
The Annals of Probability
2017, Vol. 45, No. 6B, 4752–4785
https://doi.org/10.1214/17-AOP1177
© Institute of Mathematical Statistics, 2017

THE VACANT SET OF TWO-DIMENSIONAL CRITICAL RANDOM
INTERLACEMENT IS INFINITE1

BY FRANCIS COMETS AND SERGUEI POPOV

Université Paris Diderot and University of Campinas

For the model of two-dimensional random interlacements in the critical
regime (i.e., α = 1), we prove that the vacant set is a.s. infinite, thus solving
an open problem from [Commun. Math. Phys. 343 (2016) 129–164]. Also, we
prove that the entrance measure of simple random walk on annular domains
has certain regularity properties; this result is useful when dealing with soft
local times for excursion processes.

1. Introduction and results. The model of random interlacements, recently
introduced by Sznitman [14], has proved its usefulness for studying fine properties
of traces left by simple random walks on graphs. The “classical” random interlace-
ments is a Poissonian soup of (transient) simple random walks’ trajectories in Z

d ,
d ≥ 3; we refer to recent books [4, 10]. Then the model of two-dimensional ran-
dom interlacements was introduced in [7]. Observe that, in two dimensions, even
a single trajectory of a simple random walk is space-filling. Therefore, to define
the process in a meaningful way, one uses the SRW’s trajectories conditioned on
never hitting the origin; see the details below. We observe also that the use of con-
ditioned trajectories to build the interlacements goes back to Sznitman [15]; see the
definition of “tilted random interlacements” there. Then it is known (Theorem 2.6
of [7]) that, for a random walk on a large torus conditioned on not hitting the ori-
gin up to some time proportional to the mean cover time, the law of the vacant set
around the origin is close to that of random interlacements at the corresponding
level. This means that, similar to the higher-dimensional case, two-dimensional
random interlacements have strong connections to random walks on discrete tori.

Now, let us recall the formal construction of (discrete) two-dimensional random
interlacements.

In the following, ‖ · ‖ denotes the Euclidean norm in R
2 or Z2, and B(x, r) =

{y : ‖x − y‖ ≤ r} is the (closed) ball of radius r centered in x. We write f (n) =
O(g(n)) as n → ∞ when, for some constant M > 0, |f (n)| ≤ M|g(n)| for all
large enough n; f (n) = o(g(n)) means that limn→∞ f (n)

g(n)
= 0. Also, we write

f (n) ∼ g(n) when limn→∞ f (n)
g(n)

= 1. In fact, the same symbol is also used for
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neighboring sites: for x, y ∈ Z
d we write x ∼ y if ‖x − y‖ = 1, that is, x and y

are neighbors. Hopefully, this creates no confusion since the meaning of “∼” will
always be clear from the context.

Let (Sn, n ≥ 0) be two-dimensional simple random walk. Write Px for the law
of the walk started from x and Ex for the corresponding expectation. Let

τ0(A) = inf{k ≥ 0 : Sk ∈ A},(1)

τ1(A) = inf{k ≥ 1 : Sk ∈ A}(2)

be the entrance and the hitting time of the set A by simple random walk S (we use
the convention inf∅= +∞). Define the potential kernel a by

(3) a(x) =
∞∑

k=0

(
P0[Sk = 0] − Px[Sk = 0]).

It can be shown that the above series indeed converges and we have a(0) = 0,
a(x) > 0 for x 	= 0, and

(4) a(x) = 2

π
ln‖x‖ + 2γ + ln 8

π
+ O

(‖x‖−2)
as x → ∞, where γ = 0.5772156 . . . is the Euler–Mascheroni constant; cf. Theo-
rem 4.4.4 of [11]. Also, the function a is harmonic outside the origin, that is,

(5)
1

4

∑
y:y∼x

a(y) = a(x) for all x 	= 0.

Observe that (5) implies that a(Sk∧τ0(0)) is a martingale.
The harmonic measure of a finite A ⊂ Z

2 is the entrance law “starting at infin-
ity,”2

(6) hmA(x) = lim‖y‖→∞Py[Sτ1(A) = x]
(see, e.g., Proposition 6.6.1 of [11] for the proof of the existence of the above
limit). For a finite set A containing the origin, we define its capacity by

(7) cap(A) = ∑
x∈A

a(x)hmA(x);

in particular, cap({0}) = 0 since a(0) = 0. For a set not containing the origin, its
capacity is defined as the capacity of a translate of this set that does contain the
origin. Indeed, it can be shown that the capacity does not depend on the choice of
the translation. Some alternative definitions are available; cf. Section 6.6 of [11].

Next, we define another random walk (Ŝn, n ≥ 0) on Z
2 \ {0} in the following

way: the transition probability from x 	= 0 to y equals a(y)
4a(x)

for all x ∼ y. Note

2Observe that the harmonic measure can be defined in almost the same way in higher dimensions,
one only has to condition that A is eventually hit; cf. Proposition 6.5.4 of [11].
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that (5) implies that the random walk Ŝ is indeed well defined, and, clearly, it is an
irreducible Markov chain on Z

2 \ {0}. It can be easily checked that it is reversible
with the reversible measure a2(·), and transient (for a quick proof of transience,
just verify that 1/a(Ŝ) is a martingale outside the origin and its four neighbors,
and use, e.g., Theorem 2.5.8 of [12]).

For a finite A ⊂ Z
2, define the equilibrium measure with respect to the walk Ŝ:

êA(x) = 1{x ∈ A}Px[Ŝk /∈ A for all k ≥ 1]a2(x),

and the harmonic measure (again, with respect to the walk Ŝ):

ĥmA(x) = êA(x)

(∑
y∈A

êA(y)

)−1
.

Also, note that (13) and (15) of [7] imply that êA(x) = a(x)hmA(x) in the case
0 ∈ A, that is, the harmonic measure for Ŝ is the usual harmonic measure biased
by a(·). Now, we use the general construction of random interlacements on a tran-
sient weighted graph introduced in [16]. In the following few lines, we briefly
summarize this construction. Let W be the space of all doubly infinite nearest-
neighbor transient trajectories in Z

2,

W = {� = (�k)k∈Z : �k ∼ �k+1 for all k;
the set {m : �m = y} is finite for all y ∈ Z

2}.
We say that � and �′ are equivalent if they coincide after a time shift, that is,
� ∼ �′ when there exists k such that �m+k = �′

m for all m. Then let W∗ = W/ ∼
be the space of trajectories modulo time shift, and define χ∗ to be the canonical
projection from W to W∗. For a finite A ⊂ Z

2, let WA be the set of trajectories
in W that intersect A, and we write W∗

A for the image of WA under χ∗. One then
constructs the random interlacements as Poisson point process on W∗ ×R

+ with
the intensity measure ν ⊗ du, where ν is described in the following way. It is the
unique sigma-finite measure on the cylindrical sigma-field of W∗ such that, for
every finite A,

1W∗
A

· ν = χ∗ ◦ QA,

where the finite measure QA on WA is determined by the following equality:

QA

[
(�k)k≥1 ∈ F,�0 = x, (�−k)k≥1 ∈ G

]
= êA(x)Px[Ŝ ∈ F ]Px

[
Ŝ ∈ G | τ̂1(A) = ∞].

The existence and uniqueness of ν was shown in Theorem 2.1 of [16].

DEFINITION 1.1. For a configuration
∑

λ δ(w∗
λ,uλ) of the above Poisson pro-

cess, the process of two-dimensional random interlacements at level α [which will
be referred to as RI(α)] is defined as the set of trajectories with label less than or
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equal to πα, that is, ∑
λ:uλ≤πα

δw∗
λ
.

As mentioned in [7], in the above definition it is convenient to pick the points
with the u-coordinate at most πα (instead of just α, as in the “classical” random
interlacements model), since the formulas become generally cleaner.

It can be shown (see Section 2.1 of [7], in particular, Proposition 2.2 there) that
the law of the vacant set Vα (i.e., the set of all sites not touched by the trajectories)
of the two-dimensional random interlacements can be uniquely characterized by
the following equality:

(8) P
[
A ⊂ Vα]= exp

(−πα cap(A)
)
, for all A ⊂ Z

2 such that 0 ∈ A.

It is important to have in mind the following “constructive” description of the
trace of RI(α) on a finite set A ⊂ Z

2 such that 0 ∈ A. Namely:

• take a Poisson(πα cap(A)) number of particles;
• place these particles on the boundary of A independently, with distribution ĥmA;
• let the particles perform independent Ŝ-random walks (since Ŝ is transient, each

walk only leaves a finite trace on A).

In particular, note that (8) is a direct consequence of this description.
Some other basic properties of two-dimensional random interlacements are con-

tained in Theorems 2.3 and 2.5 of [7]. In particular, the following facts are known:

1. The conditional translation invariance: for all α > 0, x ∈ Z
2 \ {0}, A ⊂ Z

2,
and any lattice isometry N exchanging 0 and x, we have

(9) P
[
A ⊂ Vα | x ∈ Vα]= P

[
N(A) ⊂ Vα | x ∈ Vα].

2. The probability that a given site is vacant is

(10) P
[
x ∈ Vα]= exp

(
−πα

a(x)

2

)
= ĉ‖x‖−α(1 + O

(‖x‖−2))
[also, note that (4) yields an explicit expression for the constant ĉ in (10)].

3. Clearly, (10) implies that, as r → ∞,

(11) E
(∣∣Vα ∩ B(r)

∣∣)∼
⎧⎪⎪⎨⎪⎪⎩

const × r2−α for α < 2,

const × ln r for α = 2,

const for α > 2.

4. For A such that 0 ∈ A it holds that

(12) lim
x→∞P

[
A ⊂ Vα | x ∈ Vα]= exp

(
−πα

4
cap(A)

)
.

Informally speaking, if we condition that a very distant site is vacant, this decreases
the level of the interlacements around the origin by factor 4. A brief heuristic
explanation of this fact is given after (35)–(36) of [7].
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5. The relation (11) means that there is a phase transition for the expected size
of the vacant set at α = 2. However, the phase transition for the size itself occurs
at α = 1. Namely, for α > 1 it holds that Vα is finite a.s., and for α ∈ (0,1) we
have |Vα| = ∞ a.s.

