [28] and Friedman [26], Friedman proved Alon’s conjecture
in [27], showing that for any fixed d ≥ 3 and ε > 0,

lim
n→∞ P

[
λ(A) ≤ 2

√
d − 1 + ε

] = 1.

Also see [12] for a simpler proof of this result.
This result is about sparse graphs; the number of vertices n must be very large

compared to d to obtain information about λ(A). It is natural to ask about λ(A)

when both n and d are large. In [15], it is shown that if d = o(
√

n), then λ(A) =
O(

√
d) with probability tending to 1 as n → ∞. Vu has conjectured that this holds

for all 1 ≤ d ≤ n/2; see (1) below for the more precise version of this conjecture
made in print. Our main result extends this bound to the range d = O(n2/3).

THEOREM 1.1. Let A be the adjacency matrix of a uniform random d-regular
simple graph on n vertices. Let λ1(A) ≥ · · · ≥ λn(A) be the eigenvalues of A, and
let λ(A) = max(λ2(A),−λn(A)). For any C0,K > 0, there exists α > 0 depending
only on C0,K such that if 1 ≤ d ≤ C0n

2/3, then

P
[
λ(A) ≤ α

√
d
] ≥ 1 − n−K

for all n sufficiently large depending on K .
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REMARK 1.2. The proof shows we can take α = 459,652 + 229,452K +
max(30C

3/2
0 ,768) and n ≥ 7 + K2, though we do not attempt to optimize these

constants; see Remark 2.7.

REMARK 1.3. The complement of a uniform random d-regular simple graph
with adjacency matrix A is a uniform random (n − d − 1)-regular simple graph
whose adjacency matrix B has entries 1−Aij for i �= j and 0 on the diagonal. The
nontrivial eigenvalues of B are −1 − λi(A) for i = 2, . . . , n, which implies that
|λ(A) − λ(B)| ≤ 1. As a consequence, if λ(A) = O(

√
d) for 1 ≤ d ≤ n/2, then

λ(A) = O(
√

d) for the full range 1 ≤ d ≤ n − 1.

Previous arguments to bound λ(A) all proceeded by first establishing the bound
for a different distribution on random regular multigraphs (in which loops and
multiple edges are permitted), and then transferring the bound to the uniform dis-
tribution on d-regular simple graphs by some comparison procedure. [15] work
with random regular multigraphs drawn from the configuration model (see [54]
for a description). A key property of this model is that it gives the same probabil-
ity to every simple d-regular graph on n vertices. This makes it possible to prove
that properties hold with high probability for the uniform model by showing that
the probability of failure in the configuration model tends to zero faster than the
probability of being simple. When d 	 n1/2, the probability that the configuration
model being simple decays faster than exponentially in n. Estimating the spectral
gap in this way would then require proving that the probabilities of relevant events
in the configuration model decay at this rate, and we are unaware of any methods
to do so.

Other past work, including [27] and [28], used the permutation model, a ran-
dom 2d-regular multigraph whose adjacency matrix is the sum of d independent
uniform random permutation matrices and their transposes. It is proven in [34]
that the permutation and configuration models are contiguous, allowing a second
eigenvalue bound to be transferred from the permutation model to the configura-
tion model, from which it can be transferred to the uniform model. Both of these
transferences require d to be fixed independently of n.

The reason for using the permutation or configuration model rather than work-
ing directly with the uniform distribution on simple d-regular graphs is that the
distributions have more independence or martingale structure. In particular, this
approach gives access to standard concentration estimates, which play a key role in
the approach introduced by Kahn and Szemerédi for the permutation model [28],
and adapted for the configuration model in [15]. The argument, which borrows
ideas from geometric functional analysis, is explained in more detail in Section 6.

In contrast to previous works, to prove Theorem 1.1 we work directly with the
uniform distribution on d-regular simple graphs. A key obstacle is the lack of con-
centration estimates for this setting. We obtain these using a method based on size
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biased couplings, developed initially in [30]. These techniques are an offshoot of
Stein’s method for distributional approximation; see Section 3 for further discus-
sion. The theory developed in [30] and improved in [3] can show that a nonnegative
random variable X is concentrated if there exists a bounded size biased coupling
for X (all of these terms are explained in Section 3). These results are analogues
of an inequality of Hoeffding [36], Theorem 1, line (2.1), for sums of independent
random variables, in which the bound is in terms of the mean of the sum. To make
size biasing work in our situation, we extend the theory developed in [3, 30] in two
ways. First, we relax the condition that the coupling be bounded. Second, we prove
an analogue of Bennett’s inequality [10], equation (8b), in which the concentration
bound for a sum is given in terms of its variance rather than its mean.

We apply this theory in several ways besides proving our main result, Theo-
rem 1.1. In Theorem 5.3, we give an edge discrepancy result for random regular
graphs, showing concentration for the number of edges between two given sets. We
also apply size bias couplings to prove Theorem 2.6, yielding second eigenvalue
bounds for distributions of random regular graphs constructed from independent
random permutations. The case where the permutations are chosen uniformly, of-
ten called the permutation model, was considered in [14], [28], [26], [27] and else-
where, and a second eigenvalue bound for the permutation model was previously
proven in [23], Theorem 24. We also consider the case that that the permutations
have (not necessarily identical) distributions invariant under conjugation and sup-
ported on permutations without fixed points. A more graph theoretic interpretation
is as follows. For even d , take d/2 independent random 2-regular loopless graphs,
with no conditions on their distributions except for being invariant under relabel-
ing of vertices. Superimpose these graphs to make a random d-regular graph. We
show that this graph obeys a second eigenvalue bound, with no assumption on the
distributions of the individual 2-regular graphs. We expect our size bias coupling
results to be applicable beyond random regular graphs as well.

Very recently (after the submission of this paper), Tikhomirov and Youssef
proved that with high probability λ(A) = O(

√
d) for the range nε ≤ d ≤ n/2,

which extends Theorem 1.1 to the full range d ≤ n/2 [50]. Their proof first re-
duces the question to bounding the second singular value of the adjacency matrix
of a random directed graph with fixed degree sequence. They tackle this by the
Kahn–Szemerédi method, using an inequality for linear forms that they prove with
Freedman’s martingale inequality.

One open problem beyond this is to determine the correct constant in the O(
√

d)

bound. Vu conjectures that

(1) λ(A) = (
2 + o(1)

)√
d(1 − d/n)

whenever d ≤ n/2 tends to infinity with n [53]. There is also the problem of de-
termining the fluctuations of λ(A) about this asymptotic value. Numerical sim-
ulations for small values of d suggest that after centering and rescaling, λ(A)
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asymptotically follows the β = 1 Tracy–Widom law [45], which also describes
the asymptotic fluctuations of the largest eigenvalue of matrices from the Gaus-
sian Orthogonal Ensemble (GOE) [51]. It was recently shown in [8] that fluctu-
ations of eigenvalues of A in the bulk of the spectrum [i.e., eigenvalues λi with
εn ≤ i ≤ (1 − ε)n for some arbitrary fixed ε > 0] asymptotically match those of
the GOE, assuming nε ≤ d ≤ n2/3−ε for arbitrary fixed ε > 0. It may be possible
to extend their approach to establish the universal fluctuations of eigenvalues at the
spectral edge for this range of d .

The argument in [8] relied on the local semicircle law for uniform random reg-
ular graphs, which was established in [9] for the range log4 n ≤ d ≤ n2/3/ log4/3 n,
improving on earlier results in [24, 52]. It follows from the local semicircle law
that with high probability, the bulk of the spectrum of A is confined to the scale
O(

√
d). Theorem 1.1 complements their result by saying that with high proba-

bility the entire spectrum, with the exception of the Perron–Frobenius eigenvalue
λ1 = d , lives at this scale. It would follow from Vu’s conjecture (1) that λ2(A) and
λn(A) “stick to the bulk,” that is, after rescaling by

√
d these eigenvalues converge

to the edge of the support [−2,2] of the limiting spectral distribution. Interestingly,
the limitation to d 
 n2/3 in [9] appears to be for reasons similar to our constraint
d = O(n2/3) in Theorem 1.1, stemming from their use of double switchings (as
described in Section 4).

1.1. Organization of the paper. The idea of the proof of Theorem 1.1 is to
prove concentration results for random regular graphs by size biasing, and then
to apply the Kahn–Szemerédi argument to derive eigenvalue bounds from these
concentration inequalities. Section 2 presents this argument at a high level: Propo-
sition 2.3 gives the concentration result and Proposition 2.4 translates it into eigen-
value bounds, with proofs deferred to later in the paper. The proof of Theorem 1.1
appears in Section 2.2 and is a simple application of these two propositions. This
section also includes Theorem 2.6, which gives eigenvalue bounds for distributions
of random regular graphs derived from independent random permutations.

Section 3, which is entirely self-contained, develops the theory of size biased
couplings for concentration. For the permutation models, it is easy to form size bias
couplings that let us apply the results of Section 3. For the uniform model, we con-
struct the necessary couplings in Section 4 using a combinatorial technique called
switchings. We then apply size biasing in Section 5 to establish Proposition 2.3,
a concentration bound for general linear functions of the adjacency matrices of
random regular graphs. We specialize this to prove an edge discrepancy bound in
Theorem 5.3. Section 6 presents Kahn and Szemerédi’s argument to prove Propo-
sition 2.4, deducing a second eigenvalue bound given a concentration bound like
Proposition 2.3.

1.2. Notation, definitions and facts. The degree of a vertex in a graph is the
number of edges incident to it, or in a weighted graph, the sum of all edge weights
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incident to it. A loop in a graph contributes its weight twice to the degree of the
vertex. A graph is d-regular if every vertex has degree d . When considering d-
regular graphs on n vertices, we always assume that nd is even. We also assume
that n ≥ 5 to avoid some pathologies. A graph is simple if it contains no loops or
parallel edges.

For an adjacency matrix A, we define the set NA(v) to be the neighbors of v in
the graph corresponding to A; when it is clear which graph we are referring to, we
omit the A. We define NA(v) as the vertices which are neither neighbors of v nor
v itself in the graph corresponding to A. For S,T ⊆ [n] and an adjacency matrix
A, define the edge count

eA(S,T ) = ∑
u∈S

∑
v∈T

Auv.(2)

Note that this can count the same edge twice if S ∩ T �= ∅.
By the invariance of the law of a uniform random d-regular simple graph on n

vertices under the swapping of vertex labels, the neighbors of v in such a graph
form a set of d vertices sampled uniformly from [n] \ {v}, where [n] denotes the
set of integers {1, . . . , n}. Thus, the probability of a given edge uv appearing in the
graph is d/(n − 1).

2. Spectral concentration from measure concentration. The main result of
the present work is to extend the bound O(

√
d) on the second eigenvalue of a

random d-regular graph to the uniform model with d = O(n2/3). Our argument
follows a streamlined version of the Kahn–Szemerédi approach, with all of the
necessary concentration estimates unified into an assumption that we call the “uni-
form tails property” (Definition 2.1 below), which gives uniform tail bounds for
linear functions of the adjacency matrix. This property is shown to hold in differ-
ent models of random regular graphs in Proposition 2.3. In Section 2.2, we state
a technical result, Proposition 2.4, which gives a bound on λ(A) holding with
high probability for any random regular multigraph satisfying the uniform tails
property. Based on these results, whose proofs appear later in the paper, we prove
Theorem 1.1, the second eigenvalue bound for the uniform model, as well as The-
orem 2.6, for permutation models.

2.1. The uniform tails property. We will prove high probability bounds of the
optimal order O(

√
d) for random regular graph models satisfying the following

concentration property. As is common in the literature on concentration of mea-
sure, we phrase our tail bounds in terms of the function

(3) h(x) = (1 + x) log(1 + x) − x, for x ≥ −1.

An n × n matrix Q is associated to a linear function fQ of the entries of a matrix
M as follows:

(4) fQ(M) =
n∑

u,v=1

QuvMuv.



78 N. COOK, L. GOLDSTEIN AND T. JOHNSON

When M is symmetric, we lose no generality in restricting to symmetric matri-
ces Q.

DEFINITION 2.1 (Uniform tails property). Let M be a random symmetric n×
n matrix with nonnegative entries. With fQ as in (4), write

(5) μ := EfQ(M) = fQ(EM) and σ̃ 2 := fQ◦Q(EM) =
n∑

u,v=1

Q2
uvEMuv,

where ◦ denotes the Hadamard (entrywise) matrix product. Say that M satisfies
the uniform tails property UTP(c0, γ0) with c0 > 0, γ0 ≥ 0, if the following holds:
for any a, t > 0 and for any n × n symmetric matrix Q with entries Quv ∈ [0, a]
for all u, v ∈ [n],

(6)

P
[
fQ(M) ≥ (1 + γ0)μ + t

]
,

P
[
fQ(M) ≤ (1 − γ0)μ − t

] ≤ exp
(
−c0

σ̃ 2

a2 h

(
at

σ̃ 2

))
.

We will say that M satisfies the uniform upper tail property UUTP(c0, γ0) if the
above bound holds for the first quantity on the left-hand side, with no assumption
on the lower tail.

REMARK 2.2. From the bound h(x) ≥ x2

2(1+x/3)
for x ≥ 0, the bound (6) im-

plies

(7) P
[∣∣fQ(M) − μ

∣∣ ≥ γ0μ + t
] ≤ 2 exp

(
− c0t

2

2(σ̃ 2 + 1
3at)

)
.

However, (6) is superior for large t—a fact we will use to establish a key graph
regularity property (see Lemma 6.4).

The uniform tails property is closely related to extensive work in the literature
on Hoeffding’s combinatorial statistic, defined as fQ(P ) with P a uniform random
n × n permutation matrix and Q a fixed n × n matrix with bounded entries. See
Remark 5.2 for a lengthier discussion.

In addition to proving the uniform tails property for uniform random regular
graphs, we will show it holds for various random regular graphs derived from
random permutations. In these models, for d ≥ 2 even, we let P1, . . . ,Pd/2 be

independent random n×n permutation matrices, and we put A = ∑d/2
k=1(Pk +P T

k ).
Note that A is the adjacency matrix of a multigraph, with loops and parallel edges.

First, we will consider the case when the permutations are uniform over the
symmetric group on n elements. This is frequently called the permutation model
and is considered in [23, 27, 28] and elsewhere. We will call it the uniform per-
mutation model here. Note that we then have EAuv = d/n for all u, v ∈ [n], while
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for the uniform model we have EAuv = d/(n− 1) for u �= v, giving rise to slightly
different values of the quantities μ and σ̃ 2 in Definition 2.1.

