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Cancer development is driven by genomic alterations, including copy
number aberrations. The detection of copy number aberrations in tumor cells
is often complicated by possible contamination of normal stromal cells in tu-
mor samples and intratumor heterogeneity, namely the presence of multiple
clones of tumor cells. In order to correctly quantify copy number aberrations,
it is critical to successfully de-convolute the complex structure of the ge-
netic information from tumor samples. In this article, we propose a general
Bayesian method for estimating copy number aberrations when there are nor-
mal cells and potentially more than one tumor clones. Our method provides
posterior probabilities for the proportions of tumor clones and normal cells.
We incorporate prior information on the distribution of the copy numbers to
prioritize biologically more plausible solutions and alleviate possible identi-
fiability issues that have been observed by many researchers. Our model is
flexible and can work for both SNP array and next-generation sequencing
data. We compare our method to existing ones and illustrate the advantage of
our approach in multiple datasets.

1. Introduction. Cancer development and progression are often associated
with genomic alterations, including abnormalities in the number of DNA copies.
Normal cells in humans contain two copies of DNA. Insertion of extra copies or
deletion of parts of the DNA sequence in the genome is referred to as copy number
aberrations (CNAs). Detection of CNAs helps to understand the biological mech-
anism of carcinogenesis and tumor progression. It leads to the discovery of onco-
genes or tumor suppressor genes that are critical to tumor progression [Beroukhim
et al. (2010)] and provide better understanding of the evolutionary process of can-
cer development. Tumor tissue samples often contain a proportion of normal cells,
and frequently the tumor progression involves the development of multiple re-
lated tumor clones. Intratumor heterogeneity refers to the existence of more than
one tumor clone within a sample, which is now recognized as a common feature
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of cancer genomes [Michor and Polyak (2010); Gerlinger et al. (2012); de Bruin
et al. (2014); Zhang et al. (2014)].

With the advent of high through-put and high resolution platforms, such as high-
density arrays for single nucleotide polymorphisms (SNPs) and whole genome
sequencing (WGS), genome-wide CNA detection becomes readily accessible. At
each location (locus) on the genome, there are usually two alleles, denoted by A
and B. Depending on whether two copies of the DNA have the same allele or not,
the genotype can be written as AA, AB, or BB. If the genotype of a locus is AA
or BB, then the locus is homozygous; otherwise, it is heterozygous. For normal
samples, the total copy number is 2 since we have two alleles at each location.
However, for tumor samples, the copy number can be different. For example, if
there is a copy number loss the genotype is A (or B) at a locus, and the copy
number is 1. If there is a copy number gain at a location, the genotype can be
AAB (or AAA, ABB, BBB), and the copy number is 3. The B allele frequency
(BAF) measures the ratio between the number of B alleles and the total number
of alleles. For a normal sample, the BAF can be only 0, 0.5, and 1 corresponding
to genotype AA, AB, and BB, respectively. For a CNA locus with genotype AAB,
the BAF is 1/3. As an example, if there are two clones, a mixture of 60% (AB)
and 40% (AAB) leads to BAF of 1/2.4 = (0.6 × 1 + 0.4 × 1)/(0.6 × 2 + 0.4 × 3).
Only the BAF at heterozygous locus is informative, since at homozygous loci it
is 0 or 1, irrespective of the copy number. As each parent contributes one copy
of DNA to the offspring, at a heterozygous locus (AB) we know A allele is from
one parent and B allele is from another parent, but we do not know which one
comes from the father and which one from the mother. Similarly, since A and B
are generic labels, it is possible that at one location, B is coming from the mother
and at another location the B is coming from the father. Therefore, without loss of
generality, we will always refer to the B allele as the allele coming from the father
and calculate the so-called parent specific copy number (PSCN) accordingly. For
example, genotype AAB will have PSCN (2,1) for mother and father, respectively,
and a mixture of 60% AB and 40% AAB will have PSCN (1.4,1) for mother and
father, respectively. A difference between the PSCN for mother and father is called
allelic imbalance. The collection of such allelic information across the genome
enables CNA estimation.

The forms of signals can be different due to different data collection platforms.
High-density SNP array data are obtained using DNA microarrays in conjunc-
tion with array comparative genomic hybridization (aCGH). Fluorenscence in situ
hybridization technology is used to generate intensity data. Intensities from each
channel are reflective of the copy numbers from the A and B alleles. Due to the
existence of locus specific artifacts that might affect the measurements, intensities
are usually measured for paired tumor and normal samples. The locus specific bias
can be removed by taking the ratio of the intensities for the tumor and the nor-
mal samples. In the CNA detection literature, the ratio between paired tumor and
normal samples is usually reported; it will be referred to as the R henceforth.
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For SNP array data, the BAF is the ratio between the B allele intensity and total
intensity. For sequencing data, the measurement for each locus is the number of
genomic fragments that can be aligned at that location. Similar to SNP array data,
genomic fragments can be aligned to either the A or B allele, resulting in two
read counts (RCs). The sum of the RC for the A and B allele is often called the
read depth (RD). The ratio of the RD at a particular location obtained from WGS
data for a tumor sample over the paired normal sample serves the same purpose of
adjustment as the RR in a SNP array. We will refer to both of those measures as
the “intensity.” For WGS data, the BAF is the ratio of the RC corresponding to the
B allele and the RD. Different terminologies are used for similar measurements on
different platforms. For readability, we will use tumor-normal ratio (R) to refer to
both R (for SNP data) and RD (for WGS data).