The main contribution of this paper is the following result: the vacant set is a.s.
infinite in the critical case α = 1.

THEOREM 1.2. It holds that |V1| = ∞ a.s.

The above result may seem somewhat surprising, for the following reason. As
shown in [7], the case α = 1 corresponds to the leading term in the expression for
the cover time of the two-dimensional torus. It is known (cf. [3, 9]), however, that
the cover time has a negative second-order correction, which could be an evidence
in favor of finiteness of V1 (informally, the “real” all-covering regime should be
“just below” α = 1). On the other hand, it turns out that local fluctuations of ex-
cursion counts overcome that negative correction, thus leading to the above result.

For A ⊂ Z
d , denote by ∂A = {x ∈ A : there exists y /∈ A such that x ∼ y} its

internal boundary. Next, for simple random walk and a finite set A ⊂ Z
d , let HA

be the corresponding Poisson kernel: for x ∈ A, y ∈ ∂A,

(13) HA(x, y) = Px[Sτ0(∂A) = y]
[i.e., HA(x, ·) is the exit measure from A starting at x]. We need the following re-
sult, which states that, if normalized by the harmonic measure, the entrance mea-
sure to a large discrete ball is “sufficiently regular.” This fact will be an important
tool for estimating large deviation probabilities for soft local times without using
union bounds with respect to sites of ∂A (surely, the reader understands that some-
times union bounds are just too rough). Also, we formulate it in all dimensions
d ≥ 2 for future reference.3

PROPOSITION 1.3. Let c > 1 and ε ∈ (0,1) be constants such that c(1 − ε) >

1 + 2ε, and abbreviate An = (B(cn) \ B(n)) ∪ ∂B(n). Then there exist posi-
tive constants β,C (depending on c, ε, and the dimension) such that for any
x ∈ B(c(1 − ε)n) \ B((1 + 2ε)n) and any y, z ∈ ∂B(n) it holds that

(14)
∣∣∣∣HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)

∣∣∣∣≤ C

(‖y − z‖
n

)β

for all large enough n.

3This fact is also needed at least in the paper [8].
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We conjecture that the above should be true with β = 1, since one can directly
check that it is indeed the case for the Brownian motion (observe that the harmonic
measure on the sphere is uniform in the continuous case and see in Chapter 10
of [2] the formulas for the Poisson kernel of the Brownian motion); however, it is
unclear to us how to prove that. In any case, (14) is enough for our needs.

Next, we collect several technical facts we need in Section 2, and then prove our
main results in Section 3. Also, at the end of the paper we include a brief summary
of notation, for reader’s convenience.

2. The toolbox. We collect here some facts needed for the proof of our main
results. These facts are either directly available in the literature, or can be rapidly
deduced from known results. Unless otherwise stated, we work in Z

d , d ≥ 2.
We need first to recall some basic definitions related to simple random walks

in higher dimensions. For d ≥ 3, let G(x,y) = Ex

∑∞
k=0 1{Sk = y} denote the

Green’s function (i.e., the mean number of visits to y starting from x), and ab-
breviate G(y) := G(0, y). For a finite set A ⊂ Z

d and x, y ∈ A \ ∂A define

GA(x, y) = Ex

τ1(∂A)−1∑
k=0

1{Sk = y}

to be the mean number of visits to y starting from x before hitting ∂A (since A

is finite, this definition makes sense for all dimensions). For x ∈ A, denote the
escape probability from A by EsA(x) = Px[τ1(A) = ∞]. The capacity of a finite
set A ⊂ Z

d is defined by

cap(A) = ∑
x∈A

EsA(x).

As for the capacity of a d-dimensional ball, observe that Proposition 6.5.2 of [11]
implies (recall that d ≥ 3)

(15) cap
(
B(n)

)= (d − 2)πd/2

�(d/2)d
nd−2 + O

(
nd−3).

We also define the harmonic measure on A by hmA(·) = EsA(·)
cap(A)

.
Next, in Section 2.1 we first collect some results for simple random walks on

annuli, namely: inside/outside exit probabilities (Lemmas 2.1 and 2.2), estimates
on Green’s functions restricted to an annulus (Lemma 2.3) and on exit measures
(Lemma 2.4); also, we study escape probabilities from the inner boundary of an
annulus to the outer one in Lemma 2.5. Then we collect some facts related to
the conditioned walk Ŝ: an expression for probability of not hitting a large ball,
distant from the origin (Lemma 2.6), a formula for the (transient) capacity of such
a ball (Lemma 2.7), and a result that states that the walks S and Ŝ are almost
indistinguishable on “distant” sets (Lemma 2.8). In Section 2.2, we first review the
method of soft local times that permits us to construct sequences of excursions of
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simple random walks and random interlacements, and then prove a result on large
deviation for soft local times (Lemma 2.9), using some machinery from the theory
of empirical processes. Next, in Lemma 2.10 we state another fact related to soft
local times, and, finally, we recall a result (Lemma 2.11) that permits us to control
the number of excursions of simple random walk on torus.

2.1. Basic estimates for the random walk on the annulus. Here, we formulate
several basic facts about simple random walks on annuli.

LEMMA 2.1. (i) For all x ∈ Z
2 and R > r > 0 such that x ∈ B(R) \ B(r), we

have

(16) Px

[
τ1
(
∂B(R)

)
< τ1

(
B(r)

)]= ln‖x‖ − ln r + O(r−1)

lnR − ln r
,

as r,R → ∞.
(ii) For all x ∈ Z

d , d ≥ 3, and R > r > 0 such that x ∈ B(R) \ B(r), we have

(17) Px

[
τ1
(
∂B(R)

)
< τ1

(
B(r)

)]= r−(d−2) − ‖x‖−(d−2) + O(r−(d−1))

r−(d−2) − R−(d−2)
,

as r,R → ∞.

PROOF. Essentially, this comes out of an application of the optional stop-
ping theorem to the martingales a(Sn∧τ0(0)) (in two dimensions) or G(Sn∧τ0(0))

(in higher dimensions). See Lemma 3.1 of [7] for the part (i). As for the part (2),
apply the same kind of argument and use the expression for the Green’s function,
for example, from Theorem 4.3.1 of [11]. �

LEMMA 2.2. Let d ≥ 2 and let c > 1 be fixed. Then for all large enough n we
have for all v ∈ (B(cn) \ B(n)) ∪ ∂B(n)

(18) c1
‖v‖ − n + 1

n
≤ Pv

[
τ1
(
∂B(cn)

)
< τ1

(
B(n)

)]≤ c2
‖v‖ − n + 1

n

with c1,2 depending on c.

PROOF. This follows from Lemma 2.1 together with the observation that (16)–
(17) start working when ‖x‖ − n become larger than a constant [and, if x is
too close to B(n), we just pay a constant price to force the walk out]. See also
Lemma 8.5 of [13] (for d ≥ 3) and Lemma 6.3.4 together with Proposition 6.4.1
of [11] (for d = 2). �

LEMMA 2.3. Let d ≥ 2. Fix c > 1 and δ > 0 such that 1 + δ < c − δ, and ab-
breviate An = (B(cn) \ B(n)) ∪ ∂B(n). Then there exist positive constants c3, c4
(depending only on c, δ and the dimension) such that for all u1,2 ∈ Z

d with
(1 + δ)n < ‖u1,2‖ < (c − δ)n and ‖u1 − u2‖ ≥ δn it holds that c3n

−(d−2) ≤
GAn(u1, u2) ≤ c4n

−(d−2).
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PROOF. Indeed, we first notice that Proposition 4.6.2 of [11] (together with
the estimates on the Green’s function and the potential kernel, Theorems 4.3.1
of [11] and (4)) imply that GAn(v,u2) � n−(d−2) for all d ≥ 2, where δ′n − 1 <

‖v −u2‖ ≤ δ′n, and δ′ ≤ δ is a small enough constant. Then, use the fact that from
any u1 as above, the simple random walk comes from u1 to B(u2, δ

′n) without
touching ∂An with uniformly positive probability. �

LEMMA 2.4. Let d ≥ 2. Let c, δ,An be as in Lemma 2.3, and assume that
(1 + δ)n ≤ ‖x‖ ≤ (c − δ)n, u ∈ ∂B(n). Then, for some positive constants c5, c6
(depending only on c, δ, and the dimension) we have

(19)
c5

nd−1 ≤ HAn(x,u) ≤ c6

nd−1 .

Observe that, since Px[τ1(B(n)) < τ1(∂B(cn))] is bounded away from 0 and 1,
the above result also holds for the harmonic measure hmB(n)(·) (notice that the
harmonic measure is a linear combination of conditional entrance measures).

PROOF. This can be proved essentially in the same way as in Lemma 6.3.7
of [11]. Namely, denote B = ∂B(n) ∪ ∂B((1 + δ)n) and use Lemma 6.3.6 of [11]
together with Lemmas 2.2 and 2.3 to write [with c2 = c2(δ), as in Lemma 2.2]

HAn(x,u) = ∑
z∈∂B((1+δ)n)

GAn(z, x)Pu[Sτ1(B) = z]

≤ c4n
−(d−2)

∑
z∈∂B((1+δ)n)

Pu[Sτ1(B) = z]

≤ c4n
−(d−2) × c2

n
,

obtaining the upper bound in (19). The lower bound is obtained in the same way
(using the lower bound on GAn from Lemma 2.3). �

LEMMA 2.5. Let k > 1 and x ∈ ∂B(n). Then, as n → ∞,
(20)

Px

[
τ1
(
∂B(k + n)

)
< τ1

(
B(n)

)]=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

hmB(n)(x)
2
π

ln(1 + k
n
) + O(n−1)

for d = 2,

cap(B(n))hmB(n)(x)

1 − (1 + k
n
)−(d−2) + O(n−1)

for d ≥ 3.

We stress that the O’s in the above expressions depend only on n, not on k.