Next, we prove the uniform tails property for graphs derived from permutations
π with distribution constant on conjugacy class, that is, that satisfy

σ−1πσ =d π for all permutations σ ,

and are fixed-point-free, that is, π(u) �= u for all u a.s. The permutation matri-
ces P1, . . . ,Pd/2 are independently created from random permutations satisfy-
ing this property, but they need not be identically distributed. As for the uniform
model, EAuv = d/(n − 1) for u �= v. One example of such a graph model is given
when the permutations are uniformly distributed over the set of all fixed-point-
free involutions. The graphs thus produced have edges given by independently
choosing d/2 uniformly random matchings of the vertices, and then forming two
parallel edges between each pair of matched vertices. Dividing the resulting ad-
jacency matrix by two, we have the random regular graph model In,d considered
in [27], Theorem 1.3. Another example is when the permutations are uniformly
distributed permutations with one long cycle, the graph model considered in [27],
Theorem 1.2.

The following propositions state that the uniform tails property holds with ap-
propriate c0, γ0 for the various random regular multigraph models we consider.
Parts (a) and (b) are proved in Section 5.1, and part (c) is deduced from a stronger
result, Theorem 5.1, in Section 5.2.

PROPOSITION 2.3. Let A be the adjacency matrix of a random d-regular
multigraph on n vertices.

(a) If A is drawn from the uniform permutation model, then it satisfies
UTP(1

4 ,0).
(b) If A is drawn from the permutation model with distribution constant on

conjugacy class and fixed-point-free, then it satisfies UTP(1
8 ,0).

(c) If A is drawn from the uniform model, then it satisfies UTP(c0, γ0) with

c0 = 1

6

(
1 − d + 1

n − 1

)
, γ0 = d + 1

n − d − 2
.(8)

2.2. High level proofs of the spectral gap for the uniform and permutation mod-
els. The following proposition shows that λ(A) = O(

√
d) with high probability

for a wide class of distributions on random d-regular multigraphs satisfying the
uniform tails property for suitable c0 > 0, γ0 ≥ 0. The setup is sufficiently gen-
eral to cover all the graph models we consider here; hence, in combination with
Proposition 2.3 it yields control of λ(A). The assumptions also cover any random
regular multigraph whose expected adjacency matrix has uniformly bounded en-
tries and is close in the Hilbert–Schmidt norm to a constant matrix. Recall that the
Hilbert–Schmidt norm of a matrix B is given by ‖B‖HS = (

∑
u,v B2

uv)
1/2. We let

1 = (1, . . . ,1)T ∈ R
n denote the all-ones vector.
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PROPOSITION 2.4 (Spectral concentration from measure concentration). Let
A be the adjacency matrix of a random d-regular multigraph on n vertices. Assume
that the following hold for some constants c0 > 0, a1 ≥ 1, a2, a3 ≥ 0:

1. EAuv ≤ a1
d
n

for all u, v ∈ [n];
2. ‖EA − d

n
11T‖HS ≤ a2

√
d ;

3. A has UTP(c0, a3/
√

d).

Then for all K > 0 and some α > 0 sufficiently large depending on K,c0, a1,
a2, a3,

(9) P
[
λ(A) ≥ α

√
d
] ≤ n−K + 4e−n.

REMARK 2.5. The above proposition deduces an upper tail bound on the
spectral gap from uniform tail bounds on functionals of the form (4). In the other
direction, since λ(A) is the supremum over x ∈ 〈1〉⊥ \ {0} of the Rayleigh quo-
tients xTAx/|xTAx|, on the event that λ(A) ≤ α

√
d we have the uniform bound

fxxT(A) ≤ α
√

d for unit vectors x ∈ Sn−1 ∩ 〈1〉⊥, where here and in the sequel
〈y〉 denotes the span of a vector y. (Taking x to be constant on a set of vertices
S gives the well-known expander mixing lemma [37], Lemma 2.5.) Thus, (9) im-
plies a uniform polynomial upper tail for the random variables fQ(A) for the case
that Q is a rank-1 projection. Of course, the advantage of (9) over the uniform
tails property is that we obtain a single high probability event on which all rank-1
functionals fQ(A) are bounded.

The proof of this proposition is deferred to Section 6. Combining Proposi-
tion 2.4 and Proposition 2.3, we deduce the following results.

THEOREM 2.6 (Spectral gap for the permutation models). Consider either of
the following two distributions for A:

(a) For all n ≥ 5 and all even d ≥ 2, let A = ∑d/2
k=1(Pk + P T

k ) be a random
d-regular multigraph from the uniform permutation model.

(b) For all n ≥ 5 and all even 2 ≤ d ≤ C0n for some constant C0, let A =∑d/2
k=1(Pk + P T

k ) be a random d-regular multigraph from the permutation model
with permutations constant on conjugacy class and fixed-point-free.

In both cases, for any K > 0, there is a constant α sufficiently large, depending
only on K and in the second case also on C0, such that

P
[
λ(A) ≥ α

√
d
] ≤ n−K + 4e−n.

PROOF. For case (a), for each u, v ∈ [n] we have EAuv = d/n. Together with
Proposition 2.3(a), this means we can apply Proposition 2.4 with a1 = 1 and a2 =
a3 = 0, and the result follows.
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For case (b), we have EAuv = d/(n − 1) for all u �= v and EAuu = 0 for all
u ∈ [n], so may take a1 = 2, say. Then we can compute∥∥∥∥EA − d

n
11T

∥∥∥∥
HS

= d√
n − 1

,

and set a2 = √
2C0. By Proposition 2.3(b), we may take a3 = 0, completing the

proof. �

Case (a) of Theorem 2.6 was previously shown in [23]. The proof there also
uses the Kahn–Szemerédi approach, with the necessary concentration proven via
martingale methods and by direct evaluation of the moment generating function.
Our Stein’s method machinery makes the proof much simpler: contrast our proof
of Proposition 2.3(a) with those of Theorem 26 and Lemma 30 in [23].

It is natural to ask about relaxing the condition in Theorem 2.6(b) that the per-
mutations be fixed-point-free. It seems possible to remove this condition entirely
from Proposition 2.3(b), at the cost of a significantly more complicated construc-
tion of the size bias coupling. On the other hand, if the number of fixed points is
of larger order than n/

√
d , then the resulting matrix models have a larger spectral

gap than O(
√

d) from the terms along the diagonal. We expect that it is possible to
prove a version of Theorem 2.6(b) for permutations having O(n/

√
d) fixed points,

though we have not pursued it here.
We prove Theorem 1.1 along the same lines as Theorem 2.6, combining Propo-

sition 2.4 and Proposition 2.3.

PROOF OF THEOREM 1.1. Following the proof of Theorem 2.6, for the first
two conditions in Proposition 2.4 we can take a1 = 2 and a2 = 1. By Proposi-
tion 2.3(c), A has UTP(c0, γ0) with the parameters (8). Now let C0,K > 0, and
assume 1 ≤ d ≤ C0n

2/3. From Remark 1.3, we may also assume d ≤ n/2. Apply-
ing these bounds on d , for all n sufficiently large we have

γ0 = d + 1

n − d − 2
≤ 10d

n
≤ 10C

3/2
0√
d

.(10)

(The first inequality holds for all n ≥ 7 and 1 ≤ d ≤ n/2.) Note that this is where
we used the assumption that d ≤ C0n

2/3. See Remark 6.10 for more on why we
require d = O(n2/3).

Hence, we may apply Proposition 2.4 with a3 = 2C
3/2
0 . We can also shrink c0

to some constant independent of n (say 1/12). Now having fixed the parameters
c0, a1, a2 as constants, from Proposition 2.4 applied with K + 1 in the role of K ,
we may take α sufficiently large depending only on C0,K such that λ(A) ≤ α

√
d

except with probability at most n−K−1 + 4e−n. The result follows from this. �
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REMARK 2.7. To get the explicit values of α, we refer to Remark 6.9 for the
explicit value of α in Proposition 2.4, assuming for now that d ≤ n/2. First, we
evaluate (80). Note that γ0 ≤ 10d/n ≤ 10. Thus, (80) gives

α0 ≤ 16 + 32(2)
(
1 + e2(11)2) + 128(12)(11)(K + 5)

(
1 + e−2)

≤ 153,214 + 76,484K.

(Strictly speaking, we are applying Proposition 2.4 with a3 = 10d3/2/n rather than
the larger value a3 = 10C

3/2
0 here.) From (79), we then get

α ≤ 3(α0 + 3) + max
(
30C

3/2
0 ,768

)
≤ 459,651 + 229,452K + max

(
30C

3/2
0 ,768

)
.

Choosing n large enough requires us to have n ≥ 7 and 1/n + 4nKe−n ≤ 1, and
these conditions hold when n ≥ 7 + K2, for instance. As a consequence of Re-
mark 1.3, increasing α by one is more than enough to drop the requirement that
d ≤ n/2, leading to the constants stated in Remark 1.2. As one might suspect after
seeing these bounds, we have not made an effort to optimize these constants.

3. Concentration by size biased couplings.

3.1. Introduction to size biased couplings. If X is a nonnegative random vari-
able with finite mean μ > 0, we say that Xs has the X-size biased distribution
if

E
[
Xf (X)

] = μE
[
f

(
Xs)]

for all functions f such that the left-hand side above exists. The law L(Xs) always
exists for such X, as can be seen by (equivalently) specifying the distribution νs

of Xs as the one with Radon–Nikodym derivative dνs/dν = x/μ, where ν is the
distribution of X. Many appearances of the size biased distribution in probability
and statistics, some quite unexpected, are reviewed in [4].

For such an X, we say the pair of random variables (X,Xs) defined on a com-
mon space is a size biased coupling for X when Xs has the X-size biased distri-
bution. Couplings of this sort were used throughout the history of Stein’s method
(see [49], pp. 89–90, [5] and [6]), though the connection to size biasing was not
made explicit until [33]. See [18] or [48] for surveys of Stein’s method including
size biased coupling.

Proving concentration using couplings borrowed from Stein’s method began
with the work of [47], and, absent the Stein equation tying the analysis to a partic-
ular distribution, in [16]. Using Stein’s classical exchangeable pair, [16] and [17]
show concentration for Hoeffding’s combinatorial statistic, in the Curie–Weiss and
Ising models, and for the number of triangles in the Erdős–Rényi random graph.
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Similar techniques are also used in [21] to show concentration for statistics of
random regular digraphs.

We say that a size biased coupling (X,Xs) is bounded when there exists a con-
stant c such that Xs ≤ X + c almost surely. It is shown in [3] that the existence of
such a coupling implies that X is concentrated, an improvement of a result in [30],
where the idea originated. We will present concentration bounds that generalize
the results in [3], relaxing the boundedness assumption and giving a Bennett-type
inequality (see the following section for the details of what this means). Previous
work for concentration by unbounded size biased couplings was limited to [31],
with a construction particular to the example treated, and dependent on a nega-
tive association property holding. There was no previous Bennett-type inequality
by size biasing, though [32] gives one by the related method of zero biasing; see
Remark 5.2.

At the heart of nearly all applications of size biasing is a construction of a cou-
pling for a sum X = ∑n

i=1 Xi , as first outlined in [33], Lemma 2.1. We follow the
treatment in [4], Section 2.3. Suppose that ν is the distribution of a random vector
(X1, . . . ,Xn) with nonnegative entries each with positive mean. We say that the
distribution ν(i) defined by its Radon–Nikodym derivative

dν(i)

dν
(x1, . . . , xn) = xi

EXi

has the distribution of (X1, . . . ,Xn) size biased by Xi . One can think of ν(i) as the
distribution of the random vector formed by size biasing Xi and then giving the
vector of other entries its distribution conditional on the new value of Xi .

LEMMA 3.1. Let X1, . . . ,Xn be nonnegative random variables with positive
means, and let X = ∑n

i=1 Xi . For each i, let (X
(i)
1 , . . . ,X

(i)
n ) have the distribu-

tion of (X1, . . . ,Xn) size biased by Xi . Independent of everything else, choose
an index I with P[I = i] = EXi/EX. Then Xs = ∑n

i=1 X
(I)
i has the size biased

distribution of X.

This reduces the problem of forming a size biased coupling for X to forming
couplings of (X1, . . . ,Xn) with (X

(i)
1 , . . . ,X

(i)
n ) for each i. We demonstrate now

how to do this when X1, . . . ,Xn are independent, but it is often possible to do even
when they are not.

EXAMPLE 3.2 (Size biased couplings for independent sums). Suppose X =∑n
i=1 Xi with the summands independent. Let μ = EX and μi = EXi . Let X

(i)
i

have the Xi-size biased distribution, and make it independent of all other random
variables. For i �= j , let X

(i)
j = Xj . By the independence of the random variables,

(X
(i)
1 , . . . ,X

(i)
n ) has the distribution of (X1, . . . ,Xn) size biased by Xi . With I and
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Xs as in Lemma 3.1, we have a size biased coupling (X,Xs). Note that Xs can be
expressed as

Xs = X − XI + X
(I)
I .

In our applications of size biasing in Section 5, we will have Xi = aiFi , where
Fi is a nontrivial indicator and ai ≥ 0. In this case, the Xi -size biased transform
is ai , and the distribution of (X

(i)
1 , . . . ,X

(i)
n ) can be described by specifying that

X
(i)
i = ai and (X

(i)
j )j �=i is distributed as (Xj )j �=i conditional on Fi = 1.

3.2. New concentration results by size biased couplings. Throughout this sec-
tion, X is a nonnegative random variable with nonzero, finite mean μ. We say the
size biased coupling (X,Xs) is (c,p)-bounded for the upper tail if

for any x, P
[
Xs ≤ X + c | Xs ≥ x

] ≥ p,(11)

and (c,p)-bounded for the lower tail if

for any x, P
[
Xs ≤ X + c | X ≤ x

] ≥ p.(12)

The probabilities in (11) and (12) conditional on null events may be defined arbi-
trarily. In Theorems 3.3 and 3.4, we recall the definition:

h(x) = (1 + x) log(1 + x) − x, x ≥ −1,(13)

which satisfies

(14)
h(x) ≥ x2

2(1 + x/3)
for all x ≥ 0, and

h(x) ≥ x2/2 for −1 ≤ x ≤ 0;
see the second and first inequalities of Exercise 2.8 of [13], respectively.