Several difficulties arise in estimating parent-specific absolute CNA. First, the
intensity data is only proportional to TCN. It needs to be normalized (scaled) to
be on the same scale as the TCN. For example, if we know that the average copy
number (usually referred to as ploidy) is 2.4, then we can simply rescale the R

to make sure the average R is 2.4. But the problem is that usually the ploidy is
unknown to us. Another way to rescale the R is through alignment. If we know
the majority of the genome has copy number 2, then we can rescale the R such
that the average R for those region is equal to 2. One assumption for this pro-
cedure to be valid is that the majority of the genome have not gone under CNA.
However, such assumption is sometimes violated, especially for tumor samples.
For example, in a whole genome duplication event, the copy number for the whole
genome is doubled to 4. In such s case, the alignment will fail and lead to under-
estimation of the actual copy number. Second, tumor tissues are often mixed with
a proportion of normal stromal or immune cells, and there may exist more than one
tumor clones due to tumor evolution. Both normal cell contamination and intratu-
mor heterogeneity complicate CNA detection. Third, simultaneous estimation of
the ploidy, the proportion of each tumor clone, and parent-specific copy numbers
suffers from an identifiability issue even for samples with only one tumor clone
[Yau et al. (2010)]. As a trivial example, we cannot distinguish a normal tissue
from a tissue with exact whole-genome duplication based on intensities only.

Some recent methodological works have focused on addressing the estimation
of tumor ploidy and the proportion of normal cells. For example, Attiyeh et al.
(2009) corrected for aneuploidy by examining the TCN distribution for SNPs with
BAF close to 0.5. ASCAT [Van Loo et al. (2010)] is among the first methods that
aims to simultaneously estimate tumor ploidy and tumor purity. ASCAT minimizes
a weighted least square function and gives larger weights to segments with BAF
not equal to 0.5. Carter et al. (2012) used SNP array data to estimate the tumor
ploidy and the normal cell proportions simultaneously. Bao, Pu and Messer (2014)
estimated ploidy and purity (tumor cell proportions) simultaneously using next
generation sequencing data. CLImAT [Yu et al. (2014)] proposed an integrated
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hidden Markov model (HMM) to solve the deconvolution problem using sequenc-
ing data. While these methods are successful in detecting stromal contamination,
none of the above methods consider the likely common scenario where the tumor
cells are composed of more than one major tumor clone.

Recent literature has aimed to quantify the intratumor heterogeneity. Existing
methods can be categorized based on the component of CNA data used for de-
convolution. One group of methods used the intensity information to infer the
tumor purity and intratumor heterogeneity. For example, THetA [Oesper, Mah-
moody and Raphael (2013)] modeled the RD as a multinomial distribution and
tried to deconvolve the multiple tumor clones by solving a maximum likelihood
mixture decomposition problem. ThetA2 [Oesper, Satas and Raphael (2014)] is
an advanced version of THetA, which further incorporates BAF information in
the model. We will refer to THetA as the new version throughout the paper. An-
other group of methods made use of the BAF information obtained from single-
nucleotide variations (SNV). For example, MAD Bayes [Xu et al. (2015)] built a
hierarchical model with an exponential family likelihood and a feature allocation
prior. PurBayes [Larson and Fridley (2013)] modeled the B allele RC at each lo-
cus by a binomial-binomial distribution and selects the number of clones using a
penalized expected deviance. However, because this group of methods does not
model the TCN, such methods will fail if the sample has CNAs. A third group of
methods made use of both the BAF and the intensity information, which makes
their estimates more stable than the previous two groups. For example, EXPANDS
[Andor et al. (2014)] calculated the fraction of mutated cells at each locus before
performing a clustering procedure on the fractions, thereby obtaining the number
of subpopulations. OncoSNP-SEQ [Yau (2013)] provided good copy number es-
timates for tumor-normal mixtures while accounting for intratumor heterogeneity.
However, both methods use mutation data instead of copy number information for
downstream analyses. They assumed that there can be at most one mutation at each
locus to simplify the inference. Furthermore, although the identifiability issue has
been noticed in several publications, there has not been much effort devoted to
investigate this problem. When multiple solutions exist, which is quite common,
most bioinformatics tools simply output all the possible solutions while providing
no guidance on which one is the most plausible.

In this work, we propose a Bayesian framework for tumor clone quantification
that works for both SNP and WGS data. Biological knowledge on the distribu-
tion of copy numbers is applied as prior information, which allows users to have
the flexibility of examining multiple possible solutions by varying the prior and
gain insights over multiple solutions. We explicitly model each tumor sample as
a mixture of normal cells and multiple major tumor clones, and our model pro-
vides posterior probabilities for tumor clone proportions as well as estimated copy
numbers. We make use of both intensity and BAF data. So we are able to provide
more stable results than methods using only one component of data. Unlike most
existing approaches, we do not put constraints on the number of CNA events that
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could happen at each locus, which makes our method more general as compared
to existing methods.

