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LATERAL TRANSFER IN STOCHASTIC DOLLO MODELS

BY LUKE J. KELLY1 AND GEOFF K. NICHOLLS
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Lateral transfer, a process whereby species exchange evolutionary traits
through nonancestral relationships, is a frequent source of model misspecifi-
cation in phylogenetic inference. Lateral transfer obscures the phylogenetic
signal in the data as the histories of affected traits are mosaics of the overall
phylogeny. We control for the effect of lateral transfer in a Stochastic Dollo
model and a Bayesian setting. Our likelihood is highly intractable, as the pa-
rameters are the solution of a sequence of large systems of differential equa-
tions representing the expected evolution of traits along a tree. We illustrate
our method on a data set of lexical traits in Eastern Polynesian languages, and
obtain an improved fit over the corresponding model without lateral transfer.

1. Introduction. Evolutionary traits used to infer the ancestry of a set of taxa
take many forms beside DNA base values in sequence data. For example, Cybis
et al. (2015) study the spread of antibiotic resistance in Salmonella strains and Jofré
et al. (2017) estimate the shared ancestry of twenty-two stars from measurements
on seventeen elements in their chemical composition. In this paper, we infer the
shared ancestry of languages from lexical trait data.

When species evolve in isolation, we commonly assume that traits pass ver-
tically from one generation to the next through ancestral relationships. A phylo-
genetic tree describes the shared ancestry of taxa which evolve in this manner:
branches represent evolving species, internal nodes depict speciation events, and
leaf nodes correspond to observed taxa. In this paper, we wish to infer the phy-
logeny of taxa which evolved through a combination of vertical and lateral trait
transfer. Lateral transfer, such as horizontal gene transfer in biology or borrowing
in linguistics, is an evolutionary process whereby species acquire traits through
nonvertical relationships.

Lateral transfer distorts the phylogenetic signal of the speciation events in the
data as the histories of affected traits may conflict with the overall taxa phylogeny.
Models based solely on vertical trait inheritance are misspecified in this setting,
and, in our experience, this model error can result in overly high levels of con-
fidence in poorly fitting trees. In this article, we develop a fully model-based
Bayesian method for trait presence/absence data which explicitly accounts for lat-
eral transfer in reconstructing dated phylogenies.
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To illustrate our method, we analyze a data set of lexical traits in Eastern Polyne-
sian languages. There have been many previous phylogenetic studies of languages
and language families, including Austronesian [Gray, Drummond and Greenhill
(2009)], Indo-European [Gray and Atkinson (2003), Nicholls and Gray (2008),
Ryder and Nicholls (2011), Bouckaert et al. (2012), Chang et al. (2015)], Linear B
[Skelton (2008)] and Semitic [Kitchen et al. (2009)]. Lateral transfer is a frequent
occurrence in language diversification [Greenhill, Currie and Gray (2009)], yet a
common theme of the above studies is that the authors do not control for it in their
fitted models. Typically, known-transferred traits are discarded and a model for
vertical trait transfer is fit to the remainder [Gray and Atkinson (2003), Bouckaert
et al. (2012); and many others]. This approach is problematic as recently trans-
ferred traits are more readily identified, and so earlier transfers remain in the data
set.

There exist various methods which test for evidence of lateral transfer in data
but do not estimate a phylogeny. Patterson et al. (2012) review various tests for ad-
mixture in allele frequency data, while Daubin, Gouy and Perrière (2002), Beiko
and Hamilton (2006) and Abby et al. (2010) describe similar tests for sequence
data which compare gene trees to a species tree constructed a priori. Similarly, in-
ternal nodes in implicit phylogenetic networks accommodate incompatibilities in
the data with the assumption of an underlying species tree but do not necessarily
represent the evolutionary history of the taxa [Huson and Bryant (2006), Oldman
et al. (2016)]. Under the assumption of random trait transfer between lineages,
Roch and Snir (2013) demonstrate that a number of nonparametric reconstruction
methods recover the true phylogeny with high probability when the expected num-
ber of transfer events is bounded.

The problem of controlling for lateral transfer in inference for dated phyloge-
nies has received little attention in the statistics literature. In particular, there are
few fully likelihood-based inference schemes for dated phylogenies which con-
trol for lateral transfer for any data type. Parametric inference for the underlying
phylogeny with an explicit model for lateral transfer is a difficult computational
problem. This is due to the near intractability of the likelihood calculation, as prun-
ing [Felsenstein (1981)] is no longer directly applicable in integrating over unob-
served trait histories. Approximate Bayesian computation, although a useful tool
for estimating demographic parameters in complex models [Tavaré et al. (1997)]
or selecting a particular tree from a restricted set of alternatives [Veeramah et al.
(2015)], does not help here, as a summary statistic which informs a dated phy-
logeny has to be relatively high dimensional, thereby leading to low acceptance
rates in simulation.

Lathrop (1982) and Pickrell and Pritchard (2012) describe methods to infer ex-
plicit phylogenetic networks of population splits and instantaneous hybridisation
events from allele frequency data. For input gene trees inferred a priori, Kubatko
(2009) investigates the support for the hybridization events in a given hybrid phy-
logeny under the multispecies coalescent model [Rannala and Yang (2003)]. Wen,
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TABLE 1
Model-based phylogenetic methods which incorporate lateral transfer. The criteria are as follows:
(A) The method infers dated phylogenies controlling for lateral transfer (does not require known

species phylogeny or gene trees as input). (B) The method quantifies uncertainty in parameters, tree
structure and node times. (C) The method uses exact model-based inference (up to Monte Carlo
error) or an explicitly quantified approximation. (D) The model is a generative description of the

observation process for the data the authors analyze, with physically meaningful parameters.
(E) The approach is directly applicable to our binary Dollo trait data

Criteria

Method Input (A) (B) (C) (D) (E)

Pickrell and Pritchard (2012) Allele frequencies ✓ ✓ ✗ ✓ ✗

Lathrop (1982) Allele frequencies ✓ ✓ ✓ ✓ ✗

Kubatko (2009) Gene trees, species tree ✗ ✓ ✓ ✓ ✗

Szöllosi et al. (2012) Gene trees ✗ ✓ ✗ ✓ ✗

Wen, Yu and Nakhleh (2016) Gene trees ✗ ✓ ✓ ✓ ✗

Yu and Nakhleh (2016) describe a Bayesian method to infer an explicit phyloge-
netic network under the multispecies coalescent model for the input gene trees.