PROOF. Consider first the case d ≥ 3. It is enough to prove it for the case k ≤
n2/2, since for k > n2/2 the second term in the denominator is already O(n−1).
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Now, Proposition 6.4.2 of [11] implies that, for any x ∈ ∂B(n) and m > n

EsB(n)(x) = cap
(
B(n)

)
hmB(n)(x) = Px

[
τ1
(
∂B(m)

)
< τ1

(
B(n)

)](
1−O

(
nd−2

md−2

))
,

so

(21) Px

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]= cap
(
B(n)

)
hmB(n)(x)

(
1 + O

(
n−(d−2))).

On the other hand, with ν being the entrance measure to ∂B(n + k) starting
from x and conditioned on the event {τ1(∂B(n + k)) < τ1(B(n))}, we write, us-
ing Lemma 2.1(ii),

Px

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]
= Px

[
τ1
(
∂B(n + k)

)
< τ1

(
B(n)

)]
Pν

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]
= Px

[
τ1
(
∂B(n + k)

)
< τ1

(
B(n)

)](
1 −
(

1 + k

n

)−(d−2)

+ O
(
n−1)),

and this, together with (21), implies (20) in higher dimensions.
Now, we deal with the case d = 2. Assume first that k ≤ n2/2. Let y be such that

n3 < ‖y‖ ≤ n3 + 1; also, denote A′ = (B(n5) \ B(n))∪ ∂B(n). For any z ∈ ∂B(n2),
we can write using Proposition 4.6.2(b) together Lemma 2.1(i) [starting from z,
the walk reaches B(n) before B(n5) with probability 3

4(1 + O(n−1))]

GA′(z, y) = (1 + O
(
n−1))(3

4
× 2

π
lnn3 + 1

4
× 2

π
lnn5 − 2

π
lnn3

)
(22)

= 1

π

(
1 + O

(
n−1)) lnn.

Next, Lemma 6.3.6 of [11] implies that

HA′(y, x) = ∑
z∈∂B(n2)

GA′(z, y)Px

[
Sτ1(∂B(n2)) = z, τ1

(
∂B
(
n2))< τ1

(
B(n)

)]
(23)

= Px

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)] ∑
z∈∂B(n2)

GA′(z, y)μ(z),

where μ is the entrance measure to ∂B(n2) starting from x, conditioned on the
event {τ1(∂B(n2)) < τ1(B(n))}.

Then, by (31) of [7] [observe that Lemma 2.1(i) implies that, starting from y,
the walk reaches B(n) before B(n5) with probability 1

2(1 + O(n−1))] we have

(24) HA′(y, x) = 1

2
hmB(n)

(
1 + O

(
n−1)).

So, from (22), (23) and (24) we obtain that

(25) Px

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]= hmB(n)(x)
2
π

lnn

(
1 + O

(
n−1)).
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Let ν be the entrance measure to ∂B(n + k) starting from x, conditioned on the
event {τ1(∂B(n + k)) < τ1(B(n))}. Using (25), we write

Px

[
τ1
(
∂B(n + k)

)
< τ1

(
B(n)

)]
Pν

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]
= Px

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]
= hmB(n)(x)

2
π

lnn

(
1 + O

(
n−1)).

Since, by Lemma 2.1(i) we have

Pν

[
τ1
(
∂B
(
n2))< τ1

(
B(n)

)]= ln(1 + k
n
) + O(n−1)

lnn
,

this proves (20) in the case d = 2 and k ≤ n2/2.
The case k > n2/2 is easier: just repeat (22)–(25) with k on the place of n2

(so that n3 becomes k3/2 and n5 becomes k5/2). This concludes the proof of
Lemma 2.5. �

Let us now come back to the specific case of d = 2. We need some facts regard-
ing the conditional walk Ŝ.

LEMMA 2.6. Let d = 2 and assume that x /∈ B(y, r) and ‖y‖ > 2r ≥ 1. We
have

Px

[
τ̂1
(
B(y, r)

)
< ∞]

(26)

= (a(y) + O(‖y‖−1r))(a(y) + a(x) − a(x − y) + O(r−1))

a(x)(2a(y) − a(r) + O(r−1 + ‖y‖−1r))
.

PROOF. This is Lemma 3.7(i) of [7]. �

LEMMA 2.7. Let d = 2 and assume that ‖y‖ > 2r ≥ 1. We have

(27) cap
({0} ∪ B(y, r)

)= (a(y) + O(‖y‖−1r))(a(y) + O(r−1))

2a(y) − a(r) + O(r−1 + ‖y‖−1r)
.

PROOF. This is Lemma 3.9(i) of [7]. �

Then we show that the walks S and Ŝ are almost indistinguishable on a “distant”
(from the origin) set. For A ⊂ Z

2, let �
(x)
A be the set of all finite nearest-neighbor

trajectories that start at x ∈ A \ {0} and end when entering ∂A for the first time.
For V ⊂ �

(x)
A , write S ∈ V if there exists k such that (S0, . . . , Sk) ∈ V (and the

same for the conditional walk Ŝ).
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LEMMA 2.8. Assume that V ⊂ �
(x)
A and suppose that 0 /∈ A, and denote s =

dist(0,A), r = diam(A). Then, for x ∈ A,

(28) Px[S ∈ V ] = Px[Ŝ ∈ V ]
(

1 + O

(
r

s ln s

))
.

PROOF. This is Lemma 3.3(ii) of [7]. �

2.2. Excursions and soft local times. Let X = (Xk, k ≥ 0) be a simple random
walk on the two-dimensional torus Z2

n = Z
2/nZ2. In this section we will develop

some tools for dealing with excursions of two-dimensional random interlacements
and random walks on tori; in particular, one of our goals is to construct a coupling
between the set of RI’s excursions and the set of excursions of the walk X on the
torus.

First, if A ⊂ A′ are (finite) subsets of Z2 or Z2
n, then the excursions between ∂A

and ∂A′ are pieces of nearest-neighbor trajectories that begin on ∂A and end
on ∂A′, see Figure 1, which is, hopefully, self explanatory. We refer to Section 3.4
of [7] for formal definitions. Here and in the sequel we denote by (Z(i), i ≥ 1) the
(complete) excursions of the walk X between ∂A and ∂A′, and by (Ẑ(i), i ≥ 1) the
RI’s excursions between ∂A and ∂A′ (dependence on n,A,A′ is not indicated in
these notation when there is no risk of confusion).

Now, assume that we want to construct the excursions of RI(α), say, be-
tween ∂B(y0, n) and ∂B(y0, cn) for some c > 1 and y0 ∈ Z

2. Also (let us iden-
tify the torus Z

2
n1

with the square of size n1 centered in the origin of Z
2) we

FIG. 1. Excursions (pictured as bold pieces of trajectories) for simple random walk on the torus
(on the left), and random interlacements (on the right). Note the walk “jumping” from right side of
the square to the left one, and from the bottom one to the top one (the torus is pictured as a square).
For random interlacements, two trajectories, �1,2, intersect the set A; the first trajectory produces
two excursions, and the second only one.
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want to construct the excursions of the simple random walk on the torus Z
2
n1

be-
tween ∂B(y0, n) and ∂B(y0, cn), where n1 > n + 1. It turns out that one may build
both sets of excursions simultaneously on the same probability space, in such a
way that, typically, most of the excursions are present in both sets (obviously, af-
ter a translation by y0). This is done using the soft local times method; we refer to
Section 4 of [13] for the general theory (see also Figure 1 of [13] which gives some
quick insight on what is going on), and also to Section 2 of [6]. Here, we describe
the soft local times approach in a less formal way. Assume, for definiteness, that
we want to construct the simple random walk’s excursions on Z

2
n1

, between ∂A

and ∂A′, and suppose that the starting point x0 of the walk X does not belong
to A.

We first describe our approach for the case of the torus. For x /∈ A and y ∈ ∂A

let us denote

ϕ(x, y) = Px[Xτ1(A) = y].
For an excursion Z, let ι(Z) be the first point of this excursion, and �(Z) be the last
one; by definition, ι(Z) ∈ ∂A and �(Z) ∈ ∂A′. Clearly, for the random walk on the
torus, the sequence ((ι(Z(j)), �(Z(j))), j ≥ 1) is a Markov chain with transition
probabilities

P(y,z),(y′,z′) = ϕ
(
z, y′)

Py′
[
Xτ1(∂A′) = z′].

Now, consider a marked Poisson point process on ∂A × R+ with rate 1. The
(independent) marks are the simple random walk trajectories started from the first
coordinate of the Poisson points (i.e., started at the corresponding site of ∂A) and
run until hitting ∂A′. Then (see Figure 2; observe that A and A′ need not be nec-
essarily connected, as shown on the picture):

• let ξ1 be the a.s. unique positive number such that there is only one point of the
Poisson process on the graph of ξ1ϕ(x0, ·) and nothing below;

• the mark of the chosen point is the first excursion (call it Z(1)) that we obtain;
• then let ξ2 be the a.s. unique positive number such that the graph of ξ1ϕ(x0, ·)+

ξ2ϕ(�(Z(1)), ·) contains only one point of the Poisson process, and there is noth-
ing between this graph and the previous one;

• the mark Z(2) of this point is our second excursion;
• and so on.

It is possible to show that the sequence of excursions obtained in this way indeed
has the same law as the simple random walk’s excursions [in particular, conditional
on �(Z(k−1)), the starting point of kth excursion is indeed distributed according to
ϕ(�(Z(k−1)), ·)]; moreover, the ξ ’s are i.i.d. random variables with Exponential(1)

distribution.
So, let us denote by ξ1, ξ2, ξ3, . . . a sequence of i.i.d. random variables with Ex-

ponential distribution with parameter 1. According to the above informal descrip-
tion, the soft local time of kth excursion is a random vector indexed by y ∈ ∂A,
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FIG. 2. Construction of the first three excursions between ∂A and ∂A′ on the torus Z
2
n using the

soft local times (here, A = A1 ∪ A2 and A′ = A′
1 ∪ A′

2).
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defined as follows:

(29) Lk(y) = ξ1ϕ(x0, y) +
k∑

j=2

ξjϕ
(
�
(
Z(j−1)), y).

