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Whole exome sequencing is currently a technology of choice in large-
scale cancer genomics studies, where the priority is to identify cancer-
associated variants in coding regions. We describe a method for estimating
allele-specific copy number using whole exome sequencing data from tumor
and matched normal.

1. Introduction. Cancer is a disease characterized by gains and losses of seg-
ments of chromosomes. These somatic copy number alterations (CNAs) play criti-
cal roles in cancer progression, and their accurate detection and characterization is
important for disease prognosis and treatment. Each person inherits two copies of
the genome, one from each parent, and somatic CNAs that are acquired by a tumor
can affect one or both inherited copies. A challenging problem in the analysis of
tumor genomes is to accurately estimate the number of copies of each inherited al-
lele, sometimes called the allele-specific copy number or the parent-specific copy
number.

Methods for quantifying CNAs have evolved with the advance of technol-
ogy, from traditional spectral karyotyping to array-based comparative genome hy-
bridization (CGH), to single nucleotide polymorphism (SNP) genotyping arrays,
and, more recently, to high-throughput sequencing-based methods. As one of the
earliest high-throughput methods, CGH allows the genome-wide assessment of the
sum of the copy numbers of the two inherited chromosomes. In contrast, genotyp-
ing microarrays, which have probes that separately target the different alleles at
single nucleotide polymorphic sites, allow the estimation of allele-specific copy
number. Allele-specific copy number estimation is especially important for detect-
ing loss of heterozygosity, since there are common mutation processes that cause
copy-neutral loss of heterozygosity where a region on one chromosome is replaced
by the same region duplicated from the other homologous copy. For CNAs that do
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involve changes in total DNA copy number, it is often important to know whether
one or both of the inherited alleles are affected. Thus, in addition to methods for
total copy number estimation [see Lai et al. (2005), Willenbrock and Fridlyand
(2005), Zhang (2010), Medvedev, Stanciu and Brudno (2009) for reviews], meth-
ods for allele-specific copy number estimation have received increasing attention
[Chen, Xing and Zhang (2011), Olshen et al. (2011), Zhang, Lange and Sabatti
(2012), Mayrhofer et al. (2013), Chen et al. (2014)].

High-throughput sequencing is a natural platform for allele-specific copy num-
ber estimation since at heterozygous loci both alleles will be sequenced and ob-
served in the data. High-throughput sequencing can provide much finer resolution
than genotyping microarrays, especially for allele-specific analysis. This is be-
cause most polymorphic loci have low minor allele frequency, and are not targeted
by the probes on standard genotyping microarrays. Copy number estimation by
high-throughput sequencing requires different statistical models from those de-
signed for array-based technologies: The data is in the form of read counts, and
many sources of experimental bias cause these counts to fluctuate wildly along the
genome, even when copy number doesn’t change. Chen, Gunel and Zhao (2013),
Chen et al. (2014) and Favero et al. (2015) proposed methods that utilize a matched
normal sample, derived from normal tissue taken from the same patient, as the con-
trol for allele-specific copy number estimation. These methods have proven useful
for whole genome sequencing, where DNA from the entire genome is sequenced.

In this paper, we focus on allele-specific copy number estimation from whole
exome sequencing (WES) data. Only 1% of the human genome are protein coding.
These regions are called exons or, collectively, the “exome.” Most cancer studies
focus primarily on the exome because it is much more straightforward to assign
functional relevance to mutations that are found in protein-coding regions. Since
the target size (the size of the genome being targeted for sequencing) in whole
exome sequencing is only 1% of the target size in whole genome sequencing, with
the same cost one can afford to sequence at much higher coverage by WES. Such
high coverage sequencing is crucial in cancer studies because mutations of clinical
relevance may be present in only a small fraction of cells in the tumor, and thus
are undetectable at low coverage. For these reasons, whole exome sequencing has
become a platform of choice for many cancer studies.

Read coverage from whole exome sequencing data is much noisier than whole
genome sequencing, with most of the noise coming from the step in the experiment
where exons are selected and amplified. In whole genome sequencing, which does
not involve this step, a matched normal sample serves in most cases as an ade-
quate control for removing site-specific background bias, as shown in Chen et al.
(2014). However, in whole exome sequencing, many studies [Fromer et al. (2012),
Jiang et al. (2015)] have shown that experimental bias differs substantially across
samples. In particular, Jiang et al. (2015) showed that simply comparing against a
matched normal does not effectively remove the strong biases in whole exome se-
quencing. Several methods, including XHMM by Fromer et al. (2012), CoNIFER
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by Krumm et al. (2012), EXCAVATOR by Magi et al. (2013) and CODEX by
Jiang et al. (2015), were proposed based on the idea of pooling data across a large
cohort to estimate the biases caused by enrichment and amplification. However,
these methods do not work for allele-specific copy number estimation since the
set of heterozygous sites differ across individuals. Thus, it is still necessary to rely
on the matched normal sample to identify heterozygous sites and to control for
allele-specific experimental biases.

We propose a bivariate binomial mixture model with site-specific background
bias to estimate allele-specific copy number from whole exome sequencing data.
We describe a majorize-minimization (MM) algorithm for fast parameter fitting
in this model. We also adapt the segmentation procedure from Chen et al. (2014)
to this setting, and derive a new modified Bayes information criterion for model
selection that builds on the framework developed in Chen et al. (2014), Zhang and
Siegmund (2007) and Zhang and Siegmund (2012). The model and methods are
described in Section 3. Performance is assessed on spike-in data in Section 4. The
method is then applied to a breast and ovarian cancer data set in Section 5, where
the improved accuracy of the new approach is shown by comparison to array-based
results from The Cancer Genome Atlas Project.

The proposed method, which we call Falcon-X for finding somatic allele-
specific copy number changes in whole exome sequencing, is implemented as an
open source R-package falconx.

2. More background in biology. First, we summarize the concepts from bi-
ology that play a central role in this paper. This is not meant to be a comprehensive
introduction to these subjects, but simply a definition of the key terms and a refer-
ence to the literature.