From a set of input gene trees, Szöllosi et al. (2012) seek the species tree which
maximizes the likelihood of reconciling the gene trees under their model incorpo-
rating trait gain, loss and lateral transfer. The authors discretize time on the tree,
thereby limiting the number of transfer events which may occur and so that their
computation is tractable. This allows them to consider many more taxa than Wen,
Yu and Nakhleh (2016), for example. In addition, their method returns a time-
ordering of the internal nodes rather than a fully dated tree. We summarize these
model-based methods in Table 1.

In this paper, we describe a novel method for inferring dated phylogenies from
trait presence/absence data. This research is motivated by problems such as the ex-
ample in Section 8 where we estimate a language tree from lexical trait data. These
data sets are gathered under a different experimental design to sequence data used
to infer gene trees. In collecting trait presence/absence data, we choose a trait and
record which taxa display it; the patterns of presence and absence of traits across
taxa are informative of the tree. Gene content data is defined similarly [Huson and
Steel (2004)]. In contrast, in the design for gene tree data, we choose a gene and
sequence homologs of that gene in each individual corresponding to a leaf; a gene
is a complex trait and the displayed characters inform the gene tree. In the context
of our application in Section 8, it may be tempting to think of lexical traits as genes
and languages as biological species. The analogy does not hold as the objects in
trait presence/absence data and gene tree data have different meanings due to the
different experimental designs. For these and other reasons summarized in Table 1,
the model-based methods we cite above are not directly applicable to the problem
at hand.
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We take the Stochastic Dollo model of Nicholls and Gray (2008) (SD) for un-
ordered sets of trait presence/absence data as the starting point for our lateral trans-
fer model. The SD model posits a birth-death process of traits along each branch
of the tree, with parent traits copied into offspring at a branching event. The ba-
sic process respects Dollo parsimony: each trait is born exactly once, and once
a trait is extinct, it remains so. Alekseyenko, Lee and Suchard (2008) extend the
SD model for multiple character states, and Ryder and Nicholls (2011) introduce
missing data and rate heterogeneity. Bouchard-Côté and Jordan (2013) describe
a sequence-valued counterpart to the SD model. The SD model has been imple-
mented in the popular phylogenetics software packages BEAST [Drummond et al.
(2012)] and BEAST 2 [Bouckaert et al. (2014)]. In a recent study, McPherson
et al. (2016) use the SD model to infer cancer clone phylogenies from tumor sam-
ples. Simulation studies of the SD model show that topology estimates are robust
to moderate levels of random lateral transfer when the underlying topology is bal-
anced [Greenhill, Currie and Gray (2009)] but the root time is typically biased
toward the present [Nicholls and Gray (2008), Ryder and Nicholls (2011)].

Nicholls and Gray (2008) describe how to simulate lateral transfer in the basic
SD model whereby each species randomly acquires copies of traits from its con-
temporaries. No previous attempt has been made to fit this model incorporating lat-
eral trait transfer. We perform exact likelihood-based inference under this model.
Our lateral transfer process is ultimately defined by the description in Section 3,
and we do not attempt to model specific processes such as incomplete lineage sort-
ing, hybridization or gene introgression directly. While our model can generate the
trait histories which arise in these processes, it also generates many others and we
recommend further case-specific modeling. We do not infer trait trees in advance,
then reconcile them to form a species tree; rather, we use Markov chain Monte
Carlo methods to sample species trees and parameters, and integrate over all pos-
sible trait histories under our model in computing the likelihood. In contrast to
Szöllosi et al. (2012), our method operates in a continuous-time setting and we are
able to infer the timing of speciation events.

The SD model with lateral transfer will be misspecified for lexical trait data in
many ways. Trait birth, death and transfer events will be correlated in complex
ways due to real-world processes that we do not model. We are particularly inter-
ested in misspecification-induced bias impacting branching time and tree topology
estimates. We test for this bias by removing information constraints on known leaf
ages and checking that they are correctly reconstructed. This is a test for evidence
against the model akin to a pure test for significance in a frequentist setting. These
tests demonstrate that whatever the misspecification, there is no evidence that it
is impacting our estimates. The SD model is a special case of our model and is
a natural basis for assessing the effect of controlling for lateral transfer at the ex-
pense of an increase in computational cost. We show that the SD model fails these
misspecification tests.
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To summarize our approach, we build a detailed ab initio model of trait and tree
dynamics which fully describes the data-observation process. In doing so, we do
not compromise the model to make it easier to fit. The price we pay is a massive
integration over the unobserved trait histories. In looking for competing methods,
we focus on methods which infer dated trees, can quantify the uncertainty in their
estimates and perform exact inference or use explicitly quantified approximations.
For the lexical trait data we consider, there are no obvious benchmarks among the
competing model-based inference schemes discussed above and summarized in
Table 1. Our method satisfies each of these criteria.

We describe our binary trait data in Section 2, and introduce our lateral transfer
model in Section 3. We describe the likelihood calculation in Section 4, and de-
scribe extensions to the model in Section 5. We discuss our inference method in
Section 6, and discuss tests to validate our computer implementation in Section 7.
We illustrate our model on a data set of lexical traits in Eastern Polynesian lan-
guages in Section 8, and conclude in Section 9 with a discussion of the model and
possible directions for future research.

2. Homologous trait data. Homologous traits derive from a common ances-
tral trait through a combination of vertical inheritance and lateral transfer events.
We assign each set of homologous traits a unique common label from the set of
trait labels, Z . A set of trait categories is chosen and, for each taxon in the study,
we gather instances of traits in each category. We record the status of trait h in
taxon i as

dh
i =

⎧⎪⎪⎨
⎪⎪⎩

1, trait h is present in taxon i,

0, trait h is absent in taxon i,

?, the status of trait h in taxon i is unknown.

We denote by D the array recording the status of each trait across the observed taxa.
A column dh of D is a site-pattern recording the status of trait h across the taxa.
These patterns of trait presence and absence, which we assume are independent,
exchangeable entities, shall form the basis of our model.