THEOREM 3.3. (a) If X admits a (c,p)-bounded size biased coupling for the
upper tail, then for all x ≥ 0,

P
[
X − μ

p
≥ x

]
≤ exp

(
− μ

cp
h

(
px

μ

))
≤ exp

(
− x2

2c(x/3 + μ/p)

)
.(15)

(b) If X admits a (c,p)-bounded size biased coupling for the lower tail, then
for all 0 ≤ x < pμ,

P[X − pμ ≤ −x] ≤ exp
(
−pμ

c
h

(
− x

pμ

))
≤ exp

(
− x2

2pcμ

)
.(16)
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The special case p = 1 yields Theorem 1.3 and Corollary 1.1 from [3], with the
second inequality in (15) a slight improvement to (12) of the latter, through the use
of (14) in place of [3], Lemma 4.2.

Theorem 3.3 is an analogue of a bound for sums of independent variables due
to Hoeffding [36], Theorem 1, line (2.2), with tails that incorporate the mean μ

as well as an L∞ bound on the summands (from Example 3.2 we see this role
is played by c in the above theorem). Hence, for sums of independent nonnega-
tive variables whose expectation is small in comparison to their L∞ norms, The-
orem 3.3 provides better estimates than Azuma–Hoeffding-type (or “bounded dif-
ferences”) inequalities, such as [36], line (2.3) (the bound that is widely referred
to as “Hoeffding’s inequality”). See also Section 4 of [7] for a fuller comparison
of concentration results obtained by bounded size bias couplings to those obtained
via more classical means.

To prove concentration of the light couples in the Kahn–Szemerédi argument
(see Section 6), we will need tail bounds incorporating the variance rather than
the mean. For sums of independent variables, such bounds are provided4 by Bern-
stein’s inequality [11] or Bennett’s inequality [10], equation (8b). In previous ap-
plications of the Kahn–Szemerédi argument, [28] and [15] used ad hoc arguments
working directly with the moment generating function, and [42] and [23] used
Freedman’s inequality, the martingale version of Bennett’s inequality. We instead
develop the following Bennett-type inequality by size biased coupling. Let x+ de-
note max(0, x) in the following theorem.

THEOREM 3.4. Let (X,Xs) be a size biased coupling with EX = μ, and let B
be an event on which Xs − X ≤ c. Let D = (Xs − X)+, and suppose that E[D1B |
X] ≤ τ 2/μ a.s.:

(a) If P[B | Xs] ≥ p a.s., then for x ≥ 0

(17)

P
[
X − μ

p
≥ x

]
≤ exp

(
− τ 2

pc2 h

(
pcx

τ 2

))

≤ exp
(
− x2

2c(x/3 + τ 2/cp)

)
.

(b) If P[B | X] ≥ p a.s., then for 0 ≤ x ≤ pμ

(18)

P[X − pμ ≤ −x] ≤ exp
(
−τ 2

c2 h

(
cx

τ 2

))

≤ exp
(
− x2

2c(x/3 + τ 2/c)

)
.

4As explained in [10], Bernstein’s work [11] was originally published in Russian and went largely
unnoticed in the English-speaking world. Bennett himself was unable to access Bernstein’s original
paper, but proved a strengthened form of Bernstein’s result in [10].
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We use the notation τ 2 to suggest that it plays the role of the variance in Ben-
nett’s inequality. In our applications of Theorem 3.4 in this paper, τ 2 is indeed on
the same order as VarX; see Example 3.5 for a simple example.

We compare Theorems 3.3 and 3.4, assuming c = 1 by rescaling if necessary.
Note that by taking B = {Xs ≤ X + 1} in the former, we have E[D1B | X] ≤ 1,
and hence one may set τ 2 = μ. Doing so, the upper bound (17) of Theorem 3.4
recovers (15) of Theorem 3.3 when P[Xs − X ≤ 1 | Xs] ≥ p. For the lower tail,
one can easily verify that

exp
(−μh(x/μ)

) ≤ exp
(−pμh(−x/pμ)

)
for all 0 ≤ x < pμ,

showing the left tail bound of Theorem 3.3 superior to that of Theorem 3.4 in the
absence of a better bound on E[D1B | X].

3.3. Examples. We now give some examples to give a sense of what can be
done with Theorems 3.3 and 3.4. Example 3.5 applies Theorem 3.4 to recover a
weakened form of Bennett’s inequality for independent summands. Our theorems
prove concentration around a shifted mean; Examples 3.6 and 3.7 demonstrate that
this is unavoidable. In Example 3.8, we give a simple application of Theorem 3.3
to Erdős–Rényi graphs to show that our theory has applications beyond the ones
we give in Section 5.

EXAMPLE 3.5 (Weakened form of Bennett’s inequality). Suppose X =∑n
i=1 Xi with the summands independent and contained in [0,1]. Let μ = EX

and μi = EXi . Let Xs
i have the size biased distribution of Xi , and make it inde-

pendent of all other random variables. Choose I ∈ [n] independently of all else,
taking P[I = i] = μi/μ. As in Example 3.2, the pair (X,Xs) is a size biased
coupling with Xs = X − XI + Xs

I .
Since Xs

i has the same support as Xi , we have Xs ≤ X + 1. In applying Theo-
rem 3.4, we can then take the event B to be the entire probability space, and obtain

E
[(

Xs − X
)+ | X] = E

[(
Xs

I − XI

)+ | X]
≤ E

[
Xs

I | X]
= E

[
Xs

I

] = 1

μ

n∑
i=1

μiEXs
i .

From the definition of the size biased transform, EXs
i = EX2

i /μi . Thus,

E
[(

Xs − X
)+ | X] ≤ 1

μ

n∑
i=1

EX2
i .

We then apply Theorem 3.4 with c = 1, p = 1, and τ 2 = ∑n
i=1 EX2

i to show that

P[X − μ ≥ t],P[X − μ ≤ −t] ≤ exp
(
−τ 2h

(
t

τ 2

))
,
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which would be Bennett’s inequality if τ 2 were VarX rather than the larger∑n
i=1 EX2

i (see [13], Section 2.7).

When applied with p < 1, Theorems 3.3 and 3.4 show concentration of X not
around its mean μ, but rather around μ/p for the upper tail and pμ for the lower
tail. The following two examples demonstrate that this behavior may reflect the
true nature of X, thus showing these theorems to be unimprovable in this sense.

EXAMPLE 3.6 (Upper tail concentration around μ/p). Let Z ∼ Poi(λ) and
B ∼ Bernoulli(1/2) be independent, and define X = BZ. We show (X,Z + 1) is
a size biased coupling. By a well-known property of the Poisson distribution (e.g.,
see (6) of [4]), Z + 1 has the Z-size biased distribution. Mixing a distribution with
the measure δ0 does not change its size biased transform (see Lemma 2.6 of [4]).
Thus, Z + 1 also has the size biased distribution of X, and the coupling (X,Z + 1)

is (1,1/2)-bounded for the upper tail. Theorem 3.3 then shows exponential decay
for the upper tail of X starting at μ/p = 2μ = λ, reflecting its actual behavior.

EXAMPLE 3.7 (Lower tail concentration around pμ). Let N > 1 and let
X1, . . . ,Xn be i.i.d. with distribution

Xi =

⎧⎪⎪⎨⎪⎪⎩
0 with probability 1/2 − ε,

1 with probability 1/2,

N with probability ε,

where ε = 1/(2N). As EXi = 1, for i = 1, . . . , n the variables

Xs
i =

{
1 with probability 1/2,

N with probability 1/2

have the Xi-size biased distribution. Let Xs
1, . . . ,X

s
n be independent of each other

and of X1, . . . ,Xn and set X = X1 + · · · + Xn. Then by Lemma 3.1, choosing
I uniformly from {1, . . . , n}, independent of all other variables, we obtain a size
biased coupling (X,Xs) by defining

Xs = X − XI + Xs
I .

This coupling is (1,1/2)-bounded for the lower tail. Theorem 3.3 shows con-
centration starting at pEX = n/2. When N is large, X is nearly distributed as
n(n,1/2), so this is the correct behavior.

The next example gives a lower tail bound for the number of isolated vertices in
an Erdős–Rényi graph. The bound is inferior to the one given in [31], but we can
get it with very little work.
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EXAMPLE 3.8. Let G be a random graph on n vertices with each edge in-
cluded independently with probability p. Let X be the number of isolated vertices
in G. To form a size biased coupling, select a random vertex V from {1, . . . , n}
independently of G, and form Gs by deleting from G all edges incident to V . Let
Xs be the number of isolated vertices in Gs . As Gs is distributed as G conditional
on vertex V being isolated, Xs has the X-size biased distribution by Lemma 3.1.

Call a vertex a leaf if it has degree one. In any (deterministic) graph, we claim
that at most 1/3 of the vertices are connected to two or more leaves. To see this, let
l be the number of leaves and m the number of vertices connected to two or more
leaves. The claim then follows from the observation that l ≥ 2m.

Thus, conditional on G, there is at most a 1/3 chance that V is connected to
two or more leaves. Deleting the edges incident to V isolates V as well as any
neighboring leaves, giving us

P
[
Xs − X ≤ 2 | G] ≥ 2/3.

Since X is measurable with respect to G, the coupling is (2,2/3)-bounded for the
lower tail, and Theorem 3.3 gives the bound

P
[
X − 2μ

3
≤ −t

]
≤ exp

(
−μ

3
h

(
− 3t

2μ

))
≤ exp

(
−3t2

8μ

)
(19)

with μ = EX.
A variation on this argument shows that the coupling is (k, k/(k + 1))-bounded

for the lower tail. Applying this fact with larger values of k yields a concentration
bound around a quantity closer to the true mean than in (19), but with a worse
constant in the exponent.

3.4. Proofs. We start with a modified version of [3], Lemma 2.1.

LEMMA 3.9. If X admits a (c,p)-bounded size biased coupling for the upper
tail, then

∀x > 0, P[X ≥ x] ≤ μ

px
P[X ≥ x − c](20)

and if X admits a (c,p)-bounded size biased coupling for the lower tail, then

∀x, P[X ≤ x] ≤ x + c

pμ
P[X ≤ x + c].(21)

PROOF. For (X,Xs), the upper tail coupling,

pxP[X ≥ x] = pxE1{X≥x} ≤ pE[X1{X≥x}] = pμP
[
Xs ≥ x

]
.
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If P[Xs ≥ x] = 0, then P[X ≥ x] = 0, since the support of X contains the support
of Xs . Thus, in this case (20) holds trivially. If P[Xs ≥ x] > 0, then we apply (11)
to get

pxP[X ≥ x] ≤ μP
[
Xs ≤ X + c | Xs ≥ x

]
P

[
Xs ≥ x

]
= μP

[
Xs ≤ X + c and Xs ≥ x

]
≤ μP[X ≥ x − c].

The proof for the lower tail follows by a similar modification of [3], Lemma 2.1.
�

Inequality (20) corresponds to (14) of [3] with μ replaced by μ/p, and inequal-
ity (21) corresponds to (15) of [3], Lemma 2.1, with μ replaced by pμ. As itera-
tion of the bounds (14) and (15) results in [3], Theorems 1.1 and 1.2, respectively,
Lemma 3.9 implies that the bounds of these theorems hold more generally with
this replacement. In particular, replacing the functions u(x,μ, c) and l(x,μ, c)

by u(x,μ/p, c) and l(x,pμ, c) respectively, inequalities (3) and (4) of [3], Theo-
rem 1.1, hold over the ranges x ≥ μ/p and 0 ≤ x ≤ pμ, with k as given in (1) with
the mean μ replaced by μ/p and μp, under the upper and lower tail conditions (11)
and (12), respectively. Likewise, under the upper and lower tail conditions (11) and
(12), [3], Theorem 1.2, holds with all occurrences of the mean μ replaced by μ/p

and μp in (7) and (8), with equalities holding if and only if x − μ/p and x − μp

are integers, respectively.
Theorem 3.3 generalizes [3], Theorem 1.3 and Corollary 1.1, by these same

replacements. As those results are not shown there as a direct consequence of (14)
and (15), we provide separate arguments, beginning by applying Lemma 3.9 to
prove that (11) implies that the moment generating function M(β) = EeβX of X

is finite. The following proof is essentially the same as that of [3], Corollary 2.1,
with μ replaced by μ/p in the upper tail inequality, and using a bound on the upper
tail directly rather than bounding that tail using the upper bound product function
u(x, a, c).

PROPOSITION 3.10. If X admits a (c,p)-bounded size bias coupling for the
upper tail for some p > 0, then the moment generating function M(β) is finite for
all β .

PROOF. As X ≥ 0, the claim is clearly true for β ≤ 0. Let β > 0 and x0 ≥
2μeβc/p. As in [3], Corollary 2.1, the idea is that beyond x0, for every increase
by c, the tail of the distribution of X decreases in probability by enough to make
M(β) finite. More precisely, by (20), for x ≥ x0,

P[X ≥ x + c] ≤ μ

p(x + c)
P[X ≥ x] ≤ 1

2
e−βcP[X ≥ x].
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By iterating this bound, P[X ≥ x + ic] ≤ 2−ie−iβc. Applying this inequality, we
have

M(β) = EeβX

≤ eβxP[X < x] +
∞∑
i=0

eβ(x+(i+1)c)P
[
x + ic ≤ X < x + (i + 1)c

]

≤ eβxP[X < x] +
∞∑
i=0

eβ(x+(i+1)c)P[X ≥ x + ic]

≤ eβxP[X < x] +
∞∑
i=0

eβ(x+c)2−i < ∞.
�

LEMMA 3.11. If X admits a (c,p)-bounded size bias coupling for the upper
tail, then

M(β) ≤ exp
[

μ

pc

(
eβc − 1

)]
(22)

for all β ≥ 0.
If X admits (c,p)-bounded size bias coupling for the lower tail, then

M(β) ≤ exp
[
pμ

c

(
eβc − 1

)]
(23)

for all β ≤ 0.

PROOF. Let (X,Xs) be a (c,p)-bounded size biased coupling for the upper
tail, and let β ≥ 0. We will bound M ′(β) in terms of M(β). It follows from the
finiteness of M(β) for all β proved in Proposition 3.10 that μEeβXs = E[XeβX] =
M ′(β). Using β ≥ 0, we have

eβX = eβ(Xs−(Xs−X)) ≥ eβ(Xs−(Xs−X))1Xs≤X+c ≥ eβXs−c1Xs≤X+c,

whence

(24)

M(β) = EeβX

≥ E
[
eβXs−c1Xs≤X+c

]
= E

∫ ∞
0

1
{
x ≤ eβ(Xs−c) and Xs ≤ X + c

}
dx

=
∫ ∞

0
P

[
x ≤ eβ(Xs−c) and Xs ≤ X + c

]
dx.