2. Method. In this section, we introduce a general likelihood framework with
a biologically informed prior that works for both SNP array and WGS. Although
the workflow for the two data types is quite similar, there are a few data-specific
modifications. We will focus on SNP array data in Sections 2.1–2.6 and discuss
the difference for WGS data in Section 2.7.

2.1. Preprocessing.

2.1.1. Segmentation. The intensity data are obtained at the locus level while
CNAs typically occur over regions of the genome. Thus, it is reasonable to segment
the SNP data before model fitting. Such segmentation can be done using existing
change point detection methods, such as PSCBS [Olshen et al. (2011)]. However,
the PSCBS algorithm with default settings tends to produce too many segments
as input for our method One reason is that the default in PSCBS is to test without
a Bonferroni correction for multiple intervals. In many applications getting extra
segments may be beneficial, but not for our method, as it increases computation
and creates an extra source of variation. Therefore, we model the number of change
points as a random variable and use model selection methods to determine the
number of segments and change points. We start from the segments obtained from
PSCBS and reduce the number of segments by merging neighboring segments with
mean mirrored BAFs difference less than a tolerance threshold τ .

A larger τ corresponds to a sparser model. Using results from Zhang and Sieg-
mund (2007), we select the τ that maximizes the following function in terms of
the number of segments S:

(2.1) l(X,R) + l(Y,β) − 3

2
S log(N),

where X and R denote the tumor-normal ratio at SNP and segment level, Y and β

denote the BAF at the SNP and segment level and N is the total number of observa-
tions. Here, l(X,R) and l(Y,β) are the log likelihoods for R and BAF; l(X,R) =∑S

s=1
∑

j∈I (s)(Xj − Rs)
2/σ 2

X and l(X,R) = ∑S
s=1

∑
j∈I1(s)

(Yj − βs)
2/σ 2

Y . Also,
I (s) is the collection of indices for the loci falling within segment s and I1(s) is
the collection of all heterozygous loci falling within segment s; σ 2

X and σ 2
Y are the

variance for X and Y . The penalty term −3
2S log(N) is added to penalize over-

segmentation. In practice, we let τ take a series of values evenly spaced between
0 and 0.02 with increments of 0.002 and perform a grid search for the best τ .

2.1.2. Mean R. For each segment, we calculate the mean R using the intensity
data at the loci in the segment. The intensity data at the locus level can be noisy
with outliers, possibly distributed with heavy tails. To make our methods more
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robust to noisy observations, we take the 5% winsorized mean of the RR. By taking
the winsorized mean, the segment level RR as an average follows approximately a
normal distribution.

Staaf et al. (2008) and Van Loo et al. (2010) describe a “compaction effect” on
the intensity, where the intensity measured on the array data is not proportional
to the copy number due to technical issues of arrays. We used the same model
as described in equation S1 of Van Loo et al. (2010) to adjust RR such that after
adjustment, the linear relationship is recovered. For detailed description of the
compaction effect, we refer to Staaf et al. (2008). Throughout the paper, we set the
compaction coefficient γ = 0.55 as used in ASCAT [Van Loo et al. (2010)].

2.1.3. Mean mirrored B allele frequencies. The BAF for heterozygous loci
carries information about allelic imbalance: consecutive SNPs in BAF plots will
appear as horizontal bands that are symmetric around 0.5. Taking the average BAF
over a segment will lead to information loss, since the mean will fluctuate around
0.5. For this reason, the mirrored BAF has often been used by performing a reflec-
tion of BAF data along the 0.5 axis [e.g., Staaf et al. (2008)]. When there exists
allelic imbalance, the mean mirrored BAF is an unbiased estimate of the minor
allele frequencies. However, bias will be introduced if the true BAF is close to 0.5,
because the mirrored BAF is always observed to be less than 0.5, and so the ex-
pectation for mirrored BAF does not equal to the true BAF. Rather, the expectation
is a function that depends on the variance of the observed BAFs.

To resolve this, it is useful to model the mean of BAF directly, rather than the
mirrored BAF. Specifically, we assume that the observed BAFs for heterozygous
loci within a segment follow a mixture of two normal distributions. One with mean
μ ≤ 0.5 and the other one with mean 1 − μ. We assume both normal distributions
share the same variance that can be estimated from the paired normal sample across
the same region. When there exists allelic imbalance (bimodality), the estimated
μ̂ will be close to the mean mirrored BAF. When there is no allelic imbalance, μ̂

will be close to 0.5. Such an estimated μ̂ can be viewed as a less biased estimator
than the mirrored BAF.

