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Tropical storms are known to be highly chaotic and extremely difficult
to predict. In tropical countries such as Singapore, the official lead time for
the warnings of heavy storms is usually between 15 and 45 minutes because
weather systems develop quickly and are of very short lifespan. A single thun-
derstorm cell, for example, typically lives for less than an hour. Weather radar
echoes, correlated in both space and time, provide a rich source of infor-
mation for short-term precipitation nowcasting. Based on a large dataset of
276 tropical storms events, this paper investigates a spatio-temporal model-
ing approach for two-dimensional radar reflectivity (echo) fields. Under a La-
grangian integration scheme, we model the radar reflectivity field by a spatio-
temporal conditional autoregressive process with two components. The first
component is the dynamic velocity field which determines the motion of the
storm, and the second component governs the growth or decay of the returned
radar echoes. The proposed method is demonstrated and compared with exist-
ing methods using real radar image data collected from a number of 276 tropi-
cal storm events from 2010 to 2011 in Singapore. The numerical comparison
results show the advantage of the proposed method, in terms of the mean-
squared-error, in modeling small-scale localized convective weather systems
based on the 77 inter-monsoon season thunderstorm events.

1. Introduction.

1.1. Background. The intensity of precipitation (rain, snow, and sleet) can be
estimated from the amount of transmitted power returned to the weather radar
receiver. Since the discovery of such a phenomenon during World War II, various
methods have been developed to locate, track, and predict precipitation, with the
fundamental idea in common being the spatio-temporal extrapolation/advection of
radar reflectivity (echo) field. Nowadays, these methods are collectively known as
the radar-based Quantitative Precipitation Forecasts (QPF) in the meteorological
community [Wilson et al. (1998), RMI (2008)].

The motion of a weather system, characterized by a velocity vector field, is
not directly observed and needs to be estimated from a sequence of images
for the spatio-temporal extrapolation of radar reflectivity field. In the past two
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decades, four types of methods prevail in practice: (1) gradient-based (intensity-
invariant) method, (2) pattern-based (shape-invariant) methods, (3) cell track-
ing, and (4) spectral approach. Gradient-based methods, proposed by Horn and
Schunck (1981), assume that reflectivity level is time-invariant and construct the
velocity vector field based on the first-order variation of reflectivity. Although of-
ten known as the Optical Flow (OF) in computer science (as it was proposed in
studying the two-dimensional velocities of the brightness patterns of image se-
quences), gradient-based methods are referred to as the method of Lagrangian per-
sistence by meteorologists, and are now the building block of many storm-tracking
algorithms [Bowler, Pierce and Seed (2004)]. Pattern-based methods, on the other
hand, are based on the concept of area tracking. Tracking areas (i.e., radar im-
age pixel arrays) are defined around all pixel grid points, and corresponding areas
are searched in the next radar image by maximizing the cross-correlation between
areas. Then the velocity field can be constructed given the spatial lags between
areas and the time lag between two radar scans. Unlike gradient-based methods,
pattern-based methods assume that the shape of reflectivity patterns within de-
fined areas do not change over short time intervals. In the literature, pattern-based
methods were first introduced by Leese, Novak and Clark (1971) to identify cloud
motion from satellite images, and has later been successfully used for the now-
casting of precipitation with radar over a complex orography [Li, Schmid and Joss
(1995), Rinehart and Garvey (1978), Li and Lai (2004)]. Cell tracking methods
detect storm cells as contiguous regions of enhanced reflectivity exceeding a cer-
tain threshold in both reflectivity and volume, and concentrate on the development
and displacement of these cells. For example, the TITAN algorithm (Thunderstorm
Identification Tracking Analysis and Nowcasting) is one of the most widely used
algorithms under this category [Dixon and Wiener (1993), Han et al. (2009)]. Spec-
tral methods are based on the idea that rain fields commonly exhibit both spatial
and dynamic scaling properties, and the smallest scales in radar images usually
have shorter lifetimes and are the least predictable [Seed (2003)]. In Appendix B,
we provide a brief summary of the operational QPF systems which are developed
and deployed by different countries. As different strategies have their own advan-
tages when they are applied to a certain type of weather systems for different pur-
poses, ensemble methods are widely adopted by these systems in practice [Seed,
Pierce and Norman (2013)]. Readers may also refer to Gelpke and Künsch (2001)
for a comprehensive review of the statistical methods for motion estimation.

The estimation of the velocity vector field serves as a preliminary but necessary
step for the spatio-temporal modeling framework to be described in this paper. Our
objective is not to improve any existing method for estimating the velocity vector
field, but to investigate a general statistical modeling framework that allows us
to integrate an existing method with a spatio-temporal model that captures some
special features of the storm systems in Southeast Asia, which are to be explained
in the next subsection.
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Given the observed or extrapolated radar reflectivity, precipitation intensity
can be estimated through some reflectivity-rainfall relationships [Testik and Ge-
bremichael (2013)]; for example, the Marshall–Palmer relationship between radar
reflectivity and the distribution of the size of rain drops [Marshall and Palmer
(1948)]. Compared with pure physical relationships, statistical models are often
more effective in capturing the uncertainty and dynamics associated with the radar-
rainfall relationship. Brown et al. (2001) developed a high dimensional multi-
variate state space time series model for space-time calibration of radar-rainfall
data. Fuentes, Reich and Lee (2008) introduced a framework, based on the spa-
tial logistic regression, that combines radar reflectivity and gage rainfall data by
expressing the different sources of rainfall information in terms of an underly-
ing unobservable spatial temporal process with the true rainfall values. Xu, Wikle
and Fox (2005) proposed a kernel-based radar reflectivity nowcasting approach
that efficiently parameterizes spatio-temporal dynamic models in terms of integro-
difference equations within a hierarchical framework. The kernel-based method
has certain advantages when incorporating the underlying physics into the rain-
fall process. A good example is presented by Sigrist, Künsch and Stahel (2012)
in which the authors presented a hierarchical Bayesian model for short-term pre-
dictions of rainfall, based on temporal autoregressive convolution with spatially
colored and temporally white innovations.

1.2. The modeling of weather radar data in tropical Southeast Asia. The char-
acteristics of storm systems at different geo-locations can be fundamentally differ-
ent. This paper focuses on the spatio-temporal modeling of weather radar reflec-
tivity data recorded in Southeast Asia by Singapore Meteorological Service. Given
the unique behaviors and physics behind the weather systems in this region, special
considerations are needed to address the following challenges.

The most important type of storm system in Singapore is known as the small-
scale localized convective weather system. As a tropical country, Singapore is
located in an active area known as the Inter-tropical Convergence Zone, where
weather systems are highly chaotic, and thus difficult to predict. This is a special
area where trade winds from both hemispheres meet. Hence, the winds near the
equator are generally light but highly variable. More importantly, the strong solar
heating of land areas in tropical areas causes a phenomenon known as the convec-
tive heating. As a result, the land areas become heated more than its surroundings,
leading to significant evaporation that creates the small-scale localized convective
weather system. For such a weather system, heavy thunderstorms can develop,
grow, and dissipate very suddenly in a random manner. The lifetime of convec-
tive thunderstorm cells can be as short as tens of minutes, posing a tremendous
challenge to the modeling of radar reflectivity data. Because of this, the official
lead time for the warnings of heavy storms in Singapore is between 15 and 45
minutes, and is among the shortest in the world [NEA (2017)]. In 1963, the Amer-
ican meteorologist, Edward Lorenz, had already pinned down the chaotic nature of
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atmospheric convection for weather forecasting. The exact physics behind the con-
vective processes which lead to the formation of such thunderstorms is not yet fully
understood. In general, the strength of radar reflectivity can grow or decay during
the collision-coalescence process due to vertical and horizontal winds, breakup,
and evaporation. In tropical areas considered in this paper, the growth and decay
of reflectivity become more prominent due to the presence of many small-scale
convective storm cells embedded in the storm system.