For the random interlacements, the soft local times are defined analogously.
Recall that ĥmA defines the (normalized) harmonic measure on A with respect to
the Ŝ-walk. For x /∈ A and y ∈ ∂A, let

(30) ϕ̂(x, y) = Px

[
Ŝτ̂1(A) = y, τ̂1(A) < ∞]+ Px

[
τ̂1(A) = ∞] ĥmA(y).

Analogously, for the random interlacements, the sequence ((ι(Ẑ(j)), �(Ẑ(j))), j ≥
1) is also a Markov chain, with transition probabilities

P̂(y,z),(y′,z′) = ϕ̂
(
z, y′)

Py′
[
Ŝτ̂1(∂A′) = z′].

The process of picking the excursions for the random interlacements is quite anal-
ogous: if the last excursion was Ẑ, we use the probability distribution ϕ̂(�(Ẑ), ·)
to choose the starting point of the next excursion. Clearly, the last term in (30)
is needed for ϕ̂ to have total mass 1; informally, if the Ŝ-walk from x does not
ever hit A, we just take the “next” trajectory of the random interlacements that
does hit A, and extract the excursion from it (see also (4.10) of [5]). Again, let
ξ̂1, ξ̂2, ξ̂3, . . . be a sequence of i.i.d. random variables with Exponential distribu-
tion with parameter 1. Then define the soft local time of random interlacement of
kth excursion as

(31) L̂k(y) = ξ̂1ϕ̂(x0, y) +
k∑

j=2

ξ̂j ϕ̂
(
�
(
Ẑ(j−1)), y).

Define the following two measures on ∂A, one for the random walk on the torus,
and the other for random interlacements:

hmA′
A (y) = Py

[
τ1
(
∂A′)< τ1(A)

](∑
z∈∂A

Pz

[
τ1
(
∂A′)< τ1(A)

])−1
,(32)

ĥm
A′
A (y) = Py

[
τ̂1
(
∂A′)< τ̂1(A)

](∑
z∈∂A

Pz

[
τ̂1
(
∂A′)< τ̂1(A)

])−1
.(33)

Informally, these are “harmonic measures with respect to A′”; the “real” harmonic
measures would be recovered as A′ expands toward the whole space Z

2. Similar
to Lemma 6.1 of [5], one can obtain the following important facts: the measure

(34) ψ(y, z) = hmA′
A (y)Py[Xτ1(∂A′) = z]

is invariant for the Markov chain (ι(Z(j)), �(Z(j))), and the measure

(35) ψ̂(y, z) = ĥm
A′
A (y)Py[Ŝτ̂1(∂A′) = z]
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is invariant for the Markov chain (ι(Ẑ(j)), �(Ẑ(j))). Notice also that hmA′
A

and ĥm
A′
A are the marginals of the stationary measures for the entrance points

(i.e., the first coordinate of the Markov chains). In particular, this implies that,
almost surely,

lim
k→∞

Lk(y)

k
= hmA′

A (y) and lim
k→∞

L̂k(y)

k
= ĥm

A′
A (y),

for any y ∈ ∂A.
The next result is needed to have a control on the large and moderate deviation

probabilities for soft local times.

LEMMA 2.9. Let γ2 > γ1 > 1 be some fixed constants, assume that n >

3(γ1 − 1)−1, and abbreviate n1 = γ2n. For the random walk on the torus Z
2
n1

,
abbreviate A = B(n) and A′ = B(γ1n). For the random interlacements, abbrevi-
ate B = B(y0, n) and B ′ = B(y0, γ1n), where y0 ∈ Z

2 is such that ‖y0‖ ≥ 2γ1n.
Then there exist positive constants c, c1, c2 such that for all k ≥ 2 and all θ ∈
(0, (lnk)−1) we have

P

[
sup
y∈∂A

∣∣Lk(y) − k hmA′
A (y)

∣∣≥ c
√

k + θk

n1

]
≤ c1e

−c2θ
2k,(36)

P

[
sup
y∈∂B

∣∣L̂k(y) − k ĥm
B ′
B (y)

∣∣≥ c
√

k + θk

n

]
≤ c1e

−c2θ
2k.(37)

PROOF. We prove only (36); the proof of (37) is completely analogous. Due
to Lemma 2.4, it is enough to show that for some (sufficiently large) c′, c′

1 and
(sufficiently small) c′

2 > 0

(38) P

[
sup
y∈∂A

∣∣∣∣ Lk(y)

hmA(y)
− k

hmA′
A (y)

hmA(y)

∣∣∣∣≥ c′√k + θk

]
≤ c′

1e
−c′

2θ
2k.

We prove the above inequality in the following way:

1. Using renewals, we split the sequence of excursions into independent blocks.
2. We show that controlling that sequence of i.i.d. blocks of excursions is

enough to be able to control the original sequence.
3. Then we obtain an upper bound on the expectation of the sum of indepen-

dent blocks. For this, we estimate the bracketing entropy integral and then use an
inequality due to Pollard.

4. Finally, we control the deviation (from the expectation) probabilities, using
a suitable concentration inequality.

Step 1. Again, Lemma 2.4 implies that there exists λ > 0 such that for all x ∈
∂A′ and y ∈ ∂A we have ϕ(x, y) ≥ 2λhm

A′
1

A1
(y). Consider a sequence of random
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variables η1, η2, η3, . . . , independent of everything, and such that P[ηj = 1] =
1 − P[ηj = 0] = λ for all j . For j ≥ 1, define ρj = m iff η1 + · · · + ηm = j

and ηm = 1 (i.e., ρj is the position of j th “1” in the η-sequence). The idea is that
we force the Markov chain to have renewals at times when η· = 1, and then try to
approximate the soft local time by a sum of independent random variables. More
precisely, assume that �(Z(j−1)) = x. Then we choose the starting point ι(Z(j)) of
the j th excursion in the following way:

ι
(
Z(j))∼

⎧⎪⎨⎪⎩
1

1 − λ

(
ϕ(x, ·) − λhm

A′
1

A1

)
if ηj = 0,

hm
A′

1
A1

if ηj = 1.

Denote W0(·) = Lρ1−1(·), and

Wj(·) = Lρj+1−1(·) − Lρj−1(·)
for j ≥ 1. By construction, it holds that (Wj , j ≥ 1) is a sequence of i.i.d. random

vectors. Also, it is straightforward to obtain that EWj(y) = λ−1 hm
A′

1
A1

(y) for all
y ∈ ∂A and all j ≥ 1.

Step 2. Now, we are going to show that, to prove (38), it is enough to prove that,
for some positive constants c,′′ c′′

1, c′′
2 ,

(39) P

[
sup
y∈∂A

∣∣∣∣
∑m

j=1 Wj(y)

hmA(y)
− λ−1m

hmA′
A (y)

hmA(y)

∣∣∣∣≥ c′′√m + θm

]
≤ c′′

1e−c′′
2θ2m

for all m ≥ 2 and all θ ∈ (0, (lnm)−1). Observe that we can assume without loss
of generality that c′′

1 ≤ 1
2 ; indeed, if the above holds with some c′′

1 > 0, then, by
increasing c′′ [and, possibly, decreasing c′′

2 ; note that (c′′ +h)
√

m+θm = c′′√m+
(θ + h√

m
)m] we can put an arbitrarily small constant before the exponent in the

right-hand side.
Abbreviate

Rk = sup
y∈∂A

∣∣∣∣ Lk(y)

hmA(y)
− k

hmA′
A (y)

hmA(y)

∣∣∣∣
and

R̃k = sup
y∈∂A

∣∣∣∣
∑k

j=1 Wj(y)

hmA(y)
− λ−1k

hmA′
A (y)

hmA(y)

∣∣∣∣.
Let us first show that (39) implies

(40) P

[
max

i∈[m,2m] R̃i ≥ 4c′′√m + 5θm
]
≤ 2c′′

1e−3c′′
2θ2m.

For this, define the random variable

N = min
{
i ∈ [m,2m] : R̃i ≥ 4c′′√m + 5θm

}
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(by definition, min∅ := +∞), so the left-hand side of (40) is equal to P[N ∈
[m,2m]]. Note also that the right-hand side of (39) does not exceed 1

2 (recall that
we assumed that c′′

1 ≤ 1
2 ). Now, (39) implies (note that

√
3 < 4 − √

2)

c′′
1e−3c′′

2θ2m ≥ P
[
R̃3m ≥ c′′√3m + 3θm

]
≥

2m∑
j=m

P[N = j ]P[R̃3m−j < c′′√2m + 2θm
]

≥ P
[
N ∈ [m,2m]]× min

j∈[m,2m]P
[
R̃3m−j < c′′√3m − j + θ(3m − j)

]
≥ 1

2
P
[
N ∈ [m,2m]]

for all large enough m.
Next, let us denote σk = min{j ≥ 1 : ρj > k}. By (32) and Lemma 2.5, we may

assume that 1
2 ≤ hmA′

A (y)

hmA(y)
≤ 2, and, due to Lemma 2.4, Lk(y)

hmA(y)
≤ c̃ for some c̃ > 0.

So, we can write

(41) Rk ≤ R̃σk
+ 2
∣∣λ−1σk − k

∣∣+ c̃

ρσk∑
i=k+1

ξi .

Now, observe that σk − 1 is a Binomial(k, λ) random variable, and ρσk
− k is

Geometric(λ). Therefore, the last two terms in the right-hand side of (41) are easily
dealt with; that is, we may write for large enough ĉ > 0

P
[
2
∣∣λ−1σk − k

∣∣≥ ĉ
√

k + θk
]≤ c4e

−c′
4θ

2k,(42)

P

[
c̃

ρσk∑
i=k+1

ξi ≥ θk

]
≤ e−c5λθk.(43)

Then, using (40) together with (42)–(43), we obtain [recall (38)]

P

[
Rk ≥

(
4c′′
(

2λ

3

)1/2
+ ĉ

)√
k +
(

10

3
λ + 2

)
θk

]

≤ P

[
max

i∈[ 2
3 λk, 4

3 λk]
R̃i ≥ 4c′′

(
2λ

3

)1/2√
k + 5θ · 2

3
λk

]
+ P

[
σk /∈

[
2

3
λk,

4

3
λk

]]

+ P
[
2
∣∣λ−1σk − k

∣∣≥ ĉ
√

k + θk
]+ P

[
c̃

ρσk∑
i=k+1

ξi ≥ θk

]

≤ 2c′′
1e−2λc′′

2θ2k + e−c6λk + c4e
−c′

4θ
2k + e−c5λθk,

and this shows that it is indeed enough for us to prove (39).
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Step 3. Now, the advantage of (39) is that we are dealing with i.i.d. random vec-
tors there, so it is convenient to use some machinery from the theory of empirical
processes. First, the idea is to use the Pollard inequality (cf. (1.2) of [17]) to prove
that

(44) ER̃k ≤ c7
√

k

for some c7 > 0 (note that the above estimate is uniform with respect to the size of
∂A). To use the language of empirical processes, we are dealing here with random
elements of the form W̃j = Wj

hmA
which are positive vectors indexed by sites of ∂A.

