
The Annals of Applied Statistics
2018, Vol. 12, No. 2, 1180–1203
https://doi.org/10.1214/17-AOAS1083
© Institute of Mathematical Statistics, 2018

A TESTING BASED APPROACH TO THE DISCOVERY OF
DIFFERENTIALLY CORRELATED VARIABLE SETS

BY KELLY BODWIN1, KAI ZHANG2 AND ANDREW NOBEL3

University of North Carolina at Chapel Hill

Given data obtained under two sampling conditions, it is often of in-
terest to identify variables that behave differently in one condition than in
the other. We introduce a method for differential analysis of second-order
behavior called Differential Correlation Mining (DCM). The DCM method
identifies differentially correlated sets of variables, with the property that the
average pairwise correlation between variables in a set is higher under one
sample condition than the other. DCM is based on an iterative search proce-
dure that adaptively updates the size and elements of a candidate variable set.
Updates are performed via hypothesis testing of individual variables, based
on the asymptotic distribution of their average differential correlation. We in-
vestigate the performance of DCM by applying it to simulated data as well as
to recent experimental datasets in genomics and brain imaging.

1. Introduction. In many statistical problems, one has two datasets that mea-
sure the same variables under different conditions. It is common in the analysis of
such data to assume that the samples in each dataset are generated from two under-
lying distributions. Even when the data is high dimensional, differences between
the distributions may be present for only a small number of variables, and it is often
of interest to identify these key variables. In this paper, we present a new method of
second-order comparative analysis, called Differential Correlation Mining (DCM),
that identifies sets of variables such that the average pairwise correlation between
variables in the set is higher in one sample condition than in another. The method
does not make use of auxiliary information, apart from the separation of samples
into predetermined groups (e.g., treatment vs. control). DCM is theoretically ap-
plicable to both low and high-dimensional settings and is computationally feasible
for high-dimensional data (105 variables).

Most often, differential behavior between sample groups is measured by first-
order statistics, which are functions of a single variable. Familiar first-order statis-
tics include the sample mean and the sample variance. A well-studied example of
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first-order differential analysis is the study of differential gene expression in mi-
croarrays [see Cui and Churchill (2003) for a canonical example, or Soneson and
Delorenzi (2013) and the references therein for an overview of several methods].
Other applications of first-order differential analysis include text analysis for au-
thorship identification [Stamatatos (2009)], studies of brain functionality based on
regional activation [Phan et al. (2002)], and investigation of cultural bias in stan-
dardized testing [Wainer and Braun (2013)].

The use of first-order statistics allows for analysis of only a single variable at
a time. To study relationships between pairs of variables, one requires functions
of two variables, which specify second-order statistics. Examples of second-order
statistics include correlation, covariance, and distance. When one wishes to under-
stand interactions between many variables (as in clustering problems), data may
be summarized in matrix form, where each entry in the matrix represents the ob-
served value of a second-order statistic. It is common to look within a matrix of
relational data for groups of variables that have high pairwise association. In ap-
plications of nondifferential second-order analysis, variable groups may represent,
for example, social groups communication networks [Lewis et al. (2008)], genes in
common protein pathways [Jiang, Tang and Zhang (2004)], or functionally similar
brain regions [Greicius et al. (2002)].

While there is a large literature on clustering and networks, to the best of our
knowledge, there is relatively little work comparing second-order behavior across
two sample conditions. The many insights obtained from ordinary second-order
variable set selection lead us to believe that a second-order differential approach
will be of scientific interest. The methods introduced in this paper fall under the
broader heading of differential association mining. As in ordinary association min-
ing, we are interested in the pairwise behavior of variables; however, in the differ-
ential setting, we must consider two different relational matrices. In some cases,
simply taking the difference of the matrices and applying ordinary clustering meth-
ods would suffice. However, most second-order statistics—including the focus of
this paper, the linear correlation coefficient—require a more careful treatment. For
instance, two sample correlation matrices will exhibit vastly different random be-
havior based on the sample sizes of the corresponding datasets, and will have a
complex dependency structure when the corresponding population correlation ma-
trices are not the identity.

The DCM method proposed here addresses differential correlation mining in a
direct way. (Section 1.2 considers possible alternatives based on existing work.)
DCM seeks variable sets that form differentially correlated (DC) cliques. In a
graph, a clique is a set of nodes that is fully connected, in the sense that there
is an edge between every pair of nodes in the set. Informally, a DC clique is a set
of variables such that each variable in the set has a positive (usually large) average
differential correlation with the other variables in the set.

More formally, let R1, R2 be the p × p population correlation matrices of the
distributions underlying sampling Conditions 1 and 2, respectively. Let A ⊂ [p],
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where [p] is the index set {1, . . . , p}, and define

(1.1) �(i,A) = 1

|A|
∑
j∈A

(R1 − R2)ij

to be the average difference of correlations between variable i and variables in
index set A. Here, the subscript ij denotes the element in the ith row and j th
column of the corresponding matrix, and |A| is the cardinality of the set A. We
formally define DC cliques as follows.

DEFINITION 1.1. Let R1, R2 be given and let �(·, ·) be defined as in (1.1).
An index set A ⊆ [p] with at least two elements is a DC clique for R1 − R2 if:

1. �(i,A) > 0 if and only if i ∈ A.
2. The set A cannot be written as a disjoint union of nonempty index sets

A1,A2 ⊂ [p] such that A1 and A2 satisfy Condition 1 above.

Condition 1 ensures that no relevant variables are omitted from a DC clique
(every variable that is positively differentially correlated relative to the set A is
included in A) and that a DC clique does not contain any extraneous elements.
Condition 1 implies that a DC clique has larger average pairwise correlation un-
der the first distribution than under the second. Condition 2 ensures that a DC
clique cannot be subdivided into two smaller DC cliques. Importantly, the defini-
tion places no conditions on the correlation matrices R1 and R2. In particular, R1
and R2 need not be sparse, and need not satisfy any structural constraints such as
bandedness. For a given pair R1, R2, it may happen that no DC cliques exist, or
that the entire variable set forms a DC clique.