Hence, it is necessary to consider the small-scale rapid growth and decay in
modeling the radar reflectivity data in Southeast Asia. Browning et al. (1982)
showed that errors in the linear extrapolation of the radar echo field assuming
persistent reflectivity level are mainly due to the growth and decay of reflectivity.
But, the prediction of the growth and decay is not trivial and most of the early ef-
forts have not been very successful due to the nature of the problem [Wolfson et al.
(1999)]. In fact, many existing operational QPF systems in the world do not take
into account the rapid small-scale growth and decay, such as the GANDOLF sys-
tem in UK [Bowler, Pierce and Seed (2004)] and the SWIRLS system developed in
Hong Kong [Li and Lai (2004)]. One operational system that considers the growth
and decay of reflectivity is the McGill Algorithm for Precipitation Nowcasting by
Lagrangian Extrapolation (MAPLE) [Radhakrishna, Zawadzki and Fabry (2012),
Germann and Zawadzki (2002)]. It is pointed out by the authors that the growth
and decay of precipitating systems can be estimated by the mismatch between two
radar scans under the Lagrangian integration scheme. However, the authors as-
sume that the growth and decay are persistent over time, and a statistical model
that exploits both the spatial and temporal correlation of the reflectivity data is not
available.

In addition, it is worth noting that the small-scale localized convective weather
system also makes the Numerical Weather Prediction (NWP) models ineffective in
predicting the exact location and intensity of individual thunderstorms. In particu-
lar, for a small country or area like Singapore, NWP models are not able to capture
small-scale features including the growth and decay, as the resolutions of a typical
NWP simulation model ranges in the tens to hundreds of kilometers.

Based on the discussions above, the stochastic modeling of weather radar data,
using statistical techniques, is not only appealing but also necessary in capturing
the dynamics of the tropical storm systems considered in this paper.

1.3. Overview. This paper explores a spatio-temporal modeling framework for
weather radar reflectivity data. The proposed framework aims to integrate: (1) the
existing methods for estimating the velocity vector field of a weather system, and
(2) a statistical spatio-temporal model that captures the small-scale growth and
decay of radar reflectivity.

We consider a classic forced-advection problem under the Lagrangian frame of
reference, where an observer watches the world evolve around her as if she trav-
eled with the radar image pixel arrays within a velocity field. Based on the discrete
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approximation to the forced-advection problem, we adopt the idea as suggested
by the Canadian MAPLE system [Germann and Zawadzki (2002), Radhakrishna,
Zawadzki and Fabry (2012)], and assess the growth and decay of reflectivity by
the mismatch between two radar images given the constructed velocity vector
field. The reflectivity growth and decay are then modeled by extending the Spa-
tial Temporal Conditional Autoregressive (STCAR) model described in Mariella
and Tarantino (2010). In the literature, the Conditional Regressive Model (CAR)
model, or Gauss–Markov model, have been extensively used for modeling geo-
graphical area data when a spatial phenomenon at a location is affected by its
neighboring areas [Besag and Kooperberg (1995), Carlin and Banerjee (2003),
Cressie (1993), Stern and Cressie (2000), Banerjee, Carlin and Gelfand (2015)].
The spatial structure implied by the CAR model has also been investigated by Wall
(2004).

As shown in Section 2, a radar image pixel array consists of a number of image
pixels and can be naturally modeled as a spatial area. Because the reflectivity at dif-
ferent spatial locations are recorded in a sequence of equally spaced time intervals,
the STCAR model (which is essentially an autoregressive model for a temporal se-
quence of CAR) takes into account both the spatial dependence of the reflectivity
growth among neighboring pixel arrays and the temporal dependence of the reflec-
tivity growth on the same pixel array. Unlike many other conventional multivariate
geographical area data models, the spatial locations (i.e., the coordinates) of pixel
arrays change over time due to the motion of weather systems. Hence, neither
the distance nor the spatial relationship between two pixel arrays is time-invariant,
leading to a more dynamic and complicated structure of spatial dependence. On the
other hand, it is also desirable to keep the model simple and computationally effi-
cient. Note that, an STCAR model can be directly specified by choosing the joint
distribution of a sequence of Markov random fields via conditional and marginal
distributions. Based on the recent findings of Radhakrishna, Zawadzki and Fabry
(2012), the growth and decay of precipitation intensity over short time intervals are
usually well approximated by Gaussian. This finding, which is also verified in our
application example presented in Section 4, allows us to conveniently specify the
conditional and marginal distributions for the STCAR model. Furthermore, com-
pared to other multivariate areal data model, such as the Generalized Multivariate
Conditional Auto-egressive (GMCAR) model [Jin, Carlin and Banerjee (2005)],
the STCAR model provides a simple yet efficient way to capture the spatial as-
sociation at a particular time point by a single parameter, leading to a significant
reduction in the computational time. Note that, as a new weather radar image typ-
ically becomes available every 5 minutes, the model needs to be constructed or
updated in a few minutes including the time consumed by data processing and
transfer.

The paper is organized as follows. Section 2 describes the radar data as well as
the basic settings of a radar image. The general modeling framework and details
are provided in Section 3. In Section 4, an application example are presented using
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real radar data. A comparison study is presented in Section 5 based on a number
of 276 storm events. Section 6 is the conclusion of the paper and also highlights
some future research directions.

2. Motivating example and basic settings. In this section, we provide a mo-
tivating example and describe the basic settings of a weather radar image.

2.1. Singapore floods. As a tropical island country located 137 km north of the
equator, Singapore has a tropical rainforest climate with abundant rainfall. Based
on a 145-year survey from the year 1869 to 2013, the average yearly rainfall of
Singapore is approximately 2344 mm, and the average raining days of a year is
178 days [NEA (2014)]. The yearly rainfall of Singapore is respectively 4 and 2.5
times higher than that of London and Seattle.

The 2010–2013 Singapore floods refer to the series of flash floods that hit vari-
ous parts of the city state Singapore since 2010. The floods came about due to the
higher-than-average rainfall that aggregated over a short period of time. Detailed
descriptions and a complete list of flooding incidents are available from Wikipedia
under “2010–2013 Singapore floods”. Consider, for example, a heavy rain event
on the early morning of 25 June 2010. A torrential downpour early that morning
triggered flash floods across Singapore. The flood also caused morning rush hour
traffic to come to a virtual standstill on all major expressways. It was reported that
the heavy downpour on that Friday morning was equivalent to about 60% of the
average monthly rainfall in June. Social media and micro-blogging sites such as
Facebook and Twitter were awash with flood photos and users exchanging pic-
tures. Figure 1 shows 7 consecutive weather radar scans of reflectivity taken from
8 AM to 8:30 AM, 25 June 2010. A tropical storm, moving from the west to the
east, is clearly identified by the high-reflectivity area (the orange area) in the fig-
ures. The last plot in Figure 1 shows the map of the spatial area covered by a
single radar scan. Note that, Singapore is the small island (the shaded area) at the
center of the image, and the x- and y-coordinates are based on the SVY21 projec-
tion which has a one-to-one correspondence with the latitude-longitude projection
system.

