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We analyse eye-tracking data to understand how people collaborate. Our
dataset consists of time series of measurements for eye movements, such as
spatial entropy, calculated for each subject during an experiment when several
pairs of participants collaborate to accomplish a task. We observe that pairs
with high collaboration quality obtain their highest values of concentration
(or equivalently lowest values of spatial entropy) occurring simultaneously.
In this paper, we propose a flexible model that describes the tail dependence
structure between two subjects’ entropy when the pair is collaborating. More
generally, we develop a generalized additive model (GAM) framework for
tail dependence coefficients in the presence of covariates. As for any GAM-
type model, the methodology can be used to predict collaboration quality or
to explore how joint concentration depends on other cognitive operations and
varies over time.

1. Introduction. Recent developments of quantitative methodologies for ed-
ucation research have emerged under the field of “Learning Analytics” (see the
Appendix for formal definition). In this context, eye-trackers unveil major cogni-
tive processes when analysing the resulting gaze traces (see the Appendix for more
details). In this paper, we analyse eye-tracking data to understand how people col-
laborate. The data consist of gaze traces of 33 pairs of subjects who collaborate to
accomplish a concept map task (see the Appendix for formal definition). The two
subjects are working synchronously online, looking at the same display on two dif-
ferent screens. During the concept map activity the participants could not see each
other, but they could talk to each other. Moreover, their screens were completely
synchronised, that is, the participants could see each others’ action and when one
peer scrolled the screen the partner’s viewport was updated automatically. From
the gaze traces, time series of indicators regarding subject’s attention can be mea-
sured. These measures, formally defined later in Section 4, are the following. “Spa-
tial entropy” (SE) reflecting the concentration of the subject. A very low SE value
means high concentration; “stability” indicates whether the two subjects look each
at the same region of the screen over two consecutive time windows. The region of
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FIG. 1. Scatterplot of jittered subjects’ spatial entropy (grey points) for low collaboration quality
pairs (left panel) and high collaboration quality pairs (right panel). The black points indicate a high
level of stability and similarity of the pair subjects.

the screen is not necessarily the same for each subject. “Similarity” is a continuous
measure, high if the subjects look at the same objects at the same time. At the end
of the experiment, every pair was classified into a high collaboration quality pair
or a low collaboration quality pair, based on the output of the accomplished task
and not on the eye-tracking data. A primary question of interest is: Can we use the
eye-tracking data to distinguish good and bad pairs in terms of their collaboration?
Figure 1 provides an answer to this question: it shows a scatterplot of the two sub-
jects’ SE time series (grey points) for the 17 pairs with low collaboration quality
(left panel) and for the 16 pairs with high collaboration quality (right panel). The
black points correspond to SE values for which both stability and similarity are
high. On one hand, the left panel shows no dependence structure between the two
subjects with low collaboration quality. Additionally, both the high stability and
similarity with high SE values seem to happen randomly for these bad collabora-
tive pairs. On the other hand, the right panel, concerning high collaboration quality
pairs, shows a lower tail dependence structure. This means that the sequence of
high concentration for the two subjects happens together, whereas their average
SE does not show a specific structure. The main (cognitive) reason is that “nor-
mal subjects’ behaviour” includes many reactions other than that of collaborating.
On the contrary, sequences of high concentration, for instance, involve respond-
ing to the collaborative aim only. Further, the highest synchronized concentration
times are joined with a high level of similarity and stability as highlighted by the
black points. The question we address in this paper is: How does the probability
that the highest concentrations of the two subjects arise at the same time vary over
time and change with some cognitive characteristics such as similarity and stabil-
ity, measured at each time from the gaze data? Answering this question might aid
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our understanding of the cognitive processes underlying the collaboration. Under-
standing cognitive processes responsible for high collaboration quality enables us
to provide feedback to those pairs that are not collaborating well. Providing feed-
back to learners is one of the most important aims of learning analytics. The more
general question we address is: How to model lower tail dependence structure in
the presence of covariates and possible nonstationarity? Note that the model we de-
velop can be used for prediction purposes. This is not addressed in this paper but
it may be interesting to detect collaboration quality after a certain period of time
when a pair of subjects are working together. Their coincidence of high concen-
tration can also be predicted from the significant cognitive characteristics. Letting
X1 and X2 being the SE of subjects 1 and 2, respectively, we use the coefficient of
lower tail dependence

(1) λ�(X1,X2) = lim
q→0

P
{
X2 ≤ F−1

2 (q) | X1 ≤ F−1
1 (q)

}
.