Note that the definition of DC cliques is not symmetric: in general, the DC
cliques for R1 − R2 will be different from those for R2 − R1. The difference lies
not in the relational structure itself, but rather in how we order the sample condi-
tions (1 or 2). For example, in biological data, one sample group may involve a
treatment condition, while the other is a reference or control group. A DC clique
for R1 − R2 would contain genes that are more highly correlated in Condition 1
than Condition 2, for example, a protein pathway that is more active in Condition 1.
This structure is illustrated in Figure 1.

The asymmetry in DC cliques could be eliminated by replacing the relevant sec-
tion of (1.1) by a symmetric notion of difference such as |R1 − R2|. However, a
variable set based on absolute difference (or similar) could contain a mixture of el-
ements with positive correlation to A and elements with negative correlation to A.
Such mixed groups would not exhibit the unified block structure of the type seen
in Figure 1. Further, large variable sets with strong average negative correlation
cannot occur. Simple algebra shows that since R1 is positive definite, the average
pairwise correlation in Condition 1 of any set A with k elements must be at least
− 1

(k−1)
.



DIFFERENTIAL CORRELATION MINING 1183

FIG. 1. Sample correlation matrices for each of two breast cancer tumor subtypes, showing ob-
served DC clique (A) and random genes (B).

As defined above, DC cliques are features of the underlying population dis-
tributions of the data. In practice, we will replace R1, R2 with estimates from
observations, accounting for the uncertainty in these estimators, to select empiri-
cal DC cliques. The broad objective of DCM is to use observed data to identify
DC cliques, or approximations of these, without prior knowledge of the identity,
number, or size of the DC cliques present in the population. It is worth noting that
the DCM algorithm and supporting analysis described here are easily adapted to a
nondifferential correlation mining algorithm. An implementation of a correlation
mining procedure is included along with the public DCM software.

REMARK. Some bioinformatics literature uses the phrase “Differential Co-
Expression,” sometimes abbreviated “DC,” as an umbrella term for all differential
second-order gene expression behavior. In this paper, “DC” will refer specifically
to differential correlation; when a distinction must be made with co-expression or
covariance, this will be made explicit.

1.1. An example. To motivate our definition of DC cliques, we provide an il-
lustrative real-world example. Figure 1 shows an empirical DC clique identified
by DCM in real data from The Cancer Genome Atlas (TCGA) Research Network
(http://cancergenome.nih.gov/). The two sample conditions under consideration
are Her-2 type breast cancer tumors and Luminal B type tumors, as classified by
Perou et al. (2000). (Further results for the TCGA dataset are provided in Sec-
tion 5.)

Figure 1 shows the sample correlation matrices within each tumor type, re-
stricted to a set of 202 variables consisting of an empirical DC clique of size 102
selected by DCM (A), and 100 randomly chosen variables (B). The variables B

http://cancergenome.nih.gov/
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FIG. 2. Ranks of genes in observed DC clique (A) out of 15,785 total genes. (Ranked by: differen-
tial expression, as measured by p-values of 2-sample t-tests; mean overall expression among Her-2
samples; and ratio of sample variances between Her-2 and Luminal B.)

are included for contrast, and to show that the differential correlation observed in
A is not present in the entire dataset. The figure illustrates the second-order behav-
ior and the differential nature of the identified DC clique A. The block pattern in
the upper left corner of the Her-2 matrix shows that every entry in the correlation
matrix of A is large, suggesting that all the variables of A are strongly pairwise
correlated. The Luminal B sample correlation shows a similar pattern, but it is
much less pronounced. No such pattern is seen among the variables in B .

In general, the results of DCM are distinct from those found by first-order anal-
ysis (e.g., differential expression). For example, Figure 2 shows the relative differ-
ential expression, overall expression level, and differential variation for the above
estimated DC clique A. For this plot, we ranked all genes in the study (p = 15,785)
by (a) t-statistic of differential mean expression between Her-2 and Luminal B
samples, (b) overall expression in Her-2 samples, and (c) ratio of sample variations
(F -statistic) for Her-2 versus Luminal B samples. The histograms in Figure 2 show
the ranking of the genes in A. The overall uniformity of the histograms indicates
that the variables in the observed DC clique A do not exhibit standard first-order
differential behavior. Similar results were observed for all other data studied in this
paper.

By targeting DC cliques, the DCM method identifies variables whose joint be-
havior is different across sample conditions. The results are readily interpretable as
sets of variables that interact strongly under one sample condition but only weakly
(or not at all) under another. In this paper, we will demonstrate DCM is an effective
and efficient way to identify differentially correlated variable sets from observed
data.

1.2. Related work. Below we provide an overview of work that is either di-
rectly related to DCM or may be reasonably adapted to the DC clique paradigm.
In what follows, let R1, R2 denote the population correlation matrices of two data
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distributions, and let R̂1, R̂2 denote the corresponding sample correlation matri-
ces.

Mining from single correlation matrices. Nondifferential correlation mining, in
which one searches for highly associated variables from a single dataset, has been
well studied, typically in the context of clustering. Kriegel, Kröger and Zimek
(2009) provides a survey of clustering methods for high-dimensional data based
on correlation distance. Datta and Datta (2002) and Jiang, Tang and Zhang (2004)
and the references therein give an overview of methods developed specifically for
clustering of gene expression. In general, typical clustering or community detec-
tion methods must be adapted for application to correlation distances to correct
for bias [see, e.g., MacMahon and Garlaschelli (2015) for an illustrative exam-
ple].

Detection of isolated changes in correlation structure. Existing approaches to
differential correlation mining are based largely on examining individual variables
for changes in second-order structure across two sample conditions. For exam-
ple, one may treat R̂1 and R̂2 as the adjacency matrices of two fully connected,
weighted networks, and then look for variables whose connectivity pattern is very
different across the two networks [Gill, Datta and Datta (2010), Xia, Cai and Cai
(2015)]. Most methods approach differential correlation mining by developing
a statistic to measure the change in pairwise correlations of an individual vari-
able: Hu, Qiu and Glazko (2010) uses the covariance distance (total difference
of covariances), Choi and Kendziorski (2009) use a direct difference of sample
correlations, Fukushima (2013) uses the difference of Fisher transformed sample
correlations, and Liu et al. (2010) use a filtration (or thresholding) step before sum-
ming square correlation differences. These methods then permute samples across
the two classes to measure the significance of the original differential correlation.
Significant variables may then be selected by an appropriate multiple testing pro-
cedure.