2.2. Variance estimation. Although most of existing methods treat RR and
BAF at different locations as independent, evidence of long range spatial correla-
tions has been observed for both SNP array and WGS data, possibly because of
local structure of the DNA, such as the GC content. See Figure 1 for an illustration
of this phenomenon. In panel A, we plot the auto-correlation function (ACF) for
the intensity data for chromosome 1 of patient 89s normal sample from the Seat-
tle Barrett’s Esophagus Study (see Section 3.3). Similar patterns are observed for
other samples, chromosomes, and experiments. Even for lags as far as 500 SNPs
in SNP arrays, there is still a significant auto-correlation (often ρ > 0.05). It is
useful to adjust for such correlation in the variance calculation, as this correlation
structure has a major impact on the likelihood function.
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FIG. 1. An illustration of the autocorrelation between R measurements. The top figures are for
SNP array data and the bottom figures are for WGS data.

We model the correlation structure using the paired normal sample, by exam-
ining the relationship between the variance of segment means and the number of
probes in that segment (referred to as segment sample size). For each sample size,
we divide the whole genome into segments with equal sample size. The mean of
the R for each segment can be calculated and so the variance of those means. We
plot the trend between these variances and the inverse of the segment sample sizes
in panel B. Under the independence assumption, we would expect to see a lin-
ear relation. However, the variances decrease much slower than what is expected
under independence, consistent with a strong auto-correlation. Panel C plots these
variances versus the logarithm of segment length. It appears that a linear trend with
a negative slope largely captures the relationship between the variance and the nat-
ural log of segment sample size. Therefore, we use this empirical relationship to
estimate the variances of segment means based on the segment sample size.

For the R of segment s, we model its variance [v̂ar(Rs)] using the above model.
We define the size of a given segment as var(X)/v̂ar(Rs) � n′

s , where X is the
R at SNP level. Variance estimates for the BAF are obtained in a similar fashion.
Based on our data, the size of any segment turns out to be dramatically smaller
than the number of loci in the presence of strong auto-correlations. For example,
based on the normal sample of patient 89, the size for a segment with 1000 probes
is estimated to be only around 16. We found similar phenomena for a variety of
Illumina and Affymetrix arrays processed in different labs. Panels D, E, and F of
Figure 1 show similar data for WGS.

2.3. Notation and likelihood. With these preparations of the data, we are now
ready to introduce the likelihood. Let Rs and βs (s = 1, . . . , S) denote the mean R



974 Y. CHENG ET AL.

and mean BAF, respectively, for segment s. We assume that each tumor sample is a
mixture of K tumor clones plus normal stromal cells. Let αk , k = 1, . . . ,K , be the
proportion of tumor clone k, then the proportion of normal cells is 1−∑

k αk � α0.
At each segment, the PSCNs are defined to be the number of DNA copies that
come from each parent. Let the PSCNs be (fs1,ms1), . . . , (fsK,msK) for tumors
1 through K , and assume both Rs and βs follow a normal distribution:

(2.2) Rs ∼ N
(
μRs =

(
2α0 + ∑

k

qskαk

)/
ρ,σ 2

Rs

)
,

and

(2.3) βs ∼ N
(
μβs = α0 + ∑

k fskαk

2α0 + ∑
k qskαk

, σ 2
βs

)
,

where ρ is the ploidy of the tumor sample, qsk = fsk + msk , and σ 2
Rs

and σ 2
βs

are
the variances for Rs and βs ; see Section 2.2. The ploidy ρ is unknown and needs
to be estimated; see Section 2.5.

If we assume that different segments are uncorrelated, the likelihood function
can be written as

L(R1, . . . ,RS,β1, . . . , βS |α1, . . . , αK, f1, . . . , fK,q1, . . . ,qK)

=
S∏

s=1

1

2πσRsσβs

exp
{
−(Rs − μRs )

2

2σ 2
Rs

− (βs − μβs )
2

2σ 2
βs

}
.

(2.4)

Two observations of the likelihood are noted:

1. Changing the labels of different tumor clones will not affect the likelihood
function. So without loss of generality, we will rank the tumor clones according
to their proportions in descending order. Similarly, since B is only a generic label
(see Section 1), we always refer to the PSCN that corresponds to the B allele as f .

2. For the denominator of μβs , we could either use μRs [= E(Rs)] (expected
version) or Rs (observed version) as the denominator. We choose to use μRs , since
in our experience, using the expected value tends to give more robust results.

2.4. Model identifiability and prior specification. Equation (2.4) is a likeli-
hood function with 2SK observations and 2SK + K parameters. While the num-
ber of parameters is greater than the number of observations, we have strong con-
straints that the 2SK PSCNs can take only nonnegative integer values. For com-
putational convenience and ease of the identifiability issue, we assume that each
PSCN is at most a pre-specified maximum number P , which we have taken to
be 6 throughout this paper. Even with these constraints, there are still identifiabil-
ity issues. Here, we investigate these identifiability issues and give pathological
examples for the scenario for two tumor clones. As the number of tumor clones
increases, the possibility of having nonidentifiability issues will increase.
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TABLE 1
Different configurations rendering same overall cell line level PSCNs. PSCN refers to parent

specific copy number. α0 is the percentage of the normal cells. α1 is the percentage of the tumor
clone 1 cells. α2 is the percentage of the tumor clone 2 cells