Dependencies of extreme events have received increasing attention in many ar-
eas from insurance and finance to environmental contexts. In practice, the tail de-
pendence coefficient represents the most standard way to describe the amount of
extremal dependence. It was first introduced in Sibuya (1960) and measures the
probability of one extreme value event occurring, given that another event assumes
an extreme value. Works on estimating the tail coefficient include Schmidt and
Stadtmüller (2006), Ferreira (2013), Embrechts, Lindskog and McNeil (2003), Joe
(1997), and references therein. Li (2016) proposes a general Bayesian approach for
directly modelling tail dependence as explicit functions of covariates. Gardes and
Girard (2015) introduce a nonparametric estimator of the conditional tail copula.
In many applications, the tail dependence coefficient is likely to be time-varying
and to depend on covariates. In an eye-tracking context, explaining how the prob-
ability of the coinciding extremes of subjects’ SE varies over time until the task
ends and changes with some characteristics measured from the gaze data is of
primary importance. It not only provides a tool to classify low and high collabora-
tion quality but it also serves in exploring and understanding cognitive aspects of
collaboration.

In this paper, we describe a flexible, nonstationary regression-type approach
under which the tail dependence coefficient depends on covariates in a parametric
or nonparametric way, letting the data decide for the functional form. The method
is based on the generalized additive models (GAMs) for dependence structures of
Vatter and Chavez-Demoulin (2015), adapted here to tail dependence coefficients.
The tail dependence (1) is not observable and to construct a flexible GAM-based
framework for the tail dependence, we need to rely on a (penalized) likelihood. To
do so, we use the link between the tail dependence coefficient (1) and the copula
C of X1 and X2, that is,

(2) λ� = lim
q→0

C(q, q)

q
.
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More precisely, there exits a mapping between the tail dependence coefficient and
the parameter of the copula. This mapping is convenient for two main reasons:
First, the copula provides a density from which we can penalize the likelihood to
estimate nonparametric smoothed functions; second, it uses the information pro-
vided from the entire data to fit a covariate-dependent tail coefficient. In practice,
the copula can be selected by AIC and in our collaborative data application, not
surprisingly when looking at the right panel of Figure 1, the Clayton copula is
chosen. The proposed construction benefits from the flexible GAM framework.

The rest of the paper is organized as follows: In Section 2, we describe the GAM
for tail dependence coefficients and provide details of the estimation procedure of a
penalized log-likelihood based on copula density. Section 3 performs an illustrative
methodology assessment in a simulation study. In Section 4, we describe the data
collection experiment and apply the method to the gaze data where a model for
the tail dependence of pairs’ SE is fitted and allows an exploratory dependence
structure based on time and pairs’ characteristics. We conclude in Section 5.

2. Generalized additive modelling of tail dependence. The tail dependence
coefficients are measures of extremal dependence that quantify the dependence in
the upper and lower tails of a bivariate distribution of two random variables X1 and
X2 with continuous marginal distributions F1 and F2. The coefficients are defined
in terms of quantile exceedences, and when the limit exists, the coefficient of lower
tail dependence is defined in (1) above and analogously, the coefficient of upper
tail dependence is

(3) λu(X1,X2) = lim
q→1

P
{
X2 > F−1

2 (q) | X1 > F−1
1 (q)

}
.

The tail dependence coefficients do not depend on the margins F1 and F2 but solely
on the dependence structure of the bivariate random vector, that is, the copula.
The copula theory addresses the dependence structure of multidimensional ran-
dom vectors. More precisely, the copulas are functions that “couple” multivariate
distribution functions to their corresponding margins. In the next section, we see
how we benefit from the link between copula and tail dependence to model flexible
nonstationary tail dependence using the entire dataset, in the bivariate context.

2.1. From copula to tail dependence. A copula is a multivariate distribution
function C : [0,1]d → [0,1] with standard uniform margins. In this paper, consid-
ering pairs of subjects collaborating together, we restrict ourselves to the bivariate
case (d = 2). Copulas allow the construction of joint distributions with arbitrary
margins. Textbooks on copulas include Joe (1997) and Nelsen (1999), for instance,
and McNeil, Frey and Embrechts (2005), Chapter 5. An important theorem is given
by Sklar (1959), written below for the 2D case.
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SKLAR’S THEOREM. Let F be a joint distribution function with margins F1,
F2. There exists a copula such that for all x1, x2 in [−∞,∞],

F(x1, x2) = C
{
F1(x1),F2(x2)

}
.