Estimation and hypothesis testing. Much theoretical work is devoted to test-
ing equality of high-dimensional covariance and correlation matrices. When the
sample size n is substantially larger than the dimension p, classical results are ap-
plicable, for example, likelihood ratio tests as discussed in Anderson (1959) and
Muirhead (1982), or results like those of Steiger (1980) for testing individual sam-
ple correlation. In the high-dimensional (p > n) setting, Cai and Jiang (2011), Cai,
Zhang and Zhou (2010), Cai, Liu and Xia (2013) have developed minimax rate
optimal tests for the equality of covariance matrices under sparsity assumptions.
Results for correlation (rather than covariance) are less prevalent; recent work in-
cludes tests for sets of sample correlation coefficients [Donner and Zou (2014)],
tests for rank-based correlation matrices [Zhou et al. (2015)], and tests for detect-
ing overall dependence [Bassi and Hero (2012)].

In some cases, optimal testing procedures can inform methods for estimation
of high-dimensional covariance and correlation matrices. Particularly relevant is
the work of Cai and Zhang (2014), which yields an estimator for the difference
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matrix D = R1 − R2. This estimator is implemented and discussed further in Sec-
tion 4. Other approaches to high-dimensional estimation include: Bickel and Lev-
ina (2008), who discuss a thresholding estimator for covariance matrices; Peng,
Zhou and Zhu (2009), who estimate partial correlations in sparse regression mod-
els; and Rajaratnam, Massam and Carvalho (2008), who make use of graphical
model techniques for covariance matrix estimation.

Finally, the work of Sheng, Witten and Zhou (2016) proposes an approach to
differential correlation mining by testing subsections of the difference of correla-
tion matrices R1 − R2. Like DCM, the proposed method seeks to identify DC
clique-like structure by appealing to classical asymptotic results. However, the
method relies on a sequential testing and screening procedure that is infeasible for
high-dimensional settings (∼ 102 or more). As such, despite the close relationship
between this method and DCM, we were not able to include it in the simulation
study in Section 4.

1.3. Outline. In the next section, we describe in detail the three main steps of
the DCM procedure. Section 3 provides a closer examination of the test statistic
used in the procedure, including a discussion of its asymptotic distribution. We
apply DCM to simulated data in Section 4, and compare the results to possible
alternative procedures based upon existing work. Finally, in Section 5 we present
the results of two applications of DCM to the aforementioned TCGA dataset and
to brain activity data from the multiinstitutional Human Connectome Project.

2. The DCM procedure. In this section, we present details of the three com-
ponents of the proposed DCM procedure: initialization, set update, and residu-
alization. The initialization step employs a simple greedy algorithm to select an
initial variable set A. Once the initial set is determined, it is passed to an update
algorithm that iteratively refines the set, making use of a hypothesis testing frame-
work to test variables for differential correlation. When an estimated DC clique is
found, the residualization step prepares the data for further search by removing the
differential correlation of the discovered set.

An important advantage of this type of approach is that the number and size of
output sets are chosen adaptively based on testing principles. The DCM method
does not require prespecification of the number of clusters (as in kmeans), nor does
it require an additional decision about cluster size (as in hierarchical clustering).
Rather, the multiple testing procedure in the iterative step of DCM naturally de-
termines the number of variables in an output set. DCM also differs from typical
clustering procedures in that it does not require the calculation of a full p × p

dissimilarity matrix, which can be a computational advantage in high-dimensional
data.

The DCM procedure is summarized below. Detailed pseudocode is supplied as
supplemental material.
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THE DCM PROCEDURE

� Initialization: Identify a good initial variable set A using a greedy algorithm
that identifies a local maximum of a simple score function.

� Iteration: Refine the initial set A. At each iterative step, repeat the following
until termination.
� Test the differential correlation of each variable i with respect to A. Let

A′ be the set of variables with significant differential correlation, as de-
termined by an FDR controlling multiple testing procedure.

� Terminate if A′ = A or a cycle is observed.
� Update: Set A to be A′.

� Return: Output variable set A.
� Residualization: Remove the effect of the DC clique A.
� Repeat search with new initial set as many times as desired.

Iterative updating using multiple testing was first applied by Wilson et al. (2014)
in the context of community detection for binary networks. DCM makes use of the
same search paradigm; however, a fundamentally different treatment is required
to address differential correlation. In particular, the work of Wilson et al. (2014)
performs hypothesis tests based on a fully constructed null model, whereas DCM
requires no structural assumptions on the null distribution of the data beyond equal
correlation (R1 = R2) and some mild moment conditions (see Theorem 1).

We now provide a more in-depth discussion of each step of the procedure.

2.1. Notation. We assume that the data under condition c consists of nc in-
dependent samples drawn from a distribution Fc with correlation matrix Rc, for
c = 1,2. Let X1 = (U1, . . . ,Up) ∈ R

n1×p and X2 = (V1, . . . ,Vp) ∈ R
n2×p denote

the resulting data matrices in standard sample-by-variable form. Thus Uj ∈ R
n1

denotes the measurements of variable j under Condition 1, while Vj ∈ R
n2 de-

notes the measurements of variable j under Condition 2. Let X1,A = (Uj )j∈A and
X2,A = (Vj )j∈A denote the restriction of X1 and X2, respectively, to a variable set
A ⊂ [p]. Similarly, let Rc,A denote the correlation matrices under distribution Fc

restricted to the variables in A.
Let Ũj and Ṽj be the standardized versions of Uj and Vj , respectively, such that

‖Ũj‖ = ‖Ṽj‖ = 1, and define X̃1 = (Ũ1, . . . , Ũp) and X̃2 = (Ṽ1, . . . , Ṽp). Finally,
for c = 1,2, let R̂c denote the usual sample correlation matrices from data of Xc

(and R̂c,A that of the appropriate restricted datasets). Thus (R̂1)ij = ĉor(Ui ,Uj ) =
(X̃t

1X̃1)ij and a similar relation holds for R̂2.