2.2. Weather radar data and basic settings. The radar data used in the pa-
per are generated by a dual polarization Meteorological Doppler Weather Radar
(MDWR) located at the Singapore Changi Airport—the eastern tip of the main
island. A modern MDWR system generates hundreds of products related to me-
teorological conditions. In this paper, we use the standard Constant Altitude Plan
Position Indicator (CAPPI) reflectivity data at 1 km above the mean sea level. The
method can be applied to other CAPPI datasets at other user-definable heights.
CAPPI reflectivity images contain information about the reflectivity (in units of
dBZ) at given grid points and times. These images are taken at 5-min intervals and
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FIG. 1. Examples of radar scans of a tropical storm on the morning of 25 June 2010. The loca-
tion of Singapore is indicated by the shaded area at the center of the last image, and the x- and
y-coordinates are based on the SVY21 projection system, which has a one-to-one correspondence
with the latitude–longitude projection system.

each image is arranged on a Cartesian 2D grid of 480 × 480 pixels, with the top-
left and lower-right corners given by (102.892◦E, 2.42799◦N) and (105.052◦E,
0.269748◦N), respectively. The resolution of each grid square is approximately
0.5 × 0.5 kilometers.

The 480 × 480 pixels of a radar image are further divided into 93 × 93 pixel
arrays (i.e., boxes or tiles). Each pixel array has a fixed size of 19 × 19 pixels
and covers an area of 90.25 km2. The centers of any two neighboring pixel arrays
are spaced 5 pixels apart, which is approximately 2.5 km. Figure 2(a) plots the
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FIG. 2. (a) Centers of the 8649 pixel arrays occupying the spatial domain of a CAPPI image;
(b) Illustration of two neighboring pixel arrays: each pixel array has a fixed size of 19 × 19 pixels
and the centers of any two neighboring pixel arrays are spaced 5 pixels apart.

centers of the 93 × 93 pixel arrays that occupy the entire spatial domain of a radar
scan. Note that, neighboring pixel arrays overlap with each other, as shown in
Figure 2(b). This particular setting of pixel arrays is commonly adopted by the
meteorological community [Li and Lai (2004)].

3. The spatio-temporal modeling framework.

3.1. A Lagrangian-type of advection scheme. Consider a Lagrangian-type of
advection scheme within which an observer watches the world evolves around her
as if she traveled with the pixel arrays. Let S ⊆ R2 and T ⊆ N

+ be the spatial and
temporal domains that we denote by xi,t the location of pixel array i at time t , i =
1,2, . . . , n. Note that, pixel arrays are advected by a velocity field as the weather
system moves, and we also denote by si , i = 1,2, . . . , n, the initial location of pixel
array i at some reference time t = 1, that is, xi,t = si for all i if t = 1.

The velocity field characterizes the motion of pixel arrays. Since a two-
dimension problem is considered in this paper, the velocity field is the pro-
jection of the actual wind field on the surface 1 km above the sea level. Let
xt = (x1,t , x2,t , . . . , xn,t )

T be a collection of locations of all pixel arrays at time t .
We define the forward translation (i.e., shift) operator � as

(3.1) �xt = (�x1,t , �x2,t , . . . ,�xn,t )
T = xt+1.

The translation operator � can be determined given the velocity field estimated
from a series of consecutive radar scans, and we leave the details to Appendix A.
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Based on equation (3.1), the m-step forward translation operator and inverse trans-
lation operator are also defined:

�� . . .�︸ ︷︷ ︸
m

= �(m)xt = xt+m, m ∈ N
+,(3.2)

�(−m)xt = xt−m, m ∈ N
+.(3.3)

Similarly, let Zt = Z(xt ) = (Z(x1,t ),Z(x2,t ), . . . ,Z(xn,t ))
T denote the radar

reflectivity on all pixel arrays at time t with Z(xi,t ) being the reflectivity on pixel
array i (i = 1,2, . . . , n). Then the classic forced-advection model is defined as
[Staniforth and Cote (1991)]

(3.4)
dZt

dt
= ∂Zt

∂t
+ vt · ∇Zt = Gt .

Here, vt is the velocity field at time t over the space. Gt = G(xt ) = (G(x1,t ),

G(x2,t ), . . . ,G(xn,t ))
T is the forcing term that represents the growth (or decay) of

radar reflectivity on pixel arrays at time t with G(xi,t ) being the reflectivity growth
on pixel array i.

It is well known that there exists a discrete approximation to the forced-
advection problem (3.4) as follows:

Zt+1 = Z(xt+1)

= Z
(
�(−2)xt+1

) + 2G
(
�(−1)xt+1

) + O
(
�2)

≈ Zt−1 + 2Gt ,

(3.5)

where � is the length of time intervals.
The advection scheme (3.5) serves as the basis of our model, which suggests

that the process {Zt } is driven by two hidden sub-processes. The first sub-process
is the dynamic velocity field which determines translation operator �, while the
second is the reflectivity growth process {Gt }. In other words, given the trajectory
of any pixel array i, the reflectivity on that pixel array at time t + 1 is the sum of
the reflectivity on the pixel array at time t −1 and two times the reflectivity growth
on the same pixel array at time t . Neither the velocity field (i.e., the trajectories of
pixel arrays) nor the reflectivity growth are directly observed.

The velocity vector field of a weather system can be obtained by analyzing two
consecutive radar scans. Once the velocity field has been established, the transla-
tion operators are fully defined and the locations of pixel arrays at different times
can be tracked. Hence, the construction of the velocity field serves as a prelimi-
nary step for the entire modeling approach. As discussed in Section 1, we adopt
a popular pattern-based method known by the meteorological community as the
COTREC method (Tracking Radar Echoes by Correlation). This method has been
well explained by Rinehart and Garvey (1978), Li, Schmid and Joss (1995) and
Li and Lai (2004), and we provide a brief review of the principle of the method
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in Appendix A. In this paper, we treat the translation operators as known from the
constructed velocity vector field. The error associated with the estimated velocity
field is absorbed by the statistical model of {Gt } to be described.

Given the velocity field, it is possible to track the locations of pixel arrays at dif-
ferent times, (x1,x2, . . . ,xt ), and obtain the observed reflectivity (Z1,Z2, . . . ,Zt )

associated with the tracked pixel arrays from radar images. Then the reflectivity
growth process {Gt } is obtained from the Lagrangian-type of advection scheme
(3.5):

Gt = G
(
�(−1)xt+1

) = Z(xt+1) − Z(�(−2)xt+1)

2
.(3.6)

In other words, the reflectivity growth is exactly the mismatch between two radar
scans under the velocity vector field [Radhakrishna, Zawadzki and Fabry (2012),
Germann and Zawadzki (2002)]. In a special case in which pixel arrays do not
move, the reflectivity growth is immediately obtained from the difference of re-
flectivity from two consecutive radar scans. Of course, this is never the case in
reality when modeling radar reflectivity data. In the next subsection, we describe
how the reflectivity growth process {Gt } is modeled.