As a consequence of (11),

P
[
x ≤ eβ(Xs−c) and Xs ≤ X + c

] ≥ pP
[
x ≤ eβ(Xs−c)].
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Applying this inequality to (24) gives

M(β) ≥ p

∫ ∞
0

P
[
x ≤ eβ(Xs−c)]dx = pEeβ(Xs−c) = pM ′(β)

μeβc
.

Thus,

(logM)′(β) = M ′(β)

M(β)
≤ μeβc

p
,

and integrating we obtain

logM(β) = logM(β) − logM(0) ≤
∫ β

0

μecu

p
du = μ

pc

(
eβc − 1

)
.

Exponentiating proves (22).
Next, let (X,Xs) be a (c,p)-bounded size bias coupling for the lower tail, and

let β ≤ 0. Note that M(β) is now finite simply because β ≤ 0, and again M ′(β) =
μEeβXs

. Now using eβXs ≥ eβ(X+c)1Xs≤X+c, we obtain

M ′(β)

μ
= EeβXs

≥ E
[
eβ(X+c)1Xs≤X+c

]
= E

∫ ∞
0

1
{
x ≤ eβ(X+c) and Xs ≤ X + c

}
dx

=
∫ ∞

0
P

[
x ≤ eβ(X+c) and Xs ≤ X + c

]
dx.

By (12),

M ′(β)

μ
≥ p

∫ ∞
0

P
[
x ≤ eβ(X+c)]dx = pEeβ(X+c) = peβcM(β).

Therefore,

(logM)′(β) ≥ pμeβc

and

logM(β) = −
∫ 0

β
(logM)′(u) du ≤

∫ 0

β
−pμecu du = pμ

c

(
eβc − 1

)
. �

PROOF OF THEOREM 3.3. If X admits a (c,p)-bounded size bias coupling
for the upper tail, then by Markov’s inequality and Lemma 3.11,

P[X − μ/p ≥ x] = P
[
eβX ≥ eβ(x+μ/p)]

≤ e−β(x+μ/p)M(β)

≤ exp
[

μ

pc

(
eβc − 1

) − β(x + μ/p)

]
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for β ≥ 0. Setting β = log(px/μ + 1)/c, which is nonnegative for x ≥ 0, yields
the first inequality in (15). The second inequality in (15) now follows from the first
inequality in (14).

To prove (16), for any β ≤ 0,

P[X − pμ ≤ −x] = P
[
eβX ≥ eβ(−x+pμ)]

≤ M(β)eβ(x−pμ)

≤ exp
[
pμ

c

(
eβc − 1

) + β(x − pμ)

]
.

Setting β = log(−x/pμ + 1)/c, which is nonpositive for 0 ≤ x < pμ, yields the
first inequality in (16). The second inequality in (16) now follows from the second
inequality in (14). �

Next, we turn toward the proof of Theorem 3.4, beginning with the following
simple lemma.

LEMMA 3.12. If 0 ≤ y ≤ 1, then for all x ∈ R,

exy ≤ 1 + (
ex − 1

)
y(25)

and

e−xy ≥ 1 − (
ex − 1

)
y.(26)

PROOF. The function f (u) = uy for u ≥ 0 is concave, and hence it lies below
its tangent line at u = 1, showing that

uy ≤ 1 + (u − 1)y.

Substituting u = ex shows (25).
To prove (26), the function g(u) = u−y is convex, and hence lies above its tan-

gent line at u = 1, and the same argument completes the proof. �

PROOF OF THEOREM 3.4. We start with the upper tail bound, assuming for
now that c = 1. As {Xs ≤ X + c} ⊇ B, the hypothesis of (a) implies (11), hence
the moment generating function M(β) = EeβX of X is finite for all β by Proposi-
tion 3.10. Assume β ≥ 0. Applying P[B | Xs] ≥ p, we have

E
[
eβXs

1B
] ≥ pE

[
eβXs ] = p

μ
E

[
XeβX] = p

μ
M ′(β),

since by finiteness of the moment generating function we can differentiate inside
the expectation. Rewriting this inequality and using the definition of D, we have

M ′(β) ≤ μ

p
E

[
eβXs

1B
] ≤ μ

p
E

[
eβDeβX1B

]
.
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Since 0 ≤ D ≤ 1 on B, we can apply Lemma 3.12 to conclude that

E
[
eβD1B | X] ≤ E

[(
1 + (

eβ − 1
)
D

)
1B | X]

= 1 + (
eβ − 1

)
E[D1B | X]

≤ 1 + τ 2

μ

(
eβ − 1

)
.

Thus,

M ′(β) ≤ 1

p

(
μ + τ 2(

eβ − 1
))

M(β)

and

logM(β) =
∫ β

0
(logM)′(u) du

≤
∫ β

0

1

p

(
μ + τ 2(

eu − 1
))

du

= 1

p

(
μβ + τ 2(

eβ − 1 − β
))

.

By Markov’s inequality,

P[X − μ/p ≥ x] ≤ M(β)e−β(x+μ/p) ≤ exp
(

τ 2

p

(
eβ − 1 − β

) − βx

)
.

Substituting β = log(1 + px/τ 2), which is nonnegative for x ≥ 0, yields

P[X − μ/p ≥ x] ≤ exp
[
−τ 2

p
h

(
px

τ 2

)]
.(27)

Now, we consider the general case c > 0. We obtain the first inequality in (17) by
rescaling and applying (27):

P[X − μ/p ≥ x] = P[X/c − μ/pc ≥ x/c] ≤ exp
[
− τ 2

pc2 h

(
px/c

τ 2/c2

)]
,

noting that we must replace τ by τ/c when applying (27) to X/c. The second
inequality now follows by the first inequality in (14).

Next, we prove the lower tail bound, again assuming c = 1. Using that the mo-
ment generating function M(−β) exists for all β ≥ 0, we have

M ′(−β) = μEe−βXs ≥ μE
[
e−βXs

1B
]

= μE
[
e−β(Xs−X)e−βX1B

]
≥ μE

[
e−βDe−βX1B

]
.
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Since 0 ≤ D ≤ 1 on B, we can apply Lemma 3.12 to obtain the bound

E
[
e−βD1B | X] ≥ E

[(
1 − (

eβ − 1
)
D

)
1B | X]

= P[B | X] − (
eβ − 1

)
E[D1B | X]

≥ p − τ 2

μ

(
eβ − 1

)
.

We then have

M ′(−β) ≥ (
pμ − τ 2(

eβ − 1
))

M(−β),

and arguing as for the upper tail leads to

logM(−β) ≤ τ 2(
eβ − 1 − β

) − μpβ.

Applying Markov’s inequality and setting β = log(1 + x/τ 2), which is nonnega-
tive for x ≥ 0, gives

P[X − pμ ≤ −x] ≤ M(−β)e−β(x−μp) = exp
[
−τ 2h

(
x

τ 2

)]
,

and scaling by c > 0 as before now yields the first inequality of (18). The second
inequality now follows by the second inequality of (14). �

4. Size biased couplings for random regular graphs. Suppose that A is the
adjacency matrix of a random regular graph. In this section, we construct size
biased couplings for linear combinations of the entries of A with positive coeffi-
cients. Statistics of this form include the number of edges between two given sets
of vertices, and the positive part of a truncated quadratic form, as described in
Section 6. To construct a size biased coupling for any such statistic, it is enough
to give a coupling between A and A(uv), which we define to have the distribution
of A conditional on Auv = 1. The size biased coupling can then be defined as a
mixture of A(uv) for different choices of (u, v), following the standard recipe for a
size biased coupling given in Lemma 3.1.

To make the coupling between A and A(uv), we will use switchings, which are
local manipulations of a graph that preserve regularity; see [54], Section 2.4, for
an introduction. The most natural thing to do to form the coupling is to apply a
switching to A at random out of the ones that yield a graph containing uv. This
creates a matrix whose distribution is slightly off from what we want. We then
tweak the coupling to get the right distribution, taking care that most of the time,
A and A(uv) still differ from each other by a switching.

Switchings, Stein’s method and concentration have bumped into each other in a
variety of ways in the past. In the configuration model, switchings give easy proofs
of concentration by martingale arguments [54], Theorem 2.19. In the uniform
model, switchings have been applied to prove tail bounds by ad hoc arguments;
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for some examples, see [54], Section 2.4, [44], Theorem 4, and [15], Lemma 16.
In [9], switchings are combined with a nonstandard martingale argument to prove
concentration of the resolvent of the adjacency matrix of a random regular graph.
In [21], switchings were used to define an exchangeable pair in order to apply [16]
to prove concentration in random digraphs. Switchings and exchangeable pairs
also met in [39], where they were used for Poisson approximation. Janson ob-
served that switchings produce “approximate” couplings of graphs conditioned to
have certain edges [38], Remark 5.6. In this section, we essentially make these
approximate couplings exact in order to construct size biased couplings.

To make switchings work to achieve our goals, we will view things from a more
combinatorial perspective. First, we recast the problem of constructing a coupling
as constructing a bipartite graph. We call a bipartite graph biregular if all vertices
within each vertex class have the same degree, recalling that the degree of a vertex
in a weighted graph is the sum of the weights of the edges incident to the vertex.

LEMMA 4.1. Suppose that G is a biregular weighted bipartite graph on vertex
sets U and V . Let X be uniformly distributed on U , and let X′ be given by walking
from X along an edge with probability proportionate to its weight. Then X′ is
uniformly distributed on V .

PROOF. Let every vertex in U have degree d and every vertex in V have de-
gree e. Let w(u, v) be the weight of the edge from u to v or 0 if there is none.
Since every vertex in U has degree d ,

P
[
X′ = v | X = u

] = w(u, v)

d
.

Thus,

P
[
X′ = v

] = ∑
u∈U

P
[
X′ = v | X = u

]
P[X = u] = 1

|U |
∑
u∈U

w(u, v)

d
,

and since every vertex in V has degree e, this is e/d|U | = 1/|V |. �

Thus, our goal in this section will be to construct a biregular bipartite graph G

on the vertex sets G and Guv , where G is the set of adjacency matrices of simple
d-regular graphs on n vertices, and Guv is the subset of G of matrices with uv

entry equal to 1. Roughly speaking, the goal is for the edges of G to have as their
endpoints graphs that are as similar to each other as possible.

We now define our switchings, which in the combinatorics literature are some-
times called double switchings. See Figure 1 for a pictorial depiction of what we
now formally define.

DEFINITION 4.2. Let A be the adjacency matrix of a simple regular graph.
Suppose that Av2v3 = Av4v5 = Av6v1 = 1 and Av1v2 = Av3v4 = Av5v6 = 0, and
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v1 v2

v6 v3

v5 v4

v1 v2

v6 v3

v5 v4

FIG. 1. A solid line means an edge between two vertices, and a dotted line means that the two
vertices are nonequal and are not connected. The action of replacing the subgraph indicated by the
left diagram by the subgraph indicated by the right diagram is a switching at (v1, . . . , v6).

that v1 �= v2, v3 �= v4, and v5 �= v6. Note that we do not assume that all vertices
v1, . . . , v6 are distinct. Then (v1, . . . , v6) is a valid switching for A, and we define
the application of the switching to A as the adjacency matrix of the graph with
edges v1v2, v3v4 and v5v6 added and v2v3, v4v5 and v6v1 deleted.

It is not obvious that a valid switching (v1, . . . , v6) preserves regularity if
v1, . . . , v6 are not all distinct. To see that it does, consider the vertex v1. We will
show that its degree is unchanged by the switching. Identical arguments apply to
the other vertices. By the definition of valid switching, v1 cannot equal v2 or v6,
since it is connected to v6 and assumed nonequal to v2. It cannot equal v3, since
Av3v2 = 1 but Av1v2 = 0, and in the same way it cannot be v5. If v1 �= v4, then
v1v2 and v1v6 are the only edges incident to v1, and its degree is unchanged when
v1v2 is added and v1v6 is deleted. If v1 = v4, then similar arguments show that
v2, v3, v5, v6 are distinct. Then the switching adds v1v6 and v1v5 and deletes v1v3
and v1v2, again leaving the degree of v1 unchanged.

LEMMA 4.3. For a given adjacency matrix A, let let suv(A) be the number of
valid switchings of the form (u, v, ·, ·, ·, ·), and let tuv(A) be the number of valid
switchings of the form (u, ·, ·, ·, ·, v). For u �= v with Auv = 0,

d3(n − 2d − 2) ≤ suv(A) ≤ d3(n − d − 1)(28)

and for u �= v with Auv = 1,

d2(n − d − 1)(n − 2d − 2) ≤ tuv(A) ≤ d2(n − d − 1)2.(29)

PROOF. We start by bounding sv1v2(A). Consider the d3(n − d − 1) tu-
ples (v1, v2, v3, . . . , v6) given by choosing v6 ∈ N (v1) and v3 ∈ N (v2), then
v5 ∈ N (v6), and finally v4 ∈ N (v5) (Figure 1 is very helpful here). This is an up-
per bound for sv1v2(A). For the lower bound, let K be the number of these tuples
that do not allow for a switching, so that

sv1v2(A) = d3(n − d − 1) − K.
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v1 v2

v6 v3 = v4

v5

v1 v2

v6 v3

v5 v4

FIG. 2. A tuple (v1, . . . , v6) counted by K coincides with one of the two subgraphs pictured above,
with solid lines denoting edges and dotted lines denoting that the endpoints are neither equal nor
neighbors. For a given choice of v1 and v2, there are at most d3 subgraphs of the first kind and d4

of the second kind.

Now, we bound K from above (see Figure 2). A tuple chosen as above allows for
a switching if and only if v3 ∈ N (v4). The number of these tuples where v3 = v4
is at most d3, since in this case v3 ∈ N (v2), v5 ∈ N (v3), and v6 ∈ N (v1), making
for d3 choices total. Similarly, the number of these tuples where v3 ∈ N (v4) is at
most d4. Thus, K ≤ d4 + d3, and sab(A) ≥ d3(n − 2d − 2).

The bound for tv1v6(A) is essentially the same. Consider the tuples (v1, . . . , v6)

given by choosing v2 ∈ N (v1), then v3 ∈ N (v2), then v5 ∈ N (v6), and last v4 ∈
N (v5). There are at most d2(n − d − 1)2 of these, giving an upper bound for
tv1v6(A). For the lower bound, let L be the number of these tuples that are not
valid switchings. A tuple fails to be a valid switching if v3 and v4 are equal or are
neighbors, and we obtain a bound L ≤ (n − d − 1)(d2 + d3) by counting as in the
first case. Thus,

tv1v6(A) ≥ d2(n − d − 1)2 − (n − d − 1)
(
d2 + d3)

= d2(n − d − 1)(n − 2d − 2). �

REMARK 4.4. Switchings in which two rather than three edges are added and
deleted are known as simple or single switchings. They have been used to analyze
regular graphs, though they are typically less effective than double switchings, as
mentioned in [54], Section 2.4. The problem is that in the equivalent of (28) for
simple switchings, no lower bound is possible. There is no further improvement
for us to be found in higher order switchings, however.