Normal cell Tumor1 Tumor2

PSCN Percentage PSCN Percentage PSCN Percentage

1 α0 f1 α1 f2 α2

1 α0
f1+(k−1)f2

k
kα1 f2 α2 − (k − 1)α1

1 α0 + hkα1 f ′
1 kα1 f2 α′

2

1 α0 + hkα1 f ′
1 kα1 − (l − 1)α′

2
f2+(l−1)f ′

1
l

lα′
2

We investigate the identifiability problem from two perspectives. First, assume
that the proportion of each of the tumor clones is known, and we are interested in
estimating the PSCNs for each segment. Assume there are two tumor clones, then
the PSCNs are not identifiable if there exists f ′

1 �= f1 and f ′
2 �= f2, f1, f2, f

′
1, f

′
2 ∈

{0, . . . ,P } so that f1α1 +f2α2 = f ′
1α1 +f ′

2α2. This happens when α2
α1

= −f1−f ′
1

f2−f ′
2
=

f ′
1−f1

f2−f ′
2
. Such an identifiability problem will occur only in some special situations,

for example, when α1 = 30% and α2 = 60%, we cannot distinguish between the
following two possibilities: tumor 1 has 4 TCN at a certain location while tumor 2
has 0 TCN; or tumor 1 has 0 TCN at a certain location while tumor 2 has 2 TCN.

This lack of identifiability in the TCN is perhaps not critical to test whether there
is a CNA in a region, although we cannot tell to which tumor population these
segments of chromosome belong. It is more concerning when identifiability issues
influence the estimated proportions of each tumor. To illustrate this problem, we
list several possible configurations for two tumor cell populations and one normal
cell population that yield the same overall sample level PSCNs in Table 1. Each
row in the table corresponds to one configuration. For any configuration to be valid,
percentages should lie within [0,1], PSCN should be nonnegative integers and be
at most P . α′

2 = α2 − (k − 1)α1 −hkα1 and f ′
1 = f1+(k−1)f2

k
+h(f2 − 2). We note

that similar identifiability issues also arise for the simpler scenario where only one
tumor cell population is assumed [Yau et al. (2010)].

To alleviate this identifiability issue, we propose to incorporate biologically rel-
evant prior information. We start from the observation that cells usually survive
better if they have an average ploidy greater than 1.6, which suggests that it is not
likely that there is a huge copy loss along the genome [Volm et al. (1985)]. Fur-
thermore, since all tumor cells evolve from normal cells, we assume the further
departure of tumor cells from the normal cells, the smaller the probability. Thus,
we propose to use the following prior distribution on copy numbers:

(2.5) p(fsk = j) = p(msk = j) ∝ exp
{−bn′

s(j − 1)2}
, k = 1, . . . ,K,
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where b is a tuning parameter that reflect strength of this prior distribution and n′
s

is the size as described in Section 2.2. In practice, we report results for several b

so that we can be aware of different possible solutions. In later sections, we set b

to be 0, 0.001, and 0.01 to study the effect of b. In the case of weak identifiability
where the likelihood functions for different configurations (solutions) are close,
use of the prior distribution will result in solutions whose estimated copy numbers
are closer to the normal (diploid) state.

2.5. Parameters estimation. Estimation of ρ (the ploidy) is obtained by max-
imizing the profile likelihood function:

(2.6) L(ρ) � max
θ

L(ρ, θ),

where θ = {α1, . . . , αk, f1, . . . , fk,q1, . . . ,qk} and L(ρ, θ) is the likelihood func-
tion as defined in equation (2.4). In practice, we set ρ to take 100 values evenly
spaced between 1 and 6 and set ρ̂ to be the ρ that maximize L(ρ). The parameter
ρ is assumed to be between 1 and 6 because usually the average copy number of
any cell is between 1 and 6 [Volm et al. (1985)]. Given the estimated ploidy ρ̂, θ
can be estimated as follows. From equation (2.5), we have

P(qsk) = ∑
l+k=qsk

exp
[−bn′

s

{
(l − 1)2 + (j − 1)2}]

, k = 1, . . . ,K,(2.7)

P(fsk|qsk)

= exp[−bn′
s{(fsk − 1)2 + (qsk − fsk − 1)2}]∑

l+j=qsk
exp[−bn′

s{(l − 1)2 + (j − 1)2}] , k = 1, . . . ,K.
(2.8)

When we assume a uniform prior for the vector (α0, . . . , αK) on the hyper-
surface of

∑
αk = 1, then the posterior probability of the parameters can be written

as

P(α0, . . . , αK, f1, . . . , fK,q1, . . . ,qK |Data)

∝
p∏

s=1

1

2πσRsσβs

exp
{
−(Rs − μRs )

2

2σ 2
Rs

− (βs − μβs )
2

2σ 2
βs

× P(qs1)P (fs1|qs1) · · ·P(qsK)P (fsK |qsK)

}
.