Let also Y be a generic positive vector indexed by sites of ∂A. For y ∈ ∂A, let Ey

be the evaluation functional at y: Ey(Y ) := Y(y). Denote by F = {Ey, y ∈ ∂A} the
class of functions we are interested in; then, we need to find an upper bound on the
expectation of supf ∈F |∑k

j=1 f (W̃j ) − Ef (W̃j )|. Using the terminology of [17],

let ‖f ‖2 :=
√
Ef 2(W̃ ), where W̃ has the same law as the W̃j ’s above. Consider

the envelope function F defined by

F(Y ) = sup
y∈∂A

Ey(Y ) = sup
y∈∂A

Y (y).

Due to Lemma 2.4, we have

(45) ‖F‖2 ≤ c8.

Let us define the bracketing entropy integral

(46) J[ ]
(
1,F,‖ · ‖2

)= ∫ 1

0

√
1 + lnN[ ]

(
s‖F‖2,F,‖ · ‖2

)
ds.

In the above expression, N[ ](δ,F,‖ · ‖2) is the so-called bracketing number:
the minimal number of brackets [f,g] = {h : f ≤ h ≤ g} needed to cover F of
size ‖g − f ‖2 smaller than δ. We now recall (1.2) of [17]:

(47) ER̃k ≤ cJ[ ]
(
1,F,‖ · ‖2

)‖F‖2
√

k;
so, to prove (44), we need to obtain an upper bound on the bracketing entropy
integral.

Let us define “arc intervals” on ∂A by I (y, r) = {z ∈ ∂A : ‖y − z‖ ≤ r}, where
y ∈ ∂A, r > 0. Observe that I (y, r) = {y} in case r < 1. Define

f y,r (Y ) = inf
z∈I (y,r)

Y (z), gy,r (Y ) = sup
z∈I (y,r)

Y (z);

in order to cover F , we are going to use brackets of the form [f y,r , gy,r ]. Notice
that if z ∈ I (y, r) then Ez ∈ [f y,r , gy,r ], so a covering of F by the above brackets
corresponds to a covering of ∂A by “intervals” I (·, ·). Let us estimate the size of
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the bracket [f y,r , gy,r ]; it is here that Proposition 1.3 comes into play. We have∥∥gy,r − f y,r
∥∥

2 =
√
E

∣∣∣ sup
z∈I (y,r)

W̃ (z) − inf
z∈I (y,r)

W̃ (z)
∣∣∣

≤ c9r
β‖ξ1 + · · · + ξρ‖2(48)

≤ 2c9λ
−1rβ;

in the above calculation, ρ is a Geometric random variable with success probabil-
ity λ, ξ ’s are i.i.d. Exponential(1) random variables also independent of ρ, and we
use an elementary fact that ξ1 + · · · + ξρ is then also Exponential with mean λ−1.

Then, recall (45), and observe that, for any δ > 0 it is possible to cover F with
|∂A| = O(n1) brackets of size smaller than δ (just cover each site separately with
brackets [f ·,1/2, g·,1/2] of zero size). That is, for any s > 0 it holds that

(49) N[ ]
(
s‖F‖2,F,‖ · ‖2

)≤ c10n1.

Next, if s ≥ c11n
−β
1 , then we are able to use intervals of size r = O(n1s

1/β) to
cover ∂A, so we have

(50) N[ ]
(
s‖F‖2,F,‖ · ‖2

)= O(n1/r) ≤ c12s
−1/β.

So [recall (46)] the bracketing entropy integral can be bounded above by

c11n
−β
1

√
1 + ln(c10n1) +

∫ 1

c11n
−β
1

√
1 + ln

(
c12s−1/β

)
ds ≤ c13.

Then, using (47), we obtain (44).
Step 4. Here, let us use Theorem 4 of [1] to prove that (with t = θk)

(51) P[R̃k ≥ 2ER̃k + t] ≤ c14e
−c15t

2/k + c16e
−c17t/ lnk;

this is enough for us since, due to the assumption θ < (lnk)−1, it holds that

c14e
−c15t

2/k + c16e
−c17t/ lnk ≤ c18e

−c19θ
2k.

To apply that theorem, we only need to estimate the ψ1-Orlicz norm of Ey(W̃ ); see
Definition 1 of [1]. But [recall the notation just below (48)] it holds that Ey(W̃ ) is
stochastically bounded above by const × Exponential(λ) random variable, so the
ψ1-Orlicz norm is uniformly bounded above.4 The factor ln k in the last term in
the right-hand side of (51) comes from the Pisier’s inequality; cf. (13) of [1].

Finally, combining (44) and (51), we obtain (39), and, as observed before, this
is enough to conclude the proof of Lemma 2.9. �

4A straightforward calculation shows that the ψ1-Orlicz norm of an Exponential random variable
equals its expectation.
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Next, we need a fact that one may call the consistency of soft local times. As-
sume that we need to construct excursions of some process (i.e., random walk,
random interlacements or just independent excursions) between ∂A and ∂A′;
let (L̂k(y), y ∈ ∂A) be the soft local time of kth excursion (of random interlace-
ments, for definiteness). On the other hand, we may be interested in simultane-
ously constructing the excursions also between ∂A1 and ∂A′

1, where A′ ∩ A′
1 = ∅

and A1 ⊂ A′
1. Let (L̂∗

k(y), y ∈ ∂A) be the soft local time at the moment when kth
excursion between ∂A and ∂A′ was chosen in this latter construction. We need the
following simple fact.

LEMMA 2.10. It holds that(
L̂k(y), y ∈ ∂A

) law= (
L̂∗

k(y), y ∈ ∂A
)

for all k ≥ 1.

PROOF. First, due to the memoryless property of the Poisson process, it is

clearly enough to prove that L̂1
law= L̂∗

1. This, by its turn, can be easily obtained

from the fact that Ẑ(1) law= Ẑ(1),∗, where Ẑ(1) and Ẑ(1),∗ are the first excursions
between ∂A and ∂A′ chosen in both constructions. �

Also, we need to be able to control the number of excursions N∗
t up to time t

on the torus Z2
n between ∂B(γ1n) and ∂B(γ2n), γ1 < γ2 < 1/2.

LEMMA 2.11. For all large enough n, all t ≥ n2 and all δ > 0 we have

P

[
(1 − δ)

πt

2n2 ln(γ2/γ1)
≤ N∗

t ≤ (1 + δ)
πt

2n2 ln(γ2/γ1)

]
(52)

≥ 1 − c1 exp
(
−c2δ

2t

n2

)
,

where c1,2 are positive constants depending on γ1,2.

PROOF. Note that there is a much more general result on the large deviations
of the excursion counts for the Brownian motion (the radii of the concentric disks
need not be of order n); see Proposition 8.10 of [3]. So, we give the proof of
Lemma 2.11 in a rather sketchy way. First, let us rather work with the two-sided
stationary version of the walk X = (Xj , j ∈ Z) (so that Xj is uniformly distributed
on Z

2
n for any j ∈ Z). For x ∈ ∂B(γ1n), define the set

Jx = {k ∈ Z : Xk = x, there exists i < k such that Xi ∈ ∂B(γ2n)

and Xm ∈ B(γ2n) \ (B(γ1n) ∪ ∂B(γ2n)
)

for i < m < k
}
,
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and let J =⋃x∈∂B(γ1n) Jx . Now, Lemma 2.5 together with the reversibility argu-
ment used in Lemma 6.1 of [5] imply that

P[0 ∈Jx] = P[X0 = x]Px

[
τ1
(
∂B(γ2n)

)
< τ1

(
B(γ1n)

)]= n−2 hmB(γ1n)(x)

2
π

ln γ2
γ1

+ O(n−1)
,

so [since hmB(γ1n)(·) sums to 1]

(53) P[0 ∈ J ] =
(

2n2

π
ln

γ2

γ1
+ O(n)

)−1
.

Let us write J = {σj , j ∈ Z}, where σ−1 < 0, σ0 ≥ 0, and σj < σj+1 for all j ∈ Z.
As noted just after (32)–(33), the invariant entrance measure to B(γ1n) for excur-
sions is ν = hmB(γ2n)

B(γ1n). Let E∗
ν be the expectation for the walk with X0 ∼ ν and

conditioned on 0 ∈ J (that is, for the cycle-stationary version of the walk). Then,
in a standard way one obtains from (53) that

(54) E
∗
νσ1 = E

∗
ν(σ1 − σ0) = 2n2

π
ln

γ2

γ1
+ O(n).

Note also that in this setup (radii of disks of order n) it is easy to control the tails
of σ1 − σ0 since in each interval of length O(n2) there is at least one complete
excursion with uniformly positive probability (so there is no need to apply the
Khasminskii’s lemma,5 as one usually does for proving results on large deviations
of excursion counts). To conclude the proof of Lemma 2.11, it is enough to apply
a renewal argument similar to the one used in the proof of Lemma 2.9 (and in
Section 8 of [3]). �

3. Proofs of the main results.

PROOF OF PROPOSITION 1.3. Fix some x, y, z as in the statement of the
proposition. We need the following fact.