LEMMA 4.5. Fix two distinct vertices u, v ∈ [n]. Make a bipartite graph G0
with weighted edges on two vertex classes G and Guv by forming edges as follows:

• If A ∈ G has Auv = 0, then form an edge of weight 1 between A and ev-
ery element of Guv that is the result of applying a valid switching of the form
(u, v, ·, ·, ·, ·).

• If A ∈ G has Auv = 1, then form an edge of weight d3(n − d − 1) between A

and its identical copy in Guv .
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In G0, every element of G has degree between d3(n − 2d − 2) and d3(n − d − 1),
and every element of Guv has degree between d2(n−d −1)(n−d −2) and d2(n−
d − 1)(n − 1). Furthermore, G0 can be embedded in a biregular bipartite graph
G on the same vertex sets, with vertices in G having degree d3(n − d − 1) and in
Guv having degree d2(n − d − 1)(n − 1).

PROOF. We start with the claims about G0. For any A ∈ G with Auv = 0, the
bound suv(A) ≤ d3(n − d − 1) from Lemma 4.3 shows that the degree of A in G0
is between d3(n − 2d − 2) and d3(n − d − 1). If Auv = 1, then A has exactly one
incident edge of weight d3(n − d − 1) in G0.

If A′ is the result of applying a switching (u, v,w1,w2,w3,w4) to A, then A

is the result of applying a switching (u,w4,w3,w2, v) to A′. Thus, A′ ∈ Guv has
tuv(A

′) incident edges of weight 1, as well as one extra edge of weight d3(n− d −
1) to its identical copy in G. The bounds on the degree of A′ then follow from the
bounds on tuv in Lemma 4.3. This proves all the claims about G0.

To form G, we start with G0 and add edges as follows. Go through the vertices
of G, and for each vertex with degree less than d3(n − d − 1), arbitrarily make
edges from the vertex to vertices in Guv of weight less than d2(n − d − 1)(n − 1).
Continue this procedure until either all vertices in G have degree d3(n − d − 1) or
all vertices in Guv have degree d2(n − d − 1)(n − 1). We claim that in fact, both
are true when the procedure is done. Since the probability of a random regular
graph containing edge uv is d/(n − 1), it holds that |Guv|/|G| = d/(n − 1). We
can count the total edge weight in the graph when the procedure has terminated by
summing the degrees of all vertices in G, or by summing the degrees of all vertices
in Guv . If all degrees in G are d3(n − d − 1) and all degrees in Guv are at most
d2(n − d − 1)(n − 1), then

|G|d3(n − d − 1) ≤ |Guv|d2(n − d − 1)(n − 1) = |G|d3(n − 1),

and so all vertices in Guv must have degree exactly d2(n − d − 1)(n − 1). In the
same way, if all degrees in Guv are d2(n−d −1)(n−1), then all degrees in G must
be exactly d3(n−d−1). Thus, we have embedded G0 in a biregular bipartite graph
G as desired. �

This lemma together with Lemma 4.1 yields a coupling of (A,A(uv)) satisfying

(30)
P

[
A and A(uv) are identical or differ by a switching | A(uv)]

≥ 1 − d + 1

n − 1
,

and

(31)
P

[
A and A(uv) are identical or differ by a switching | A]

≥ 1 − d + 1

n − d − 1
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which can be used to construct size biased couplings for linear sums of A

bounded both for the upper and lower tail. This immediately gives tail bounds
for any statistic f (A) = ∑

u�=v auvAuv with 0 ≤ auv ≤ c, since by choosing (U,V )

with P[(U,V ) = (u, v)] in proportion to auv , we obtain a size biased coupling
(f (A), f (A(UV ))) by Lemma 3.1. For the full details, see Section 5.2, where we
carry this out.

5. Concentration for random regular graphs. In this section, we prove
Proposition 2.3, establishing the uniform tails property for all the models of ran-
dom regular graphs we consider. We also prove a concentration result for the edge
count eA(S,T ) in the uniform model in Theorem 5.3. Results like this bounding
the edge discrepancy for random regular graphs have often been of interest; see
the expander mixing lemma [37], Lemma 2.5, and [41], Lemma 4.1, for example.

5.1. Concentration for the permutation model. Recall that in our permutation
models, an adjacency matrix A is given as the symmetrized sum of d/2 inde-
pendent random permutation matrices, for some even d . A more graph theoretic
description of the model is as follows. Let π1, . . . , πd/2 be independent random
permutations of [n]. Then A is the adjacency matrix of the graph formed by mak-
ing an edge between i and j for every (i, j, l) such that πl(i) = j . Equivalently,

Aij =
d/2∑
l=1

(1{πl(i)=j} + 1{πl(j)=i})(32)

for i, j ∈ [n]. Note that the graph allows for loops and parallel edges, and that a
loop contributes to the adjacency matrix twice. We now show that when the distri-
bution of the permutations is uniform over the symmetric group or is constant on
conjugacy classes with no fixed points, the matrix A has the uniform tails property,
which we recall from Definition 2.1. Proposition 2.4 then implies that the second
eigenvalue of A is O(

√
d) with probability tending to 1. For uniform permuta-

tions, this result was previously shown in [23], Theorem 24, and it is included here
to highlight that our concentration proofs by size biasing are simpler than previous
martingale-based proofs such as [23], Theorem 26.

PROOF OF PROPOSITION 2.3, PARTS (A) AND (B). Fix a symmetric matrix
Q and a as in Definition 2.1, and let π1, . . . , πd/2 be the random permutations
defining A. By the symmetry of Q and A, we can view fQ(A) as

fQ(A) = 2
n∑

u,v=1

d/2∑
l=1

Quv1{πl(u)=v}.(33)

First, we consider the case where the common permutation distribution is uni-
form. We show how to couple πl with a random permutation π

(uv)
l distributed as
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πl conditional on πl(u) = v. Let τ be the transposition swapping πl(u) and v [or
the identity if πl(u) = v], and define π

(uv)
l = τ ◦ πl . It is straightforward to check

that π
(uv)
l is distributed as a uniformly random permutation conditioned to map u

to v.
Choose (U,V ) from [n] × [n] with P[(U,V ) = (u, v)] proportional to Quv ,

and choose L uniformly from {1, . . . , d/2}, independently of each other and of A.
Define A′ as we defined A, but with π

(UV )
L substituting for πL. This gives us

a size biased coupling (fQ(A),fQ(A′)) by Lemma 3.1. Let U ′ = π−1
L (V ) and

V ′ = πL(U). Applying (33), we then have

fQ

(
A′) − fQ(A) = 2(QUV + QU ′V ′ − QUV ′ − QU ′V ) ≤ 2(QUV + QU ′V ′).

This shows that fQ(A′) − fQ(A) ≤ 4a. With D = (fQ(A′) − fQ(A))+ and F =
{π1, . . . , πd/2}, we have

E[D | F] ≤ 2E[QUV + QU ′V ′ | F]

= 2∑n
u,v=1 Quv

n∑
u,v=1

Quv

(
Quv + 2

d

d/2∑
l=1

Q
π−1

l (v)πl(u)

)
(34)

= 2d

nμ

(
n∑

u,v=1

Q2
uv + 2

d

d/2∑
l=1

n∑
u,v=1

QuvQπ−1
l (v)πl(u)

)
.

Applying the Cauchy–Schwarz inequality,

n∑
u,v=1

QuvQπ−1
l (v)πl(u)

≤
(

n∑
u,v=1

Q2
uv

)1/2(
n∑

u,v=1

Q2
π−1

l (v)πl(u)

)1/2

=
(

n∑
u,v=1

Q2
uv

)1/2(
n∑

u,v=1

Q2
uv

)1/2

=
n∑

u,v=1

Q2
uv.

Substitution into (34) yields

E[D | F] ≤ 4d

nμ

n∑
u,v=1

Q2
uv = 4σ̃ 2

μ
.

As A is F -measurable, the same bound holds for E[D | A]. Now apply Theo-
rem 3.4 with τ 2 = 4σ̃ 2, c = 4a and p = 1 to complete the proof for the uniform
permutation case.

Next, let πl, l = 1, . . . , d/2 be independent random permutations with distribu-
tions constant on conjugacy class and having no fixed points. Lack of fixed points
implies that the matrix A has zeros all along its diagonal, and we may therefore
assume without loss of generality that Quu = 0. By [18], Section 6.1.2, we have

P
[
π(u) = v

] = 1

n − 1
for all u �= v,
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V ′ V

U U ′

W W ′

V ′ V

U U ′

W W ′

FIG. 3. On the left is πL and on the right πUV
L , assuming that vertices W , U , V ′, W ′, U ′ and V

are distinct.

hence

μ := EfQ(A) = d

n − 1

n∑
u,v=1

Quv.

Sample (U,V ) and L as in the uniform case, noting here that since Quu = 0
for all u we have U �= V a.s. With τ the identity if πL(U) = V and otherwise the
transposition (U,π−1

L (V )), one may check that the permutation πUV
L = τ ◦ π ◦ τ

has the distribution of πL conditional on πL(U) = V , and that therefore, fQ(A′)
has the size biased distribution of fQ(A), where A′ is defined as A, but with πUV

L

replacing πL. Let U ′ = π−1
L (V ),V ′ = πL(U) and W = π−1

L (U),W ′ = π−2
L (V ).

See Figure 3 for depictions of these vertices in πL and πUV
L .

There are two cases we need to consider. In the first case, V ′ = U ′, which forces
U = W ′ and puts us in the situation shown in Figure 4. Consulting the figure and
applying (33),

fQ

(
A′) − fQ(A)

= 2(QWU ′ + QU ′U + QUV − QWU − QUU ′ − QU ′V )

= 2(QWU ′ + QUV − QWU − QU ′V )

≤ 2(QWU ′ + QUV ) ≤ 2(QW ′U + QWU ′ + QUV + QU ′V ′).

In the other case, we claim that {V,V ′,W,W ′} ∩ {U,U ′} = ∅. Indeed, since
πL has no fixed points, V ′ �= U , W �= U , W ′ �= U ′ and V �= U ′. Since we are not

V

W ′ = U U ′ = V ′

W

V

W ′ = U U ′ = V ′

W

FIG. 4. On the left, πL and on the right, πUV
L , in the case where V ′ = U ′ and U = W ′.
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in the first case, V ′ �= U ′ and W ′ �= U . From the way we selected them, V �= U .
Since W = π−1

L (U) and U ′ = π−1
L (V ), we have W �= U ′. This confirms the claim.

Since τ swaps U and U ′ (or does nothing if U = U ′), it leaves V , V ′, W and W ′
fixed, giving

πUV
L

(
W ′) = U, πUV

L (W) = U ′,

πUV
L (U) = V, πUV

L

(
U ′) = V ′.

Thus, the only positive terms on the right-hand side of

fQ

(
A′) − fQ(A) = 2

n∑
u,v=1

d/2∑
l=1

Quv(1{πUV
l (u)=v} − 1{πl(u)=v})

occur when (u, v) ∈ {(W ′,U), (W,U ′), (U,V ), (U ′,V ′)}. We therefore have

fQ(A) − fQ

(
A′) ≤ 2(QW ′U + QWU ′ + QUV + QU ′V ′).

In both cases, then we have

fQ

(
A′) − fQ(A) ≤ 2(QW ′U + QWU ′ + QUV + QU ′V ′) ≤ 8a,

and following the same argument as for uniform permutations yields

E[D | A] ≤ 8∑
u,v Quv

∑
u,v

Q2
u,v = 8σ̃ 2

μ
.

The proof is completed by applying Theorem 3.4 with τ 2 = 8σ̃ 2, c = 8a and
p = 1. �

5.2. Uniform tails property for the uniform model. Our proof of the uniform
tails property for the model where a graph is chosen uniformly from all random
d-regular simple graph on n vertices will be similar to the proof for the permuta-
tion model in the previous section. The main difference is that here our size biased
coupling will take more work to construct and will not be bounded with probabil-
ity 1. We note that when A is the adjacency matrix of a uniform random regular
graph, Auu = 0 for u ∈ [n].

THEOREM 5.1. Let A be the adjacency matrix of a uniform random simple
d-regular graph on n vertices. Let Q be an n×n symmetric matrix with all entries
in [0, a], and let fQ(A) = ∑

u,v QuvAuv . Let μ = EfQ(A) = d
n−1

∑
u�=v Quv and

let σ̃ 2 = d
n−1

∑
u�=v Q2

uv . Then, with h as given in (13), for all t ≥ 0,

(35)

P
[
fQ(A) − μ

p
≥ t

]
≤ exp

(
− σ̃ 2

6pa2 h

(
pat

σ̃ 2

))

≤ exp
(

t2

12a(t/3 + σ̃ 2/ap)

)
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with p = 1 − (d + 1)/(n − 1), and

(36)

P
[
fQ(A) − p′μ ≤ −t

] ≤ exp
(
− σ̃ 2

6a2 h

(
at

σ̃ 2

))

≤ exp
(
− t2

12a(t/3 + σ̃ 2/a)

)
with p′ = 1 − (d + 1)/(n − d − 1).

PROOF. We now construct a size biased coupling using the tools we developed
in Section 4. Let A(v1v2) be the matrix obtained by walking randomly in the bipar-
tite graph G, constructed in Lemma 4.5, from A along an edge chosen with prob-
ability proportional to its weight. By Lemma 4.1, the matrix A(v1v2) is distributed
as A conditioned on Av1v2 = 1. Independently of A, choose (V1,V2) = (v1, v2)

with probability proportional to Qv1v2 for all v1 �= v2, and set A′ = A(V1V2). By
Lemma 3.1, the pair (fQ(A),fQ(A′)) is a size biased coupling. Define B as the
event that the edge traversed in G from A to A(V1V2) belongs to G0. By (30) and
(31), P[B | A′] ≥ p, and P [B | A] ≥ p′.

Let S(A, v1, v2) consist of all tuples (v3, . . . , v6) such that (v1, . . . , v6) is a
valid switching. Note that if Av1v2 = 1, then S(A, v1, v2) is the empty set. For
(v3, . . . , v6) ∈ S(A, v1, v2), let A(v1, . . . , v6) denote A after application of the
switching (v1, . . . , v6). Looking back at Lemma 4.5, we can describe the coupling
of A and A′ as follows. Conditional on A, V1 and V2 and assuming AV1V2 = 0, the
matrix A′ takes the value A(V1,V2, v3, . . . , v6) with probability 1/d3(n − d − 1)

for each (v3, . . . , v6) ∈ S(A,V1,V2), and these events make up the set B. The
matrix A′ can take other values as well, if |S(A,V1,V2)| is strictly smaller than
d3(n − d − 1), in which case B does not hold.