If the margins are continuous, then C is unique. Conversely, if C is a copula and
F1, F2 are univariate distribution functions, then F defined above is a bivariate
distribution function with margins F1, F2.

Most of the known copulas are members of parametric families. Implicit copu-
las, such as the Gaussian copula or t copula, are copulas in well-known parametric
distributions; the Gaussian copula supposes (X1,X2) being the standard bivariate
normal with correlation matrix � and for (u1, u2) ∈ [0,1]2, it is defined as

(4) CGa
� (u1, u2) = P

{
X1 ≤ �−1(u1),X2 ≤ �−1(u2)

}
.

The t copula is implicitly built in a similar way. Archimedean copulas have simpler
closed forms and are therefore useful in practice. The Gumbel copula is

CGu
β (u1, u2) = exp

[−{
(− logu1)

β + (− logu2)
β}1/β]

,

with β ≥ 1. When β = 1, we get independence and β → ∞ provides perfect pos-
itive dependence. Another Archimedean copula useful in our eye-tracking data
context is the Clayton copula

(5) CCl
β (u1, u2) = (

u
−β
1 + u

−β
2 − 1

)−1/β
,

with β > 0. When β → 0, it tends to independence, whereas β → ∞ gives perfect
positive dependence. Other Archimedean copulas and other families of copulas ex-
ist as in McNeil, Frey and Embrechts (2005), Chapter 7 and the references therein.

One drawback considering Pearson’s correlation is that it depends on the
marginals (F1 and F2) as well as on the copula. This explains why it is not invari-
ant on strictly increasing transformations of X1 and X2, an undesirable property
for a dependence measure. There exist standard and useful dependence measures
solely related to the copula and not to the margins. These are, for instance, rank
correlations like Kendall’s tau τ(X1,X2) and Spearman’s rho ρS(X1,X2) or tail
dependence coefficients like (3) and (1). In the rest of the paper, we simplify the
notation using η = η(X1,X2) whenever η is a (tail) dependence measure between
the two variables X1 and X2. Convenient mappings between such measures and
the parameters of common copulas often exist. For the lower tail dependence co-
efficient (1), the link is expressed in (2). The upper tail dependence coefficient (3)
is a function of the copula through

λu = lim
q→1

1 − 2q + C(q, q)

1 − q
.

Therefore, considering the limit (2) and the one above, if the limits exist λu ∈ [0;1]
and λl ∈ [0;1]. When λu > 0, we say that we have upper tail dependence. When
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λu = 0, we say that we have asymptotic independence in the upper tail. When
λ� > 0, we say that we have lower tail dependence and if λ� = 0, we say that we
have asymptotic independence in the lower tail. For elliptical copulas, λu = λ�

and the Gaussian copula is asymptotically independent for |ρ| < 1, so that for the
Gaussian copula λu = λ� = 0. When the copula shows tail dependence (lower or
upper or both), there is an explicit mapping between the tail dependence and the
copula parameters, provided that we assume a parametric copula family. Let us
denote the mapping

(6) λ = ν(β).

For instance, the t copula is tail dependent when ρ > −1 and the mapping is

(7) λ = 2tdf +1(
√

df + 1
√

1 − ρ/
√

1 + ρ),

where t denotes the survival of the t distribution and df its degrees of freedom.
The Gumbel copula is upper tail dependent for β > 1 and the mapping is

(8) λu = 2 − 21/β .

The Clayton copula is lower tail dependent for β > 0 and the mapping is

(9) λ� = 2−1/β.

The Clayton copula is specifically the one selected in our application for subjects’
extreme concentration, measured by very low SE. In this case, to get a model for
λ� depending on covariates, we use its link (9) with the Clayton copula. By writing
the copula likelihood in terms of λ�, we get a likelihood-based approach for λ� on
which formal inference follows. Note that the inference could have been carried
out directly on the copula parameter but it is preferable to model the lower tail
dependence (1) because it is a more commonly used quantity in practice and its
interpretation is simpler. In the next section, we describe a new methodology to
model such conditional tail dependence in a very flexible way.