2.2. Initialization. The set update procedure in the second step of DCM read-
ily identifies variables that are significantly differentially correlated relative to a
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given variable set A, and is most effective when the initial set of variables exhibits
at least low levels of differential correlation. (When applied to a randomly cho-
sen set of variables, the set update procedure typically returns an empty set.) The
core search procedure could be run exhaustively, beginning with every variable set
A ⊂ [p], but this is not computationally feasible for data sets of high or moderate
dimension. As an alternative, we identify initial variable sets exhibiting a moder-
ate degree of differential expression using a greedy search procedure. We then pass
this initial skeleton clique to the set update process to be fleshed out into a final
estimated DC clique.

The initialization procedure seeks a local maximum of the score function

(2.1) S(A) = ∑
i,j∈A

{
(n1 − 3)1/2ϕ(R̂1) − (n2 − 3)1/2ϕ(R̂2)

}
ij ,

where ϕ is the element-wise Fisher transformation of sample correlations, namely

(2.2) ϕ(r) = 1

2
log

(
1 − r

1 + r

)
.

To find a local maximizer of S(·), we begin with a random seed A. We consider
only pairwise swaps in which we replace an element of A with one from Ac.
The set A is then updated by making the swap that produced the largest increase
in the score. Since exactly one element is added and removed at each stage, the
size of the variable set remains constant. The cardinality of A is user-specified
(with a default of 50). Due to the subsequent set update procedure, we find that
many initial cardinalities result in the same final outcome. (As a rule, erring on
the side of initial cardinalities that are smaller than the expected output set size
is advisable, to avoid drowning out signal with too much noise.) Because of the
random seeding, the algorithm is not purely deterministic. However, in practice
the same local maximum is reached from most seeds.

We make use of the variance-stabilizing Fisher transformation in the initializa-
tion procedure as a way of roughly capturing significance of differential correlation
instead of simply maximizing over absolute differences R̂1 − R̂2. The transforma-
tion, and subsequent weighting by degrees of freedom, ensures that the first and
second terms in the sum are approximately standardized. As such, sets maximizing
S(·) are good ballpark guesses for true DC cliques. In the core set update proce-
dure (Section 2.3), we employ a precise testing approach to measure significance
of average differential correlation, so the initial sets need not be perfect. It is sim-
ply computationally more efficient to “warm-start” the algorithm with a reasonable
set than to apply the core refinement procedure from random starting points.

Pseudocode for the implementation of the initializing algorithm is provided as
supplemental material. A closely related method is implemented in Section 4 for
comparison with DCM.
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2.3. Core set update procedure. The heart of the DCM procedure is the set
update algorithm, which makes use of multiple testing principles to iteratively re-
fine a variable set A. Recall that the goal of DCM is to estimate DC cliques from
the data. To this end, the set update procedure is designed to identify variable sets
exhibiting the properties of a true DC clique up to a level of statistical significance.

Consider a single iterative step, at which we update a given variable set A. We
wish to determine whether each variable i (including those in A itself) ought to
be included in the updated set A′. Since our eventual goal is to discover a DC
clique, we perform hypothesis tests based upon the principles of Definition 1.1.
For a given variable set A, the tests for variable i may be written as

(2.3) H0(i,A) : �(i,A) = 0 vs. H1(i,A) : �(i,A) > 0.

Recall that �(i,A), as defined in (1.1), is a difference of average pairwise correla-
tions between i and elements of A, so (2.3) is a test of differential correlation rela-
tive to the fixed set A. We then update the set A to A′ = {i : H0(i,A) was rejected}
by simultaneous multiple hypothesis testing. This process continues until a fixed
point A = A′ is reached.

To test the hypotheses in (2.3), we require a test statistic. A natural choice is the
corresponding sample quantity

(2.4) �̂(i,A) = 1

|A|
∑
j∈A

(R̂1 − R̂2)ij .

In addition to being a straightforward choice, this test statistic exhibits several
desirable properties discussed in Section 3.

Let δ(i,A) denote the realized value of the test statistic �̂(i,A) for a particular
dataset. It is clear that large positive values of δ(i,A) provide support for the al-
ternate hypothesis in (2.3), while values that are negative or close to zero provide
evidence in favor of the null. Thus, to test the hypotheses, for each i = 1, . . . , p we
calculate a p-value of the form

(2.5) p(i : A) = P0
(
�̂(i,A) > δ(i,A)

)
,

where the probability P0 is the (unknown) distribution of �̂(i,A) under the null
hypothesis �(i,A) = 0. Since we make no assumptions about the distributions of
data under Conditions 1 and 2, we make use of asymptotic results to approximate
the above probability. We show in Section 3.2 that, under appropriate regularity
assumptions, and for large enough sample sizes n1 and n2,

(2.6) p(i : A) ≈ 1 − �

(
δ(i,A)

σ̂0

)
,

where σ̂ 2
0 is an estimate of the variance of �̂(i,A) that can be computed from the

available data. (The exact form of σ̂ 2
0 is given in Appendix 2.)
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The p-values {p(i : A)}pi=1 quantify the significance of the differential correla-
tion of each variable relative to A. To select a set of significant variables A′, we
apply the modified FDR procedure of Benjamini and Yekutieli to the p-values.
Specifically, we carry out the following steps:

1. Order the p-values {p(i : A)}pi=1 as {p(1), . . . ,p(p)}.
2. Define the cutoff index k∗ by

(2.7) k∗ = max

{
k : p(k) <

( p∑
i=1

1/i

)−1(
kα

p

)}
.

3. Let A′ = {i : p(i : A) ≤ p(k∗)}.
Recall that we impose no assumptions on the structure of correlation matrices

R1 and R2. In particular, it is possible that p-values p(i : A) and p(j : A) may be
negatively correlated. For example, it is common in genetics for individual pairs
of genes to exhibit negative correlation; in this case, a low p-value for one gene
will imply a high p-value for the other. Most common multiple testing methods as-
sume independence or positive dependency between p-values. The possibility of
negative dependency of p-values necessitates a more conservative multiple test-
ing method such as that of of Benjamini and Yekutieli (2001), which controls the
expected false discovery rate at level α under negative dependence.