In the analysis in Section 8, each trait is a word in one of 210 meaning cate-
gories and each taxon is an Eastern Polynesian language. For example, the Maori
and Hawaiian words for woman and wife, both wahine, derive from a common an-
cestor h, say, and so dh

Maori = dh
Hawaiian = 1. On the other hand, the Maori word for

mother, whaea, is not related to its Hawaiian counterpart, makuahine, and so we
record zeros in the respective entries of the data array.

3. Generative model. A branching process on sets of traits determines the
phylogeny of the observed taxa. The set contents diversify according to a process
of trait birth, death and lateral transfer events. We describe these events in greater
detail below. Figure 1 depicts a realization of the model and the history of a single
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FIG. 1. Illustration of the Stochastic Dollo with lateral transfer model. Dashed lines represent the
history of a trait h. We describe catastrophes, missing data and offset leaves in Section 5.

trait. The trait history bears little resemblance to the underlying phylogeny as a
consequence of trait death and lateral transfer events.

We first define our model and inference method in terms of binary patterns of
trait presence and absence in taxa which are recorded simultaneously. In Section 5,
we extend the model to incorporate missing data and different leaf sampling times.

A rooted phylogenetic tree g = (V ,E,T ) on L leaves is a connected, acyclic
graph with node set V = {0,1, . . . ,2L − 1}, directed edge set E and node times
T ∈ {−∞} × R

2L−1. The node set V comprises one Adam node labeled 0 of de-
gree 1, the internal nodes VA = {1,2, . . . ,L − 1} of degree 3, and the leaf nodes
VL = {L,L + 1, . . . ,2L − 1} of degree 1. Node i ∈ V arises at time ti ∈ T , de-
noting when the corresponding event occurred relative to the current time, 0. For
convenience, we label the internal nodes VA in such a way that t1, . . . , tL−1 is a
strictly increasing sequence of node times. We observe the taxa simultaneously at
time 0, the present, and constrain ti = 0 for each leaf i ∈ VL as a result.

Edges represent evolving species and are directed forward in time. We label
each edge by its offspring node: if pa(i) denotes the parent of node i ∈ V \ {0},
then edge i ∈ E runs from node pa(i) at time tpa(i) to i at time ti . We assume
that the Adam node arose at time t0 = −∞, and so a branch of infinite length
connects it to the root node 1 at time t1. If we slice the tree at time t , then there are
L(t) species labeled k(t) = (i ∈ E : tpa(i) ≤ t < ti). In Figure 1, there are L(t2) = 3
species labeled k(t2) = (8,4,3) immediately after the speciation event at time t2,
for example.

Let Hi(t) ⊂ Z denote the set of traits possessed by species i ∈ k(t) at time t . We
now define four properties of the set-valued evolutionary process H(t) = {Hi(t) :
i ∈ k(t)} for t ∈ (−∞,0].
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PROPERTY T1 (Set branching event). Species i ∈ k(t−i ) branches at time ti and
is replaced by two identical offspring, j and k ∈ k(ti ),

Hj(ti) ← Hi(t
−
i ),

Hk(ti) ← Hi(t
−
i ),

where t−i denotes the time just before the branching event.

PROPERTY T2 (Trait birth). New traits are born at rate λ over time in each
extant species. If trait h ∈ Z is born in species i at time t , then

Hi(t) ← Hi(t
−) ∪ {h}.

PROPERTY T3 (Trait death). A species kills off each trait it possesses inde-
pendently at rate μ. If trait h ∈ Hi(t

−) in species i dies at time t , then

Hi(t) ← Hi(t
−) \ {h}.

PROPERTY T4 (Lateral trait transfer). Each instance of a trait attempts to
transfer at rate β . Equivalently, a species acquires a copy of a trait by lateral trans-
fer at rate β scaled by the fraction of extant species which possess it. If species i

acquires a copy of trait h ∈ H(t−) =⋃
i∈k(t−) Hi(t

−) at time t , then

Hi(t) ← Hi(t
−) ∪ {h}.

Clearly, if h ∈ Hi(t
−), then the transfer event has no effect.

Starting from a single set H(−∞) = {∅}, the process H(t) evolves as a
continuous-time Markov chain through a combination of branching (T1) and trait
(T2–T4) events to yield the diverse set of taxa H(0) = {Hi(0) : i ∈ VL} that we
observe at time 0. When the lateral transfer rate β = 0, we recover the binary
Stochastic Dollo process of Nicholls and Gray (2008).

4. Likelihood calculation. We may calculate the likelihood of a given trait
history in terms of independent holding times and jumps between states (T1–T4).
However, trait histories are nuisance parameters here as we are interested in the
overall phylogeny, and so we must integrate them out of the model likelihood.
Furthermore, we must account for the histories of traits born on the tree which
did not survive into the taxa. In order to describe how to simultaneously integrate
over all possible trait histories on the tree under our model, we now recast the trait
process in terms of evolving patterns of presence and absence across branches.
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4.1. Pattern evolution. If we cut through the tree at time t , each trait in H(t)

displays a pattern of presence and absence across the L(t) extant species k(t) =
(k

(t)
i : i ∈ [L(t)]), where [L(t)] = {1, . . . ,L(t)}. These patterns of presence and ab-

sence evolve over time as new branches arise and instances of traits die and trans-
fer. The pattern displayed by trait h ∈ H(t) at time t is ph(t) = (ph

i (t) : i ∈ [L(t)]),
where

ph
i (t) =

⎧⎨
⎩

1, h ∈ H
k
(t)
i

(t),

0, otherwise,

indicates the presence or absence of trait h on lineage k
(t)
i at time t .

The space of binary patterns of trait presence and absence across L(t) lin-
eages is P(t) = {0,1}L(t) \ {0}, where 0 denotes an L(t)-tuple of zeros. Trait la-
bels are exchangeable and there are Np(t) = |{h ∈ H(t) : ph(t) = p}| traits dis-
playing pattern p ∈ P(t) at time t . The dynamics of the pattern frequency process
N(t) = (Np(t) : p ∈ P(t)) follow directly from Properties T1–T4 of the trait pro-
cess in Section 3.