2.2. A flexible model for conditional tail dependence. As a natural extension
of generalized linear models (GLM), the popular generalized additive models
[Hastie and Tibshirani (1990)] link the mean behaviour of a random variable X

with a set of covariates W ∈ R
q through

(10) E(X | W = w; θ) = g

{
y�β +

K∑
k=1

hk(tk)

}
,

where

• g is a link function,
• (y1, . . . , yp) and (t1, . . . , tK) are (not necessarily disjoint) subsets (of respective

size p and K) of {w1, . . . ,wq} or products if we consider interactions of the
variables {w1, . . . ,wq},
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• β ∈ R
s is a vector of parameters, and

• hk :Hk →R are smooth functions supported on closed Hk ⊂ R, for all k.
• θ ∈ � is the column vector of stacked parameters containing both β and the

information encoding hk .

Built on roughness penalty smoothing, a generalized additive model provides a
flexible model for a univariate response. In a bivariate context, if we are interested
in the dependence between X1 and X2 that both can be individually explained
by covariates of W, it is very likely that their dependence structure also depends
on some of the covariates in W. Vatter and Chavez-Demoulin (2015) address this
problem and extend GAMs to the dependence structure between random variables.
In this paper, we adapt the GAM methodology to a tail dependence structure. The
tail dependence can be either λu or λ�, so we denote it by λ in what follows. Using
the same notation as for the classical model (10), we suppose that λ depends on a
set W ∈ R

q of covariates through the semiparametric form

(11) λ(X1,X2 | W = w; θ) = g

{
yT β +

K∑
k=1

hk(tk)

}
,

where g(x) = ex/(ex + 1) is the inverse logit function forcing λ to be in [0,1],
as required. In our collaboration application, typically the factor stability with
two levels (high and low) will be one of the w’s with full parametric form
and the covariates similarity and time may be each one of the t’s. We assume
that each smooth function hk ∈ C2(Hk) admits a finite sk-dimensional basis
parametrized by hk = (hk,1, . . . , hk,sk )

� ∈ R
sk and a quadratic penalty representa-

tion
∫
Hk

h′′
k(t)

2 dt = h�
k Skhk , where Sk is a uniquely determined symmetric matrix

[Green and Silverman (1994), Hastie and Tibshirani (1990), Wood (2006)]. The
class of C2 smoothers is broad and allows many flexible smoothers with a finite
quadratic penalty representation such as cyclic cubic splines, natural cubic splines,
and tensor product splines [Wood (2006)]. All are implemented in the R package
mgcv.

Using the mapping (6) between the copula parameter β and the tail dependence
coefficient λ as in (7), (8), and (9), for w and θ ∈ �, the copula parameter is

β(w; θ) = ν−1{
λ(w; θ)

}
,

where ν−1 is continuous and strictly increasing. The model (11) is estimated using
the penalized log-likelihood GAM framework based on the copula density c and
the log-likelihood function

�0(u1, u2,w; θ) = log
(
c
[
u1, u2;ν−1{

λ(w; θ)
}])

.(12)

Considering a sample of n observations {ui1, ui2,wi}ni=1, the parameters can be
estimated by maximizing the penalized log-likelihood

�(θ,γ ) = �(θ) − 1

2

K∑
k=1

γk

∫
Hk

h′′
k(tk)

2 dtk,(13)
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with �(θ) = ∑n
i=1 �0(ui1, ui2,wi; θ), γ = (γ1, . . . , γK)�, and γk ∈ R+ ∪ {0} for

all k. On each component, the integral term is a roughness penalty and γk is a
smoothing parameter controlling the roughness of the smoothing function with
higher values a yielding smoother curve. A common related quantity is the effec-
tive degrees of freedom (edf ) defined as tr(I + γkSk) for each smooth function hk

[Hastie and Tibshirani (1990)].
The penalized maximum log-likelihood estimator is defined as

θ̂n = argmax
θ∈�

�(θ ,γ ).

The estimation procedure is an iteratively reweighted ridge regression problem
[Green (1987)]. The mapping with the copula parameters for both the dependence
coefficients and tail dependence coefficients being functions with similar proper-
ties we refer the interested reader to Vatter and Chavez-Demoulin (2015) for more
details on the asymptotic properties of the penalized maximum likelihood esti-
mator. Confidence intervals are based on the

√
n-consistency and the asymptotic

normality of the penalized maximum likelihood estimator can also be applied to
compare nested models using likelihood-ratio statistics.