3.2. The modeling. Extrapolating radar reflectivity is the mainstay of now-
casting. In Singapore, for example, the official lead time for the warnings of heavy
storms is usually between 15 and 45 minutes. Since only radar reflectivity at a
fixed height is used in this paper, it is a natural choice to consider the (possibly
transformed) reflectivity growth process {Gt } as an Autoregressive (AR) process.
In particular, we assume that the process {Gt } has the following general form:

(3.7) BtGt = r1Bt−1Gt−1 + r2Bt−2Gt−2 + · · · + rqBt−qGt−q + εt ,

where (r1, r2, . . . , rq) are the autoregression coefficients, εt is some spatio-
temporal error process, q is the order of the AR process and the matrix B is to
be determined for each time point.

At any time t , we model Gt as a spatio-temporal process and assume that Gt

can be expressed by

(3.8) Gt = μt + Yt ,

where μt = (μ1,t ,μ2,t , . . . ,μn,t )
T captures the deterministic large-scale spatial

trend of the reflectivity growth at time t with its element μi,t representing the
mean reflectivity growth of pixel array i, and Yt describes the small-scale random
variation of the reflectivity growth with zero-mean and spatial covarance �t .

In particular, the mean function μt needs to be flexible enough to handle the
complex reflectivity growth over the spatial domain. Hence, we consider a locally
weighted mixture of linear regression model as shown below [Stroud, Müller and
Sansó (2001)]:

(3.9) μi,t =
J∑

j=1

πj (xi,t )fTj (xi,t )γj,t ,
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where fj (xi,t ) is a column vector of known basis functions, γj,t are column
vectors of unknown parameters at time t , and πj is a nonnegative kernel cen-
tered at chosen locations. Let Fj,t = (fj (x1,t ), fj (x2,t ), . . . , fj (xn,t )) and πj =
(πj (x1,t ), πj (x2,t ), . . . , πj (xn,t )), we have

(3.10) μt = Ft γt ,

where Ft = (diag(π1)F1,t ,diag(π2)F2,t , . . . ,diag(πJ )FJ,t ) and γt = (γ T
1,t , γ

T
2,t ,

. . . , γ T
J,t )

T .
The second term of (3.8), Yt , is modeled by an STCAR model to handle both

the spatial and temporal association among pixel arrays. For any pixel array i and
given {y(xj,t ); j �= i} on all pixel arrays j which belongs to a pre-defined neigh-
borhood �i of i (i.e., j ∈ �i and j �= i), the conditional distribution of Y(xi,t ) is a
Gaussian given as follows:

(3.11) Y(xi,t )|{Y(xj,t ); j �= i, j ∈ �i

} ∼ N

(
ρt

∑
j �=i

wi,j (t)

wi+(t)
y(xj,t ), σ

2
i,t

)
,

where

(3.12) wi,j (t) =
{
φ(xi,t , xj,t ) if j ∈ �i, i �= j,

0 otherwise,

and wi+(t) = ∑n
j wi,j (t), and φ is a nonincreasing function of the distance be-

tween xi,t and xj,t . In (3.11), the parameter σi,t describes the variability of the
data at location xi,t , and the parameter ρt represents the strength of spatial associ-
ation at time t .

Note that the distance between two pixel arrays changes over time. If the neigh-
borhood of a pixel array i is defined in a conventional way as a set of pixel arrays
within a fixed distance of array i, then the number of pixel arrays in a neighbor-
hood varies over time as the pixel arrays travel in space. This is mathematically
inconvenient for an autoregressive model like (3.11). Fortunately, within a short
period of time (say, 10 to 15 minutes), it is reasonable to assume that neighboring
pixels tend to move in a similar direction with a similar speed, provided that the
wind field is smooth and slowly varying in space. As shown in the numerical ex-
ample presented in Section 4, the order of q of the AR process (3.7) is typically 2
to 3, which corresponds to 10 to 15 minutes. Based on the above considerations,
we define the neighborhood of a pixel array i based on the initial locations of pixel
arrays at time t = 1 as follows:

(3.13) �i = {
j ∈ S : ‖xi,1 − xj,1‖ < d

}
for a constant distance d > 0.

Let Wt = {wi,j (t)}ni,j=1, WD,t = diag(w1+(t),w2+(t), . . . ,wn+(t)) and σi,t =
σt · w−1

i+ (t), Yt is modeled as a temporal sequence of Conditional Autoregressive
(CAR) models with expected value zero, that is,

(3.14) Yt ∼ N
(
0, σ 2

t (WD,t − ρtWt )
−1)

.
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Then the vector of random fields, Yt , is an STCAR model of order q if for
every t ,

(3.15) BtYt =
q∑
j

rj Bt−j Yt−j + εt ,

where

εt ∼ N
(
0, σ 2

t W−1
D,t

(
I − ρtW

−1
D,tWt

)T )
,(3.16)

Bt = I − ρtW
−1
D,tWt .(3.17)

To ensure that the covariance matrix �t is positive definite, ρt needs to be be-
tween the interval (1/λmax,1/λmin) with λmin and λmax, respectively, the maxi-
mum and minimum eigenvalues of the matrix W−1

D,tWt [Haining (1990)].
Substituting (3.8) and (3.10) into (3.7), we have

(3.18) BtGt =
j=q∑
j=1

rj Bt−1Ft−j γt−j +
j=q∑
j=1

rj Bt−j Yt−j + εt .

Hence, (3.18) suggests that the reflectivity growth process {Gt } is modeled by
an STCAR with order q . The first term on the right-hand side of (3.18) describes
the mean process, while the second term on the right of (3.18) is an STCAR model
defined by (3.15).

The autoregressive nature of the model (3.18) allows us to extrapolate the radar
images for nowcasting purposes. At any time t ′, the one-step-ahead reflectivity
Zt ′+1 can be predicted by (3.5), that is, Zt ′+1 = Zt ′−1 + 2Gt ′ . Here, the reflectivity
Zt ′−1 at t ′ − 1 is observed, and Gt ′ is estimated from (3.18). In particular,

(3.19) Gt ′ ∼ N

( q∑
j=1

rj B−1
t ′ Bt ′−j Gt ′−j , σ

2
t ′(WD,t ′ − ρt ′Wt ′)

−1

)
.

Similarly, the reflectivity fields at times t ′ + 2, t ′ + 3, . . . , t ′ + p are obtained
iteratively.

3.3. Parameter estimation. The proposed STCAR model contains a set of un-
known parameters, including a 3J × 1 column vector, γt = (γ T

1,t , γ
T
2,t , . . . , γ

T
J,t )

T ,
that determines the overall spatial trend of the reflectivity growth at time t , the
spatial association ρt at time t , the variability σt at time t , and the parameters of
the temporal association, r = (r1, r2, . . . , rq).