LEMMA 3.1. We have

(55) HAn(x,u) = Eu

τ1(∂An)∑
j=1

1{Sj = x} = 1

2d

∑
v∼u:

v∈An\∂An

GAn(v, x)

[i.e., HAn(x,u) equals the mean number of visits to x before hitting ∂An, starting
from u] for all u ∈ ∂B(n).

5See, for example, the argument between (8.9) and (8.10) of [3].
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PROOF. This follows from a standard reversibility argument. Indeed, write
[the sums below are over all nearest-neighbor trajectories beginning in x and end-
ing in u that do not touch ∂An before entering u; �∗ stands for � reversed, |�| is
the number of edges in �, and k(�) is the number of times � was in x]

HAn(x,u) =∑
�

(2d)−|�|

=∑
�

(2d)−|�∗|

=
∞∑

j=1

∑
�:k(�)=j

(2d)−|�∗|,

and observe that the j th term in the last line is equal to the probability that x is
visited at least j times (starting from u) before hitting ∂An. This implies (55). �

Note that, by Lemma 2.4 we have also

c1

nd−1 ≤ HAn(x,u) ≤ c2

nd−1 ,(56)

and, as a consequence [since hmB(n)(u) is a convex combination in x′ ∈ ∂B((1 +
2ε)n) of HAn(x

′, u)]

c1

nd−1 ≤ hmB(n)(u) ≤ c2

nd−1(57)

for all u ∈ ∂B(n). Therefore, without restricting generality we may assume that
‖y−z‖ ≤ (ε/9)n, since if ‖y−z‖ is of order n, then (14) holds for large enough C.

So, using Lemma 3.1, we can estimate the difference between the mean numbers
of visits to one fixed site in the interior of the annulus starting from two close sites
at the boundary, instead of dealing with hitting probabilities of two close sites
starting from that fixed site.

Then, to obtain (14), we proceed in the following way.

(i) Observe that, to go from a site u ∈ ∂B(n) to x, the particle needs to go first
to ∂B((1 + ε)n); we then prove that the probability of that is “almost” pro-
portional to hmB(n)(u); see (58).

(ii) In (60), we introduce two walks conditioned on hitting ∂B((1 + ε)n) before
returning to ∂B(n), starting from y, z ∈ ∂B(n). The idea is that they will likely
couple before reaching ∂B((1 + ε)n).

(iii) More precisely, we prove that each time the distance between the original
point on ∂B(n) and the current position of the (conditioned) walk is doubled,
there is a uniformly positive chance that the coupling of the two walks suc-
ceeds [see the argument just after (67)].



4774 F. COMETS AND S. POPOV

(iv) To prove the above claim, we define two sequences (Uk) and (Vk) of subsets
of the annulus B((1 + ε)n) \ B(n), as shown on Figure 3. Then we prove
that the positions of the two walks on first hitting of Vk can be coupled with
uniformly positive probability, regardless of their positions on first hitting
of Vk−1. For that, we need two technical steps:

(iv.a) If one of the two conditioned walks hits Vk−1 at a site which is “too
close” to ∂B(n) (look at the point Zk−1 on Figure 3), we need to assure that
the walker can go “well inside” the set Uk with at least constant probability
[see (63)].

(iv.b) If the (conditioned) walk is already “well inside” the set Uk , then
one can apply the Harnack inequality to prove that the exit probabilities are
comparable in the sense of (67).

(v) There are O(ln n
‖y−z‖) “steps” on the way to ∂B((1 + ε)n), and the coupling

is successful on each step with uniformly positive probability. So, in the end
the coupling fails with probability polynomially small in n

‖y−z‖ ; cf. (68).
(vi) Then it only remains to gather the pieces together [the argument after (69)].

The last technical issue is to show that, even if the coupling does not suc-
ceed, the difference of expected hit counts cannot be too large; this follows
from (15) and Lemma 2.3.

We now pass to the detailed arguments. By Lemma 2.5, we have for any u ∈ ∂B(n):

Pu

[
τ0
(
∂B
(
(1 + ε)n

))
< τ1

(
∂B(n)

)]
(58)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hmB(n)(u)

2
π

ln(1 + ε) + O(n−1)
for d = 2,

cap(B(n))hmB(n)(u)

1 − (1 + ε)−(d−2) + O(n−1)
for d ≥ 3,

so, one can already notice that the probabilities to escape to ∂B((1 + ε)n) normal-
ized by the harmonic measures are roughly the same for all sites of ∂B(n). Define
the events

(59) Fj = {τ0
(
∂B
(
(1 + ε)n

))
< τj

(
∂B(n)

)}
for j = 0,1. For v ∈ B((1 + ε)n) \ B(n) denote h(v) = Pv[F ]; clearly, h is a har-
monic function inside the annulus B((1 + ε)n) \ B(n), and the simple random
walk on the annulus conditioned on F0 is in fact a Markov chain (i.e., Doob’s
h-transform of the simple random walk) with transition probabilities

(60) P̃v,w =
⎧⎪⎨⎪⎩

h(w)

2dh(v)
, v ∈ B

(
(1 + ε)n

) \ (B(n) ∪ ∂B
(
(1 + ε)n

))
,w ∼ v,

0, otherwise.
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On the first step [starting at u ∈ ∂B(n)], the transition probabilities of the condi-
tioned walk are described in the following way: the walk goes to v /∈ B(n) with
probability

h(v)

( ∑
v′ /∈B(n):

v′∼u

h
(
v′))−1

.

Let k0 = max{j : 3‖y − z‖2j < εn}, and let us define the sets

Uk = B
(
y,3‖y − z‖2k) \ (B(n) \ ∂B(n)

)
,

Vk = ∂Uk \ ∂B(n),

for k = 1, . . . , k0; see Figure 3. Also, define yk to be the closest integer point to
y + 3‖y − z‖2k y

‖y‖ . Clearly, it holds that

(61) k0 ≥ c2 ln
c3εn

‖y − z‖ .

FIG. 3. On the coupling of conditioned walks in the proof of Proposition 1.3. Here, Yk−1 and Zk−1
are positions of the walks started in y and z, and we want to couple their exit points on V ′

k . The y-walk

is already in U ′
k , but we need to force the z-walk to advance to U ′

k in the set �(Zk−1,‖y − z‖2k−1)

(dark grey on the picture), so that the Harnack inequality would be applicable.
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Denote by S̃(1) and S̃(2) the conditioned random walks started from y and z. For
k = 1, . . . , k0, denote Yk = S̃

(1)
τ̃1(Vk)

, Zk = S̃
(2)
τ̃1(Vk)

, where τ̃1 is the hitting time for the

S̃-walks, defined as in (2). The goal is to couple (Y1, . . . , Yk0) and (Z1, . . . ,Zk0)

in such a way that with high probability there exists k1 ≤ k0 such that Yj = Zj for
all j = k1, . . . , k0; we denote by ϒ the corresponding coupling event. Clearly, this
generates a shift-coupling of S̃(1) and S̃(2); if we managed to shift-couple them
before they reach ∂B((1 + ε)n), then the number of visits to x will be the same.

For v ∈ R
d , let �v = {rv, r > 0} be the ray in v’s direction. Now, for any v with

n < ‖v‖ ≤ (1 + ε)n and s ∈ (0, εn) define the (discrete) set

�(v, s) = {u ∈ Z
d : n < ‖u‖ ≤ n + s,dist(u, �v) ≤ s/2

}
.

Denote also by

∂+�(v, s) = {u ∈ ∂�(v, s) : n + s − 1 < ‖u‖ ≤ n + s
}

the “external part” of the boundary of �(v, s) (on Figure 3, it is the rightmost side
of the dark-grey “almost-square”). Observe that, by Lemma 2.2, we have

(62) c5
‖v‖ − n + 1

n
≤ h(v) ≤ c6

‖v‖ − n + 1

n
.

We need the following simple fact: if ‖v‖ − n < 2s,

(63) Pv

[
S̃τ̃ (∂�(v,s)) ∈ ∂+�(v, s)

]≥ c7

for some positive constant c7. To see that, it is enough to observe that the prob-
ability of the corresponding event for the simple random walk S is O(

‖v‖−n+1
s

)

[roughly speaking, the part transversal to �v behaves as a (d −1)-dimensional sim-
ple random walk, so it does not go too far from �v with constant probability, and
the probability that the projection on �v “exits to the right” is clearly O(

‖v‖−n+1
s

)

by a gambler’s ruin-type argument; or one can use prove an analogous fact for the
Brownian motion and then use the KMT-coupling]. Now [recall (60)] the weight
of an S̃-walk trajectory is its original weight divided by the value of h in its initial
site, and multiplied by the value of h in its end. But [recall (62)], the value of the
former is O(

‖v‖−n+1
n

), and the value of the latter is O( s
n
). Gathering the pieces,

we obtain (63).
Note also the following: let A be a subset of (B((1 + ε)n) \ B(n)) ∪ ∂B(n), and

for u ∈ A,v ∈ ∂A denote by H̃A(u, v) = Pu[S̃τ̃1(∂A) = v] the Poisson kernel with
respect to the conditioned walk S̃. Then it is elementary to obtain that H̃A(u, v) is
proportional to h(v)HA(u, v), that is,

(64) H̃A(u, v) = h(v)HA(u, v)

( ∑
v′∈∂A

h
(
v′)HA

(
u, v′))−1

.

Now, we are able to construct the coupling. Denote by V ′
k = {v ∈ Vk : ‖v‖ ≥

n + 3‖y − z‖2k−1} to be the “outer” part of Vk (depicted on Figure 3 as the arc
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with double thickness), and denote by U ′
k = {u ∈ Uk : dist(u, ∂Uk) ≥ ‖y −z‖2k−3}

the “inner region” of Uk . Using (62) and (64) together with the Harnack inequality
(see, e.g., Theorem 6.3.9 of [11]), we obtain that, for some c8 > 0,

(65) H̃Uk
(u, v) ≥ c8H̃Uk

(yk, v)

for all u ∈ U ′
k and v ∈ V ′

k . The problem is that Zk−1 (or Yk−1, or both) may be “too
close” to ∂B(n), and so we need to “force” it into U ′

k in order to be able to apply
the Harnack inequality. First, from an elementary geometric argument one obtains
that, for any v ∈ Vk−1 \ U ′

k ,

(66) ∂+�
(
v,‖y − z‖2k−1)⊂ U ′

k.