The main search procedure terminates when it degenerates (A = ∅) or con-
verges (A = A′ �= ∅). For the degenerate case, the interpretation is simple: the
initial set (chosen in the first step of the DCM procedure) was not significantly
differentially correlated. In the second case, we have identified an empirical DC
clique, in the sense that by design, a nonempty fixed point A meets the first re-
quirement of a DC clique in Definition 1.1 up to a level of statistical significance.
The only other possible outcome of the iterative search procedure is a multiset
cycle, which is discussed in Section 2.5.

REMARK. The DCM algorithm does not require the use of Benjamini and
Yekutieli (2001) specifically; any multiple testing method controlling FDR would
suffice in principle. In our experience, changes to the underlying multiple testing
procedure had only minor effects on the results.

2.4. Residualization. In general, we expect multiple DC cliques in a dataset.
The residualization step allows the DCM procedure to search the same dataset
many times, avoiding repeated results. Suppose an empirical DC clique A has
been selected. Our approach is to estimate a rank one approximation of correlation
matrices R̂1,A and R̂2,A via factor analysis [Harman (1960)]. We then substitute
the relevant submatrices, X1,A and X2,A, with residualized data for which the esti-
mated rank one correlation has been removed. Methods of estimation and removal
of low-rank correlation have been well established in the literature. In the DCM
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software, we use the implementation of Friguet, Kloareg and Causeur (2009) for
the R Statistical Software version and the method of Bishop (2006) for the Matlab
version.

By opting for rank-one approximation, we are taking a conservative approach
to residualization. It is conceivable that the correlation structure of A is of higher
rank. If so, A may be selected more than once by DCM; however, since each time
the data is being further residualized, we are guaranteed to eventually remove all
structure of A. In practice, we have yet to encounter a duplicate result from real
data.

2.5. Special cases. Minimality: A nonempty fixed point A of the set update
procedure has the property that, analogously to Definition 1.1, H0(i,A) is rejected
if and only if i ∈ A. The second condition of Definition 1.1, however, is not guaran-
teed in general. It is possible that DCM may select a large set that in truth consists
of two (or more) disjoint population DC cliques. These cases are well addressed
by the residualization step. When a conglomerate estimated DC clique is residual-
ized, the joint structure is removed, leaving behind the individual structure of the
disjoint DC cliques. Further runs of the DCM algorithm are then able to identify
the separate DC cliques.

In extreme cases, the sampled data may be such that the disjoint DC cliques are,
by chance, correlated enough to have negligible remaining individual structure
after residualization. This correlation may render the multiple DC cliques indistin-
guishable in the data from a combined DC clique.

Cycles: Under certain conditions, the main search procedure terminates in a
cycle of two or more sets. When the set update procedure oscillates between two
sets A1 and A2, we restart the search on the intersection A = A1 ∩A2. In this case,
the algorithm usually converges to a fixed point in the vicinity of the intersection.
If the oscillation persists, we output the intersection A = A1 ∩ A2. This overlap
set has the property that H0(i,A) will be rejected for all i ∈ A1,A2, so it is worth
attention as an empirical DC clique.

Cycles of length greater than two are rarely observed in real or simulated data.
However, to protect against longer cycles leading to infinite loops, the algorithm
terminates at a maximum iteration limit.

Repetition to exhaustion: In principle, the DCM procedure can be run from
many initial sets. In practice, we consider the procedure to have been “run to ex-
haustion” if every variable has been included in at least one initial set and/or output
set. Our implementation of the method is thus designed to randomly choose initial
sets at each run from the set of unused variables. Note that this approach does not
prevent variables from appearing in multiple output sets.

3. Properties of the test statistic. We now discuss some properties of the test
statistic �̂(i,A) used in the calculation of p-values for the set update procedure.
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3.1. Geometric interpretation. The equation for �̂(i,A) given in (2.4) ex-
presses the test statistic directly in terms of average differential correlation. How-
ever, we may also write �̂(i,A) in an alternate form that yields an informative
geometric interpretation. Let Ũi ∈ R

n1 and Ṽi ∈ R
n2 be the standardized measure-

ments of variable i under sample Conditions 1 and 2, respectively; and let

(3.1) W1 := 1

|A|
∑
j∈A

Ũj and W2 := 1

|A|
∑
j∈A

Ṽj

be the vector means of the standardized measurements of the variables in A under
each condition. It is easily shown that

1

|A|
∑
j∈A

ĉor(Ui ,Uj ) = Wt
1Ũi = ‖W1‖ĉor(Ũi ,W1)

and, therefore,

�̂(i,A) = ‖W1‖ĉor(W1, Ũi) − ‖W2‖ĉor(W2, Ṽi).

Note that the vector Ũi and the vectors {Ũj : j ∈ A} lie on the surface of an
(n1 − 2)-dimensional sphere in R

n1 , and that W1 is the geometric center (cen-
troid) of the latter collection. The norm ‖W1‖ is between 0 and 1; large values
of ‖W1‖ correspond to the centroid being closer to the surface of the sphere, in-
dicating that the vectors {Ũj : j ∈ A} are tightly clustered, or equivalently, highly
intercorrelated. Thus the quantity ‖W1‖ĉor(W1, Ũi) weights the similarity of Ui

and the centroid W1 according to the overall similarity of the vectors {Ũj : j ∈ A}.
Similar remarks apply to {Ṽj : j ∈ A} and W2. One may therefore interpret the
average correlation between a variable i and a set A as a balance between the in-
tracorrelation of A and the individual contribution of i. The statistic �̂(i,A) is the
difference between this measure in Conditions 1 and 2.

Figure 3 gives a simple two-dimensional representation of the geometric picture
discussed above. In Condition 1, Ui is not strongly correlated with W1, but ‖W1‖
is large because the vectors indexed by A are tightly clustered. In Condition 2, Vi

is strongly correlated with W2, but ‖W2‖ is small because the vectors indexed by
A are not tightly clustered. In this example, �̂(i,A) is close to zero, and we would
likely conclude no differential correlation is present.