Hence, a large number of unknown parameters is to be estimated for any time t .
In the application example presented in the next section, for example, the num-
ber of kernels J is chosen to be 30, which makes γt a 90 × 1 column vector. In
practice, a new radar image becomes available every 5 minutes. Considering the
time consumed by the preliminary radar data processing and the construction of
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velocity field, it is of vital importance for the parameter estimation procedure to be
numerically stable and efficient enough to incorporate the latest information into
the analysis. This motivates us to adopt a two-step estimation approach based on
the idea described in Mariella and Tarantino (2010). In the first step, we ignore the
temporal association between radar images, and estimate the parameters γt , ρt ,
and σt from individual radar images. In the second step, the temporal association
r = (r1, r2, . . . , rq) is estimated based on the results from the first step.

In particular, the parameters γt , ρt , and σt are estimated using the Iteratively
Re-Weighted Generalized Least Squares (IRWGLS). Note that, when the temporal
association of radar images is ignored, (3.18) degenerates to a conventional CAR
model without temporal correlation between a sequence of radar scans:

(3.20) BtGt = Ft γt + εt , εt ∼ N
(
0, σ 2

t W−1
D,t

(
I − ρtW

−1
D,tWt

)T )
.

The IRWGLS consists of the following steps:

Step 0: Set the initial �̂t to an identify matrix.
Step 1: Estimate γt using the Feasible General Least Squares (FGLS):

γ̂t = (
F�

t �̂
−1
t Ft

)−1F�
t �̂tGt .

Step 2: Based on the residuals u = Gt − Ft γ̂t , estimate the spatial association ρt

and variability σt using the Maximum Likelihood Estimation (MLE) described
below, and obtain the estimate of the covariance matrix, �̂t , from equation
(3.14).

Step 3: Iterate Steps 1 and 2 until the relative changes of γ̂t , ρ̂t , and σ̂t are small.
In the first iteration, since �̂t is an identify matrix, γ̂t in Step 1 is the Ordi-
nary Least Squares (OLS) estimator and is unbiased. In subsequent iterations,
the finite-sample properties of the FGLS estimator, γ̂t , are usually unknown.
Asymptotically, the FGLS estimator possesses the asymptotic properties of the
Maximum Likelihood estimator, and is equivalent to the Generalized Least
Squares (GLS) estimator under regularity conditions. In fact, it is possible to
obtain estimate γt , ρt , and σt all at once using MLE. However, this leads to a
high-dimensional optimization problem which could be numerically inefficient
in practice.

In step 2 above, given the observed reflectivity zt−1 and zt+1, the log-likelihood
function is given as follows:

(3.21) l(yt ;γt , σt , ρt ) = −n

2
log

(
2πσ 2

t

) + 1

2
log |WD,tBt | − yT

t WD,tBtyt

2σ 2
t

,

where

(3.22) yt = gt − Fγt ,

and gt = (z(xt+1) − z(�(−2)xt+1))/2.
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Note that, the MLE of σ 2
t is given by

(3.23) σ̂ 2
t = yT

t WD,tBtyt

n
.

Substituting (3.23) into the log-likelihood function (3.21), the MLE of γt and
ρt can be numerically found by minimizing

(3.24)
n

2
log

(
yT
t WD,tBtyt

n

)
− 1

2
log |WD,tBt |.

Multiple initial values can be used to avoid the convergence to local minima, given
the high dimension of the optimization problem.

After the parameters γt , ρt , and σt have been estimated, it is possible to es-
timate the temporal association parameter r = (r1, r2, . . . , rq). Note that, (3.18)
degenerates to a conventional linear regression model (3.25) without spatial corre-
lation between the reflectivity on pixel arrays if ρt = 0 for all t . Hence, r can be
estimated using the weighted least squares after substituting (γ̂t , σ̂t ,ŴD,t ,yt ) into
(3.25):

(3.25) Gt =
j=q∑
j=1

rj Ft−j γ̂t−j +
j=q∑
j=1

rj Yt−j + εt ,

where εt ∼ N(0, σ̂ 2
t Ŵ−1

D,t ). Note that, Bt becomes an identity matrix if ρt = 0.

4. Application example. We revisit the motivating example presented in Sec-
tion 2, and apply the proposed modeling approach to the radar images, shown in
Figure 1, on the early morning of 25 June 2010.

4.1. Obtain the velocity field. The first step is to construct the velocity field,
making it possible to track pixel arrays as well as the reflectivity change on those
arrays. The basic settings of the overlapped pixel arrays are described in Sec-
tion 2 and visualized in Figure 2. For illustrative purposes, Figure 3 shows the
constructed velocity fields at 8:00 AM, which is the starting time of the sequence
of radar images shown in Figure 1. The velocity fields are obtained using two
consecutive radar scans. In order to visualize the velocity vectors clearly, we only
show the constructed velocity fields over Singapore, that is, the central part of the
spatial domain. The moving directions of pixel arrays are indicated by arrows with
their length proportional to the moving speed. Note that, since the velocity vectors
are obtained based on the Pearson’s correlation coefficient of the reflectivity val-
ues on pixel arrays from two consecutive scans, it is only possible to obtain the
velocity vectors for areas where the weather system is located.

To further illustrate the pixel tracking method, the left panel of Figure 4 shows
the initial location of a pixel array at 8:00 AM. The right panel of Figure 4 shows
the tracked locations of this pixel array at different times. This pixel array heads
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FIG. 3. The constructed velocity field at 8:00 AM over Singapore (the shaded area in the center).
The arrows indicate the wind direction and the length of the arrow indicate exactly the wind speed.
Only positive reflectivity (>0 dBZ) is plotted to clearly show the wind vectors, although the wind field
is obtained using the complete reflectivity data.

to the east at the beginning, and then turns to the north direction at 8:30 AM. Fig-
ure 5 also shows the observed reflectivity on this tracked pixel array (with 361
pixels) at different times. Recall that the pixel arrays are tracked by maximizing

FIG. 4. Illustration of the tracking of pixel arrays. The left panel shows the initial location of a
pixel array, and the right panel shows the tracked locations of this pixel array at different time.
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FIG. 5. Reflectivity image on the tracked pixel array at different times.

the cross-correlation between areas from two consecutive radar scans, and it is
possible to see the similarity of the seven images. Although the 6th image (taken
at 8:25 AM) and the 7th image (taken at 8:30 AM) appear less similar, the correla-
tion between the 6th image at 8:25 AM and any other pixel arrays at time 8:30 AM
is even weaker. In general, it is difficult to construct the velocity vectors when the
underlying weather system is rapidly changing over time. Fortunately, to enhance
the robustness of the tracking algorithm, the smoothness/consistency constraint is
incorporated in the constrained minimization problem (A.4) in Appendix A. Such
a constraint ensures that neighboring pixel arrays move in similarly directions,
which effectively prevents a single velocity vector from being estimated incor-
rectly.

4.2. Model the reflectivity field. Once the velocity field has been established,
the reflectivity growth, Gt , is obtained using (3.6) and shown in Figure 6. As
one might expect, high reflectivity growth is found at the central area of the
storm where the weather system is highly dynamic, while the reflectivity approx-
imately remains unchanged over the 5-min sampling interval for most pixel ar-
rays.