2.1. DNA variation, copy numbers and inherited heterozygous sites. Our
genome, which is encoded by the four letter DNA code, encodes the instructions
for the function of each cell in our body. Mutations are changes to the genome, and
come in many sizes and types. Single nucleotide mutations are changes of one nu-
cleotide, for example, a guanine to a cytosine. Copy number mutations are gains
or losses of large segments of the genome. Normally, we have two homologous
copies of each of the 22 autosomes, inheriting one from each parent. A heterozy-
gous deletion is a deletion of one of the two parental copies, and a homozygous
deletion is a deletion of both inherited copies. A gain in copy number may be a gain
of either one or both of the two inherited copies. A loss of heterozygosity refers
to a loss of one of the parental copies, which may or may not involve a change
in total copy number; specifically, some mutation processes lead to a loss of one
parental copy accompanied by a simultaneous gain of the other parental copy in
the same region, thus leading to a loss of heterozygosity without changing total
copy number, aka copy-neutral loss of heterozygosity.
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We inherit many DNA variation from our parents, and these are carried by ev-
ery cell in our body. Most inherited variants are population-level polymorphisms,
that is, variation caused by mutations that are passed down from our evolutionary
ancestors that are carried by many individuals in the current population. In ad-
dition, germ cells in each individual gain mutations, which can be passed along
to the offspring and might not be shared within the population. The basic unit
in our model for estimating allele-specific copy number is sequencing data at in-
herited heterozygous sites, where the variations/mutations (e.g., single-nucleotide
variants, short insertions and deletions) hit one allele out of the two in the doploid
genome. Somatic mutations occur sporadically during our lifetime to specific cell
lineages within our body and are not passed to our offspring. Most of the mutations
found in tumor genomes are somatic. The focus of this paper is detecting somatic
copy number changes in tumors.

2.2. High-throughput sequencing. High-throughput short read sequencing,
often referred to as “high-throughput sequencing” or “next-generation sequenc-
ing,” provides data for quantifying DNA, RNA, protein binding and many other
genome-wide features in biology. A good overview of the technology and its ap-
plications can be found in three articles in the November 2009 issue of Nature
Methods: Flicek and Birney (2009), Medvedev, Stanciu and Brudno (2009) and
Pepke, Wold and Mortazavi (2009). In this paper, we focus on high-throughput
whole exome sequencing (WES). Figure 1 shows an overview of a WES pipeline.
First, DNA is extracted from the sample, fragmented, and the exon-regions are cap-
tured and enriched. This step, called target enrichment, may be achieved by several
strategies including molecular inversion probes or microarrays. These exon regions
are usually amplified by PCR, resulting in a sequencing library. The library can be
sequenced by any of the existing strategies, including classical Sanger sequencing,
Illumina Genome Analyzer or Life Technologies SOLiD.

In this paper, we consider mainly Illumina sequencing data, but our model
can conceivably also be applied to other types of sequencing scenarios. The Il-
lumina Genome Analyzer produces fixed length genome sequences, called reads,
that cover the exon targets. These reads are mapped to a reference template, where
the number of reads that cover a position is called the “coverage” at that posi-
tion. At heterozygous positions, reads would reflect the alleles for that position
that are present in the sample. For example, at a position that is heterozygous with
the two alleles A and C, if there are no somatic mutations and the hybridization
(and alignment) process is unbiased toward the haplotype with the A and the hap-
lotype with the C, then approximately half of the reads should contain an A and
half should contain a C. We define the allele-specific coverage to be the number of
reads that contain a specific allele. At heterozygous positions, we should have two
allele-specific coverage values, one for each of the two inherited alleles.

DNA sequencing has been used to detect copy number variation because cover-
age of any given region reflects the relative quantity of the DNA from that region



ASCN ESTIMATION BY WHOLE EXOME SEQUENCING 1173

FIG. 1. Overview of a whole exome sequencing (WES) experiment.

in the sample. However, coverage is also influenced by many other features of the
DNA sequence. For example, it has been shown that the local GC-content, defined
as the proportion of the bases that are guanine (G) or cytosine (C), heavily influ-
ences coverage [Benjamini and Speed (2012)]. As mentioned earlier, such local
biases are especially strong in whole exome sequencing, where the efficiency of
target enrichment can vary dramatically from exon to exon. Careful modeling of
the background biases are essential for accurate copy number estimation by whole
exome sequencing data. Several algorithms have been developed for copy num-
ber estimation with whole exome data that uses latent factors estimated across
many samples to remove the background bias [Krumm et al. (2012), Fromer et al.
(2012), Jiang et al. (2015)]. Specifically, Jiang et al. (2015) showed that in matched
case/control settings, such as a tumor sample with matched normal, cross-sample
approaches are more effective than normalizing to the matched control. Jiang et al.
(2015) proposed a method, CODEX, which estimates site- and sample-specific
coverage bias. We will describe CODEX in more detail, and use its estimated bias
values, in the next section.
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3. Model and methods.

3.1. Overview. The data input to our model consists of sequencing coverage
for a tumor sample and its matched normal sample from the same patient. In addi-
tion, we assume that a large (>30) number of normal samples have been sequenced
by the same laboratory protocols, which we call the “control cohort.” For example,
in Section 5, the control cohort consists of the matched normal samples for all of
the tumors in the study.

Figure 2 shows an overview of the analysis pipeline that we propose. First, in
Step 1, sequenced reads are aligned to the reference template, resulting in bam
files. In Step 2, the matched normal sample is used to identify all of the heterozy-
gous sites in the individual, using existing software such as GATK [Auwera et al.
(2013)]. These heterozygous sites are the inherited heterozygous sites and are the
basic units in our model. Let T be the total number of heterozygous sites. In Step
3, the total and allele-specific coverage at these sites are extracted from the tumor
sample as well as all of the samples in the normal control cohort. In Step 4, the
matrix of total coverage at the union of all germline heterozygous loci across all
samples is used by CODEX to estimate the background total coverage bias for
the tumor and matched normal sample. For each t = 1,2, . . . , T , we obtain from
CODEX s(t) and s∗(t), the background total coverage bias for, respectively, the
tumor sample and its matched normal control. In Step 5, the allele-specific cover-
age at these heterozygous positions in the tumor and the normal control, along with
the total coverage bias estimates from CODEX, are taken as input to the Falcon-X
model to estimate the allele-specific copy number at these heterozygous positions.

FIG. 2. Overview of the proposed analysis steps for estimating allele-specific copy number from
whole exome sequencing of tumor and matched normal samples. ∗CODEX is applied to the union of
heterozygous sites across all samples using the tumor-normal option.
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Since GATK and CODEX are published methods, this paper focuses on Step 5 in
the analysis.