In view of Figure 1, we have

fQ

(
A(v1, . . . , v6)

) − fQ(A)

= 2(Qv1v2 + Qv3v4 + Qv5v6 − Qv2v3 − Qv4v5 − Qv6v1)

≤ 2(Qv1v2 + Qv3v4 + Qv5v6),

the factor of 2 arising because addition or deletion of edge uv adds or removes
both terms Quv and Qvu. This shows that fQ(A′) − fQ(A) ≤ 6a on the event B.

Let S(A, v1, v2) denote the set of tuples (v3, . . . , v6) with v3 ∈ N (v2), v4 ∈
N (v3), v5 ∈ N (v4) and v6 ∈ N (v1). Recalling that N (v) is the set of n − d − 1
vertices not equal to v or the neighbors of v, we see that S(A, v1, v2) has size
d3(n−d − 1), and that it contains S(A, v1, v2). Letting D = (fQ(A′)−fQ(A))+,
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we have

E[D1B | A,V1,V2]

= 1

d3(n − d − 1)

× ∑
(v3,...,v6)∈S(A,V1,V2)

(
fQ

(
A(V1,V2, v3, . . . , v6)

) − fQ(A)
)+

≤ 2

d3(n − d − 1)

∑
(v3,...,v6)∈S(A,V1,V2)

(QV1V2 + Qv3v4 + Qv5v6).

Recalling the distribution of (V1,V2) and observing that
∑

u�=v Quv = (n−1)μ/d ,

(37)

E[D1B | A]

≤ ∑
v1 �=v2

Qv1v2∑
u�=v Quv

×
(

2

d3(n − d − 1)

∑
(v3,...,v6)∈S(A,v1,v2)

(Qv1v2 + Qv3v4 + Qv5v6)

)

= 2

(n − 1)(n − d − 1)d2μ

× ∑
v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

(
Q2

v1v2
+ Qv1v2Qv3v4 + Qv1v2Qv5v6

)
.

We now consider each term of this sum. For the first one,

(38)

∑
v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Q2
v1v2

= d3(n − d − 1)
∑

v1 �=v2

Q2
v1v2

= (n − 1)(n − d − 1)d2σ̃ 2.

For the next term, we apply the Cauchy–Schwarz inequality in an argument similar
to what we used in the proof of parts (a) and (b) of Proposition 2.3:∑

v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Qv1v2Qv3v4

≤
( ∑

v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Q2
v1v2

)1/2( ∑
v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Q2
v3v4

)1/2
.
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The first factor on the right-hand side was evaluated in (38). For the second one,
observe that for a given v3 �= v4, there are d3(n−d −1) tuples (v1, v2, v5, v6) such
that (v3, . . . , v6) ∈ S(A, v1, v2), giving∑

v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Q2
v3v4

= d3(n − d − 1)
∑

v3 �=v4

Q2
v3v4

= (n − 1)(n − d − 1)d2σ̃ 2.

Thus, ∑
v1 �=v2

(v3,...,v6)∈S(A,v1,v2)

Qv1v2Qv3v4 ≤ (n − 1)(n − d − 1)d2σ̃ 2.

The same bound holds for the final term in (37). Thus, we have

E[D1B | A] ≤ 6σ̃ 2

μ
.

Theorem 3.4 now proves (35) and (36). �

Now we deduce part (c) of Proposition 2.3 from Theorem 5.1.

PROOF OF PROPOSITION 2.3, PART (C). We start with an elementary esti-
mate: for any p ∈ [0,1] and x ≥ 0,

(39) p−1h(px) ≥ ph(x).

Indeed, for fixed p ∈ [0,1], note that by concavity of x �→ (1 + x)p ,

1 + px ≥ (1 + x)p

for all x ≥ 0. Taking logarithms and integrating the inequality gives

h(px) =
∫ x

0

d

dt
h(pt) dt

=
∫ x

0
p log(1 + pt) dt

≥ p2
∫ x

0
log(1 + t) dt

= p2h(x)

as desired.
Recall

c0 = 1

6

(
1 − d + 1

n − 1

)
= p

6
, γ0 = d + 1

n − d − 2
= 1

p
− 1(40)
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with p as in Theorem 5.1. Let Q be an n × n symmetric matrix with entries in
[0, a], as in Definition 2.1. By Theorem 5.1, for all t ≥ 0,

P
[
fQ(A) − μ ≥ γ0μ + t

] = P
[
fQ(A) − μ

p
≥ t

]

≤ exp
(
− σ̃ 2

6pa2 h

(
pat

σ̃ 2

))

≤ exp
(
−c0

σ̃ 2

a2 h

(
at

σ̃ 2

))
,

where in the last step we applied (39). Similarly,

P
[
fQ(A) − μ ≤ −(γ0μ + t)

] = P
[
fQ(A) − p′μ ≤ −((

γ0 − 1 + p′)μ + t
)]

≤ P
[
fQ(A) − p′μ ≤ −t

]
≤ exp

(
− σ̃ 2

6a2 h

(
at

σ̃ 2

))

≤ exp
(
−c0

σ̃ 2

a2 h

(
at

σ̃ 2

))
,

where in the second line we used that 1 − p′ = (d + 1)/(n − d − 1), which we see
from (40) is (slightly) smaller than γ0. �

REMARK 5.2. Proposition 2.3 on the statistic fQ(A) can be seen as exten-
sions of results on fQ(P ) where P is a random permutation matrix. This is Ho-
effding’s combinatorial statistic, as studied in [35]. Concentration for this statistic
was achieved using exchangeable pairs by [16], who showed, with μ = EfQ(P ),
that

P
(∣∣fQ(P ) − μ

∣∣ ≥ t
) ≤ 2 exp

(
− t2

4μ + 2t

)
for all t ≥ 0

when Quv ∈ [0,1]. Under these same conditions, using zero biasing [32] obtained
the Bennett-type inequality:

P
(∣∣fQ(P ) − μ

∣∣ ≥ t
) ≤ 2 exp

(
− t2

2σ 2 + 16t

)
for all t ≥ 0,

where σ 2 = Var(fQ(P )), as well as Bennett-type bounds whose tails decay asymp-
totically at the faster “Poisson” rate exp(−(t log t)), as do the bounds given in
Proposition 2.3.

In some applications, ours among them, concentration bounds that depend on
the variance are preferable to those depending on the mean. In our case, how-
ever, the variance proxy σ̃ 2 in Definition 2.1 suffices. For the permutation model,
it seems likely that the zero bias method can be applied to yield a concentration
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bound for fQ(A) depending on the true variance. For the uniform model, it ap-
pears difficult to create a zero bias coupling for fQ(A), but it appears possible
to construct an approximate zero bias coupling at the expense of some additional
complexity.

Since the edge counts eA(S,T ) can be expressed as fQ(A) = ∑
u,v AuvQuv

with

Quv = 1

2
(1{u∈S,v∈T } + 1{v∈S,u∈T }),

concentration for eA(S,T ) follows as as a corollary of Theorem 5.1. With a bit of
extra effort, we can improve the constant in the tail bound. Since edge discrepancy
concentration is of independent interest, we make the effort and give the better
result.

THEOREM 5.3. Let A be the adjacency matrix of a uniformly random d-
regular graph on n vertices, and let S,T ⊆ [n]. Define

μ = EeA(S,T ) = (|S||T | − |S ∩ T |)d
n − 1

.

(a) For any t ≥ 1,

P
[
eA(S,T ) ≥ tμ

p

]
≤ exp

(
− μ

2p
h(t − 1)

)
≤ exp

(
−3μ(t − 1)2

4p(2 + t)

)
(41)

where p = 1 − (d + 1)/(n − 1).
(b) For any 0 < t ≤ 1,

P
[
eA(S,T ) ≤ tpμ

] ≤ exp
(
−pμ

2
h(t − 1)

)
≤ exp

(
−pμ(1 − t)2

4

)
,(42)

where p = 1 − (d + 1)/(n − d − 1).

PROOF. Recall that

eA(S,T ) = ∑
u∈S
v∈T

Auv.

Take G from Lemma 4.5, and form a coupling (A,A(uv)) by defining A(uv) to
be the result of walking from A along an edge in G chosen with probability pro-
portionate to its weight. By Lemma 4.1, the matrix A(uv) is distributed as A con-
ditional on Auv = 1. Choosing U uniformly from S and V uniformly from T ,
independent of each other and of A, and setting A′ = A(UV ), by Lemma 3.1 we
obtain a size biased coupling (eA(S,T ), eA′(S, T )).
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We claim that if A and A′ differ by a switching, then eA′(S, T ) ≤ eA(S,T ) + 2.
Suppose the switching adds v1v2, v3v4, and v5v6 and deletes v2v3, v4v5 and v6v1.
Considering indices modulo 6 and referring to Figure 1, let

Ii = 1{vi∈S,vi+1∈T }, Ji = 1{vi∈T ,vi+1∈S}.
Then

eA′(S, T ) − eA(S,T )

= (I1 + I3 + I5 − J2 − J4 − J6) + (J1 + J3 + J5 − I2 − I4 − J6).

If Ii = Ii+2 = 1, then Ji+1 = 1. From this observation, one can work out that the
first term is at most 1, and by the same argument the second term is also at most 1.

By (30) and (31), the coupling is then (2,1 − (d + 1)/(n − 1))-bounded for the
upper tail, and (2,1−(d +1)/(n−d −1))-bounded for the lower tail. Theorem 3.3
then proves (41) and (42). �

REMARK 5.4. Similar results were established for random regular digraphs
by the first author in [21] using Chatterjee’s exchangeable pairs approach [16], an-
other variant of Stein’s method. This approach would likely give effective bounds
when d is on the same order as n, in which case the bounds given by Theorem 5.3
start to break down. For instance, if d = n/2, then p ≈ 1/2, and the upper tail
bound (41) becomes effective only starting at 2μ ≈ |S||T |, a trivial upper bound.
Similarly, as d rises to n/2, the factor p′ approaches zero, and the lower bound
(42) breaks down as well.

6. The Kahn–Szemerédi argument. In [28], Kahn and Szemerédi intro-
duced a general approach for bounding the second eigenvalue of a random reg-
ular graph, which they used to show that the second eigenvalue of a random graph
from the permutation model is O(

√
d) with high probability as n → ∞ with d

fixed. The disadvantage of their approach as compared to the trace method used
by Friedman [27] and Broder–Shamir [14] is that it is incapable of capturing the
correct constant in front of

√
d . However, it is more flexible in some ways than

the trace method: it has been adapted to establish bounds on the spectral gap for
several other random graph models (see, for instance, [15, 19, 20, 25, 29, 40, 42]),
and it can be applied when d grows with n, as observed in [15].

We now describe how the argument will go for us. For now, we let A denote
the adjacency matrix of a random d-regular graph without specifying the distribu-
tion further. Recall our notation λ(A) = max(λ2(A),−λn(A)) for the largest (in
magnitude) nontrivial eigenvalue. Alternatively, λ(A) = s2(A), the second-largest
singular value [recall that λ1(A) = s1(A) = d].

The Kahn–Szemerédi approach stems from the Courant–Fischer variational for-
mula:

(43) λ(A) = sup
x∈Sn−1

0

∣∣xTAx
∣∣,
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where Sn−1 is the unit sphere in R
n and

Sn−1
0 :=

{
x ∈ Sn−1 :

n∑
i=1

xi = 0

}
= Sn−1 ∩ 〈1〉⊥,

which follows from the fact that 1 = (1, . . . ,1) is the eigenvector corresponding
to λ1(A) = d . Broadly speaking, the approach is to bound the supremum by first
demonstrating concentration results for random variables xTAx for a fixed vec-
tor x. (Kahn and Szemerédi actually considered xTMy for various choices of x, y

with M a nonsymmetrized version of A, but it makes little difference to the argu-
ment.) A short continuity argument shows that to control the supremum in (43), it
suffices to control xTAx for all x in a suitable net of Sn−1

0 of cardinality Cn for
some constant C > 0 (see Section 6.3). Toward applying a union bound over such
a net, one might seek bounds on |xTAx| of order O(

√
d) holding with probability

1 − O(e−C′n) for some C′ > 0 sufficiently large depending on C. It turns out that
this is impossible, at least when d is fixed as n grows, since a O(

√
d) eigenvalue

bound is only expected to hold with probability approaching one polynomially in
this case [indeed, in the permutation model it is not hard to see that the graph is
disconnected with probability (n−c) for some c > 0 depending on d]. However,
Kahn and Szemerédi gave a modification of this argument that works.

We motivate their argument by first considering a simpler problem: to show
that |xTBx| = O(

√
n) with high probability when B is the adjacency matrix of an

Erdős–Rényi graph with expected density p = d/n and x ∈ Sn−1
0 . It easily follows

from Hoeffding’s inequality that for a fixed unit vector x and any t ≥ 0,

(44) P
[∣∣xTBx − ExTBx

∣∣ ≥ t
] ≤ 2 exp

(
− ct2∑n

u,v=1 |xuxv|2
)

= 2 exp
(−ct2)

for some absolute constant c > 0. Moreover, if x ∈ Sn−1
0 we have ExTBx = 0, and

we conclude that xTBx = O(
√

n) except with probability O(e−C′n), where we
can take the constant C′ > 0 as large as we please. Combined with a union bound
over the net described above, and taking C′ sufficiently large depending on C we
deduce that

(45) sup
x∈Sn−1

0

∣∣xTBx
∣∣ = O(

√
n)

except with exponentially small probability.
There are two difficulties one encounters in trying to extend this argument to

random d-regular graphs. This first is that Hoeffding’s inequality is unavailable
as the entries of A are not independent. In Kahn and Szemerédi’s proof for the
permutation model, a martingale argument was used instead. In the present work,
we use size biased couplings for the uniform model, through the uniform tails
property (Definition 2.1).
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The second barrier is that the bound (45) is not of the desired order O(
√

d). This
stems from the appearance of the L∞ bound |xuxv| on the summands of xTBx that
appears in the denominator of the exponential in Hoeffding’s inequality (44). We
would like to substitute this with an L2 bound, which has size on the order of the
density p of B (and can be shown to have order d/n for adjacency matrices A with
hypotheses as in Proposition 2.4). Such a substitute is provided by concentration
inequalities of Bennett-type, which for A would give bounds of the form

(46)

P
[∣∣xTAx − ExTAx

∣∣ ≥ t
]

≤ 2 exp
(
− ct2

(
∑n

u,v=1 |xuxv|2EA2
uv) + t maxu,v |xuxv|

)
.