3. Simulation study. In this section, we illustrate the methodology through a
simulation study using a Clayton copula used in our eye-tracking application. For
a more extensive simulation study in the context of dependence coefficients, see
Vatter and Chavez-Demoulin (2015). We assume that the true underlying model
has a time-varying lower tail dependence coefficient of three different forms, as
shown in the top panel of Figure 2. We generate three random covariates from a
Gaussian copula of dimension 3 and equicorrelation 0.5 and compute the lower tail
dependence using the three deterministic forms. Using the inverse of the mapping
(9), we generate pseudo-samples from the corresponding Clayton copulas and ap-
ply our methodology. The bottom panels of Figure 2 show one sample of pseudo-
observations. The pseudo-observations graph may look useless at first glance, but
it importantly illustrates the need for a flexible method when no knowledge of the
data-generating process is available. Indeed, although some linear dependence is
visible, it is impossible to guess the underlying existing time-varying feature. We
simulate 500 datasets of 1000 observations for each form and apply our method-
ology to estimate lower tail dependence coefficients. The results are shown in Fig-
ure 3. The 95% bootstrap confidence intervals (dashed lines) are rather narrow and
it is difficult to distinguish the estimated curves (dotted lines) from the true ones
(straight lines).

4. Models for eye-tracking data. The description of the data collection ex-
periment and the definition of the variable (entropy, to appear later in this sec-
tion) contained in the next two paragraphs are borrowed from Sharma, Chavez-
Demoulin and Dillenbourg (2017).
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FIG. 2. Clayton copula with time-varying λ� (top panels) with a quadratic form (left), sinusoidal
form (middle), and exponential form (right) and a corresponding sample of pseudo observations
(bottom panels).

Sixty-six master students (20 female) from the École Polytechnique Fédérale de
Lausanne participated in the present study. The participants were rewarded with
CHF 30 for their participation. The participants came to the laboratory in pairs.
Once the participants signed the consent form, they took an individual pretest
(True/False questions). They then watched a video1,2 (duration, 17 minutes and

FIG. 3. Simulation results for the Clayton copula with with three additive components: quadratic
form (left), sinusoidal form (middle), and exponential form (right). True curve (straight line), mean
estimated (dotted line), and 95%-confidence intervals (dashed lines).

1“Resting Membrane Potential-Part 1”.
2“Resting Membrane Potential-Part 2”.

https://www.youtube.com/watch?v=PtKAeihnbv0
https://www.youtube.com/watch?v=eROhIFBGKuU
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FIG. 4. A typical example of a concept map (left) with the hypothetical gaze pattern overlaid. The
circles denote the fixations and the arrows depict the saccades. On the right-hand side, we show how
we divide the whole screen into grids to compute the proportionality vector. The figure is borrowed
from Sharma, Chavez-Demoulin and Dillenbourg (2017).

5 seconds) and collaborated on a concept-map about the video content (duration,
10–12 minutes). A concept map is a graphical representation (organisation) of a
given body of knowledge, where the nodes are the key concepts, which consti-
tute the knowledge and the edges are the conceptual link between them. Concept
maps are often used in education as a method to summarise, retain, and commu-
nicate knowledge and are also used for collaborative knowledge modelling. An
example of a concept map is shown in Figure 4. To create the concept maps, the
master students used IHMC CMap tools.3 The IHMC CMap tool is a web platform
to “construct navigate share and criticize knowledge models represented as con-
cept maps”. This tool enables the teams to collaboratively create and edit concept
maps remotely. All the actions of a participant are made visible to the peers. This
helps in keeping the two screens synchronised without having to additionally build
such a concept map tool. Finally, the master students took an individual posttest
(True/False questions). During the concept-map phase, the participants were al-
lowed to talk and their screens were therefore synchronized, that is, they could
see each others’ actions. The final concept maps were then compared against an
expert-map (made by two experts) and were scored as follows: one mark each
for the correct connection between the concepts and for the correct label for the
connections; and, one half-mark for the partially correct label for the connections.
The pairs were then divided into two levels based on their concept map score us-
ing a median split. We tested the bimodality for the distribution of the concept
map scores through a mixture of two Gaussian distributions, which confirms that

3http://cmap.ihmc.us.

http://cmap.ihmc.us
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the median cut divides the pairs into two correct categories. For more details about
the data, see Sharma, Chavez-Demoulin and Dillenbourg (2017).