3.2. Model. We now describe the new model underlying Falcon-X. Let the
two alleles at each bi-allelic loci be arbitrarily labeled A and B . At inherit het-
erozygous locus t ∈ {1,2, . . . , T }, let YA(t) and YB(t) be the allele-specific cov-
erage in the tumor sample, and let Y ∗

A(t) and Y ∗
B(t) be the allele-specific coverage

in the matched normal sample. Notice that the tumor sample could be homoge-
neous at some inherited heterozygous loci due to somatic mutations. We label the
two inherited homologous chromosomes arbitrarily by a and b, also called the
two inherited haplotypes. A priori, we don’t know whether allele A is on inherited
chromosome a or b. Let I (t) be a latent indicator variable that equals 1 if allele
A is on inherited chromosome a, and 0 if it is on inherited chromosome b. Hence,
I (t) is the same for the tumor sample and the normal sample from the same pa-
tient. Consider the hypothetical situation where we observe I (t); then we would
know the haplotype-specific coverage, which we denote by Ya(t) and Yb(t) for the
tumor sample and by Y ∗

a (t) and Y ∗
b (t) for the matched normal. The relationship

between the haplotype-specific coverage and allele-specific coverage is

Ya(t) = I (t)YA(t) + (
1 − I (t)

)
YB(t),

Yb(t) = (
1 − I (t)

)
YA(t) + I (t)YB(t),

Y ∗
a (t) = I (t)Y ∗

A(t) + (
1 − I (t)

)
Y ∗

B(t),

Y ∗
b (t) = (

1 − I (t)
)
Y ∗

A(t) + I (t)Y ∗
B(t).

Here, Ya(t), Yb(t), Y ∗
a (t), Y ∗

b (t) can be modeled by independent Poisson random
variables with location-specific means λa(t), λb(t), λ∗

a(t), λ∗
b(t), respectively (the

independence assumption is discussed in more detail in Section 3.5):

Ya(t) ∼ Poisson
(
λa(t)

)
, Yb(t) ∼ Poisson

(
λb(t)

)
,

Y ∗
a (t) ∼ Poisson

(
λ∗

a(t)
)
, Y ∗

b (t) ∼ Poisson
(
λ∗

b(t)
)
.

The mean values depend on the true underlying haplotype specific copy numbers
and other experiment and sequence-dependent variables. We use Ca(t), Cb(t) to
represent the haplotype-specific copy numbers at loci t in the tumor; in normal
we assume that both haplotypes have copy 1. Experimental variables that affect
coverage include the following: the total number of reads sequenced for the sam-
ple, local biases in total coverage due to ease of fragmentation, mappability, and
target enrichment and amplification, and allele-specific mapping bias. Let N and
N∗ be the total number of reads sequenced for tumor and normal, respectively.
Let s(t) and s∗(t) be the site-specific biases in total coverage for normal and tu-
mor, respectively, that are estimated by CODEX. Let bA(t), bB(t) be site-specific
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mapping biases for alleles A and B . Our model for the mean processes is

λa(t) = NCa(t)s(t)b
I (t)
A (t)b

1−I (t)
B (t),

λb(t) = NCb(t)s(t)b
1−I (t)
A (t)b

I (t)
B (t),

λ∗
a(t) = N∗s∗(t)bI (t)

A (t)b
1−I (t)
B (t),

λ∗
b(t) = N∗s∗(t)b1−It

A (t)b
I (t)
B (t).

This model is similar to the model underlying Falcon, an allele-specific copy num-
ber estimation method proposed in Chen et al. (2014). The important difference
between the two models is that, in this model, the total coverage bias values s(t)

and s∗(t) vary between the tumor and normal samples, while Falcon assumes
s(t) = s∗(t). For whole exome sequencing, the site-specific bias in total coverage
varies substantially across samples, and the assumption of s(t) = s∗(t) in Falcon
is not satisfied. On the other hand, the allele-specific mapping biases, bA(t) and
bB(t), depend mostly on the mapping algorithm, and so it is reasonable to assume
that they are shared across the tumor and matched normal samples.

Since copy number change is abrupt, it is appropriate to assume that Ca(t) and
Cb(t) are piecewise constant functions of t . By a simple relationship between the
Poisson and Binomial distributions, the model with K break points, which we
denote by MK , can be written as(

YA(t), YB(t)
)|(nA(t), nB(t)

)
∼ 1

2

(
Bin

(
nA(t),pa(t)

)
,Bin

(
nB(t),pb(t)

))
+ 1

2

(
Bin

(
nA(t),pb(t)

)
,Bin

(
nB(t),pa(t)

))
,

(3.1)

for t = τk + 1, τk + 2, . . . , τk+1, k = 0,1, . . . ,K , with

pa(t) = w(t)Ca,k

w(t)Ca,k + 1
, pb(t) = w(t)Cb,k

w(t)Cb,k + 1
,

where nA(t) = Y ∗
A(t) + YA(t), nB(t) = Y ∗

B(t) + YB(t), (Ca,k,Cb,k) is the allele-
specific copy number at segment k, and w(t) = Ns(t)

N∗s∗(t) .
Let τK = (τ1, . . . , τK) be the change-points of this process. It is constrained to

lie in the set

DK = {
(t1, . . . , tK) : 0 < t1 < · · · < tK < T

}
.

We augment τK by τ0 = 0 and τK+1 = T to make the model complete.
We use a Minorize–Maximization (MM) algorithm to estimate the maximum

likelihood estimators for the parameters Ca,k and Cb,k in each segment k (Sec-
tion 3.3). As for searching the break points τk’s, we adapt Circular Binary Seg-
mentation (CBS) [Olshen et al. (2004), Venkatraman and Olshen (2007)] to avoid
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the combinatorial problem of searching over all possible combinations of τk’s. To
determine the number of break points K , we derived a modified BIC approach
extended from Chen et al. (2014) and Zhang and Siegmund (2007) (for details see
Section 3.4).

3.3. The estimation of Ca,k and Cb,k in segment k. We suppress the subscript
k in this subsection. Algorithm 1 can be used to estimate the parameters. We next
show that the algorithm is a valid MM algorithm.