The first term in the denominator of the exponent is order O(d/n). Substituting
C

√
d for t , we need the term maxu,v |xuxv| to be of size O(

√
d/n) in order that

the bound decay exponentially in n.
This motivates a key step in Kahn and Szemerédi’s argument, which is to split

the sum
∑

u,v xuxvAuv into two pieces. For fixed x ∈ Sn−1
0 , we define the light and

heavy couples of vertices, respectively, by

(47) L(x) = {
(u, v) ∈ [n]2 : |xuxv| ≤

√
d/n

}
and H(x) = [n]2 \L(x),

using the terminology from [25]. We then use the decomposition

(48) xTAx = ∑
(u,v)∈[n]2

xuxvAuv = ∑
(u,v)∈L(x)

xuxvAuv + ∑
(u,v)∈H(x)

xuxvAuv.

We can express this in the notation of (4) as

xTAx = fxxT(A) = fL(x)(A) + fH(x)(A),

where L(x) is the matrix with entries

[L(x)]uv =
{
xuxv (u, v) ∈ L(x),

0 otherwise,

and H(x) = xxT − L(x).
The goal is now to show that fL(x)(A) and fH(x)(A) are each of size O(

√
d)

with high probability. The light couples contribution fL(x)(A) can be handled by
a bound of the form (46) (which we have thanks to the uniform tails property)
together with a union bound over a discretization of the sphere, as outlined above
for the Erdős–Rényi case.

The contribution of heavy couples fH(x)(A) does not enjoy sufficient concen-
tration to beat the cardinality of a net of the sphere. Here, the key idea is to prove
that a discrepancy property holds with high probability for the associated random
regular graph. This essentially means that the edge counts

(49) eA(S,T ) = ∑
u∈S,v∈T

Auv = 1T
SA1T
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are not much larger than their expectation, uniformly over choices of S,T ⊂ [n]
(here 1S ∈ {0,1}n denotes the vector with j th component equal to 1 if j ∈ S

and 0 otherwise). This is accomplished using tail estimates for the random vari-
ables eA(S,T ). One then shows that conditional on the event that the discrepancy
property holds, the contribution fH(x)(A) of the heavy couples to the sum (48) is
O(

√
d) with probability 1.

We point out that concentration estimates play a crucial role in both parts of the
argument above, though in different guises: in the light couples argument it is for
the random variables fL(x)(A) with x ∈ Sn−1

0 , while in the heavy couples argument
it is for the random variables eA(S,T ) with S,T ⊂ [n]. In our implementation of
the Kahn–Szemerédi argument below, the necessary concentration bounds both
follow from the uniform tails property (Definition 2.1).

The remainder of this section establishes Proposition 2.4 and is organized as fol-
lows. We bound the contribution of the light couples in Section 6.1 and the heavy
couples in Section 6.2. Proposition 2.4 follows easily from these two sections; we
give the final proof in Section 6.3. We do all of this without reference to a specific
graph model. Instead, we assume the uniform tails property. Proposition 2.4 is then
applicable to any graph model where this is shown to hold.

6.1. Light couples. In this section, we establish Lemma 6.2, which says that
the uniform tails property implies that fL(x)(A) is O(

√
d) with overwhelming

probability for any particular vector x ∈ Sn−1
0 . The uniform tails property was tai-

lored for exactly this purpose, so it is just matter of working out the the details.
The work of extending this bound from a single vector to a supremum over the
entire sphere Sn−1

0 occurs in Section 6.3.

LEMMA 6.1 (Expected contribution of light couples). Let A be the adjacency
matrix of a random d-regular multigraph on n vertices satisfying the conditions
of Proposition 2.4. Then for any fixed x ∈ Sn−1

0 , |EfL(x)(A)| ≤ (a1 + a2)
√

d , with
a1, a2 as in Proposition 2.4.

PROOF. Fix x ∈ Sn−1
0 . From the decomposition (48),∣∣EfL(x)(A)
∣∣ ≤ ∣∣ExTAx

∣∣ + ∣∣EfH(x)(A)
∣∣

≤
∣∣∣∣xT

(
EA − d

n
11T

)
x

∣∣∣∣ + a1
d

n

∑
(u,v)∈H(x)

|xuxv|

≤
∥∥∥∥EA − d

n
11T

∥∥∥∥
HS

+ a1
d

n

n∑
u,v=1

|xuxv|2√
d/n

≤ a2
√

d + a1
√

d,

where in the second line we have used x ⊥ 1, and in the third line applied the
Cauchy–Schwarz inequality to the first term. �
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LEMMA 6.2. Let A be the adjacency matrix of a random d-regular multigraph
on n vertices satisfying the conditions of Proposition 2.4. Then for any x ∈ Sn−1

0
and β ≥ 4a1a3,

P
[∣∣fL(x)(A)

∣∣ ≥ (β + a1 + a2)
√

d
] ≤ 4 exp

(
− c0β

2n

32(a1 + β
12)

)
.(50)

PROOF. Applying Lemma 6.1,

(51)
P

[∣∣fL(x)(A)
∣∣ ≥ (β + a1 + a2)

√
d
]

≤ P
[∣∣fL(x)(A) − EfL(x)(A)

∣∣ ≥ β
√

d
]
.

Splitting L(x) = L+(x)−L−(x) into positive and negative parts, by a union bound
the right-hand side of (51) is bounded by

(52)
P

[∣∣fL+(x)(A) − EfL+(x)(A)
∣∣ ≥ (β/2)

√
d
]

+ P
[∣∣fL−(x)(A) − EfL−(x)(A)

∣∣ ≥ (β/2)
√

d
]
.

Considering the first term, abbreviate μ := EfL+(x)(A). Note that by Cauchy–
Schwarz and the assumption that EAuv ≤ a1

d
n

,

(53) μ ≤ a1
d

n

n∑
u,v=1

|xuxv| ≤ a1 d

(
n∑

u,v=1

|xuxv|2
)1/2

= a1d.

From (47), each entry of the matrix L+(x) lies in [0,
√

d/n]. Moreover, again
using our first assumption in Proposition 2.4,

σ̃ 2 := fL+(x)◦L+(x)(EA) ≤
n∑

u,v=1

|xuxv|2EAuv ≤ a1
d

n
,

where we use the notation of Definition 2.1 with Q = L+(x). Recall that we are
assuming that A has UTP(c0, γ0) for γ0 = a3/

√
d . Applying (7),

P
[∣∣fL+(x)(A) − μ

∣∣ ≥ (β/2)
√

d
]

≤ P
[∣∣fL+(x)(A) − μ

∣∣ ≥ γ0μ − γ0a1d + (β/2)
√

d
]

≤ 2 exp
(
− c0(

β
2

√
d − γ0a1d)2

2a1
d
n

+ 2
3

√
d

n
(
β
2

√
d − γ0a1d)

)
.

Recall that γ0a1d = a1a3
√

d . Hence, if β ≥ 4a1a3, then since t �→ t2/(a + bt) is
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nondecreasing on [0,∞) for a, b > 0, we conclude the bound

P
[∣∣fL+(x)(A) − μ

∣∣ ≥ (β/2)
√

d
]

≤ 2 exp
(
− c0β

2d

32(a1
d
n

+ β
12

d
n
)

)

= 2 exp
(
− c0β

2n

32(a1 + β
12)

)
.

The same bound holds for the second term in (52), which combined with (51)
proves the lemma. �

6.2. Heavy couples. In this section, we define a discrepancy property for a
matrix. For an adjacency matrix, the discrepancy property essentially says that the
number of edges between any two sets of vertices is not too much larger than
its expectation. Lemma 6.4 shows that the uniform upper tail property (see Defi-
nition 2.1) implies that the discrepancy property holds except with polynomially
small probability. Lemma 6.6 then shows that if the discrepancy property holds for
A, then deterministically the heavy couples give a small contribution to xTAx for
any vector x.

DEFINITION 6.3 (Discrepancy property). Let M be an n×n matrix with non-
negative entries. For S,T ⊂ [n], recall that

eM(S,T ) := ∑
u∈S

∑
v∈T

Muv.

We say that M has the discrepancy property with parameters δ ∈ (0,1), κ1 >

1, κ2 ≥ 0, or DP(δ, κ1, κ2), if for all nonempty S,T ⊂ [n] at least one of the fol-
lowing hold:

1. eM(S,T )
δ|S||T | ≤ κ1;

2. eM(S,T ) log eM(S,T )
δ|S||T | ≤ κ2(|S| ∨ |T |) log en

|S|∨|T | .

The following lemma shows that if a symmetric matrix A has the uniform upper
tail property with parameters c0 > 0, γ0 ≥ 0, the discrepancy property holds with
high probability for some κ1, κ2 depending on c0, γ0.

LEMMA 6.4 (UUTP ⇒ DP holds with high probability). Let M be an n ×
n symmetric random matrix with nonnegative entries. Assume that for some δ ∈
(0,1), EMuv ≤ δ for all u, v ∈ [n] and that M has UUTP(c0, γ0) for some c0 > 0
and γ0 ≥ 0. Then for any K > 0, DP(δ, κ1, κ2) holds for M with probability at
least 1 − n−K with

(54) κ1(γ0) = e2(1 + γ0)
2, κ2(c0, γ0,K) = 2

c0
(1 + γ0)(K + 4).



114 N. COOK, L. GOLDSTEIN AND T. JOHNSON

REMARK 6.5 (Smaller deviations for edge counts). The above lemma controls
large deviations of edge counts eM(S,T ) for random matrices with the uniform
tails property. One can also use the uniform tails property (or Theorem 5.3 in par-
ticular for the uniform random regular graph) to obtain tighter control of eM(S,T )

around its expectation, uniformly over all sufficiently large sets S,T . Control of
this type was used in [22] to show that adjacency matrices of random d-regular
digraphs with min(d, n − d) ≥ C log2 n are invertible with high probability.

PROOF. For S,T ⊂ [n], we write

μ(S,T ) := EeM(S,T ) ≤ δ|S||T |.
Fix K > 0. Put γ1 = e2(1 + γ0)

2 − 1, and for S,T ⊂ [n], let γ = γ (S,T ,n) =
max(γ ∗, γ1), where γ ∗ is the unique solution for x in [γ0,∞) to

(55) c0h(x − γ0)μ(S,T ) = (K + 4)
(|S| ∨ |T |) log

(
en

|S| ∨ |T |
)
.

We can recast eM(S,T ) in the notation of (4) as fQ(M) with Q = 1
2(1S1T

T +
1T 1T

S), where 1S ∈ {0,1}n denotes the vector with j th component equal to 1 if j ∈
S and 0, otherwise. Taking a = 1 in Definition 2.1 and applying our assumption
that M has UUTP(c0, γ0), then for any S,T ⊂ [n] and any γ > γ0,

P
[
eM(S,T ) ≥ (1 + γ )μ(S,T )

] ≤ exp
(−c0h(γ − γ0)μ(S,T )

)
.

By a union bound, for any s, t ∈ [n],

(56)

P
[∃S,T ⊂ [n] : |S| = s, |T | = t, eM(S,T ) ≥ (1 + γ )μ(S,T )

]
≤ ∑

S∈([n]
s )

∑
T ∈([n]

t )

exp
(−c0h(γ − γ0)μ(S,T )

)

≤
(
n

s

)(
n

t

)
exp

(
−(K + 4)(s ∨ t) log

(
en

s ∨ t

))

≤ exp
(
−(K + 2)(s ∨ t) log

en

s ∨ t

)
,

where in the last line we used the bound
(n
k

) ≤ (ne/k)k along with the fact that
x �→ x log(e/x) is increasing on [0,1]. Applying this fact again, we can bound (56)
by its value when s ∨ t = 1, which is (ne)−K−2 ≤ n−K−2. Now by a union bound
over the n2 choices of s, t ∈ [n], we have that with probability at least 1 − n−K ,

(57) ∀S,T ⊂ [n], eM(S,T ) ≤ (1 + γ )μ(S,T ).

If S,T are such that γ (S,T ,n) = γ1, then on the event that (57) holds,

(58) eM(S,T ) ≤ (1 + γ1)μ(S,T ) ≤ e2(1 + γ0)
2δ|S||T |,
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putting us in case (1) of the discrepancy property with κ1 = e2(1+γ0)
2. Otherwise,

on the event (57), we have

(59) eM(S,T ) ≤ (
1 + γ ∗)

μ(S,T ),

and consequently,

(60)

c0
h(γ ∗ − γ0)

1 + γ ∗ eM(S,T )

≤ c0h
(
γ ∗ − γ0

)
μ(S,T )

= (K + 4)
(|S| ∨ |T |) log

(
en

|S| ∨ |T |
)

by the definition of γ ∗. Note that when γ ∗ ≥ γ1 = e2(1 + γ0)
2 − 1,

(61) log
(
1 + γ ∗) ≥ 2 + 2 log(1 + γ0).

Hence, we can lower bound

h(γ ∗ − γ0)

1 + γ ∗

= 1 + γ ∗ − γ0

1 + γ ∗ log
(
1 + γ ∗ − γ0

) − γ ∗ − γ0

1 + γ ∗

= 1 + γ ∗ − γ0

1 + γ ∗
[
log

(
1 + γ ∗) − log

(
1 + γ ∗

1 + γ ∗ − γ0

)
− γ ∗ − γ0

1 + γ ∗ − γ0

]

≥ 1

1 + γ0

(
log

(
1 + γ ∗) − log(1 + γ0) − 1

)
≥ 1

2(1 + γ0)
log

(
1 + γ ∗)

≥ 1

2(1 + γ0)
log

eM(S,T )

μ(S,T )
,

where we used (61) in the fourth line and (59) in the fifth. Combined with (60), we
conclude that when γ ∗ ≥ γ1,

(62) eM(S,T ) log
eM(S,T )

μ(S,T )
≤ 2

c0
(1 + γ0)(K + 4)

(|S| ∨ |T |) log
en

|S| ∨ |T | .
Finally, note that the left-hand side can only decrease if we replace μ(S,T ) by
its upper bound δ|S||T |, putting us in case (2) of the discrepancy property, with
κ2 = 2(1 + γ0)(K + 4)/c0 as claimed. �

The following deterministic lemma shows that when the discrepancy property
holds, the heavy couples contribution fH(x)(A) to xTAx is of order O(

√
d), as

desired.
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LEMMA 6.6 (DP ⇒ heavy couples are small). Let M be a nonnegative sym-
metric n × n matrix with all row and column sums bounded by d . Suppose that M

has DP(δ, κ1, κ2) with δ = Cd/n, for some C > 0, κ1 > 1, κ2 ≥ 0. Then for any
x ∈ Sn−1,

(63) fH(x)(M) ≤ α0
√

d,

where

(64) α0 = α0(C, κ1, κ2) = 16 + 32C(1 + κ1) + 64κ2

(
1 + 2

κ1 logκ1

)
.