4.1.1. Patterns at branching events. At a branching event, patterns gain an
entry and the space of patterns increases accordingly. The tuple k(t) of branch

labels is consistent across speciation events in the sense that when lineage k
(t−j )

i

branches at time tj ,

k(t−j ) → k(tj ) = (k(t−j )

1 , . . . , k
(t−j )

i−1 , k
(tj )

i , k
(tj )

i+1, k
(t−j )

i+1 , . . . , k
(t−j )

L
(t

−
j

)

)
,

where species k
(tj )

i and k
(tj )

i+1 are the offspring of species k
(t−j )

i (T1). It follows that

each trait h ∈ H(t−j ) transitions to display a pattern ph(tj ) with entries ph
i (tj ) =

ph
i+1(tj ) ← ph

i (t−j ). For example, reading from top to bottom in Figure 1,

k(t−4 ) = (8,4,7,15), k(t4) = (8,6,5,7,15),

ph(t−4 )= (1,0,0,0), ph(t4) = (1,0,0,0,0),

as a result of the speciation event at node 4.
A pattern p ∈ P(tj ) with entries pi = pi+1 is consistent with the branching event

on lineage k
(t−j )

i as it may be formed by duplicating the ith entries of a pattern in
P(t−j ). On the other hand, the trait process cannot generate a pattern p ∈ P(t) with
pi 	= pi+1 at time tj by definition (T1). We denote by T(j) : N(t−j ) → N(tj ) the

operation which initializes the pattern frequencies N(tj ) with entries of N(t−j ) for
patterns consistent with the branching event, and zeros otherwise. We return to
this initialization operation when we compute the expected pattern frequencies in
Section 4.2.
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FIG. 2. Transition rates between pattern states p ∈P(t) and q ∈ S−
p ∪ S+

p .

4.1.2. Patterns between branching events. In order to formally describe the
Markovian evolution of the pattern frequencies N(t) between branching events,
we first define how patterns relate to each other. The Hamming distance between
patterns p and q ∈ P(t) is d(p,q) = |{i ∈ [L(t)] : pi 	= qi}|, and s(p) = d(p,0) is
the Hamming weight of p. A trait displaying pattern p at time t communicates with
patterns in the sets

S−
p = {q ∈ P(t) : s(q) = s(p) − 1, d(p,q) = 1

}
,

S+
p = {q ∈ P(t) : s(q) = s(p) + 1, d(p,q) = 1

}
,

the patterns which differ from p through a single trait death (T3) or transfer (T4)
event, respectively. Figure 2 describes the transition rates between pattern states
p and q ∈ S−

p ∪ S+
p . New traits displaying patterns of Hamming weight 1 arise

on each branch through trait birth events (T2). For example, reading from top to
bottom in Figure 1, a copy of trait h transfers at time t from branch k

(t−)
1 = 1 to

k
(t)
3 = 11, and so

ph(t−)= (1,0,0,0,0,0), ph(t) = (1,0,1,0,0,0) ∈ S+
100000,

N100000(t) = N100000
(
t−
)− 1, N101000(t) = N101000

(
t−
)+ 1.

4.2. Expected pattern frequencies. Instances of the same trait evolve indepen-
dently of each other and of other traits. If we sum over the rates in Figure 2 for
each trait displaying a given pattern p ∈ P(t), then on a short interval of length dt

between branching events, by a standard argument for Markov chains,

P
[
Np(t + dt) − Np(t) = k|g,λ,μ,β

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(p)

[
μ + β

(
1 − s(p)

L(t)

)]
Np(t)dt + o(dt), k = −1,[

λ1{s(p)=1} + β
∑

q∈S−
p

s(q)

L(t)
Nq(t)

+ μ
∑

q∈S+
p

Nq(t)

]
dt + o(dt), k = 1.

(4.1)

Let xp(t) = xp(t;g,λ,μ,β) = E[Np(t)|g,λ,μ,β], the expected number of traits
in H(t) displaying pattern p ∈ P(t) at time t . From Equation (4.1), xp(t) evolves
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according to the following differential equation:

ẋp(t) = lim
dt→0

E[Np(t + dt) − Np(t)|g,λ,μ,β]
dt

= −s(p)

[
μ + β

(
1 − s(p)

L(t)

)]
xp(t) + λ1{s(p)=1}

+ β
∑

q∈S−
p

s(q)

L(t)
xq(t) + μ

∑
q∈S+

p

xq(t).

(4.2)

There are |P(t)| = 2L(t) − 1 coupled differential equations (4.2) describing the ex-
pected evolution of the pattern frequencies N(t). We may write these equations as
ẋ(t) = A(t)x(t) + b(t), where x(t) = (xp(t) : p ∈ P(t)) is the vector of expected
pattern frequencies at time t , and the sparse matrix A(t) and vector b(t) respec-
tively describe the flow between patterns from trait death and transfer events and
the flow into patterns of Hamming weight 1 through trait birth events.

In Section 3, we state that a branch of infinite length connects the Adam and root
nodes. As a result, the pattern frequency process N(t) is in equilibrium just before
the first branching event at time t1, with the result that x(t−1 ) = x1(t

−
1 ) = λ/μ and

N1(t
−
1 ) ∼ Poisson(λ/μ). With this initial condition at the root, we can write the

expected pattern frequencies at the leaves, x(0), recursively as a sequence of initial
value problems between branching events: for each interval i = 1, . . . ,L−1, solve

(4.3) ẋ(t) = A(t)x(t) + b(t) for t ∈ [ti , ti+1) where x(ti) = T(i)x
(
t−i
)
,

and we recall from Section 4.1.1 the operator T(i) which propagates N(t−) and
x(t−) across the ith branching event. We illustrate this procedure graphically in
Figure 3.

4.3. Likelihood. Theorem 1 describes the distribution of the pattern frequen-
cies. We prove this result in the Supplemental Materials [Kelly and Nicholls
(2017)].

THEOREM 1 (Binary data distribution). The components of the vector of pat-
tern frequencies N(t) = (Np(t) : p ∈ P(t)) are independent Poisson random vari-
ables with corresponding rate parameters x(t;g,λ,μ,β) given by the solution of
the sequence of initial value problems in equation (4.3).