This algorithm is modified from the conventional EM algorithm for mixture
models. In the conventional EM algorithm, in the mth iteration, the missing data
I (t) is estimated in the expectation step (line 4 in Algorithm 1), and is substi-
tuted into the log-likelihood function of the complete data [the observed data and
missing data I (t)’s] by its estimate γ̂ (t):

Q(m)(Ca,Cb) = h(X,Y,w) + ∑
t

(
YA(t)γ̂ (t) + YB(t)

(
1 − γ̂ (t)

))
log(Ca)

− ∑
t

(
nA(t)γ̂ (t) + nB(t)

(
1 − γ̂ (t)

))
log

(
w(t)Ca + 1

)

+ ∑
t

(
YB(t)γ̂ (t) + YA(t)

(
1 − γ̂ (t)

))
log(Cb)

− ∑
t

(
nB(t)γ̂ (t) + nA(t)

(
1 − γ̂ (t)

))
log

(
w(t)Cb + 1

)
,

where h(X,Y,w) = ∑
t log

((nA(t)
YA(t)

)(nB(t)
YB(t)

)
w(t)YA(t)+YB(t)

)
. Then Q(m)(Ca,Cb) is a

minorization function of the log-likelihood on the complete data up to a constant
that depends on (Ca,(m−1),Cb,(m−1)), the estimates of the parameters from the
(m − 1)th iteration, and the equality achieves at (Ca,(m−1),Cb,(m−1)).

Since it is hard to maximize Q(m) over Ca and Cb, we construct a new minoriza-
tion function based on Q(m). Let

Q∗
(m)(Ca,Cb) = h(X,Y,w) + ∑

t

(
YA(t)γ̂ (t) + YB(t)

(
1 − γ̂ (t)

))
log(Ca)

+ ∑(
YB(t)γ̂ (t) + YA(t)

(
1 − γ̂ (t)

))
log(Cb)

− ∑
t

(
nA(t)γ̂ (t) + nB(t)

(
1 − γ̂ (t)

))

×
(

log
(
w(t)Ca,(m−1) + 1

) + w(t)Ca + 1

w(t)Ca,(m−1) + 1
− 1

)

− ∑
t

(
nB(t)γ̂ (t) + nA(t)

(
1 − γ̂ (t)

))

×
(

log
(
w(t)Cb,(m−1) + 1

) + w(t)Cb + 1

w(t)Cb,(m−1) + 1
− 1

)
.
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Algorithm 1 MM Algorithm for Estimating Ca and Cb

1: Take initial guesses for the parameters, such as C̃a = 0.95, C̃b = 1.05. (The
initial values of Ca and Cb need to be different.)

2: Set nIter=0, diff=0.
3: while nIter==0 or diff > δ (δ can take value such as 10−5) do
4: For every t ,

γ̂ (t) = 1

1 + ( C̃b

C̃a
)YA(t)−YB(t)(w(t)C̃a+1

w(t)C̃b+1
)nA(t)−nB(t)

.

5: Update the estimates of the parameters:

C̃a,new =
∑

t (YA(t)γ̂ (t) + YB(t)(1 − γ̂ (t)))∑
t w(t)(nA(t)γ̂ (t) + nB(t)(1 − γ̂ (t)))/(w(t)C̃a + 1)

,

C̃b,new =
∑

t (YB(t)γ̂ (t) + YA(t)(1 − γ̂ (t)))∑
t w(t)(nB(t)γ̂ (t) + nA(t)(1 − γ̂ (t)))/(w(t)C̃b + 1)

.

6: diff =
√

(C̃a,new − C̃a)2 + (C̃b,new − C̃b)2.

7: C̃a = C̃a,new , C̃b = C̃b,new .
8: end while

Then Q∗
(m) is a minorization function of Q(m), and

Q∗
(m)(Ca,(m−1),Cb,(m−1)) = Q(m)(Ca,(m−1),Cb,(m−1)).

Thus, Q∗
(m)(Ca,Cb) is a minorization function of the log-likelihood on the com-

plete data up to a constant that depends on (Ca,(m−1),Cb,(m−1)), and the equal-
ity achieves at (Ca,(m−1),Cb,(m−1)). Solving for Ca and Cb that maximizes Q∗

(m)

gives Algorithm 1.

3.4. Determining the number of break points. Because the site-specific biases
in total coverage is different in the tumor and matched normal samples, pa(t) and
pb(t) are not constants even within a segment. We extend the method in Chen et al.
(2014) and Zhang and Siegmund (2007) to derive a modified Bayesian information
criterion to choose the optimal K .

Let Z be the input data {YA(t), YB(t), Y ∗
A(t), Y ∗

B(t),w(t) : t = 1, . . . , T }. We
reparameterize the parameters by letting

θa,k = logCa,k, θb,k = logCb,k,

θk = (θa,k, θb,k), θK = (θa,0, θb,0, . . . , θa,K, θb,K).

PROPOSITION 1. Let MK be the model defined in (3.1), assuming that
(K,τK, θK) follows a uniform prior over Z+ ×DK ×R

K ; then when T is large,
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we have

log
P(MK |Z)

P (M0|Z)
≈ l

(
θ̂K(τ̂K), τ̂K

) − 1

2

K∑
k=0

log
∣∣Hk

(
θ̂K(τ̂K), τ̂K

)∣∣

− l(θ̂0) + 1

2
log

∣∣H(θ̂0)
∣∣ − K logT ,

(3.2)

where τ̂K = (τ̂1, . . . , τ̂K) = arg max0<τ1<···<τK<T l(θ̂K(τK)), θ̂K(τK) are maxi-
mum likelihood estimates given break points τK , which can be estimated through
Algorithm 1, and

∣∣Hk

(
θ̂K(τ̂K)

)∣∣ =
[
∂2l(θK(τ̂K))

∂(θa,k)2

∂2l(θK(τ̂K))

∂(θb,k)2 −
(

∂2l(θK(τ̂K))

∂θa,k ∂θb,k

)2]
θk=θ̂k

,

with

∂2l(θK,τK)

∂(θa,k)2

=
τk+1∑

t=τk+1

((YA(t) − YB(t) − (nA(t) − nB(t))h′
w(t)(θa,k))

2f1(t, θk)f2(t, θk)