3.2. Asymptotic distribution of �̂(i,A). We now discuss the asymptotic distri-
bution of �̂(i,A), from which the p-values used in Section 2.3 are derived. First,
we make note of a classical result concerning sample correlations.

THEOREM 1 [Steiger and Hakstian (1982)]. Let R be a p ×p correlation ma-
trix, and R̂ the corresponding sample correlation matrix based on n i.i.d. samples
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FIG. 3. Geometric representation of data in two dimensions. Unlabelled points represent the stan-
dardized data in group A.

of p-variate data with finite 4th moment. Let P and P̂ be the vectorized versions of
the matrices, of dimension p2 × 1. Then, as n tends to infinity

√
n(P̂ − P) ⇒Np2(0,�),

where � is a p2 × p2 covariance matrix for which a general form is given equa-
tions (3.1–3.5) in Browne and Shapiro (1986).

Using Theorem 1, one may evaluate the asymptotic distribution of �̂(i,A),
which is a function of P and P̂. (A proof of Corollary 1.1 is supplied in Ap-
pendix 1.)

COROLLARY 1.1. Let A be a fixed index set and let �̂(i,A) be defined as
in (2.4), with sample correlation matrices R̂1 and R̂2 based on n1 and n2 in-
dependent samples from distributions F1 and F2, respectively. Let σ 2

0 (i,A) :=
var(�̂(i,A) | H0), where H0 is the null hypothesis in (2.3). Then, under H0 and as
min(n1, n2) → ∞,

(3.2)
�̂(i,A)

σ0(i,A)
⇒ N (0,1).

In practice, the variance σ 2
0 (i,A) is not known. We can use the results in Steiger

and Hakstian (1982) for the asymptotic variance of �̂(i,A), which leads to a con-
sistent estimator σ̂0(i,A), the derivation of which is detailed in the supplementary
material to this paper [Bodwin, Zhang and Nobel (2018)]. We note that regardless
of the size of A, the calculation of σ̂0(i,A) requires basic operations on only three
n1 vectors and three n2 vectors. Such algebraic simplification is important, since
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in practice the variance estimate must be calculated separately for every variable
i ∈ [p] and for multiple iterative steps of the DCM algorithm.

REMARK. The results of Corollary 1.1 and the variance estimator in the sup-
plementary material [Bodwin, Zhang and Nobel (2018)] apply to variable sets of
fixed cardinality (|A| = k) as n1 and n2 tend to infinity. In practice, one may en-
counter variables sets for which k > n1, n2. Simulations suggest that the DCM
algorithm still identifies DC cliques with high success and controls false discovery
in such settings even when the cardinality of |A| greatly exceeds the sample size.

4. Simulation study. To test the DCM method against possible alternatives,
we implemented a simple study of performance on simulated data. We created ar-
tificial datasets containing a single DC clique and compared the results of several
methods to the known truth. Although the simulated setting is not a perfect rep-
resentation of real data situations, it readily illustrates the advantages of DCM as
opposed to existing methods.

4.1. Simulated data. We generated data with a single embedded DC clique,
consistent with Definition 1.1. Our study varied the following parameters: size of
the DC clique (k), total number of variables (p), strength of the true correlations
in each sample condition (ρ1 and ρ2), and samples sizes of the two conditions (n1
and n2). In both sample conditions, the DC clique signal was layered on top of
either (a) uncorrelated Gaussian noise or (b) a randomly real data sample from
The Cancer Genome Atlas gene expression data.

4.2. Methods implemented. To compare DCM to alternate approaches, we im-
plemented or adapted representative methods from those in Section 1.2 to search
for DC cliques.

Detection of isolated changes (DCP). Although the goal of DCM is to identify
sets of variables, certain existing methods are designed to find individual (or iso-
lated) variables whose correlations structure changes across conditions. The Dif-
ferential Correlation Profile (DCP) method of Liu et al. (2010) is one such ap-
proach, using permutation of samples to determine the significance of correlation
difference for each individual variable. Importantly, this approach identifies a list
of individual differentially correlated variables, rather than a united set. For the
purposes of this study, we treated the collection of selected variables as an esti-
mated DC clique.

Mining a single correlation matrix (WGCNA, NetTop). One approach to mining
differential correlation is to analyze each sample condition separately, then com-
pare results. The Network Topology (NetTop) method of Bockmayr et al. (2013)
creates network representations for each of the two sample conditions by thresh-
olding the corresponding Fisher-transformed sample correlation matrices. Con-
nected components that appear in one network and not the other are considered to
be differentially correlated variable sets.
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The Weighted Gene Co-Expression Network Analysis (WGCNA) method of
Langfelder and Horvath (2008) is a hybrid approach which mines for clusters (or
“modules”) in a single correlation matrix, then tests each module for differen-
tial expression across conditions. Thus, although the WGCNA method involves
both differential and second-order elements, it is not designed to search for DC
cliques or similar structures. For the purposes of this simulation study, we applied
WGCNA to samples from Condition 1 only. We then tested the output module for
differential correlation via a standard t-test over sample correlations in Conditions
1 and 2. In this way, we attempted to only select variable sets exhibiting differ-
ential correlation, even though WGCNA does not naturally identify modules with
this property.

Mining dissimilarity matrices (hclust, D-Est, DiffCoEx). Another possible ap-
proach is to summarize differential correlation in a single dissimilarity matrix, then
select variable sets via ordinary clustering methods. We implemented a straightfor-
ward version of this approach, applying hierarchical clustering to the difference of
sample correlation matrices, R̂1 − R̂2. To circumvent the challenge of selecting
a cutoff in the dendrogram, we instead chose the first cluster of size less than or
equal to the true DC clique. (In practice, the true size would not be known, so we
would be less sure of the “best” cutoff point.) We also applied this idealized hier-
archical clustering to D̂, the estimator suggested in Cai and Zhang (2014) for di-
rectly estimating D = R1 − R2. Finally, the DiffCoEx method of Tesson, Breitling
and Jansen (2010) is a modification of WGCNA; a dissimilarity matrix is created
based on adjusted sample correlations, then the clustering approach of WGCNA is
applied.