5. Model extensions. We now extend the model and likelihood calculation to
allow for rate variation, missing data, offset leaves and the systematic removal of
patterns from the data.
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FIG. 3. Computing the expected pattern frequencies x(t) as a sequence of initial value problems
(4.3) on a given tree. The initialization operation x(ti ) = T(i)x(t−i ) from Section 4.1.1 provides the
initial condition at the start of the ith interval between branching events.

5.1. Rate heterogeneity. We introduce spikes of evolutionary activity in the
form of catastrophes [Ryder and Nicholls (2011)]. Catastrophes, illustrated in
Figure 1, occur at rate ρ along each branch of the tree. A catastrophe advances
the trait process along a branch by δ = −μ−1 log(1 − κ) units of time relative to
the other branches. In the model of Ryder and Nicholls (2011), this is equivalent
to killing each trait on the branch independently with probability κ and adding a
Poisson(λκ/μ) number of new traits. To ensure that catastrophes are identifiable
with respect to the underlying trait process, we enforce a minimum catastrophe
severity κ ≥ 0.25.

A branch may acquire traits through birth and transfer events, and lose traits to
death events during a catastrophe. The trait process at a catastrophe is equivalent
to thinning the overall trait process to events on a single branch. As a result, we
account for a catastrophe at time t on branch k

(t)
i in the expected pattern frequency

calculation (4.3) with the update

xp(t) ← e−μδxp(t−) + (1 − e−μδ)
λ

μ
,

p ∈ P(t),

s(p) = 1,pi = 1,

[
xq(t)

xr(t)

]
← exp

⎡
⎢⎢⎣
⎛
⎜⎜⎝

−β
s(q)

L(t)
μ

β
s(q)

L(t)
−μ

⎞
⎟⎟⎠ δ

⎤
⎥⎥⎦
[
xq(t−)

xr(t
−)

]
,

q, r ∈ P(t), d(q, r) = 1,

qi = 0, ri = 1,

where we exploit the property that each pattern communicates with at most one
other during a catastrophe.
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5.2. Missing data. We allow for missing-at-random data. Following Ryder
and Nicholls (2011), the true binary state of trait h at taxon i ∈ VL is recorded
with probability ξi = P(dh

i ∈ {0,1}) independently of the other traits and taxa.
Let � = (ξi : i ∈ VL) denote the set of true-state observation probabilities. The
space of observable site-patterns with missing data across the L taxa at time 0
is Q = {0,1, ?}L \ {0}. The set of binary patterns consistent with pattern q ∈ Q
is u(q) = {p ∈ P(0) : pi = qi if qi 	=?, i ∈ [L]}. From Theorem 1 and the restric-
tion and superposition properties of Poisson processes [Kingman (1993)], the fre-
quency of traits displaying pattern q is an independent Poisson random variable
with mean

xq(0;g,λ,μ,β,�) = ∑
p∈u(q)

xp(0;g,λ,μ,β)

L∏
i=1

ξ
1{qi∈{0,1}}
k
(0)
i

(1 − ξ
k
(0)
i

)1{qi=?} .

5.3. Nonisochronous data. Nonisochronous data arise when taxa are sampled
at different times. The corresponding taxa appear as offset leaves in the phylogeny,
nodes 12 and 15 in Figure 1, for example. Similar to catastrophes, the trait process
is frozen on offset leaves and a pattern may now only communicate with those
patterns which are identical to it on the extinct lineages and differ at a single entry
on the extant lineages.

The L(t) extinct and evolving lineages at time t , of which L̂(t) are extant, are
labeled k(t) = (i ∈ E : tpa(i) ≤ t < ti1{i∈VA}). The Hamming distance between pat-
terns p and q ∈ P(t) across the extant lineages only is d̂(p,q) = |{i ∈ [L(t)] : pi 	=
qi, t < t

k
(t)
i

}|, and the corresponding Hamming weight of p across the extant lin-

eages is ŝ(p) = d̂(p,0). Recalling S−
p and S+

p from Section 4.1.2, pattern p ∈ P(t)

communicates with patterns in the sets

Ŝ−
p = {q ∈ S−

p : ŝ(q) = ŝ(p) − 1, d̂(p,q) = 1
}
,

Ŝ+
p = {q ∈ S+

p : ŝ(q) = ŝ(p) + 1, d̂(p,q) = 1
}
,

and its expected frequency evolves as

ẋp(t) = −ŝ(p)

[
μ + β

(
1 − ŝ(p)

L̂(t)

)]
xp(t) + λ1{s(p)=ŝ(p)=1}

+ β
∑

q∈Ŝ−
p

ŝ(q)

L̂(t)
xq(t) + μ

∑
q∈Ŝ+

p

xq(t).

We allow for offset leaves in our goodness-of-fit tests in Section 8.

5.4. Data registration. Patterns which may be uninformative or unreliable
with respect to the model are typically removed from the data. Given a registration
rule R, which may be a composition of other simpler rules such as those in Table 2,
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TABLE 2
Registration rules of Alekseyenko, Lee and Suchard (2008) and Ryder and

Nicholls (2011)

Unregistered traits Unregistered patterns Q \ R(Q)

Absent in taxon k
(0)
i {q ∈Q : qi = 0}

Observed in j taxa or fewer {q ∈Q : |{i ∈ [L] : qi = 1}| ≤ j}
Observed in j or more taxa {q ∈Q : |{i ∈ [L] : qi = 1}| ≥ j}
Potentially present in j taxa or greater {q ∈Q : |{i ∈ [L] : qi 	= 0}| ≥ j}

we discard the columns in the data array D not satisfying R, leaving the registered
data R(D), and restrict our analyses to patterns in R(Q). In Section 8, we discard
traits not marked present in a single taxon.