Then (63) and (66) together imply that indeed with uniformly positive probability
an S̃-walk started from v enters U ′

k before going out of Uk . Using (65), we then
obtain that

(67) H̃Uk
(u, v) ≥ c9H̃Uk

(yk, v)

for all u ∈ Vk−1 and v ∈ V ′
k . Also, it is clear that

∑
v∈V ′

k
H̃Uk

(yk, v) is uniformly
bounded below by a constant c10 > 0, so on each step (k − 1) → k the cou-
pling works with probability at least c9c10. Therefore, by (61), we can couple
(Y1, . . . , Yk0) and (Z1, . . . ,Zk0) in such a way that Yk0 = Zk0 with probability at
least 1 − (1 − c9c10)

k0 = 1 − c11(
n

‖y−z‖)−β .
Now, we are able to finish the proof of Proposition 1.3. Recall that we denoted

by ϒ the coupling event of the two walks (that start from y and z); as we just
proved

(68) P
[
ϒ�]≤ c11

(
n

‖y − z‖
)−β

.

Let ν1,2 be the exit measures of the two walks on ∂B((1 + ε)n). For j = 1,2 we
have for any v ∈ ∂B((1 + ε)n)

(69) νj (v) = P[ϒ]ν∗(v) + P
[
ϒ�]ν′

j (v),

where

ν∗(v) = P
[
S̃

(j)

τ̃1(∂B((1+ε)n)
= v | ϒ],

ν′
j (v) = P

[
S̃

(j)

τ̃1(∂B((1+ε)n)
= v | ϒ�]

[observe that if the two walks are coupled on hitting Vk0 , then they are coupled on
hitting ∂B((1 + ε)n), so ν∗ is the same for the two walks]. For u ∈ ∂B(n), define
the random variables (recall Lemma 3.1)

Gu = Eu

τ1(∂An)∑
j=1

1{Sj = x},
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and recall the definition of the event F1 from (59). We write, using (58),

HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)

= E

( Gy

hmB(n)(y)
− Gz

hmB(n)(z)

)

=
(

Py[F1]
hmB(n)(y)

(
P[ϒ]G(ν∗, x) + P

[
ϒ�]G(ν′

1, x
))

− Pz[F1]
hmB(n)(z)

(
P[ϒ]G(ν∗, x) + P

[
ϒ�]G(ν′

2, x
)))

≤

⎧⎪⎪⎨⎪⎪⎩
G(ν∗, x)O

(
n−1)+ c12P

[
ϒ�]G(ν′

1, x
)
, for d = 2,

G(ν∗, x) cap
(
B(n)

)
O
(
n−1)

+ c13P
[
ϒ�] cap

(
B(n)

)
G
(
ν′

1, x
)
, for d ≥ 3.

Note that (15) and Lemma 2.3 imply that, for any probability measure μ

on ∂B((1 + ε)n), it holds that the quantities G(μ,x) (in two dimensions) and
cap(B(n))G(μ,x) (in higher dimensions) are of constant order. Together with (68),
this implies that

HAn(x, y)

hmB(n)(y)
− HAn(x, z)

hmB(n)(z)
≤ c14n

−1 + c15

(
n

‖y − z‖
)−β

.

Since y and z can be interchanged, this concludes the proof of Proposition 1.3. �

PROOF OF THEOREM 1.2. Consider the sequence bk = exp(exp(3k)), and let
vk = bke1 ∈ R

2. Let us fix some γ ∈ (1,
√

π/2). Denote Bk = B(vk, b
1/2
k ) and

B ′
k = B(vk, γ b

1/2
k ). Observe that Lemma 2.7 together with (4) imply

(70) cap
(
Bk ∪ {0})= 4

3π
(1 + O

((
ln−1 bk

))
lnbk.

Let Nk be the number of excursions between ∂Bk and ∂B ′
k in RI(1). Lemma 2.6

implies that for any x ∈ ∂B ′
k it holds that

(71) Px

[
τ̂ (Bk) < ∞]= 1 − 2 lnγ

3 lnbk

(1 + O
((

ln−1 bk

))
,

so the number of excursions of one particle has “approximately Geometric” distri-
bution with parameter 2 lnγ

3 lnbk
(1+O((ln−1 bk)). Observe that if X is a Geometric(p)

random variable and Y is Exponential(ln(1 − p)−1) random variable, then Y �
X � Y + 1, where“�” means stochastic domination. So, the number of excursions
of one particle dominates an Exponential( 2 lnγ

3 lnbk
(1+O(ln−1 bk))) and is dominated

by Exponential( 2 lnγ
3 lnbk

(1 + O(ln−1 bk))) plus 1.
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Now, let us argue that

(72)
lnγ√

6 ln3/2 bk

(
Nk − 2

lnγ
ln2 bk

)
law−→ standard Normal.

Indeed, for the (approximately) compound Poisson random variable Nk the previ-
ous discussion yields

(73)
ζ∑

k=1

ηk � Nk

lnbk

�
ζ ′∑

k=1

(
η′

k + ln−1 bk

)
,

where ζ and ζ ′ are both Poisson with parameter 4
3(1 + O(ln−1 bk)) lnbk [the dif-

ference is in the O(·)], and η’s are i.i.d. Exponential random variables with rate
2 lnγ

3 (1 + O(ln−1 bk)). Since the central limit theorem is clearly valid for
∑ζ

k=1 ηk

(the expected number of terms in the sum goes to infinity, while the number of
summands remains the same), one obtains (72) after some easy calculations.6

Next, observe that π
4γ 2 > 1

2 by our choice of γ . Choose some β ∈ (0, 1
2) in such

a way that β + π
4γ 2 > 1, and define qβ > 0 to be such that∫ −qβ

−∞
1√
2π

e−x2/2 dx = β.

Define also the sequence of events

(74) �k =
{
Nk ≤ 2

lnγ
ln2 bk − qβ

√
6 ln3/2 bk

lnγ

}
.

Now, the goal is to prove that

(75) lim inf
n→∞

1

n

n∑
j=1

1{�j } ≥ β a.s.

Observe that (72) clearly implies that P[�k] → β as k → ∞, but this fact alone
is not enough, since the above events are not independent. To obtain (75), it is
sufficient to prove that

(76) lim
k→∞P[�k | Dk−1] = β a.s.,

where Dj is the partition generated by the events �1, . . . ,�j . In order to
prove (76), we need to prove (by induction) that for some κ > 0 we have

(77) κ ≤ P[�k | Dk−1] ≤ 1 − κ for all k ≥ 1.

6Indeed, if Yλ =∑Qλ

j=1 Zj is a compound Poisson random variable, where Qλ is Poisson with
mean λ and Z’s are i.i.d. Exponentials with parameter 1, then a straightforward computation shows

that the moment generating function of (2λ)−1/2(Yλ − λ) is equal to exp( t2

2(1−(t/2λ))
), which con-

verges to et2/2 as λ → ∞.
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Take a small enough κ < β , and let us try to do the induction step. Let D be
any event from Dk−1; (77) implies that P[D] ≥ κk−1. The following is a standard
argument in random interlacements; see, for example, the proof of Lemma 4.5
of [4] (or Claim 8.1 of [10]). Abbreviate B̂ = B1 ∪ · · · ∪ Bk−1, and let

L12 = {trajectories of RI(1) that first intersect B̂ and then Bk

}
,

L21 = {trajectories that first intersect Bk and then B̂},
L22 = {trajectories that intersect Bk and do not intersect B̂}.

Also, let L̃12 and L̃21 be independent copies of L12 and L21. Then let N
(ij)
k

and Ñ
(ij)
k represent the numbers of excursions between ∂Bk and ∂B ′

k generated
by the trajectories from Lij and L̃ij , correspondingly.

By construction, we have Nk = N
(12)
k +N

(21)
k +N

(22)
k ; also, the random variable

Ñk := Ñ
(12)
k + Ñ

(21)
k + N

(22)
k is independent of D and has the same law as Nk .

Observe also that, by our choice of bk’s, we have lnbk = ln3 bk−1. Define the event

Wk = {max
{
N

(12)
k ,N

(21)
k , Ñ

(12)
k , Ñ

(21)
k

}≥ ln17/12 bk

}
.

Observe that, by Lemma 2.6(i) and Lemma 2.7(i), the cardinalities of L12 and L21
have Poisson distribution with mean O(lnbk−1) = O(ln1/3 bk) [for the upper
bound, one can use that B̂ ⊂ B(2bk−1)]. So, the expected value of all N ’s in the
above display is of order ln1/3 bk × lnbk = ln16/12 bk [recall that each trajectory
generates O(lnbk) excursions between ∂Bk and ∂B ′

k]. Using a suitable bound on
the tails of the compound Poisson random variable (see, e.g., (56) of [7]), we obtain
P[Wk] ≤ c1 exp(−c2 ln1/12 bk), so for any D ∈ Dk−1 (recall that lnbk = e3k

),

(78) P[Wk | D] ≤ P[Wk]
P[D] ≤ c1(1/κ)k−1 exp

(−c2e
3k/12).

This implies that (note that Ñk = Nk − N
(12)
k − N

(21)
k + Ñ

(12)
k + Ñ

(21)
k )

P[�k | D] = P

[
Nk ≤ 2

lnγ
ln2 bk − qβ

√
6 ln3/2 bk

lnγ

∣∣∣∣D]

≤ P

[
W �

k ,Nk ≤ 2

lnγ
ln2 bk − qβ

√
6 ln3/2 bk

lnγ

∣∣∣∣D]+ P[Wk | D]

≤ P

[
Ñk ≤ 2

lnγ
ln2 bk − qβ

√
6 ln3/2 bk

lnγ
+ 2 ln17/12 bk

]
+ P[Wk | D]

→ β as k → ∞
since 17/12 < 3/2 and by (78) [together with an analogous lower bound, this takes
care of the induction step in (77) as well]. So, we have

(79) lim sup
k→∞

P[�k | Dk−1] ≤ β a.s.,
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and, analogously, it can be shown that

(80) lim inf
k→∞ P[�k | Dk−1] ≥ β a.s.