(2.9)

Maximum a posteriori estimation (MAP) can be carried out by a grid search
over the parameter space [0,1]K on gK grid points for α1, . . . , αK , and P + 1
values for f1, . . . , fK and m1, . . . ,mK , m1 = q1 − f1, . . . ,mK = qK − fK .

There are several advantages of such a grid search:

1. Posterior probability for hidden states can be easily obtained for each seg-
ment individually.
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2. If there is reason to believe that only one tumor population exists or that there
is no normal cell contamination in the sample, we can find a solution satisfying
prior knowledge without extra computation.

2.6. Model selection for the number of tumor clones. Model selection is
needed to select the number of tumor clones after the number of segments is deter-
mined. Let MK be the model selected using the process described in the previous
paragraph while assuming there are K tumor clones. Let S be the number of seg-
ments selected using the methods described in Section 2.1.1 and lK be the log
likelihood as defined in equation (2.4). Then we use the Bayes information cri-
terion (BIC) to select the number of tumor clones, that is, we select K such that
−2lK + (2SK + K) log(N) is minimized.

2.7. Analysis of WGS data. The framework for WGS data analysis remains
mostly the same as that for SNP array data; however, there are several technical
differences.

With a little abuse of notation, for WGS data, we define Rs as the logarithm of
the ratio between the RD of the tumor sample and the paired normal sample for
segment s. The parameter βs is defined as the logarithm of the BAF of the tumor
sample minus the logarithm of the BAF for the paired normal sample. The infor-
mation from the paired normal sample is used to adjust for the mapping bias—the
reads that have the alleles tend to be mapped more accurately than those having
alternative alleles. Then, similar as for SNP array data, Rs and βs can be approxi-
mated by normal distributions:

(2.10) Rs ∼ N
(
μRs = log

{(
2α0 + ∑

k

qskαk

)/
ρ

}
, σ 2

Rs

)
,

and

(2.11) βs ∼ N
(
μβs = log

{
2(α0 + ∑

k fskαk)

2α0 + ∑
k qskαk

}
, σ 2

βs

)
,

where σ 2
Rs

and σ 2
βs

can be estimated from the data.
Second, we observed that the auto-correlation structure for RD in WGS data is

similar to the pattern observed for SNP data. The ACF and variances are plotted
in the second row of Figure 1. The plots are generated by first dividing the whole
genome using sliding windows of size 1000. An averaged RD is calculated by
taking the average of the 1000 loci within each window. Then we use the same
procedure as described in Section 2.5 using the averaged RD. As shown in panel F,
a quadratic model fits the relationship between the variance of segment means and
the number of averaged RD.

Note that the likelihood for sequencing data is built using the logarithm scale
of RR while the likelihood for SNP is built using the original scale. In the situa-
tion that the RD is 0, the logarithm is undefined. So in practice, we exclude any
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segments with RD less than 80 for the tumor sample. After the segmented data are
obtained, the subsequent procedure for WGS data analysis lines up well with the
procedure for SNP array data.

3. Results. We illustrate our method from the following three aspects: In Sec-
tion 3.1, we study the effect of segmentation (τ ) and number of tumor clones (K)
on the estimation results. In Section 3.2, we compare our method with two popular
competitors in simulations and on some published data, all of which show the ad-
vantages of our proposed method. In Section 3.3, we apply our method on cell-line
data obtained from the Seattle Barrett’s Esophagus Study and examine the within
tumor heterogeneity derived from patients with Barrett’s esophagus.

3.1. Sensitivity and robustness to choice of parameters. In this section, we
study the effect of the different choices of parameters on the results of our method.
Specifically, we study the effect of using different thresholds τ for combining seg-
ments and the number of tumor clones K on the results. We use the data obtained
from Staaf et al. (2008). In their study, the samples were created by mixing breast
cancer cell line CRL-2324 [ATCC, Gazdar et al. (1998)] with the corresponding
normal cell line CRL-2325 from the same patient at different ratios. The mixing
proportions are set to be 10%, 14%, 21%, 23%, 30%, 34%, 45%, 47%, 50%, 79%,
and 100%.

To study the effect of τ on the results, we set τ to take a series of values
(0.002,0.004, . . . ,0.02) and report the results in Table 2. We do not want to con-
sider values of τ larger than 0.02, as we want to prevent that segments with real
BAF differences are combined. All estimates reported in this table were obtained
by assuming two major tumor clones, though results with other numbers of clones
are similar. We note that the ranges over the solutions for different τ in Table 2 are
small, thus the estimates do not vary a lot for different choices of τ .