6. Bayesian inference. In order to efficiently estimate both the node times
and the rate parameters, we calibrate the space 	 of rooted phylogenetic trees on
L taxa with clade constraints. The constraint 	(0) = {g ∈ 	 : ¯t1 ≤ t1 < 0} restricts
the earliest admissible root time to ¯t1. Each additional constraint 	(c) places either
time or ancestry constraints on the remaining nodes. We denote by 	C =⋂c 	(c)

the space of phylogenies satisfying the clade constraints.
Nicholls and Ryder (2011) describe a prior distribution on trees with the prop-

erty that the root time t1 is approximately uniformly distributed across a spec-
ified interval [̄t1, t̄1]. For a given tree g = (V ,E,T ,C), there are Z(g) possi-
ble time orderings of the nodes among the admissible node times T (g) = {T ′ :
(V ,E,T ′,C) ∈ 	C}. For each node i ∈ V , ¯ti = infT ∈T (g) ti and t̄i = supT ∈T (g) ti
are the earliest and most recent times that i may achieve in an admissible tree with
topology (V ,E). If S(g) = {i ∈ V : ¯ti =¯t1} denotes the set of free internal nodes
with times bounded below by ¯t1, then the prior with density

fG(g) ∝ 1{g∈	C}
Z(g)

∏
i∈S(g)

¯t1 − t̄i

t1 − t̄i
,

is approximately uniform across topologies and root times provided that ¯t1 �
mini∈V \S ¯ti [Ryder and Nicholls (2011)]. Uniform priors on offset leaf times com-
plete our prior specification on the tree. Heled and Drummond (2012) describe an
exact method for computing uniform calibrated tree priors, but we do not pursue
that approach here. Table 3 lists the prior distributions on the remaining parame-
ters.

Inspecting the solution of the expected pattern frequency calculation (4.3)
with initial condition x(t−1 ) = λ/μ at the root, we see that x(t;g,λ, . . .) =
λx(t;g,1, . . .). We can integrate λ out of the Poisson likelihood in Theorem 1 with
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TABLE 3
Prior distributions on parameters in the Stochastic Dollo and Stochastic Dollo with lateral transfer

models

Parameter Prior Reasoning

Trait birth rate λ ∼ 1/λ Improper, scale invariant
Trait death rate μ ∼ 	(10−3,10−3) Approximately 1/μ

Trait transfer rate β ∼ 	(10−3,10−3) Approximately 1/β

Catastrophe rate ρ ∼ 	(1.5,5 × 103) E[ρ−1] = 104 years
Catastrophe severity κ ∼ U[0.25,1] E[δ|μ] = μ−1[1 − log(0.75)] years
Observation probabilities � ∼ U[0,1]L Independent, uniform

respect to its prior in Table 3 to obtain a multinomial likelihood whereby a pattern
p ∈ R(Q) is observed with probability proportional to its expected frequency. Fur-
thermore, we may integrate the catastrophe rate ρ out of the Poisson prior on the
number of catastrophes |C| to obtain a Negative Binomial prior instead. We de-
scribe these steps in detail in the Supplemental Materials.

Let np = |{h ∈ H(0) : p = dh ∈ R(D)}| denote the frequency of traits in the reg-
istered data displaying pattern p ∈ R(Q). Putting everything together, the posterior
distribution is

(6.1) π
(
g,μ,β, κ,�|R(D)

)∝ fG(g)fM(μ)fB(β)
∏

p∈R(Q)

(
xp∑

q∈R(Q) xq

)np

,

where the expected pattern frequencies x ≡ x(0;g,1,μ,β, κ,�) (4.3) account for
catastrophes, missing data and offset leaves where necessary. This completes the
specification of the Stochastic Dollo with Lateral Transfer (SDLT) model.

The posterior distribution (6.1) is intractable but may be explored using standard
Markov chain Monte Carlo (MCMC) sampling schemes for phylogenetic trees and
Stochastic Dollo models [Nicholls and Gray (2008), Ryder and Nicholls (2011)].
We describe the MCMC transition kernels for moves particular to the SDLT model
in the Appendix.

Implementation. Code to implement the SDLT model in the software package
TraitLab [Nicholls, Ryder and Welch (2013)] is available from the authors.

7. Method testing. We describe a number of tests to validate our model and
inference scheme in the Supplemental Materials. We compare the exact and empir-
ical distributions of synthetic data to validate our implementation of the expected
pattern frequency calculation (4.3). We test the identifiability of the SDLT model,
its consistency with the SD model when the lateral transfer rate β = 0, and its
robustness to a common form of model misspecification whereby recently trans-
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ferred traits are discarded from the data. In each case, we obtain a satisfactory fit
to the data and recover the true parameters.

8. Application. The order and timing of human settlement in Eastern Poly-
nesia is a matter of debate. In the standard subgrouping of the Eastern Polynesian
languages, Rapanui diverges first, followed by the split leading to the Marquesic
(Hawaiian, Mangarevan, Marquesan) and Tahitic (Manihiki, Maori, Penrhyn,
Rarotongan, Rurutuan, Tahitian, Tuamotuan) language subgroups [Marck (2000)].
Recent linguistic and archaeological evidence has challenged this theory. In an
implicit phylogenetic network study of lexical traits, Gray, Bryant and Greenhill
(2010) detect nontree-like signals in the data; furthermore, the Tahitic and Mar-
quesic languages do not form clean clusters in their study. In a meta-analysis
of radiocarbon-dated samples from archaeological sites in the archipelago,
Wilmshurst et al. (2011) claim that Eastern Polynesia was settled in two distinct
phases: the Society Islands between 900 and 1000 years before the present (BP),
and the remainder between 700 and 900 years BP. These dates, much later than
those reported by Spriggs and Anderson (1993), for example, do not allow much
time for the development of the Eastern Polynesian language subgroups. Conte
and Molle (2014) present evidence of human settlement in the Marquesas Islands
approximately 1100 years BP. On the basis of the above and further evidence of
lateral transfer in primary source material, Walworth (2014) disputes Marquesic
and Tahitic as distinct subgroups.

To add to this debate, we compare the SDLT and SD models on a data set of
lexical traits in eleven Eastern Polynesian languages drawn from the approximately
1200 languages in the Austronesian Basic Vocabulary Database [Greenhill, Blust
and Gray (2008)]. The data is a subset of the Polynesian language data set in the
study of Gray, Bryant and Greenhill (2010). We analyze the 968 traits marked
present in at least one of the eleven languages, hereafter referred to as POLY-0.
The data are isochronous. Consistent with Gray, Drummond and Greenhill (2009),
the sole clade constraint limits the root of the tree to lie between 1150 and 1800
years BP.