(f1(t, θk) + f2(t, θk))2

− h′′
w(t)(θa,k)(nA(t)f1(t, θk) + nB(t)f2(t, θk))

f1(t, θk) + f2(t, θk)

)
,

∂2l(θK,τK)

∂θa,k ∂θb,k

=
τk+1∑

t=τk+1

(YA(t) − YB(t) − (nA(t) − nB(t))h′
w(t)(θa,k))f1(t, θk)

f1(t, θk) + f2(t, θk)

× (YB(t) − YA(t) − (nB(t) − nA(t))h′
w(t)(θb,k))f2(t, θk)

f1(t, θk) + f2(t, θk)
,

∂2l(θK,τK)

∂(θb,k)2

=
τk+1∑

t=τk+1

((YB(t) − YA(t) − (nB(t) − nA(t))h′
w(t)(θb,k))

2f1(t, θk)f2(t, θk)

(f1(t, θk) + f2(t, θk))2

− h′′
w(t)(θb,k)(nB(t)f1(t, θk) + nA(t)f2(t, θk))

f1(t, θk) + f2(t, θk)

)
,

where hw(t)(θ) = log(w(t)eθ +1), and h′
w(t)(θ) = w(t)eθ

w(t)eθ+1
, h′′

w(t)(θ) = w(t)eθ

(w(t)eθ+1)2 .



1180 H. CHEN ET AL.

The proof of this proposition is in the Appendix. Based on the proposition, we
choose K that maximizes

(3.3) l
(
θ̂K(τ̂K), τ̂K

) − 1

2

K∑
k=0

log
∣∣Hk

(
θ̂K(τ̂K), τ̂K

)∣∣ − K logT .

3.5. A discussion on the independence assumption. In whole exome sequenc-
ing, some nearby inherited heterozygous sites could be too close that they can
be spanned by the same read for single-read sequencing or by the same pair of
reads for paired-end sequencing. If this happens, the read counts for the nearby
sites would be dependent, violating the independence assumption for model (3.1).
Here, we discuss two approaches to get around the issue. The first approach (“com-
bining”) treats the problem more completely but needs to start from the BAM file,
while the second approach (“pruning”) can start from the raw read counts directly
but is usually less efficient than the first approach.

We first illustrate the two approaches for the single-read sequencing. Figure 3
is a schematic plot of reads over a stretch of a chromosome with 10 inherited
heterozygous sites. We can see from the plot that if two sites are very close, they
could be spanned by the same read. For example, there are two reads that span
both site 6 and site 7. However, this does not necessarily happen to every pair of
nearby sites. For example, sites 3 and 4 are close, but there is no read that spans
both of them.

The combining approach is as follows: If two or more sites are spanned by the
same read, then we view them all together as one site and the read count for the
combined site is the number of distinct reads that cover at least one of the original
sites contributing to the combined site. For example, sites 6 and 7 are viewed as
one site and its read count is 6, while sites 3 and 4 are viewed as different sites
and their read counts are 2 and 3, respectively. Then, in the example shown in the
figure, there are 9 independent sites with one site being a combined site. To apply
this approach, we need to know whether there is at least one read that spans the
nearby sites. Hence, we need to start from the BAM file.

FIG. 3. A schematic plot of reads over a stretch of a chromosome with 10 inherited heterozygous
sites.
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The pruning approach is easier to apply, and it can start from the raw read
counts. For instance, the raw read counts for the 10 sites in the figure are 3, 8,
2, 3, 2, 3, 4, 4, 2 and 3, respectively. We then identify all combinations of sites that
might be covered by one read, that is, identify the combinations of consecutive loci
whose distances are less than the read length, such as 100 bp. In this example, we
would identify two such combinations: {3,4} and {6,7}. We then randomly pick
one site to keep for each combination. For example, keep site 4 from {3,4} and
keep site 7 from {6,7}. This will lead to 8 sites—1, 2, 4, 5, 7, 8, 9, 10—and they
are independent.

For paired-end sequencing, the two approaches can be adopted similarly by
viewing the fragment spanned by the pair of reads as a “read” in the figure.

In the above discussion, we simplified the problem by only considering one
sample. In practice, we need to consider the paired sample (tumor and matched
normal samples). Then the criterion for the combining approach is slightly more
complicated: If two or more sites are spanned by the same read in one or both
samples, we combine these sites together.

Comparing the two approaches, it is clear that the combining approach loses
less information but is more complicated in preparing the read counts, while the
pruning approach is easier to implement but loses more information. If the BAM
file is available, then the combining approach is recommended.

The R-package falconx takes read counts as input. If the combining approach
was taken, then we can set the argument “independence = TRUE” (default) to let
the function know that the input read counts are independent. Otherwise, we need
to tell the function the length of read (or the maximal span of the read pairs for
paired-end sequencing) and the pruning approach will be performed.

4. Spike-in experiment. We assess the accuracy of Falcon-X through a spike-
in experiment, which allows us to systematically evaluate specificity and sensitiv-
ity for signals of varying size, purity and type. Sensitivity for copy number changes
at low purity, that is, carried by a low proportion of cells in the sample, is espe-
cially desirable since tumor samples often have high normal cell contamination. To
create the spike-in data sets, we started with real sequencing data from a normal
sample and added signals of varying length at a fixed purity level by changing the
coverage in the signal region commensurate with the given purity. As compared to
simulating sequencing data in silico, adding signals to real sequencing data allows
us to retain the noise properties of real data. For purity levels from 5% to 100% at
5% intervals, we created a total of 20 spike-in samples.