To study the effect of different number of tumor clones on the results, we cal-
culate the estimated proportions while assuming K = 1,2, and 3. For each K , we

TABLE 2
Means of the estimates of the ploidy (ρ) and ranges of the estimates of the fraction of the cell line

mixtures for the normal cells (α0) and the tumor cells (α1, α2) averaged over 10 different threshold
values τ . Numbers in () are the standard deviation over the different values of τ . Purity is the

percentage of the tumor cells

Purity ρ α0 α1 α2

100% 2.79 (0.04) 2%–2% 19%–27% 71%–79%
79% 2.55 (0.01) 13%–24% 10%–11% 66%–76%
50% 2.31 (0.01) 56%–56% 10%–10% 34%–34%
34% 2.22 (0.02) 64%–66% 8%–10% 24%–28%
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TABLE 3
Estimates of the fraction of the cell line mixtures while assuming different number of tumor clones
(K). BIC = −2l + (2SK + K) log(N). All the proportions are shown in percentages. The selected
models based on BIC values are highlighted in bold for each sample. Here, l is the log likelihood

function, S is the number of segments and N is the total number of observations

Estimated prop.

True prop. K = 1 K = 2 K = 3

Normal Tumor α0 α1 BIC α0 α1 α2 BIC α0 α1 α2 α3 BIC

0 100 5 95 6960 2 21 77 6878 2 7 25 66 10,329
21 79 22 78 9456 19 17 64 9251 10 6 10 74 12,477
50 50 61 39 7317 57 9 34 8635 49 7 10 34 12,183
53 47 59 41 7524 55 8 37 9155 45 4 11 40 12,584
55 45 70 30 6679 59 12 29 8456 64 3 5 28 11,823
66 34 71 29 5938 68 8 24 7177 63 3 5 29 10,088
70 30 75 25 5940 72 7 21 7471 66 3 5 26 10,586
77 23 73 27 5750 66 5 29 7713 64 3 5 28 10,925
79 21 83 17 4161 81 4 15 5314 76 3 4 17 7489
86 14 93 7 3074 89 3 8 4402 85 2 3 10 6229
90 10 94 6 2005 91 3 6 2846 74 5 6 15 4061

report the estimated proportions for normal cells and different tumor clones as well
as the BIC values in Table 3. We highlight the solution with smallest BIC value
in bold for each sample. Overall, selecting the model using the BIC criteria gives
reasonable results. When the percentage of tumor clones is large (rows 1 and 2),
BIC selected the solutions correspond to two tumor clones (K = 2) as the cor-
rect model. As the percentages of the tumor clones decreases such that one of the
tumor clones constitutes less than 10% of the sample, BIC selected the solutions
correspond to one tumor clone (K = 1) as the correct model. It seems reasonable
that, if the proportion of one of the clones becomes very small, only a single clone
gets selected. Naturally, if we want to explore whether more clones exist, we can
also select another model, for example, using AIC we would select K = 2 for all
proportions.

3.2. Comparison with existing methods. Most of the existing methods are de-
signed for specific type of data (SNP-array or WGS).

In this section, we compare our method with ASCAT [Van Loo et al. (2010)]
on SNP array data using the data set introduced in the previous section and with
THetA2 [Oesper, Satas and Raphael (2014)] on simulated sequencing data. Both
ASCAT and THetA are highly cited approaches with available packages that are
using similar data as our approach (i.e., are not using mutation information).

The comparison for our proposed method and ASCAT is given in Figure 2.
Since ASCAT assumes only one tumor percentage, the comparison is done by
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FIG. 2. Estimates of tumor cell proportions as a function of true tumor cell percentages for the
proposed method and ASCAT using dataset from Staaf et al. (2008). The 95% credible interval length
for our estimates is always less than 2%. ASCAT does not include a standard error in its output.

comparing the total tumor percentages estimated using our method and ASCAT.
The x-axis gives the percentages of the true percentages of the tumor cells in the
population and the y-axis gives the estimated tumor percentages. The dashed line
corresponds to the result of our method and the dotted line corresponds to ASCAT.
It can be seen that when the purity is high, ASCAT and our methods provides
similar results that are close to the truth. However, when the purity is low (less
than 30%), ASCAT fails to provide feasible solutions. One possible reason is that
ASCAT only assumes one tumor clone. The other possible reason is that ASCAT
gives much heavier weight to segments that have allelic imbalance (BAF �= 0.5).
This can be a good strategy when there is not much noise and the estimate of
whether BAF is 0.5 is accurate. However, when the estimate of BAF is error prone,
this strategy is less attractive because of the extra source of variability in the model.
For comparison with existing method, we choose ASCAT and THetA because they
are among the most prominent ones with packages available for implementation.
ASCAT is defined for SNP array data while THetA is designed for WGS data.
Figure 3 shows the estimated ploidy of the tumor sample after removing the nor-
mal cells. Since all these estimates are essentially estimating the ploidy for sample
CRL-2324, a robust method should provide consistent estimates across different
normal proportions. Both methods provide good estimates of the ploidy when nor-
mal contamination level is low. When the normal contamination level is high, the
estimates of ASCAT again fails to provide feasible solutions.