We have just proved (76) and hence (75).
Now, let (Ẑ(j),k, j ≥ 1) be the RI’s excursions between Bk and B ′

k , k ≥ 1,
constructed as in Section 2.2. Also, for k ∈ [�1,�2] (to be specified later)
let (Z̃(j),k, j ≥ 1) be sequences of i.i.d. excursions, with starting points chosen

accordingly to ĥm
B ′

k

Bk
. We assume that all the above excursions are constructed si-

multaneously for all k ∈ [�1,�2].7 Next, let us define the sequence of independent
events

Jk =
{

there exists x ∈ Bk such that x /∈ Z̃(j),k for all

(81)

j ≤ 2

lnγ
ln2 bk − ln11/9 bk

}
,

that is, Jk is the event that the set Bk is not completely covered by the first
2

lnγ
ln2 bk − ln11/9 bk independent excursions.

Next, fix δ0 > 0 such that β + π
4γ 2 > 1 + δ0. Let us prove the following fact.

LEMMA 3.2. For all large enough k, it holds that

(82) P[Jk] ≥ π

4γ 2 − δ0.

PROOF. We first outline the proof in the following way:

• consider a simple random walk on a torus of slightly bigger size [specifically,
(γ + ε1)b

1/2
k ], so that the set B ′

k would “completely fit” there;
• we recall a known result that, up to time tk (defined just below), the torus is not

completely covered with high probability;
• using soft local times, we couple the i.i.d. excursions between Bk and B ′

k with
the simple random walk’s excursions between the corresponding sets on the
torus (denoted later as A and A′);

• using Lemma 2.9, we conclude in (87) that the set of simple random walk’s
excursions is likely to contain the set of i.i.d. excursions;

• finally, we note that the simple random walk’s excursions will not completely
cover the set A with at least constant probability, and this implies (82).

7We have chosen to work with finite range of k’s because constructing excursions with soft local
times on an infinite collection of disjoint sets requires some additional formal treatment.
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Note that Theorem 1.2 of [9] implies that there exists (large enough) ĉ such that
the torus Z2

m is not completely covered by time 4
π
m2 ln2 m − ĉm2 lnm ln lnm with

probability converging to 1 as m → ∞. Let ε1 be a small constant chosen in such
a way that π

4(γ+ε1)
2 > π

4γ 2 − δ0. Abbreviate

tk = 4

π
(γ + ε1)

2bk ln2((γ + ε1)b
1/2
k

)
− ĉ(γ + ε1)

2bk ln
(
(γ + ε1)b

1/2
k

)
ln ln

(
(γ + ε1)b

1/2
k

);
due to the above observation, the probability that Z2

(γ+ε1)b
1/2
k

is covered by time tk

goes to 0 as k → ∞. Let Z(1), . . . ,Z
(N∗

tk
) be the simple random walk’s excursions

on the torus Z
2
(γ+ε1)b

1/2
k

between ∂B(b
1/2
k ) and ∂B(γ b

1/2
k ). Assume also that the

torus is mapped on Z
2 in such a way that its image is centered in yk . Denote

mk = 2

lnγ
ln2 bk − (ln lnbk)

2 lnbk.

Then we take δ = O((lnbk)
−1(ln lnbk)

2) in Lemma 2.11, and obtain that

(83) P
[
N∗

tk
≥ mk

]≥ 1 − c1 exp
(−c2(ln lnbk)

4).
Next, abbreviate [recall (81)]

m′
k = 2

lnγ
ln2 bk − ln11/9 bk.

Also, denote A = B(b
1/2
k ), A′ = B(γ b

1/2
k ), A,A′ ⊂ Z

2
(γ+ε1)b

1/2
k

. Observe that,

due to Lemma 3.2,

(84) hmA′
A (y) = hm

B ′
k

Bk
(y) = ĥm

B ′
k

Bk
(y)
(
1 + O

(
b

−1/2
k

))
.

We then couple the random walk’s excursions (Z(j), j ≥ 1) with the independent
excursions (Z̃(j),k, j ≥ 1) using the soft local times. Using Lemma 2.9 [with θ =
O(ln−8/9 bk)] and (84), we obtain

P

[
Lmk

(y) ≥ hm
B ′

k

Bk
(y)

(
2

lnγ
ln2 bk − ln10/9 bk

)
for all y ∈ ∂Bk

]
(85)

≥ 1 − c3 exp
(−c4 ln2/9 bk

)
.

Let L̃j (y) = (ξ̃1 + · · · + ξ̃j ) ĥm
B ′

k

Bk
(y) be the soft local times for the independent

excursions [as before, ξ̃ ’s are i.i.d. Exponential(1) random variables]. Using usual
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large deviation bounds for sums of i.i.d. random variables together with (84), we
obtain that

P

[
L̃m′

k
(y) ≤ hm

B ′
k

Bk
(y)

(
2

lnγ
ln2 bk − ln10/9 bk

)
for all y ∈ ∂Bk

]

= P

[
ξ̃1 + · · · + ξ̃m′

k
≤ 2

lnγ
ln2 bk − ln10/9 bk

]
(86)

≥ 1 − c5 exp
(−c6 ln4/9 bk

)
.

So, (85)–(86) imply that

(87) P
[{

Z̃(j),k, j ≤ m′
k

}⊂ {Z(j), j ≤ N∗
t

}]≥ 1 − c7 exp
(−c8 ln2/9 bk

)
.

Then we use the translation invariance of the torus to obtain the following: If
P[Z2

m is not completely covered] ≥ c, and A ⊂ Z
2
m is such that |A| ≥ qm2, then

P[A is not completely covered] ≥ qc. So, since∣∣B(b1/2
k

)∣∣= ( π

4(γ + ε1)2 + o(1)

)∣∣Z2
(γ+ε1)b

1/2
k

∣∣,
Lemma 3.2 now follows from (83) and (87). �

Now, abbreviate [recall (74) and (75)]

m′′
k = 2

lnγ
ln2 bk − qβ

√
6 ln3/2 bk

lnγ
,

and, being L̂(k) the soft local time of the excursions of random interlacements
between ∂Bk and ∂B ′

k , define the events

(88) Mk = {L̂(k)

m′′
k
(y) ≤ L̃

(k)

m′
k
(y) for all y ∈ ∂Bk

}
.

Note that on Mk it holds that {Ẑ(j),k, j ≤ m′′
k} ⊂ {Z̃(j),k, j ≤ m′

k}.
Then we need to prove that

(89) P[Mk] ≥ 1 − c9 ln2 bk exp
(−c10 ln2/3 bk

)
.

Indeed, first, analogously to (86) we obtain (note that 11
9 < 4

3 < 3
2 )

P

[
L̃m′

k
(y) ≥ hm

B ′
k

Bk
(y)

(
2

lnγ
ln2 bk − ln4/3 bk

)
for all y ∈ ∂Bk

]
(90)

≥ 1 − c11 exp
(−c12 ln2/3 bk

)
.

Then we use Lemma 2.9 with θ = O(ln−1/2 bk) to obtain that

P

[
L̂m′′

k
(y) ≤ hm

B ′
k

Bk
(y)

(
2

lnγ
ln2 bk − ln4/3 bk

)
for all y ∈ ∂Bk

]
(91)

≥ 1 − c13 exp(−c14 lnbk),

and (90)–(91) imply (89).



4784 F. COMETS AND S. POPOV

Now it remains to observe that on the event �k ∩Jk ∩Mk the set Bk contains at
least one vacant site. By (75), (82) and (89), one can choose large enough �1 < �2
such that, with probability arbitrarily close to 1, there is k0 ∈ [�1,�2] such that
�k0 ∩ Jk0 ∩ Mk0 occurs. This concludes the proof of Theorem 1.2. �

Summary of notation. For the reader’s convenience, we include here a brief
summary of notation used in this paper:

• B(y, r): the ball centered in y and of radius r , with respect to the Euclidean
norm;

• S = (Sn, n ≥ 0): the two-dimensional simple random walk;
• τ0(A) and τ1(A): entrance and hitting times of set A [cf. (1) and (2)];
• a(·): the potential kernel of the two-dimensional simple random walk [cf. (3)];
• hmA(·) and cap(A): harmonic measure and capacity of set A with respect to

the simple random walk in dimension d ≥ 2 [see (6) and (7) for d = 2 and the
beginning of Section 2 for higher dimensions];

• Ŝ = (Ŝn, n ≥ 0): Doob’s h-transform of S, with respect to a (informally, two-
dimensional simple random walk conditioned on not hitting the origin);

• τ̂0(A) and τ̂1(A): entrance and hitting times of set A of the walk Ŝ;
• êA(·) and ĥmA(·): equilibrium and harmonic measures on A with respect to Ŝ

see formulas below (7);
• Vα : the vacant set of two-dimensional random interlacements on level α;
• HA(x, y): the Poisson kernel of simple random walk [cf. (13)];
• G(x,y) and GA(x, y): the Green’s function of the simple random walk in d ≥ 3,

and the Green’s function restricted on a finite set A, d ≥ 2;
• EsA(x): escape probability from A, starting at x (see the beginning of Sec-

tion 2);
• Z

2
n: the two-dimensional torus, Z2

n = Z
2/nZ2;

• X = (Xk, k ≥ 0): simple random walk on the two-dimensional torus;
• Lk(·) and L̂k(·): soft local times (at kth excursion) of the excursion processes

with respect to simple random walk on the torus and random interlacements
[cf. (29) and (31)];

• hmA′
A (·) and ĥm

A′
A (·): harmonic measures on A ⊂ A′ with respect to A′, for

simple random walk on the torus and random interlacements [cf. (32) and (33)];
• ψ(·, ·) and ψ̂(·, ·): invariant measures for the process of first/last sites of excur-

sions [cf. (34) and (35)];
• S̃: conditioned random walk on the annulus B((1 + ε)n) \ B(n) [cf. (60)];
• H̃A(u, v): the Poisson kernel with respect to S̃ [cf. (64)].
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