The model parameters ρ (the overall spatial association), σ (the overall spa-
tial variability) and r (the temporal association) are estimated using the method
described in Section 3.3. In particular, we place a number of J = 30 Gaussian ker-
nels over the reflectivity field with the centers chosen by the method of K-means
clustering [Hartigan and Wong (1979)]. For each Gaussian kernel, the covariance
matrix is chosen as a diagonal matrix with standard deviation 10 km. Table 1 shows
the estimated ρ and σ from 8:05 AM to 8:30 AM.
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FIG. 6. Reflectivity growth over the spatial domain from 8:05 AM and 8:30 AM.

As seen from Table 1, the values of σ , which characterizes the overall vari-
ability, does not change dramatically over the 25-min interval from 8:05 AM to
8:30 AM. The spatial association ρ, however, jumps from −11.63 at 8:05 AM to
−19.22 at 8:10 AM and remains around −19 after that. Substituting the estimated
values from Table 1 into (3.14), we obtain the estimated covariance matrix �̂t ,
which allows us to further investigate the correlation structure of the reflectivity
growth among neighboring pixel arrays. Figure 7 plots the computed correlation
between all pairs of pixel arrays against their distances in kilometer. In particular,
the left panel shows the correlation at 8:05 AM where ρ is close to −11, while
the right panel corresponds to 8:30 AM where ρ is close to −19. Interestingly, the
two plots suggest very different correlation structures. At 8:05 AM, the neighbor-

TABLE 1
Estimated values of ρ and σ from 8:05 AM to 8:30 AM

8:05 AM 8:10 AM 8:15 AM 8:20 AM 8:25 AM 8:30 AM

ρ −11.63 −19.22 −18.96 −19.12 −19.19 −19.32
σ 18.67 16.20 16.34 15.84 17.44 17.08
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FIG. 7. Correlation between all pairs of pixel arrays.

ing pixel arrays are negatively correlated. For two pixel arrays which are close to
each other, some pairs of pixel arrays exhibits stronger correlation (say, −0.12)
than others (say, 0.02). In general, the correlation becomes weaker as the distance
between two pixel arrays grows and can be ignored when two pixel arrays are
30 km apart. At 8:30 AM, the correlation structure among pixel arrays seems to
be more complicated. Not only the strength of correlation becomes much stronger
(−0.6∼0.4), but also the neighboring pixel arrays could either exhibits positive
or negative correlation. Such a puzzling result concerning the correlations implied
by the CAR model has been studied by Wall (2004) and Assunção and Krainski
(2009). The authors found that, when ρ increases from zero to the upper bound of
its parameter space, the correlation is positive and monotone increasing as ρ. When
ρ decreases from zero, the correlation is negative at first and also decreases as ρ.
But, when ρ is further approaching to the lower bound of its parameter space, the
correlation between some neighbors could either approaches −1 or starts growing
to the positive side. In our context, the negative correlation among two neighboring
pixel arrays might be explained by the mass conservation as the water contained
in the cloud leaving one region and joining its neighboring regions. The positive
correlation is often expected as the reflectivity in a particular region is growing or
decaying at the same time.

Once γ̂t , σ̂t and ŴD,t have been estimated, r is obtained from (3.25) using the
weighted least squares. If the order of the STCAR model is chosen to be q =
2,3,4, we respectively obtain r̂ = (0.911,−0.317), r̂ = (0.996,−0.495,0.21),
and r̂ = (1.082,−0.513,0.347,−0.206). The autoregressive nature of (3.18) al-
lows us to extrapolate the radar images for nowcasting purposes. The reflectiv-
ity field at 8:35 AM (i.e., 5-minutes-ahead nowcasting) is predicted using (3.19)
and is shown in Figure 8. Similarly, the reflectivity fields at 8:45 AM (i.e., 15-
minutes-ahead) and 9:00 AM (i.e., 30-minutes-ahead) are also obtained iteratively
and shown in Figure 8. In this figure, the first row shows the actually observed re-
flectivity at 8:35 AM, 8:45 AM and 9:00 AM, the second rows shows the predicted



396 X. LIU, V. GOPAL AND J. KALAGNANAM

FIG. 8. Observed and predicted reflectivity fields at 8:35 AM, 8:45 AM, and 9:00 AM. The first
row shows the actually observed reflectivity, the second rows shows the predicted reflectivity using
the existing COTREC method, and the third row shows the predicted reflectivity using the proposed
approach.

reflectivity using the existing COTREC method without considering the grow and
decay of reflectivity [Li and Lai (2004)], and the third row shows the predicted
reflectivity using the proposed approach.

The COTREC method is a well-known approach which has been widely im-
plemented in the meteorological community [Li and Lai (2004), RMI (2008)].
While both the COTREC and the proposed approaches rely on the same pattern-
based method to construct the wind field, the former (which is not a statistical
model) does not model the growth and decay of the reflectivity as the proposed
method does. Hence, the COTREC method serves as an ideal candidate for com-
parison purposes. It is seen from Figure 8 that the reflectivity fields generated by
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both methods reasonably match with the actually observed reflectivity fields for
5-min- and 15-min-ahead nowcasting. However, the 30-min-ahead nowcasting at
9:00 AM becomes less accurate. At 9:00 AM, the actual reflectivity field heads
to the east, while the predicted high reflectivity region moves to the south. Since
the radar-based nowcasting method is based on the spatio-temporal extrapolation
(autoregression in our case) of radar reflectivity, it is almost impossible to pre-
dict the change of the wind direction for highly dynamic tropical storms. Note
that the constructed velocity vectors associated with the high reflectivity region
at the center of the spatial domain (as shown by Figure 3) are pointing to the
south at 8:30 AM. In general, the predicability of the same radar-based nowcast-
ing method varies with geo-locations [Radhakrishna, Zawadzki and Fabry (2012)].
In tropical areas where storm systems are highly dynamic and embedded with
numerous small-scale convective cells, which change rapidly within tens of min-
utes, the radar-based nowcasting methods usually provide reasonable quantitative
prediction within a very short period of time. For longer period prediction, it is
a common practice in the meteorological community to incorporate the down-
scaled output generated by computationally-intensive numerical weather predic-
tion models, such as the Weather Research and Forecast (WRF) model, through
data assimilation [Bowler, Pierce and Seed (2006), Seed, Pierce and Norman
(2013)].

To further compare the performance between the COTREC and the proposed
method, Figure 9 shows the accumulative mean-squared-error of the predicted re-
flectivity at pixel arrays. Note that we focus on the accumulative MSE rather than
the MSE at each time point because precipitation nowcasting in practice is often
concerned with the prediction of the accumulative amount up to a certain time
point. The left panel shows the comparison for all pixel arrays. In addition, since

FIG. 9. Comparison of MSE between the existing COTREC method and the proposed method for
the storm on 25 June 2010. The left panel shows the MSE computed from all pixel arrays, and the
right panel shows the MSE computed only from those pixel arrays of interest with reflectivity greater
than 35 dBZ.
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only the pixel arrays with high reflectivity are of interest, the right panel shows
the comparison for pixel arrays with reflectivity greater than 35 dBZ. Empirically,
35 dBZ corresponds to 5.6 mm/hr or 0.22 in/hr moderate rains. We see that it is
worth considering the growth and decay of reflectivity for short-term nowcasting.
As seen from the left panel of Figure 9, the proposed method outperforms if the
nowcasting horizon is not greater than 25 minutes. If we only focus on pixel ar-
rays with reflectivity greater than 35 dBZ, the proposed method outperforms up to
30-min-ahead nowcasting. As we have already discussed, the reflectivity growth
is extrapolated through a space-time autoregression model, the performance of
such a model will deteriorate as the prediction horizon increases for extremely dy-
namic tropical storms. Hence, our findings suggest that the gain of incorporating
the growth and delay into the model becomes zero or even negative when the pre-
diction horizon is beyond what the model can offer. The cut-off threshold varies
with geo-locations, seasons and types of precipitation, and can be found in prac-
tice through numerical experiments on historical data. When cumulative rainfall
is of interest in practice, the predicted rainfall amount is sensitive even to a small
improvement in reflectivity prediction, especially for heavy rainfall events. Based
on the Marshall–Palmer relationship, for example, 45 dBZ usually corresponds
to 0.92 in/h moderate to heavy rain, while 50 dBz corresponds to 1.9 in/h heavy
rain.