There are 6 possible configurations for allele-specific copy number aberrations
listed in the rows of Table 1. All signals have width covering exactly 200 heterozy-
gous sites, which on average corresponds to 26 Mb in the genome. For signals of
this size, at 100% purity sensitivity is 100% for all aberration types for Falcon-X.
We assessed sensitivity by recording, for each of the 6 types of aberrations, the
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TABLE 1
The smallest tumor purity under which the region of the change is
found by Falcon-X, Falcon and CODEX. (The smallest tumor
purity under which the type of aberration is correctly detected by

Falcon-X and Falcon is shown in the parentheses)

Type of change Falcon-X Falcon CODEX

Normal/Loss 15 (15) 15 (15) 30
Loss/Loss 15 (30) 10 (30) 15
Gain/Normal 15 (15) 20 (20) 35
Gain/Gain 15 (35) 15 (40) 20
Balanced Gain/Loss 15 (20) 15 (50) –
Unbalanced Gain/Loss 10 (10) 10 (10) 35

lowest purity at which sensitivity rises above 95%. Falcon-X is compared to Fal-
con, an existing allele-specific method [Chen et al. (2014)], and CODEX, a total
copy number estimation method [Jiang et al. (2015)]. Also shown for Falcon and
Falcon-X, in parentheses, is the lowest purity at which not only the signal is de-
tected but also the type of aberration is correctly identified. Note that, by modeling
allele-specific changes, Falcon and Falcon-X significantly improve the sensitivity
under low purity settings, as seen by the drop in purity level required for signal de-
tection compared to CODEX. As previously shown in Chen et al. (2014), consid-
ering allele-specific information improves sensitivity, even for signals where the
total copy number is changed. Also, by explicitly modeling the sample-specific
biases in WES data, Falcon-X improves the aberration-type classification accu-
racy. For example, both Falcon-X and Falcon detect balanced Gain/Loss events
at 15% purity; however, Falcon is able to correctly identify the event as balanced
Gain/Loss only when the signal is present at 50%, whereas Falcon-X can do this
when the purity is much lower, at 20%.

Figure 4 shows the example of the true versus estimated signal for the 35%
purity spike-in data. At this level, Falcon-X recovers the signal perfectly. Falcon
also recovers a large part of the signal, but its segmentation is much less accurate
and it makes some false positive detections as well.

Figure 5 shows the specificity, as reflected by the percentage of loci where both
alleles have copy number 1 that were not classified into any of the six aberration
types. In all data sets, both Falcon and Falcon-X use a modified Bayes information
criterion to determine the number of signals. Whereas Falcon makes a substantial
number of false positives, the false positive rate of Falcon-X is much lower. This
reduced false positive rate is due to the removal of sample-specific artifacts that
are captured in the terms s(t) and s∗(t).

To study the effect of the signal length on the performance of Falcon-X, we did
spike-in simulations with shorter signal regions—signals spanning 40, 20 and 10
heterozygous sites, respectively. Table 2 lists the lowest purity at which the signal
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FIG. 4. The allele-specific copy number estimates from Falcon-X (top panel) and Falcon (bot-
tom panel) under 35% tumor purity with signals spanning 200 inherited heterozygous sites. The two
colored lines represent the estimates of the two allele-specific copy numbers (Ca and Cb), and the
two lines overlap when the two estimates are the same. Losses are shown in blue and gains are shown
in red. Normal copy number is shown in green. Dotted black lines show the true allele-specific copy
numbers in the spike-in set.

is detected, with the number in the parentheses the lowest purity at which the
type of aberration is correctly identified by Falcon-X. We see that the performance
of Falcon-X becomes slightly worse when the signal becomes shorter, while the
sensitivity is overall quite good even for signals spanning only 10 heterozygous
sites. Figure 6 plots the estimated and true ASCNs for 45% purity spike-in data
with signals spanning 10 inherited heterozygous sites. We see that all signals are
correctly identified.

FIG. 5. The percentage of loci where both alleles have copy number 1 that were not classified into
any of the six aberration types for Falcon-X and Falcon.
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TABLE 2
The smallest tumor purity under which the region of the change is
found by Falcon-X with different signal lengths (l: the number
of heterozygous sites in each signal). (The smallest tumor purity
under which the type of aberration is correctly detected is shown

in the parentheses)

Type of change l = 40 l = 20 l = 10

Normal/Loss 20 (20) 30 (30) 40 (40)
Loss/Loss 20 (25) 15 (25) 25 (25)
Gain/Normal 10 (10) 35 (35) 45 (45)
Gain/Gain 15 (35) 25 (35) 25 (30)
Balanced Gain/Loss 20 (20) 30 (30) 35 (35)
Unbalanced Gain/Loss 15 (20) 20 (25) 20 (20)

5. Analysis of a breast cancer cohort of gBRCA1/2 carriers. Approxi-
mately 3–5% of breast and 20% of ovarian cancers arise in individuals carrying
germline mutations in BRCA1 and BRCA2 [King et al. (2003)]. The main func-
tion of the BRCA1/2 proteins is the repair of double strand breaks in DNA. Muta-
tions in these proteins lead to genome instability, facilitating the accumulation of
somatic chromosome aberrations in tumorigenesis. Thus, BRCA1/2 mutation car-
riers have an increased risk for developing early onset breast and ovarian cancer.

Using Falcon-X, we analyzed WES sequencing data from 39 gBRCA1/2 breast
and ovarian tumors with matched normal blood DNA. An in-depth study of these
samples is described in Maxwell et al. (2016), where the goal is to delineate molec-
ular mechanisms of tumorigenesis in gBRCA1/2 carriers and to identify poten-
tially druggable alterations in these tumors. Whole exome sequencing on these
samples was performed using the Agilent All-Exon Kit. Tumors were sequenced
by Illumina Hi-Seq 2000 to an average depth of 141X and blood DNA to an aver-
age mean depth of 155X. The sequenced reads were aligned to the hg19 genome

FIG. 6. The allele-specific copy number estimates from Falcon-X under 45% tumor purity with
signals spanning 10 inherited heterozygous sites. The two colored lines represent the estimates of the
two allele-specific copy numbers (Ca and Cb), and the two lines overlap when the two estimates are
the same. Losses are shown in blue and gains are shown in red. Normal copy number is shown in
green. Dotted black lines show the true allele-specific copy numbers in the spike-in set.
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FIG. 7. Data from chromosome 1 p arm of a breast cancer patient (patient ID: Brca1Br10): The
top plot shows the tumor to normal ratios of allele-specific coverage, that is, YA(t)/Y ∗

A(t) and
YB(t)/Y ∗

B(t). The second plot shows the same ratios after adjusting by total coverage bias. In the
first and second plots, a horizontal green line is plotted at value 1.0 for reference. The third and
bottom plots show the allele-specific copy number estimates by Falcon and Falcon-X, respectively.
Losses are shown in blue and gains are shown in red. Normal copy number is shown in green.

assembly using the Burrows-Wheeler Aligner (BWA) for short-read alignment.
The aligned data was analyzed as described in Figure 2. Specifically, inherited
heterozygous sites were called in the matched normal samples using GATK, the
position-specific total coverage biases were estimated by CODEX, and allele-
specific copy number was finally estimated through the Falcon-X model and al-
gorithm. In this application, the pruning approach was used to avoid dependence
issue.