There are two options to measure how much a person is concentrating during a
given task. One is fixation duration and the second is spatial entropy. High fixation
duration tells us how much the person is paying attention to the content displayed
on the screen. This measure has been extensively used in the eye-tracking research
[Jacob and Karn (2003), Just and Carpenter (1976)]. However, it does not provide
a spatial measure of concentration; the fixation duration is computed for a specific
point on the screen. For having a spatial measure, we follow Sharma et al. (2013)
where SE is used to define concentration/attention over a bigger area on the screen.
Recall that X1 and X2 denote the spatial entropy of subject 1 and 2, respectively,
as represented in Figure 1. More precisely, we observe two times series of entropy
xk,t for k = 1,2 measured at 10 second intervals as follows. We define a grid of
n = 100-pixel by m = 100-pixel over the screen. An example of a grid is shown in
the right panel of Figure 4. For each time t , denote by p

t,k
ij the proportion of time

spent by the subject on the cell (i, j) during the time window between t − 1 and t .
The time series of the Shannon entropy of subject k at time t is

xk,t = −
n∑

i=1

m∑
j=1

p
t,k
ij log

(
p

t,k
ij

)
, k = 1,2.

Let us further define the gaze characteristics which will form W, the set of
covariates,

• Activity is the total number of actions done by the pair between t − 1 and t

Activityt =
2∑

k=1

n∑
i=1

m∑
j=1

a
t,k
ij ,

where a
t,k
ij is the number of actions done by subject k at time t on cell (i, j).

• Similarity denotes the pair similarity measured at time t

Similarityt =
∑n

i=1
∑m

j=1 p
t,1
ij p

t,2
ij√∑n

i=1
∑m

j=1(p
t,1
ij )2

√∑n
i=1

∑m
j=1(p

t,2
ij )2

= cos
{
∠

(
pt,1,pt,2)}

,

where pt,k denotes the n × m-vector composed of the n × m components p
t,k
ij .

The vectors pt,1 and pt,2 are not collinear so they span a two-dimensional plane
on which the angle ∠(pt,1,pt,2) is defined. Having a high value of similarity
means that the two subjects are often looking at similar objects at the same
time.

• Stability is a factor with two levels: H for high stability and L for low stability.
The stability factor uses individual stability measured at the individual level at
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time t

st,k =
∑n

i=1
∑m

j=1 p
t,k
ij p

t−1,k
ij√∑n

i=1
∑m

j=1(p
t,k
ij )2

√∑n
i=1

∑m
j=1(p

t−1,k
ij )2

= cos
{
∠

(
pt,k,pt−1,k)}, k = 1,2.

We chose two consecutive times and not more because the time interval between
two measures already represents 10 seconds. More consecutive times would lead
to negligible values for stability. Then

Stabilityt =
{

H if st,1 + st,2 > median
(
st,1 + st,2)

,

L otherwise.

High stability means that each participant was looking at the same set of objects
on the screen for the two consecutive time windows.

• The covariate time ∈ [0, T ] where T is the length (in seconds) of the task, allow
for nonstationarity.

In Sharma, Chavez-Demoulin and Dillenbourg (2017), a comparison of the ef-
fectiveness of extreme value theory (EVT)-based modelling over traditional meth-
ods (ANOVA, linear regression, correlation tests) to classify the collaboration
quality of the pairs is provided. The competitive performance of EVT approaches
in this data context is explained by the fact that the tail is more informative than
the body distribution, as shown in Figure 1. The lower tail actually represents the
episodes during which the subjects are most likely to be together focused in a high
level of collaborative quality whereas the average joint values are less informative,
probably containing other effects than collaboration. The fact that the average joint
values are less informative to explain the quality of collaboration is confirmed by
a machine learning based approach. We use a recurrent neural network setup with
the seven variables: spatial entropy for subject 1 (X1); stability for subject 1 (S1);
number of actions performed by subject 1 (A1); spatial entropy for subject 2 (X2);
stability for subject 2 (S2); number of actions performed by subject 2 (A1); simi-
larity between the two subjects S. Table 1 contains the accuracy for predicting the
quality of collaboration using different settings for the learning rate and the num-
ber of hidden layers. The low predicting accuracy compared to the 75.8% provided
by a simple classification based on copula selection from AIC confirms what we
formulated in Section 1 on the basis of Figure 1. The average values do not bring
information and a different point of view to study the gaze data is required when it
comes to analysing the coinciding concentrations. EVT offers the (correct) pair of
glasses to look at the data here. We extend the work of Sharma, Chavez-Demoulin
and Dillenbourg (2017) in a nonstationary context of bivariate tail dependence. We
use our methodology described in Section 2.2 to extract information from the joint
lower tail of the SE series of high collaboration quality pairs. More precisely, we
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TABLE 1
Recurrent neural network at different learning rates, method based on copula selection (last row)

and prediction accuracy (last column)

Learning rate Hidden layers with 10 neurons each Accuracy (%)

0.01 1 40
0.01 2 52.5
0.01 3 50
0.1 1 47.5
0.1 2 45
0.1 3 40
1.0 1 46.6
1.0 2 42.5
1.0 3 40

Method based on copula selection 75.8

are interested in modelling the coinciding lower extremes of subjects’ SE in terms
of the significant covariates of W.