We plot samples from the marginal tree posterior under the SDLT and SD mod-
els in Figure 4. We summarize these distributions with majority rule consensus
trees in the Supplemental Materials. In agreement with Gray, Bryant and Green-
hill (2010) and Walworth (2014), the standard subgroupings do not appear as sub-
trees in either model. Rapanui does not form an outgroup in either of our analyses.
There is little evidence in the tree posteriors to support the claim of Wilmshurst
et al. (2011), however, as the posterior distributions of the root time, t1, resembles
its approximately uniform prior distribution on the range [1150,1800] years BP.

The majority of the uncertainty under the SDLT model is in the topology of
the subtree containing Rarotongan, Penrhyn, Tuamotu, Rapanui, Mangareva and
Marquesan. This subtree also has 100% posterior support under the SD model,
but most of the uncertainty here is in relationships further up the tree. We use
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FIG. 4. DensiTree [Bouckaert and Heled (2014)] plots of samples from the marginal tree poste-
rior under the SDLT and SD models fit to POLY-0. Heavier lines indicate higher posterior support.
Time is in units of years before the present.

BEAST [Drummond et al. (2012)] to obtain the 95% highest posterior probability
sets for the tree topologies under the respective models. These sets comprise 135
topologies for the SDLT model and 19 for the SD model. This level of confidence
in relatively few topologies is likely a result of the SD model’s misspecification on
the laterally transferred traits.

The effect of the laterally transferred traits in the data is also evident in the his-
tograms in Figure 5. The death rate μ is approximately 50% higher under the SD
model, as traits must be born further up the tree and killed off at a higher rate to
explain the variation in the data due to lateral transfer. The relative transfer rate
β/μ is the expected number of times that a single instance of a trait transfers be-
fore dying out; its posterior distribution under the SDLT model is centered on 1.35.
In contrast, on the basis of simulation studies, both Nicholls and Gray (2008) and
Greenhill, Currie and Gray (2009) consider a relative transfer rate of 0.5 high. We
report histograms for the remaining parameters as well as the trace and autocor-
relation plots we use to diagnose the convergence of our Markov chains [Geyer
(1992)] in the Supplemental Materials.

With the above concerns about the SD model in mind, we now assess the validity
of our analyses. To assess goodness of fit, we relax the constraints on each leaf time
and attempt to reconstruct them. The constraint 	(i) = {g ∈ 	 : ti = 0} fixes leaf
i ∈ VL at time 0, and 	(i′) = {g ∈ 	 : −103 ≤ ti ≤ 104} denotes its relaxation to
a wide interval either side of time 0. We denote by 	C′

the calibrated space of
phylogenies with 	(i) replaced by 	(i′). As constraint 	C ⊂ 	C′

, the Bayes factor
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FIG. 5. Marginal parameter posterior distributions under the SDLT and SD models fit to the East-
ern Polynesian data set POLY-0. Marginal effective sample sizes are in parentheses.

comparing the relaxed and constrained models is

Bi′,i = π(R(D)|g ∈ 	C′
)

π(R(D)|g ∈ 	C)

= π(R(D)|g ∈ 	C′
)

π(R(D)|g ∈ 	C ∩ 	C′
)

(8.1)

= π(g ∈ 	C |g ∈ 	C′
)

π(g ∈ 	C |R(D), g ∈ 	C′
)
,

a Savage–Dickey ratio of the marginal prior and posterior densities that the con-
straint 	(i) is satisfied in the relaxed model. A large Bayes factor here indicates a
lack of support for the leaf constraint and is therefore a sign of model misspecifi-
cation.

We cannot compute the Savage–Dickey ratio in equation (8.1) in closed form,
and so in practice we estimate the densities by the proportions of sampled leaf
times in the range [−50,50] years around time 0. We report log-Savage–Dickey
ratios in Figure 6 and histograms of the marginal leaf ages in the Supplemental
Materials. There are clear signs that the SD model is misspecified here. In partic-
ular, the SD model rejects the constraints on Manihiki and Marquesan, and so we
report lower bounds on the corresponding Bayes factors. The large Bayes factor
for the constraint on Rapanui provides “positive” evidence of misspecification on
the scale of Kass and Raftery (1995).

We assess the predictive performance of each model on a random splitting
of the registered data R(D) into evenly sized training and test sets labeled Dtr

and Dte, respectively. Madigan and Raftery (1994) propose to score each model
by its log-posterior predictive probability, logπ(Dte|Dtr), where π(Dte|Dtr) =∫

π(Dte|x)π(x|Dtr)dx, with x = (g,μ,β, κ,�) for the SDLT model and x =
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FIG. 6. Bayes factors comparing the support for the leaf constraints in the SDLT and SD models
fit to POLY-0. We estimate lower bounds on the Bayes factors for the constraints on Manihiki and
Marquesan under the SD model.

(g,μ, κ,�) for the SD model. The difference in scores is a log-Bayes factor mea-
suring the relative success of the models at predicting the test data [Kass and
Raftery (1995)]. The results in Table 4 strongly support the superior fit of the
SDLT model to POLY-0.

Traits marked present in a single language are often deemed unreliable and re-
moved in the registration process. To address this concern, we repeat our analyses
on the data set POLY-1 which we form by removing the singleton patterns from
POLY-0. Although the outcome of the predictive model selection in Table 4 is un-
changed, these singleton patterns play an important role in SDLT model inference
as parameter credible intervals are affected by their removal.

9. Concluding remarks. Lateral transfer is an important problem, but prac-
titioners lack the tools to perform fully likelihood-based inference for dated phy-
logenies in this setting. We address this issue with a novel model for species di-
versification which extends the Stochastic Dollo model for lateral transfer in trait
presence/absence data. To our knowledge, the method we describe is the first fully
likelihood-based approach to control for lateral transfer in reconstructing a rooted
phylogenetic tree. The second major contribution of this paper is the inference pro-
cedure whereby we integrate out the locations of the trait birth, death and transfer
events through a sequence of initial value problems.