5. Comparison and discussions. In this section, the proposed method is ap-
plied to a number of 276 tropical storms recorded in 2010 and 2011. Compar-
ison studies are then performed between the proposed method and the COTREC
method described in the previous section. Table 2 provides a summary of the storm
events used in the comparison study. Among the 276 storm events, a number 77
events are observed from the Inter-Monsoon Season (April–May and October–
November), while the remaining 199 storms are observed in the Southwest Mon-
soon Season (June–September). Tropical storms behave in fundamentally different
ways in these two seasons, leading to different findings and important operational
insights of the proposed method, as described below.

5.1. Inter-monsoon season events. We first present the comparison results
based on the 77 storms from the Inter-Monsoon Season. The Inter-Monsoon Sea-
son (April–May and October–November) in Singapore experiences showers in the

TABLE 2
A Summary of the Tropical Storms in the Comparison Study

Season Months Number of events Type of storms

Inter-Monsoon Apr–May and Oct–Nov 77 Small-scale; localized convective
Southwest Monsoon Jun–Sep 199 Large-scale; persistent
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afternoons and early evenings. As discussed in Section 1.2, the most common type
of thunderstorms in the Inter-Monsoon Season are known as the small-scale local-
ized convective weather system. For such a weather system, heavy thunderstorms
can develop, grow, and dissipate very suddenly at a relatively small scale in a ran-
dom manner, and the exact physics behind the convective processes which lead
to the formation of such thunderstorms is not yet fully understood. The method
developed in this paper is particularly designed to capture the such small scale
features by modeling the reflectivity growth and decay for each pixel array using
spatio-temporal statistical methods.

Figure 10 shows the box plot of the Mean Squared Error (MSE) associated with
the extrapolated radar reflectivity fields based on the 77 storm events observed
from the Inter-Monsoon season. The horizontal axis shows the nowcasting hori-
zon, which ranges from 5 minutes to 30 minutes. Similar to Figure 9, the left
panel shows the MSE evaluated based on all pixel arrays in a radar image. In
terms of the median of the MSE, the proposed method outperforms if the now-
casting horizon is not greater than 25 minutes. This observation is consistent with
the findings obtained from Figure 9 in the previous section. Note that, as the re-
flectivity growth is extrapolated through an autoregressive model in both space
and time, the gain of incorporating reflectivity growth naturally decreases as the
nowcasting horizon increases. In addition, since only the pixel arrays with high
reflectivity are of interest in practice, we also show the comparison, on the right
panel of Figure 10, of the MSE evaluated based on pixel arrays with reflectiv-
ity above 35 dBz. It is possible to see the advantage of the proposed model for a
larger nowcasting horizon, say, 20 minutes or 30 minutes ahead. Since the only
major difference between the COTREC method and proposed method is that the

FIG. 10. Box plot of the Mean Squared Error (MSE) of the extrapolated radar reflectivity fields
based on the 77 storm events observed from the inter-monsoon season. The horizontal axis indicates
the nowcasting horizon ranging from 5 to 30 minutes. In particular, the left panel shows the MSE
evaluated based on all pixel arrays in a radar image, while the right panel shows the MSE evaluated
based on all pixel arrays with reflectivity larger than 35 dBz.
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latter method captures the growth of reflectivity at all pixel arrays, the findings
from Figure 10 justifies the need to consider the growth and decay of reflectivity
for the space-time extrapolation of weather radar reflectivity field. Also note that,
although the COTREC method is used in this paper to obtain the velocity field,
the proposed modeling framework allows us to replace COTREC by any other
motion estimation methods, such as TITAN, VET and SCIT as reviewed in the
Appendix B.

5.2. Southwest monsoon season events. We have different findings based on
the data from the Southwest Monsoon Season. The storm events in the Southwest
Monsoon Season (June–September) behave in a fundamentally different way as
the events in the Inter-Monsoon Season. The scale of thunderstorms within this
season is usually bigger and more persistent, meaning that the strength of reflec-
tivity does not change dramatically and the prediction of the motion of weather
systems is of the central interest. For example, “Sumatra squalls” are a line of
thunderstorms that develop at night over Sumatra, move to the west coast of Penin-
sula of Malaysia and hit Singapore during the early morning hours. Heavy rain
persists for 1–2 hours, followed by cloudy conditions and light rain until after-
noon. Hence, the proposed method is not designed for this type of storm events
as the modeling of the growth and decay may not be necessary. However, the
comparison results are still presented in Figure 11 in order to provide more oper-
ational insights. Figure 11 shows the box plot of the Mean Squared Error (MSE)
associated with the extrapolated radar reflectivity fields based on the 199 storm
events collected from the southwest monsoon season. We see that, for more per-
sistent weather systems, incorporating the growth and decay into the nowcasting

FIG. 11. Box plot of the Mean Squared Error (MSE) of the extrapolated radar reflectivity fields
based on the 199 storm events observed from the southwest monsoon season. The horizontal axis
indicates the nowcasting horizon ranging from 5 to 30 minutes. In particular, the left panel shows
the MSE evaluated based on all pixel arrays in a radar image, while the right panel shows the MSE
evaluated based on all pixel arrays with reflectivity larger than 35 dBz.
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model does not provide any advantage to the model, and is essentially not neces-
sary.

6. Conclusions and future research. A statistical framework has been pro-
posed for modeling weather radar image data. The two-dimensional radar reflec-
tivity field is modeled by a spatio-temporal space-time conditional autoregressive
process. Numerical studies, based on 276 storm events, have been performed to
investigate the advantages of the approach and obtain some useful operational in-
sights.

It is worth noting that the main goal of this work is not to develop a new storm
tracking algorithm, but to investigate a statistical modeling framework that helps to
integrate existing storm tracking algorithms (such as COTREC, TITAN, etc.) and
a stochastic spatio-temporal component for reflectivity growth and decay. Hence,
it is possible to incorporate other storm tracking algorithms, such TITAN, SCIT,
NWP, or even hybrid methods, into the modeling framework. For example, the
cell tracking algorithms (such as TITAN) detect discrete objects which consist of
contiguous regions of high reflectivity. From each radar image, the locations of
the detected objects as well as the associated characteristics are recorded. Hence,
for each object, a multivariate time series of its key characteristics are obtained.
When we consider multiple objects in the spatio-domain simultaneously, statisti-
cal spatio-temporal modeling becomes a powerful tool to exploit the space-time
correlation among the objects, that is, thunderstorm cells. Although this is out of
the scope of the current paper, it is a good future research topic.