To illustrate the actual data that is used as input for our analysis, Figure 7 shows
the raw values and estimated profiles from chromosome 1 p arm of one of the 39
samples. In the following, we refer to these samples as Basser gBRCA1/2 samples.
The top plot shows the tumor to normal ratios of allele-specific coverage, that
is, YA(t)/Y ∗

A(t) and YB(t)/Y ∗
B(t). The second plot shows the same ratios, after

adjusting by the total coverage bias; that is, in the notation of Section 3.2, the
second plot shows

YA(t)/s(t)

Y ∗
A(t)/s∗(t)

,
YB(t)/s(t)

Y ∗
B(t)/s∗(t)

.
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FIG. 8. Histogram of tumor to normal ratios of allele-specific coverage before and after bias cor-
rection. These histograms summarize the values shown in the first and second plots of Figure 7,
broken down by two regions, with region 1 including sites shown as Normal/Loss in the Falcon-X
result and region 2 including sites shown as Normal/Normal in the Falcon-X result. The red curve is
the kernel density estimated by the R function density() in package “stats.”

It is hard to detect by eye obvious change-points, and it is also hard to see the effect
of bias correction, that is, the difference between the first and second figure pan-
els. Statistically, however, there is a clear change-point at around position 3.3e7
indicated by both Falcon and Falcon-X results. Figure 8 shows the histograms of
the tumor-to-normal allele coverage ratios for the two regions delineated in the
Falcon-X result, where region 1 (from around 0.1e7 to around 3.3e7) contains a
single copy deletion and region 2 (from around 3.3e7 to the end) is normal. Dele-
tions cause allelic imbalance, that is, unequal copy numbers for the two alleles at
heterozygote sites, and thus we expect the normal-to-tumor allele coverage ratios
to be a two-component mixture for region 1, as opposed to a one-component mix-
ture for region 2. In Figure 8, the histogram of these two regions look similar be-
fore the bias correction, but after the bias correction we indeed find, as expected,
two peaks in region 1 and one peak in region 2. This example does not confirm
the validity of our method, since we do not know the truth for this region, but is
merely an illustration of the real data input and the empirical evidence that is used
by Falcon-X to determine the change-points. As a contrast, the third plot from the
top in Figure 7 shows the allele-specific copy numbers estimated by Falcon, which
was not designed for whole exome sequencing and does not allow bias correction.
It is clear that bias correction makes a difference, and we will next attempt to show
that this difference is positive.
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Allele-specific copy number estimates can be validated through procedures such
as digital-droplet PCR or targeted sequencing, both of which are laborious proce-
dures that are usually only applied to a small number of events. It is too costly
to apply such validation techniques on the genome scale, and so, to assess the
quality of Falcon-X estimates, we compare our analysis of the 39 breast cancer
samples to an existing genotyping-array-based analysis of 47 gBRCA1/2 breast tu-
mors from The Cancer Genome Atlas Project (TCGA). Since analysis methods for
genotyping arrays are now more mature than those for high-throughput sequencing
data, and since TCGA applied rigorous quality control to their data sets, we expect
that high-level trends observed in the TCGA samples should be reproduced in our
breast cancer cohort. Although no two cancer patients have the same chromosome
copy number profile, it has been shown that breast cancer patients with gBRCA1/2
mutations, and similarly gBRCA1/2 ovarian cancer patients, often share recurrent
gain and loss regions. We adopt that most of these recurrent CNAs have been seen
in the TCGA cohort and we expect to observe similar recurrent gains and losses
between the TCGA gBRCA1/2 breast cancer samples and our Basser gBRCA1/2
samples.

Figure 9 shows the frequency of detected gain and loss at each genome posi-
tion for the TCGA gBRCA1/2 breast cancers as well as for the Basser gBRCA1/2
samples analyzed by Falcon-X and by Falcon. For each plot, blue bars in the “posi-
tive” direction show the proportion of the samples with a detected gain at the given
position, and red bars in the “negative” direction show this proportion for losses.
Since copy number changes are scattered somewhat randomly in the genomes of
all gBRCA1/2 tumors due to genome instability, almost all positions are marked
as gained or lost in at least some of the patients. Yet, the Falcon-X results clearly
indicate that there are genome regions that are more frequently altered than others,
such as loss of 8p and 17p and gain of 3q, 8q and 17q. This agrees with the recur-
rent regions reported in the literature on gBRCA1/2 breast tumors. Note that the
recurrent regions found by Falcon-X are more similar to those found by TCGA, as
compared to the Falcon results. Falcon analysis detects much more copy number
events, as seen by the elevated occurrence of both gains and losses at all genome
positions across the cohort. Against this uniformly elevated background of de-
tections, Falcon results do not show marked evidence for recurrence at the known
positions reported in the literature, which are found by Falcon-X. We believe many
of the Falcon detections are false positives caused by the biases inherent in WES
data.

Figure 9 does not explicitly show the frequency of copy-neutral loss-of-
heterozygosity (LOH) events, where one of the parental alleles have been lost and
replaced by a duplication of the allele from the other parent. Figure 10, which
plots the frequency of copy-neutral LOH events along the genome, shows that
copy-neutral LOH events are frequent in the Basser gBRCA1/2 cancer data. These
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FIG. 9. Frequency of detected occurrence of gains (in blue, above the axis) and losses (in red,
below the axis) of total copy number in three breast cancer cohorts: TCGA sporadic breast cancers,
TCGA gBRCA1/2 breast cancers, and our Basser gBRCA1/2 breast cancers. The TCGA cohorts,
shown in the top two plots, were profiled by the genotyping array. The Basser samples were profiled
by WES and analyzed by Falcon-X, shown in the third plot from the top, and by Falcon, shown in
the bottom plot. The horizontal axis shows genome location, and is aligned between the four plots.
The vertical axis shows the proportion of samples where a call is made. Chromosome boundaries are
marked by vertical lines or color shading.

events would not have been detected if we only estimate total copy number. Using
Falcon-X, we identified copy-neutral LOH that helped us better understand the ini-
tiation mechanism of BRCA1/2 tumors. These events are described and analyzed
in Maxwell et al. (2016).