4.3. Results. We applied the seven proposed methods (DCM, DCP, NetTop,
WGCNA, hclust, D-EST, and DiffCoEx) to several simulated datasets at each of
many parameter combinations. We found that all methods behaved similarly with
regard to changes in sample sizes n1, n2, and clique size k (relative to p). Here, we
present only the results regarding the correlation signal size, ρ1 versus ρ2, and the
different background types, to illustrate key differences in performance between
methods. By default, the other parameters were set to be n1 = n2 = 100, k = 100,
and p = 1000.

To control false discovery, we disregarded output variable sets with more than
5% false positive elements. Figure 4 shows the percent of variables in the seeded
DC clique that were successfully identified by each method after false discovery
screening, for various strengths of true differential correlation (ρ1 − ρ2 grows).
Figure 5 examines the scenario where ρ1 = ρ2 �= 0; that is, when correlation was
present in both sample conditions but not differential. Figure 5 shows the size
of selected variable sets—ideally, DC mining methods would return no results in
these cases. All result reflect an average of 10 simulations at each data point, with
all other parameters set to default values.
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FIG. 4. True discovery rates when false positive controlled at 0.05 level, for Gaussian noise back-
ground (a) and real data background (b).

DCM was able to control false positives in all cases except for some error when
there was very low signal in the real data background, which may be due to actual
signal being present in the randomized real data. DCM also began to reliably detect
DC cliques at a lower signal (around a correlation difference of 0.2 at the default
parameters) than every method except WGCNA with Gaussian background.

In randomized real data [Figure 4(b)], WGCNA did not control the false positive
rate. WGCNA is a method for nondifferential analysis, so, when applied to Condi-
tion 1 data, it correctly identifies many correlated variables, even though they are
often equally correlated in Condition 2. Although we have adapted the method to

FIG. 5. Sizes of incorrect variables sets when no differential correlation is present, for Gaussian
noise background (a) and real data background (b).
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test selected modules for differential correlation, true DC cliques are obscured by
existing nondifferential structure.

The hclust and D-EST approaches behave as expected: because we chose a cut-
off of the hierarchical clustering dendogram by size, our approach necessarily re-
turns a nonempty variable set. The false positive rate was consequently high for
small or no signal. Similarly, NetTop relies on a thresholding procedure to maxi-
mize differences between conditions, so it is likely to find signal even when none
is present. However, even if the false positives were perfectly controlled in some
way, these methods show a lower detection point than DCM.

DiffCoEx performed the strongest in our simulations, as it was able to control
false discovery in most cases while still detecting DC cliques at a reasonable rate.
DCM, however, proved more sensitive without sacrificing error control.

Finally, DCP, and any approach that seeks isolated structure rather than unified
sets, is likely to greatly overselect variables in the uncorrelated background case
because the mutual behavior of the variables in a DC clique will induce some cor-
relation structure in the extraneous variables. Figure 1 illustrates this phenomenon,
as there is some pattern in the cross correlation between variables in B and A.
This result emphasizes the danger of the common approach of looking for isolated
changes in correlation structure of individual variables, rather than searching for
DC cliques: vestigial correlation patterns may be misleading.

REMARK. We also implemented versions of the iterative testing update pro-
cedure using different hypothesis testing approaches, including a Normal approx-
imation to Fisher-transformed data and a classic likelihood ratio test as derived in
Muirhead (1982). We found that neither approach yielded a higher discovery rate
(with controlled FDR) than DCM.

4.4. Computation. Figure 6 shows the computation times for all tested meth-
ods on a log scale and an absolute scale. Since modern datasets tend to have dimen-
sion in the tens or hundreds of thousands of variables, the exponential differences
between method runtimes are crucial to the practicality of analysis. All methods
except the basic hclust required exponentially more runtime than DCM.

One important limitation of common approaches to correlation mining (includ-
ing DCP, D-Est, hclust, and NetTop) is that memory demands scale on the order
of at least p2, as they necessitate estimation of full p by p dissimilarity matrices.
Permutation- or repetition-based methods such as DCP and NetTop are even more
infeasible in high dimensions, since they require the computation of a p by p cor-
relation matrix for each of many permutations (this is why the simulations were
truncated in Figure 6). An advantage of DCM is that only a the |A| × p portion of
sample correlation matrices corresponding to proposed set A must be computed at
any given time.

Further simulation study results are available in the supplement to this paper
[Bodwin, Zhang and Nobel (2018)].
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FIG. 6. Computation time to find a single variable set at log scale (a) and exact scale (b).

5. Data analyses. The efficiency of DCM allowed us to study differential
correlation in two very high-dimensional settings: gene expresssion data (∼ 104

variables) and fMRI brain scan data (∼ 105 variables). Both of these datasets are
beyond the computation limits of the alternate methods discussed in Section 4
without access to extraordinary computing resources.4 In both applications, DCM
was able to identify empirical DC cliques of interpretable scientific merit.

5.1. TCGA. As introduced in Figure 1, we applied the DCM procedure to data
from The Cancer Genome Atlas, with samples from two predetermined breast can-
cer subtypes: Her-2 and Luminal B. A total of 18 empirical DC cliques (more cor-
related in Her-2 than in Luminal B) were discovered, ranging in size from 30 to
108 genes.

To illustrate how this information may be useful to genomic research, we briefly
discuss one of the discovered gene sets. The set of interest contained 46 genes is
listed alphabetically in Table 1. These genes are found to be highly associated with
immune response, particularly the HLA (Human Leukocyte Antigen) gene class,
represented by six of the genes in the set. Researchers are interested in understand-
ing how and why some cancer subtypes trigger immune response while others do
not. For example, Iglesia et al. (2014) showed that prognosis was improved for
patients with Her-2 and Basal-like subtypes showing higher immunoreactive re-
sponse. Further exploration of DC cliques such as the one in Table 1 may further
understanding of the gene interactions that drive immune response.