In addition, the paper is only concerned with the modeling of two-dimensional
radar reflectivity fields at a fixed altitude (1 km above the sea level), while the ver-
tical motion of weather systems has not been considered. Since a weather system is
a dynamic three-dimensional object and modern radar systems are equipped with
the capability to return the reflectivity at multiple altitude layers simultaneously,
another important future work is to explore the modeling of three-dimensional
radar reflectivity fields by extending the proposed method.

APPENDIX A: CONSTRUCTING THE VELOCITY VECTOR FIELD

The existing pattern-based method for constructing the velocity vector field as
well as the translation operators is briefly described. Let a two-dimension discrete
random function Zt(k1, k2; si) represent the reflectivity at time t on the (k1, k2)th
pixel within the pixel array centered at si . Here, k1, k2 = 1,2, . . . ,19 as each pixel
arrays consists of 19 × 19 pixels. The velocity vector at location si is given by
sj∗ − si where sj∗ is found by maximizing the Pearson’s correlation coefficient, r ,
between Yt (·, ·; si) and Yt+1(·, ·; sj ), that is,

j∗ = argmax
j

= r
(
Yt (·, ·; si), Yt+1(·, ·; sj )).(A.1)
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In other words, the Pearson’s correlation coefficient between the reflectivity pat-
terns within pixel arrays is computed for all possible pairs of pixel arrays in two
successive radar scans respectively taken at times t and t + 1. Then the pair with
the highest correlation is connected forming the velocity vector. One key assump-
tion behind this method is that the shape of the reflectivity image within a pixel
array does not change dramatically, which is valid when time interval is short, say,
5 minutes as in this paper.

Let ṽt (si) = (ṽ
(1)
t (si), ṽ

(2)
t (si))

T be the velocity vector at location si obtained
from equation (A.1), where ṽ

(1)
t and ṽ

(2)
t are the horizontal and vertical compo-

nents of the velocity vector. To improve the consistency of the constructed velocity
field, the smoothed velocity vectors are obtained by minimizing the sum of squared
error

J1 =
∫
S

{(
ṽ

(1)
t − v

(1)
t

)2 + (
ṽ

(2)
t − v

(2)
t

)2}
dx dy(A.2)

and subject to the Boussineq mass continuity equation

∂v
(1)
t

∂x
+ ∂v

(2)
t

∂y
= 0.(A.3)

It is known that the constrained minimization problem above is equivalent to
the following unconstrained problem [Bertsekas (1982)]:

J2 =
∫
S

{(
ṽ

(1)
t − v

(1)
t

)2 + (
ṽ

(2)
t − v

(2)
t

)2 + λ

(
∂v

(1)
t

∂x
+ ∂v

(2)
t

∂y

)}
dx dy(A.4)

which can be efficiently solved using a variational analysis. Here, λ is the La-
grangian multiplier.

Once the smoothed velocity vector vt has been found, we formally define the
forward and inverse translation operators as follows:

�xt =

⎛
⎜⎜⎝

x1,t

x2,t

. . .

xn,t

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

vt (x1,t )

vt (x2,t )

. . .

vt (xn,t )

⎞
⎟⎟⎠ = xt+1(A.5)

and

�−1xt+1 =

⎛
⎜⎜⎝

x1,t+1
x2,t+1
. . .

xn,t+1

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

vt (x1,t )

vt (x2,t )

. . .

vt (xn,t )

⎞
⎟⎟⎠ = xt .(A.6)
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APPENDIX B: A SUMMARY OF EXISTING STORM TRACKING
ALGORITHMS

We provide a brief summary of the existing storm tracking algorithms. Since a
large number of methods have been proposed in the past few decades, it is impos-
sible to include all methods in this survey. Hence, we only include those widely
used ones based on the following four categories:

• Lagrangian persistence (the most fundamental method, but does not provide
good results).

• AREA tracking, including the following algorithms:
– TREC (Tracking Radar Echoes by Correlation) and its variations such as

COTREC. This is the method adopted in this paper.
– VET (Variational Echo Tracking).

• CELL tracking, including the following algorithms:
– TITAN (Thunderstorm Identification Tracking Analysis and Nowcasting) and

its variations.
– SCIT (Storm Cell Identification and Tracking).
– TRT (Thunderstorm Radar Tracking).
– Other methods such as TRACED3D and CELLTRACK.

• Other categories including the Spectral methods, expert systems, etc.

Table 3 summarizes the major operational QPF systems in different countries.
It is seen that, cell tracking and area tracking are the most widely used strategies
for estimating the motion of a storm system. Each strategy has its own advantages
when they are applied to a certain type of weather system and for certain purposes.

TABLE 3
A summary of some major operational systems for quantitative precipitation forecast in different

countries

System Country Year Method Category

AMV Finland 2000 TREC AREA tracking
ANC United States 2003 TREC + TITAN AREA and CELL

tracking (hybrid)
CARDS Canada TITAN CELL tracking
Czech system Czech 2007 COTREC + CELLTRACK AREA and CELL

tracking (hybrid)
GANDOLF U.K. 2004 Optical Flow (OF) Lagrangian persistence
MAPLE Canada 2004 VET AREA tracking
NIMROD U.K. 1998 track CRAs AREA tracking
S-PROG Austria/Spain 2003 Spectral approach
STEPS Austria/U.K. 2006 Optical Flow Lagrangian persistence
SWIRLS Hong Kong 2004 COTREC AREA tracking
TRT Switzerland 2004 TRT CELL tracking
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APPENDIX C: AN ILLUSTRATION OF CONVERTING RADAR
REFLECTIVITY TO RAIN RATE

The Z-R relationships relate the value of the measured reflectivity to the value
of the rain rate according to the following general formula by Marshall and Palmer
[Marshall and Palmer (1948)],

(C.1) R =
(

10
Z
10

200

) 5
8
,

where Z is the radar reflectivity in dBZ and R is the rain rate given by mm/hr.
To illustrate the conversion of radar reflectivity to rain rate, Figure 12 shows

the rain rate converted from the predicted reflectivity using the proposed method
shown in Figure 8. It should be noted that the Marshall and Palmer relationship is
just an empirical relationship and dramatic changes in parameters are often needed
within an individual storm as well as between storms of different types. Differ-
ent weather service agencies in the world typically use their own modified radar-
rainfall relationship. The calibration of the radar-rainfall relationship is not of the
interest of this paper, and readers may refer to Brown et al. (2001) and Fuentes,
Reich and Lee (2008) for the space-time calibration of radar-rainfall data using
advanced statistical methods.

APPENDIX D: CODE

The source code for the proposed spatio-temporal approach described in
the paper is available on the public repositories of GitHub (https://github.com/

FIG. 12. Converted rain rate (mm/hr) at 8:35 AM, 8:45 AM, and 9:00 AM. The first row shows
the predicted reflectivity using the proposed approach, while the second row shows the rain rate
converted from the predicted reflectivity using the Marshall–Palmer relationship.

https://github.com/liuxiaodnn/GitHub.git
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liuxiaodnn/GitHub.git). The R code can be browsed and downloaded by users.
A testing dataset is also provided in order to run the code.
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