TABLE 4
Posterior predictive model assessment

Data set SDLT score SD score Log-Bayes factor

POLY-0 −3058.2 −3105.8 47.6
POLY-1 −1401.2 −1481.1 79.9
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In the application we consider, accounting for lateral transfer results in an im-
proved fit over the regular Stochastic Dollo model but comes at a significant com-
putational cost. The sequence of initial value problems to compute the likelihood
parameters in the lateral transfer model is easy to state but difficult to solve in
practice. On a tree with L leaves, we can exploit symmetry in the differential sys-
tems to compute the expected pattern frequencies exactly in O(22L) operations.
In practice, we use an ordinary differential equation (ODE) solver to approximate
their values within an error tolerance dominated by the Monte Carlo error. This
approach requires O(L2LC(L)) operations, where C(L) is the number of matrix-
vector multiplications required by the ODE solver; for example, with the Matlab
ODE45 solver and typical choices of parameters, we observe C(10) ∈ [80,90] and
C(20) ∈ [95,100]. This approach is feasible for approximately L = 20 leaves on
readily available hardware. As we must evaluate the likelihood many times over
the course of an MCMC analysis, this computational burden is a major stumbling
block toward applying our model to data sets with more taxa or multiple character
states, and is the focus of ongoing research [Kelly (2016), Chapter 4].

The model as described is not projective in the sense that we cannot marginal-
ize out the effect of unobserved lineages, which in our analyses correspond to the
many Polynesian languages not included in our data set. Consequently, the prob-
ability that a trait transfers between sampled lineages decreases as the number of
unobserved lineages increases. Similarly, a trait which previously died out on the
sampled lineages may transfer back into the system from an unobserved lineage.
One possible solution to this problem is to introduce ghost lineages [Szöllosi et al.
(2012, 2013)] to allow for lateral transfer between sampled and unsampled taxa at
the expense of an increase in computational cost. There are many other avenues
for future work on the model. For example, one could partition the data across a
mixture of models and trees, relax the global lateral transfer regime or the assump-
tion that traits are independent, model multiple character states [Alekseyenko, Lee
and Suchard (2008)], allow individual catastrophes to vary in their effect, jointly
model sequence and trait presence/absence data [Cybis et al. (2015)], and account
for other types of missing data.

There are many open problems which have been ignored due to the expense
of fitting models that account for lateral transfer. One such example occurs in the
model of Chang et al. (2015) whereby ancestral nodes may have data. Stochas-
tic Dollo without lateral transfer cannot be used to model the observation process
here, as traits absent in an ancestral state but present in both descendent and non-
descendent leaves violate the Dollo parsimony assumption. Our method provides
a model-based solution to this problem and many others.

APPENDIX: MCMC TRANSITION KERNELS

We extend existing sampling algorithms for the Stochastic Dollo model
[Nicholls and Gray (2008), Ryder and Nicholls (2011)] to construct a Markov
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chain whose invariant distribution is the posterior π(g,μ,β, κ,�|R(D)) in equa-
tion (6.1). In the following, x = [(V ,E,T ,C),μ,β, κ,�] is the current state of the
chain, and a move to a new state x∗ drawn from the proposal distribution Q(x, ·)
is accepted with probability

min
[
1,

π(x∗|D)

π(x|D)

Q(x∗, x)

Q(x, x∗)

]
.

We apply the same scaling update to the lateral transfer rate β and the death
rate μ. If x∗ = [(V ,E,T ,C),μ,β∗, κ,�] where β∗|β ∼ U[�−1β,�β] for some
constant � > 1, then the Hastings ratio for this move is

Q(x∗, x)

Q(x, x∗)
= β

β∗ .

A catastrophe c = (b, u) ∈ C in state x occurs on branch b ∈ E at time
tb +u(tpa(b) − tb), where u ∈ (0,1) is the relative location of the catastrophe along
the branch. The location for a new catastrophe c∗ = (b∗, u∗) is chosen uniformly
at random across the branches of the tree to form the proposed state x∗ with catas-
trophe set C ∪ {c∗}. We choose catastrophes uniformly at random for deletion in
the reverse move, and so

Q(x∗, x)

Q(x, x∗)
= pDC

pAC

1

|C| + 1

∑
i∈E\{1}

(tpa(i) − ti),

where pAC and pDC denote the probabilities of proposing to add and delete a
catastrophe, respectively.

We chose catastrophe c = (b, u) uniformly from the catastrophe set C to move
to branch b∗ chosen uniformly from the deg(b) + deg[pa(b)] − 2 branches neigh-
boring branch b, where deg(b) denotes the degree of node b. This is equivalent
to deleting a randomly chosen catastrophe and adding it to a neighboring branch,
although we do not resample the relative location u. If c∗ = (b∗, u) replaces c in
the proposed state x∗, then

Q(x∗, x)

Q(x, x∗)
= deg(b) + deg[pa(b)] − 2

deg(b∗) + deg[pa(b∗)] − 2

tpa(b∗) − tb∗

tpa(b) − tb
,

where the Jacobian term (tpa(b∗) − tb∗)/(tpa(b) − tb) accounts for the change in sam-
pling distribution of the catastrophe position due to the change in branch lengths.
In fact, for every proposed move x to x∗ = [(V ′,E′, T ′,C), . . . ] which affects tree
branch lengths, the Hastings ratio includes a Jacobian term of the form

∏
i∈E\{1}

|C(i)|!
(tpa(i) − ti)|C(i)|

(t∗pa(i) − t∗i )|C∗(i)|

|C∗(i)|! ,

to account for the relative sampling densities for the catastrophe sets in each state,
where C(i) and C∗(i) respectively denote the catastrophe set on branch i in the
current and proposed states.
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Subtree-prune-and-regraft moves on the tree are designed in such a way that the
total number of catastrophes on the tree remains constant and the Hastings ratio
is unaffected except by the Jacobian term above. We illustrate these moves in the
Supplemental Materials.
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SUPPLEMENTARY MATERIAL

Supplemental Materials: Lateral transfer in Stochastic Dollo models (DOI:
10.1214/17-AOAS1040SUPP; .pdf). The supplement contains a proof of Theo-
rem 1 and supporting material for the analyses in Sections 7 and 8.
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