5.2. The human connectome project. The Human Connectome Project is a
multi-institutional venture aimed at mapping functional connections between parts

4A brief comparison of the methods using a truncated portion of the TCGA dataset is provided as
supplemental material.
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TABLE 1
Genes selected in empirical DC Clique for Her2 versus Luminal B samples

AGER amt APOL1 ARPC4 B2M BATF2 BTN3A2
BTN3A3 C19orf38 calml4 CCDC146 CHKB-CPT1B echdc1 ETV7
EXOSC10 FBXO6 GBP1 GBP4 GJD3 gnb3 HLA-A
HLA-B HLA-C HLA-E HLA-F HLA-H HSH2D IDO1
IL15 Irf1 LOC115110 LOC400759 LOC91316 micB Myo15b
OASL PILRB Rec8 Rufy4 SAMD9L SEC31B STAT1
tap1 Tapbp TTLL3 TXNDC6 Ube2l6 Zbp1

of the human brain. The project has collected vast amounts of brain scan data, all of
which is publicly available to researchers online at www.humanconnectome.org.5

In this analysis, we made use of a dataset from the “500 Subjects MR” data release,
which consists of functional magnetic resonance imaging (fMRI) brain scans for
542 healthy adult subjects. Participants performed a variety of tasks during the
MR scan, designed to isolate certain types of brain functionality. Activation levels
were recorded over time for ∼30,000 voxels (3D coordinate locations in the brain’s
white matter interior) and ∼60,000 greyordinates (indexed locations over the grey
matter brain surface).

In this paper, we applied DCM to data from a single subject.6 We compared two
task categories:

Language-based tasks: During the scan, subjects were told brief stories and
asked to answer questions after each one about what they were told.
Motor-based tasks: Subjects were attached to motion sensors at the hands, feet,
and tongue. They were then asked to move one appendage at a time, in blocks
of repetitions.

DCM was applied to 91,282 brain locations (or nodes) to find DC cliques that ex-
hibit more correlation over time during language tasks than during motor tasks. On
a home computer, this process took under a minute to find the first DC clique, run-
ning in Matlab. Continuing to exhaustion took approximately an hour. We discov-
ered 10 total empirical DC cliques, in sizes ranging from 1688 (displayed) to 20.

The first empirical DC clique selected by DCM contained 1688 nodes located
on the cortical surface. These nodes, or “greyordinates,” are visualized as points
on the smoothed exterior of the brain in Figure 7. The clear locational pattern in
the nodes—despite the fact that the analysis did not take location into account—is
striking. Additionally, the empirical DC clique in Figure 7 includes a concentrated
group in the rear of the left cortex. This general brain region is known to be specif-

5Data was available in preprocessed form; see http://www.humanconnectome.org/about/project/
MR-preprocessing.html for further detail.

6Subject #101006, a 35-year-old female.

http://www.humanconnectome.org
http://www.humanconnectome.org/about/project/MR-preprocessing.html
http://www.humanconnectome.org/about/project/MR-preprocessing.html
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FIG. 7. Brain locations of DC clique for languages tasks versus motor tasks.

ically associated with language processing and auditory input [Wernicke’s Area,
see Wang et al. (2015)].

We also studied two other artifacts of the data for comparison. First, we identi-
fied the 1000 nodes exhibiting the strongest differential first-order behavior. These
show higher mean activation during the language tasks than during the motor tasks,
as measured by standard two-sample t-tests. We saw a clear grouping of nodes in
the right frontal lobe. This pattern is unsurprising and appears in many studies
of brain functionality that examine differential activation for language processing
[Voets et al. (2006)]. This basic first-order analysis suggests that differential corre-
lation is not redundant. None of the empirical DC cliques selected by DCM show
high frontal lobe concentration; instead, they exhibit “trail-like” patterns such as
the ones shown in Figure 7.

Second, we identified 1000 nodes found to be highly correlated over time for
the language task data, irrespective of their behavior in the motor task data. These
nodes were observed to be very tightly grouped in the interior left hemisphere.
This is likely due to the nature of data measurement: fMRI brain scans measure
oxygen flow in the brain, so measurements for adjacent regions tend to “blur” and
show high artificial correlation [Derado, Bowman and Kilts (2010)]. In this case,
the same node set is also highly correlated during motor tasks, suggesting that
it is likely a byproduct of data collection. Even if this node set does represent a
meaningful result—regions, perhaps, that are universally correlated regardless of
task—it is not differential.

This example illustrates the advantage of taking a differential approach like
DCM. Effects due to fMRI-driven spatial correlation or strong universal correla-
tion can drown out signal that is truly specific to a particular sample condition.
By comparing language tasks to the similar but distinct condition of motor tasks,
we are able to isolate signals that are unique to language processing. The fact that
the identified DC cliques show emergent locational patterns suggests that DCM
is capturing a true facet of the data rather than arbitrary correlation. Since this
output is unique in form, while maintaining some consistency with known brain
functionality, we believe it merits further scientific investigation.
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6. Conclusion and future work. In this paper, we have introduced a new
statistical method, DCM, to identify differentially correlated variable sets from
observed data. The DCM algorithm is a statistically principled approach to data
mining which incorporates hypothesis testing into its search procedure. It is appli-
cable in many areas of scientific research, including statistical genetics and neu-
roscience. The DCM software can be run on extremely high-dimensional data (at
least ∼105 samples and/or variables) without large memory demands or long run-
times.

Future directions. Many similar association mining methods may be extended
from the DCM framework. It may be of interest to study differential mining from
other measures of association, such as rank-based correlation, which would require
results analogous to Theorem 1. One may also consider datasets with more than
two sample conditions or even a continuous response. Further theoretical work
may also be able to establish the results of Corollary 1.1 in cases where the cardi-
nality of the proposed variable set A is increasing with the sample size.

Code for public use of DCM is freely available at http://github.com/kbodwin/.
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SUPPLEMENTARY MATERIAL

Differential correlation mining: Supplementary material (DOI: 10.1214/17-
AOAS1083SUPP; .pdf). We provide the proof of Corollary 1.1, the derivation of
the variance estimator, additional simulation results, extended real data results, and
pseudocode for the algorithmic procedures.
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