FIG. 10. Frequency of occurrence of Copy-neutral loss of heterozygosity (LOH) found by Fal-
con-X in the Basser gBRCA1/2 breast cancer cohort and the Basser gBRCA1/2 ovarian cancer
cohort. As in Figure 9, the horizontal axis shows genome location aligned between the two plots, and
vertical axis shows percentage of samples where LOH is detected. Vertical lines denote chromosome
boundaries.
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6. Conclusion. We have proposed a statistical framework for allele-specific
copy number estimation by whole exome sequencing. We focused specifically on
the study design where a tumor sample and a matched normal control are both
sequenced, and where a batch of normal tissue samples are also sequenced by the
same protocol. Whole exome sequencing has become a commonly adopted ap-
proach to cancer genomics, and since experimental biases introduced by exon se-
lection and amplification cannot be fully captured by simply comparing the tumor
against its matched normal, more sophisticated statistical modeling is necessary.
In the Falcon-X model, allele-specific sequencing coverage is represented by a bi-
nomial mixture process, where the binomial means depend on the copy numbers
of the underlying haplotypes as well as site-specific sequencing bias. We showed
using simulation spike-in data that, by controlling for these site-specific biases,
Falcon-X allows more sensitive detection of allele-specific copy number change
under high normal cell contamination. We also applied the new analysis approach
to a set of BRCA1/2 breast and ovarian tumor samples, where the results we ob-
tained are in good concordance with existing knowledge about this type of tumor.

The two technical challenges in the Falcon-X model are (1) fast and precise es-
timation of the parameters in the mixture model, and (2) determining the number
of change-points, that is, the model complexity. For parameter estimation, we de-
veloped a majorization-minorization algorithm, described in Section 3.3. This fast
algorithm allows the Falcon-X model to scale to large genomic studies (analysis
of the 39 breast and ovarian tumors took less than one hour on a Macbook Air).
This algorithm can potentially be used in other mixture deconvolution settings; for
example, one can extend the Falcon-X model to allele-specific RNA expression
analysis. For determining the number of change-points, we extended the modified
Bayes information criterion of Chen et al. (2014) and Zhang and Siegmund (2007),
which allows the method to be used off-the-shelf.

APPENDIX: PROOF OF PROPOSITION 1

The log-likelihood function of the observed data under the new parameterization
can be written as

l(θK,τK) =
K∑

k=0

τk+1∑
t=τk+1

log
(
f1(t, θk) + f2(t, θk)

) + log
(
C(Z)

)
,

where

C(Z) = 1

2T

T∏
t=1

(
nA(t)

YA(t)

)(
nB(t)

YB(t)

)
w(t)YA(t)+YB(t),

f1(t, θk) = exp
(
YA(t)θa,k − nA(t) log

(
w(t)eθa,k + 1

)
+ YB(t)θb,k − nB(t) log

(
w(t)eθb,k + 1

))
,
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f2(t, θk) = exp
(
YB(t)θa,k − nB(t) log

(
w(t)eθa,k + 1

)
+ YA(t)θb,k − nA(t) log

(
w(t)eθb,k + 1

))
.

Fixing τK , we can expand the log-likelihood in a second order Taylor series
around the maximum likelihood estimate:

l
(
θK(τK)

) ≈ l
(
θ̂K(τK)

) + (
θK − θ̂(τK)

)′
H

(
θ̂K(τK)

)(
θK − θ̂(τK)

)
/2.

Under the uniform prior assumption for (τ k, θK), we have

P(Z|MK) =
∫
DK

∫
R2K+2

el(θK(τK)) K!
T K

dθK dτK

≈
∫
DK

el(θ̂K(τK))
∣∣H (

θ̂K(τK)
)∣∣−1/2 K!(2π)K+1

T K
dτK.

Similarly, we have for K = 0

P(Z|M0) =
∫
R2

el(θ0) dθ0 ≈ 2π
∣∣H(θ̂0)

∣∣−1/2
el(θ̂0).

When K follows a uniform prior over Z+, we have

log
P(MK |Z)

P (M0|Z)
= log

P(Z|MK)

P (Z|M0)

≈ l
(
θ̂K(τ̂K), τ̂K

) − 1

2

K∑
k=0

log
∣∣Hk

(
θ̂K(τ̂K), τ̂K

)∣∣

− l(θ̂0) + 1

2
log

∣∣H(θ̂0)
∣∣ − K logT

+ log
∫
DK

el(θ̂K(τK),τK)−l(θ̂K(τ̂K),τ̂K)

×
√√√√ K∏

i=0

|Hk(θ̂K(τ̂K), τ̂K)|
|Hk(θ̂K(τK),τK)| dτK.

Based on the extension of Zhang (2005), it can be shown that

∫
DK

el(θ̂K(τK),τK)−l(θ̂K(τ̂K),τ̂K)

√√√√ K∏
i=0

|Hk(θ̂K(τ̂K), τ̂K)|
|Hk(θ̂K(τK),τK)| dτK

is uniformly bounded in T under the hypothesis of K change-points.
Notice that H(θ̂K(τK)) is a block diagonal matrix with (K + 1) blocks and

each block is a 2 × 2 matrix. Its (k + 1)th block is

Hk

(
θ̂K(τK)

) =

⎡
⎢⎢⎢⎣

∂2l(θk,τK)

∂(θa,k)2

∣∣∣∣
θk=θ̂k

∂2l(θk,τK)

∂θa,k ∂θb,k

∣∣∣∣
θk=θ̂k

∂2l(θk,τK)

∂θa,k ∂θb,k

∣∣∣∣
θk=θ̂k

∂2l(θk,τK)

∂(θb,k)2

∣∣∣∣
θk=θ̂k

⎤
⎥⎥⎥⎦ .
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Hence,

∣∣H (
θ̂K(τK),τK

)∣∣ =
K∏

k=0

∣∣Hk

(
θ̂K(τK),τK

)∣∣

=
K∏

k=0

(
∂2l(θK,τK)

∂(θa,k)2

∂2l(θK,τK)

∂(θb,k)2 −
(

∂2l(θK,τK)

∂θa,k∂θb,k

)2)∣∣∣∣
θk=θ̂k

,

and Proposition 1 follows.
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