As discussed before, the pairs with low collaboration quality show no depen-
dence structure. This observation itself is a result meaning that these pairs do not
coordinate themselves. Therefore, our exploration focuses only on pairs with a
high quality of collaboration. Before attempting to explain the tail dependence
coefficient (1) of the subjects’ SE with the characteristic given by the set of co-
variates W, we first need to remove the possible effect of the covariates on X1 and
X2 individually so that the effect of the covariates on the lower tail dependence
between X1 and X2 does not originate from their effect on the margins. To do so,
we fit a GAM on the N = 10,712 data x1,t and x2,t separately, leading to the two
significant models

μ̂X1 = α̂X1 + ĥX1(stability, edf = 4.46) + ĥX1(time, edf = 8.57),(14)

μ̂X2 = α̂X2 + ĥX2(stability, edf = 4.64) + ĥX2(time, edf = 8.48),(15)

where μXk
refers to the mean of Xk and the functions hXk

are smoothed non-
parametric functions. The selected equivalent degrees of freedom (edf) are rather
similar for the two subjects which is not surprising, the subjects being interchange-
able. Having removed the covariates’ effect on the marginals, we apply the new
methodology to the GAM’s residuals.

We first choose a copula family for the residuals shown in the scatterplot of
Figure 5. Given the set of N = 10,712 pairs of residuals (ri1, ri2) (i = 1, . . . ,N )
coming from the 16 pairs, we fit several copulas on (ui1, ui2), where {ui1 =
F̂1(ri1), ui2 = F̂2(ri2)} form the pseudo sample obtained by estimating the mar-
gins F1 and F2 by their empirical distributions. Table 2 shows the AICs for the
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FIG. 5. Scatterplot of the residuals of the individual model for subject 1’ SE and of the individual
model for subject 2’ SE.

different fitted copulas. Not surprisingly, the Clayton copula minimises the AIC
for the high quality collaboration pairs.

Having chosen the Clayton copula, we fit and compare different models includ-
ing different sets of covariates of W. The last column of Table 3 provides the p-
value for each covariate. This shows that the covariate activity is not significant to
explain the lower tail dependence λ�. The resulting significant conditional model
is

λ̂� = g
(
α̂0 + ĥ(time, edf = 8.826)

+ 1{stability=“H”}{β̂H similarity} + 1{stability=“L”}{β̂L similarity}).(16)

The estimated values are provided in Table 3. The nonparametric function h for
explaining time variation is estimated from a smoothing spline with around 9 de-
grees of freedom, highlighting the nonstationarity of the dependence coefficient.
The effects of stability, similarity, and time are shown in Figure 6. The left panel
shows the lower tail dependence fitted values as a function of similarity. The non-
linearity of the curves is due to the link function and the effect of time. The lower
tail dependence increases with stability. The right panel shows the time-varying

TABLE 2
AIC for different copula families for high collaboration quality pairs

Gaussian t Gumbel Clayton

AIC −6632.52 −6662.37 −3387.25 −13,425.5
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TABLE 3
Results for the high quality of collaboration model

Estimate s.e. p-value

α̂0 1.348e+00 7.852e−03 <2e−16
β̂H 2.987e+03 4.431e+02 1.66e−11
β̂L 1.844e+03 3.012e+02 9.54e−10
β̂Activity −1.790e−03 3.003e−03 0.551

edf p-value

ĥ 8.826 <2e−16

curve of the lower tail dependence estimate for two fixed values of similarity. For
the highest value of similarity, the effect of time is smoothed by the biggest effect
of similarity on the estimated value. The time varying curve does not bring rel-
evant information for a predictive purpose but its exploratory feature is useful to
compare pairs, for instance.