REMARK 6.7. The same argument can be applied to control the heavy couples
contribution to bilinear expressions xTMy for general nonsymmetric matrices M ,
as was done in [28] for the case that M is a sum of d i.i.d. permutation matrices.

PROOF OF LEMMA 6.6. Fix x ∈ Sn−1. For i ≥ 1, let

Si =
{
u ∈ [n] : |xu| ∈ 1√

n

[
2i−1,2i)}.

Note that Si is empty for i > log2
√

n + 1. For any (u, v) ∈ H(x) ∩ (Si × Sj ) we
have

√
d

n
≤ |xuxv| ≤ 2i+j

n
.(65)

Thus,

∣∣fH(x)(M)
∣∣ ≤ ∑

(i,j) : 2i+j≥d

2i+j

n
eM(Si, Sj ).(66)

For notational convenience, we would like to assume that |Si | ≥ |Sj | > 0. Thus,
we define

I := {
(i, j) : 2i+j ≥ √

d, |Si | ≥ |Sj | > 0
}
.

Since the summands in (66) are symmetric in i and j ,

∣∣fH(x)(M)
∣∣ ≤ 2

∑
(i,j)∈I

2i+j

n
eM(Si, Sj ),(67)

with inequality only because pairs (i, j) with |Si | = |Sj | are counted twice. For
(i, j) ∈ I , denote the discrepancy ratio of the pair (Si, Sj ) by

rij = eM(Si, Sj )

δ|Si ||Sj | .
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Define also the quantities

(68) αi := 22i

n
|Si |

and

(69) sij :=
√

d

2i+j
rij .

In terms of these, the bound (67) becomes

∣∣fH(x)(M)
∣∣ ≤ 2

∑
(i,j)∈I

2i+j

n
δ|Si ||Sj |rij

= 2C
√

d
∑

(i,j)∈I
αiαj

√
d

2i+j
rij(70)

= 2C
√

d
∑

(i,j)∈I
αiαj sij .

Note that for (i, j) ∈ I , sij ≤ rij . Note also that

(71)
∑
i≥1

αi = 4
∑
i≥1

|Si |2
2i−2

n
≤ 4

∑
i≥1

∑
u∈Si

x2
u ≤ 4.

From (70), our aim is to show

g(M) := ∑
(i,j)∈I

αiαj sij = O(1).

We now list our a priori bounds on sij and rij . By the assumption that all column
sums of M are bounded by d , we have the easy bound

eM(Si, Sj ) ≤ d|Sj |
giving

(72) rij ≤ d|Sj |
δ|Si ||Sj | = n

C|Si | = 22i

Cαi

.

Now by our assumption that DP(δ, κ1, κ2) holds, we have that for all i, j ≥ 1,
either

(73) rij ≤ κ1

or

(74) rij log rij ≤ κ2

δ

1

|Sj | log
en

|Si | ≤ κ2

δn

22j

αj

log
22(i+1)

αi

,
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where we have written 22(i+1) rather than 22i inside the logarithm to absorb the
factor e.

In addition to I , we define the following five sets of pairs (i, j):

I1 := {
(i, j) ∈ I : sij ≤ κ1

}
,

I2 :=
{
(i, j) ∈ I : 2i ≤ 2j

√
d

}
,

I3 :=
{
(i, j) ∈ I : rij >

(
22(i+1)

αi

)1/4} ∖
(I1 ∪ I2),

I4 :=
{
(i, j) ∈ I : 1

αi

≤ 22(i+1)

} ∖
(I1 ∪ I3),

I5 := I \ (I3 ∪ I4).

For 1 ≤ k ≤ 5, write

gk(M) = ∑
(i,j)∈Ik

αiαj sij .

Note that g(M) ≤ ∑5
k=1 gk(M). It remains to show that gk = Oκ1,κ2(1) for each

1 ≤ k ≤ 5, which we do in the following five claims.

CLAIM 1. g1(M) ≤ 16κ1.

PROOF. Using (71),

g1(M) ≤ κ1
∑

(i,j)∈I1

αiαj ≤ κ1
∑
i≥1

αi

∑
j≥1

αj ≤ 16κ1.
�

CLAIM 2. g2(M) ≤ 8/C.

PROOF. Here, we use the crude bound (72):

g2(M) = ∑
(i,j)∈I2

αiαj

√
d

2i+j
rij

≤ ∑
(i,j)∈I2

αiαj

√
d

2i+j

22i

Cαi

≤ C−1
∑
j≥1

αj 2−j
∑

i:(i,j)∈I2

2i
√

d.

As the inner sum is geometric with all terms bounded by 2j , it is bounded by 2j+1.
This gives

g2(M) ≤ 2

C

∑
j≥1

αj ≤ 8/C.
�
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CLAIM 3. g3(M) ≤ 32κ2/C.

PROOF. First, note that for any (i, j) ∈ I \ I1, by (65),

rij ≥
√

d

2i+j
rij = sij > κ1.

It follows that (74) holds, which gives

rij ≤ κ2

δn

22j

αj

log 22(i+1)

αi

log rij
,

and so multiplying through by αj

√
d/2i+j ,

αj sij ≤ κ2
2j

2i
√

Cδn

log 22(i+1)

αi

log rij
.(75)

Now the assumption rij > (22(i+1)/αi)
1/4 gives that the ratio of logarithms is

bounded by 4. Hence,

αj sij ≤ 4κ2
2j

2i
√

Cδn
= 4κ2

2j

2iC
√

d
.

Now

g3(M) ≤ 4κ2

C

∑
i≥1

αi2
−i

∑
j :(i,j)∈Ic

2

2j

√
d

≤ 4κ2

C

∑
i≥1

αi2
−i2i+1 ≤ 32κ2

C
,

where in the second inequality we used that the inner sum is geometric with every
term bounded by 2i (by the restriction to Ic

2). �

CLAIM 4. g4(M) ≤ 64κ2
Cκ1 logκ1

.

PROOF. As in the proof of Claim 3, inequality (75) also holds here since we
are summing over (i, j) /∈ I1. Now, by virtue of summing over I4, we have 1

αi
≤

22(i+1), and hence log 22(i+1)

αi
≤ log 24(i+1). Since κ1 < sij ≤ rij on I \I1, log rij >

logκ1, so (75) gives

αj sij ≤ κ2

logκ1

2j

√
Cδn

log 24(i+1)

2i
≤ κ2 log 16

logκ1

2j

C
√

d
,

where in the second bound we crudely bounded i + 1 ≤ 2i . For any (i, j) ∈ I4 \
(I3 ∪ I1),

κ1 < sij =
√

d

2i+j
rij ≤

√
d

2i+j

(
22(i+1)

αi

)1/4
≤

√
d

2i+j

(
24(i+1))1/4 =

√
d

2j−1 .
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Hence, 2j /
√

d < 2/κ1 for any such (i, j), so by summing over j first we conclude
by similar reasoning as in the previous proof that

g4(M) ≤ 4κ2 log 16

Cκ1 logκ1

∑
i≥1

αi ≤ 64κ2

Cκ1 logκ1
.

�

CLAIM 5. g5(M) ≤ 16.

PROOF. Now we will sum over i first. Using that (i, j) /∈ I3 for the first in-
equality, and that αi ≤ 4 and (i, j) /∈ I4 for the last, we obtain

αisij = αi

√
d

2i+j
rij ≤ αi

√
d

2i+j

(
22(i+1)

αi

)1/4
= α

1/2
i

√
d

2i+j

(
αi2

2(i+1))1/4 ≤ 2

√
d

2i+j
.

Summing first the geometric series in i (and noting that all terms in the inner sum
are bounded by 1 from the restriction to I), we have

g5(M) ≤ 2
∑
j≥1

αj

∑
i:(i,j)∈I

√
d

2i+j
≤ 4

∑
j≥1

αj ≤ 16.
�

All together Claims 1–5 give

g(M) = ∑
(i,j)∈I

αiαj sij ≤ 16κ1 + 8

C
+ 32κ2

C

(
1 + 2

κ1 logκ1

)
+ 16.

Together with (70), this gives the desired result. �

6.3. The ε-net and Proof of Proposition 2.4. Now, we will prove Proposi-
tion 2.4 by combining the bounds on the light and heavy couples and applying
a union bound over a discretization of Sn−1

0 . To achieve this goal, we need the fol-
lowing standard lemma. Recall that for a set E ⊂ R

n and ε > 0, a subset Nε ⊂ E is
an ε-net of E if every element of E is within Euclidean distance ε of some element
of Nε .

LEMMA 6.8 (ε-net). Let E ⊂ Sn−1 be a subset of the unit sphere, and let
ε > 0. There is an ε-net of E of cardinality at most (1 + 2/ε)n.

PROOF. Let Nε ⊂ E be a maximal (under set inclusion) ε-separated set in E.
Observe that Nε is an ε-net of E. Indeed, if there exists x ∈ E such that x is
distance at least ε from every element of Nε , then Nε ∪ {x} is still ε-separated,
contradicting maximality.

Now we bound the cardinality of Nε by a volumetric argument. Observe that
(Nε)ε/2—the ε/2 neighborhood of Nε—is a disjoint union of balls of radius ε/2.
Hence, its volume is |Nε|×vn(ε/2)n, where vn is the volume of the unit ball in R

n.
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On the other hand, (Nε)ε/2 is contained in B(0,1 + ε/2), the volume of which is
vn(1 + ε/2)n. The claim follows by monotonicity of Lebesgue measure under set
inclusion. �

PROOF OF PROPOSITION 2.4. Let K > 0, and denote δ = a1d/n, γ0 =
a3/

√
d . By our assumption of UTP(c0, γ0) and Lemma 6.4, there are constants

κ1, κ2 > 0 depending on c0, a3,K such that A has DP(δ, κ1, κ2) except on an event
of probability at most n−K . Hence, letting G denote the event that DP(δ, κ1, κ2)

holds, it suffices to show

(76) P
(
G ∩ {

λ(A) ≥ α
√

d
}) ≤ 4e−n

for α sufficiently large depending on K,c0, a1, a2, a3. Let ε > 0 to be fixed later,
and let N be an ε-net of Sn−1

0 of size at most (1 + 2/ε)n (which exists by
Lemma 6.8). By the variational formula (43), continuity of x �→ xTAx and the
compactness of Sn−1

0 , there exists x̃ ∈ Sn−1
0 such that λ(A) = x̃TAx̃. Let x ∈ N

such that ‖x − x̃‖ ≤ ε. We have

λ(A) ≤ ∣∣xTAx
∣∣ + 2

∣∣(x − x̃)TAx
∣∣ + ∣∣(x − x̃)TA(x − x̃)

∣∣
≤ ∣∣xTAx

∣∣ + (
2ε + ε2)

λ(A),

where in the second line we rescaled x − x̃ to lie in Sn−1
0 , and applied the varia-

tional formula (43). Taking ε = 1/4, upon rearranging we have

(77) λ(A) ≤ 3
∣∣xTAx

∣∣
(say). Note that with this choice of ε we have |N | ≤ 9n. We have shown that on
the event {λ(A) ≥ α

√
d} there exists x ∈N such that |xTAx| ≥ (α/3)

√
d . Hence,

P
[
G ∩ {

λ(A) ≥ α
√

d
}] ≤ ∑

x∈N
P

[
G ∩ {∣∣xTAx

∣∣ ≥ (α/3)
√

d
}]

≤ ∑
x∈N

P
[
G ∩ {∣∣fL(x)(A)

∣∣ ≥ (α/3)
√

d − ∣∣fH(x)(A)
∣∣}](78)

≤ ∑
x∈N

P
[∣∣fL(x)(A)

∣∣ ≥ (α/3 − α0)
√

d
]
,

where in the second line we applied the decomposition (48), and in the third line we
applied Lemma 6.6 (taking the constant C there to be a1) in view of our restriction
to G. Let β = α/3 − α0 − a1 − a2, and apply Lemma 6.2 and a union bound to
show

P
[
G ∩ {

λ(A) ≥ α
√

d
}] ≤ 4|N | exp

(
− c0β

2n

32(a1 + β
12)

)

≤ 4
(
9n)

exp
(
− c0β

2n

32(a1 + β
12)

)
.

Taking α large enough establishes (76), proving the proposition. �
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REMARK 6.9. We now determine just how large α must be in Proposition 2.4.
If we take β ≥ max(12a1,64/(3c0)), then

β2

a1 + β
12

≥ 6β ≥ 128/c0 ≥ 32(1 + log 9)/c0,

and we obtain (76). Together with the assumption β ≥ 4a1a3 required by
Lemma 6.2, this means we can take

(79) α = 3(α0 + a1 + a2) + max(36a1,12a1a3,64/c0).

Further unraveling the constants by looking back at Lemmas 6.4 and 6.6, we have

(80)

α0 = 16 + 32a1
(
1 + e2(1 + γ0)

2)
+ 128

c0
(1 + γ0)(K + 4)

(
1 + 1

e2(1 + γ0)2(1 + log(1 + γ0))

)
,

where γ0 = a3/
√

d .

REMARK 6.10. The restriction d = O(n2/3) in Theorem 1.1 arises as follows.
The idea of the uniform tails property is that it allows us to show that for a vector
x ∈ R

n with |x| = 1 and
∑

u xu = 0,

X − EX := ∑
u,v : 0≤xuxv≤

√
d

n

xuxv(Auv − EAuv) = O(
√

d)

with high probability. The random variable X has mean on the order of d (this is
because the sum is restricted to positive xuxv). Our construction of a size biased
coupling for the uniform model is bounded with probability 1 −O(d/n), and Sec-
tion 3 then gives concentration for X around its mean multiplied by a factor of
1 + O(d/n), which introduces a shift of size O(d2/n). This needs to be O(

√
d)

for the argument to work, leading to the condition d = O(n2/3).
It is interesting to note that this barrier also appears in a recent result of Bauer-

schmidt, Knowles and Yau on the local semicircular law for the uniform random
d-regular graph with d growing to infinity with n [9]. They also employ double
switchings, though in a different manner from the present work, and their analysis
requires taking d = o(n2/3) (see [9] for a more precise quantitative statement).
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