FIG. 6. High collaboration quality model: fitted values of the lower tail dependence coefficient as
a function of similarity (left) for the two levels of stability and different times and as a function of
time (right) for two different levels of similarity.
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In terms of behaviour, intuitively, we can explain the relation among entropy,
stability, and similarity as follows. If the pair has a high similarity and both the
subjects are highly focused (low entropy) over a long period of time, they both
have high values of stability. However, the inverse of this might or might not be
true. Our analysis brings forward the key difference between the high and the low
quality pairs. The key difference is that for the high quality pairs the inverse of
the intuition is also true. We observe that the lower tail dependence increases with
pairs’ similarity values and it is significantly higher in the episodes with high sta-
bility (Table 3 and Figure 6). This, however, cannot be said for the pairs with low
collaboration quality.

5. Conclusion. With a huge amount of eye-tracking data available these days,
the model discussed here is a step toward modelling collaborative learning. It is
based on the most recent developments of dependence modelling beyond corre-
lation (through copulas), as well as on the semiparametric conditional model of
Vatter and Chavez-Demoulin (2015). The methodology conveniently uses the in-
formation provided from the entire data to fit a covariate-dependent tail coefficient
(which is standardly calculated from extreme values only). Many other explana-
tory variables of any type can be incorporated, because the framework benefits
directly from the flexibility of generalized additive models. In that sense, the pro-
posed method opens the door to other explorations in learning education. An im-
provement might involve considering the multivariate dimension d > 2, for in-
stance groups of more than two subjects working together to accomplish shared
goals. That can be done using pair-copula constructions as in Aas et al. (2009)
although the mapping with a high dimensional tail dependence might not always
exist. An alternative extension for d > 2, and following the relevance of the ex-
tremal coefficient in the bivariate context in Sharma, Chavez-Demoulin and Dil-
lenbourg (2017), would be the nonstationary extremal coefficient that Smith (1990)
and Coles and Tawn (1996) defined for max-stable processes. This promising ap-
proach is currently under investigation.

APPENDIX: DEFINITIONS AND DETAILS

Learning Analytics: “Learning analytics is the use of intelligent data, learner-
produced data, and analysis models to discover information and social connec-
tions, and to predict and advise on learning.”—George Siemens (Source: “What
are learning analytics?”).

Eye-tracking and Computer Supported Collaborative Learning: From Wiki-
pedia, “Computer-supported collaborative learning (CSCL) is a pedagogical ap-
proach where in learning takes place via social interaction using a computer or
through the Internet. This kind of learning is characterised by the sharing and
construction of knowledge among participants using technology as their primary
means of communication or as a common resource.”

http://www.elearnspace.org/blog/2010/08/25/what-are-learning-analytics/
http://www.elearnspace.org/blog/2010/08/25/what-are-learning-analytics/
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Hmelo-Silver (2006) emphasizes the need to analyse the collaborative processes
from multiple perspectives. Moreover, Hmelo-Silver (2006) addresses the needs
of multiple methodological tools to be used to understand the underlying cognitive
processes (how learning occurs, learning outcomes). These different tools require
that multiple data sources be used, for example, dialogs (to analyse conflicts, lead-
ership, perception of technology, and peers), eye-tracking (joint attention, referen-
tial mechanisms), online actions (division of labour).

In this contribution, we have focused on analysing the interaction between col-
laborating learners based on their eye-tracking data. Eye-tracking provides re-
searchers with an unprecedented access to the users’ attention. The eye-tracking
data is rich in terms of the temporal resolution. Eye-tracking had previously
been used in the differentiate problem solving skills and/or levels of expertise
[Knoblich, Ohlsson and Raney (2001), Jones (2003), Grant and Spivey (2003)]
to explain cognition underlying problem solving [Ballard et al. (1992), Chase and
Simon (1973)], to understand how the gaze is related to dialogues [Allopenna,
Magnuson and Tanenhaus (1998), Zelinsky and Murphy (2000), Richardson, Dale
and Kirkham (2007)], and to explain cognition underlying collaborative learning
[Pietinen, Bednarik and Tukiainen (2010), Nüssli (2011), Sangin et al. (2008),
Sharma et al. (2012, 2013), Schneider et al. (2015)].

Concept Map: A concept map is a graphical representation (organisation) of a
given body of knowledge, where the nodes are the key concepts, which constitute
the knowledge and the edges are the conceptual link between the concepts. Con-
cept maps are often used in education as a method to summarise, retain, and com-
municate knowledge and are also used for collaborative knowledge modelling.
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