Besides the ability to estimate the normal cell contamination level, our pro-
posed method can estimate the level of intratumor heterogeneity, as is observed
for cell line CRL-2324. In particular, our method is able to detect heterogene-
ity among the tumor cells using the dilution series. The estimated ratios of per-
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FIG. 3. Estimates of the tumor ploidy as a function of the true normal cell proportions for proposed
method and ASCAT using the data from Staaf et al. (2008). The 95% credible interval length for out
estimates is always less than 0.1. Such credible interval length is patially due to our sampling scheme.
We only compute the posterior likelihood for 100 possible ploidy values. ASCAT does not include a
standard error for the ploidy estimate.

centages of the two tumor clones are shown in Figure 4. It shows the results
using the data from Staaf et al. (2008) as a function of the true fraction of nor-
mal cells. We estimate that there is approximately four times as much tumor 2
as tumor 1 in these samples. This estimate becomes less stable for higher level

FIG. 4. Estimates of the ratios of tumor 1 cell proportion and tumor 2 cell proportion as a function
of the true normal cell proportions for different prior choices. The 95% credible interval length for
our estimates is always less than 2%. ASCAT does not include a standard error in its output.
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of normal cells, which is understandable as the total amount of tumor becomes
smaller.

We also compare the performance between our method and THetA [Oesper, Sa-
tas and Raphael (2014)] on simulated sequencing data. We simulated a series of
samples with two tumor clones and extra normal contaminations. We fix the pro-
portion of tumor clone 2 to be 50% while changing the percentage of tumor clone
1 to take values that are equally spaced between 0 and 50% with increments of
5%. CNAs are spiked in using the RD of normal cells. The length of each CNA
is equal to 2.5 Mb and the CN for each CNA is randomly drawn from 0, . . . ,6
with probability equal to 0.09, 0.25, 0.25, 0.25, 0.08, 0.04, and 0.04, respectively.
We generate 5 CNAs on each chromosome. At each locus, the RD is generated
using a Poisson distribution with added sequencing error. The mean of the Poisson
distribution (λ) is proportional to the copy number as well as the RD for the nor-
mal sample. The sequencing error follows a normal distribution with mean 0 and
standard deviation φλ, where φ controls the level of read depth estimation error. In
Oesper, Satas and Raphael (2014), they report the range of φ to be between 0.01
and 0.04. We set φ = 0.02 in the simulation.

The results are shown in Figure 5. As sometimes THetA gives unstable es-
timates, for each proportion, we generate 5 datasets and report the best results
obtained by THetA among those 5 sets of estimates (thus seriously biasing the
simulation in favor of THetA. Since our approach does not have such instability,
we report the results of a single simulation for our approach. For comparison, we

FIG. 5. Estimates of normal cell proportions and tumor clone 1 proportions as a function of true
normal cell proportions for our proposed method and THetA using simulated data. The proportions
of the tumor 1 are fixed at 50%; the proportions of the normal cells take values (0.45,0.40, . . . ,0.05)
and the corresponding proportions of the tumor 2 cells are (0.05,0.01, . . . ,0.45). The 95% credible
interval length for our estimates is always less than 2%. ASCAT does not include a standard error in
its output.



QUANTIFICATION OF MULTIPLE TUMOR CLONES 983

TABLE 4
Estimates of the normal (α0) and tumor (α1, α2) proportions using simulated data. For THetA, the

analyses are run for 5 datasets and the best and worst results are reported. For the proposed
method, the analyses are only run for the first set of simulated data sets for each scenario. The

proportions of the tumor 1 is fixed at 50%, the proportions of the normal cells take values
(45%,40%, . . . ,5%) and the corresponding proportions of the tumor 2 cells are

(5%,10%, . . . ,45%). All proportions are shown in percentages

True prop. THetA (best) THetA (worst) Proposed

α0 α1 α2 α0 α1 α2 α0 α1 α2 α0 α1 α2

45 50 5 45 53 2 33 34 33 35 58 7
40 50 10 40 60 0 33 33 33 40 50 10
35 50 15 36 55 8 41 38 21 35 50 15
30 50 20 25 57 19 7 64 30 30 50 20
25 50 25 25 50 25 29 48 23 19 62 19
20 50 30 11 55 34 35 37 28 20 50 30
15 50 35 28 38 33 38 33 28 15 50 35
10 50 40 4 49 47 27 64 10 5 55 40

5 50 45 3 58 40 0 81 19 5 49 46

also show the best and worst results for THetA using 5 datasets and the results of
our method only for the first dataset in Table 4. The results show that our methods
can provide more accurate results compared to THetA. The reason is that to make
the computation time to be within a reasonable range, THetA only selects several
of the most informative segments to be included in the model, which makes the
estimates become unstable. In contrary, the proposed method is able to include all
segments in the model.

3.3. Seattle Barrett’s Esophagus Study. Barrett’s esophagus (BE) and esopha-
geal adenocarcinoma (EA) exhibit a high level of genome instability and copy
number variations compared to other cancers. Successful identification of such
high level of genome alterations can be challenging. In this section, we show the
capacity of our algorithm in modeling complex cancer genome data using a series
of BE cell lines obtained from the Seattle Barrett’s Esophagus Study (SBES).

With the dramatic increase of EA incidence in the past 30 years and its lethal
condition at diagnosis, early detection is critically important [Reid et al. (2010)].
Currently, BE is the only known precursor of EA [Wang, Sampliner and Prac-
tice Parameters Committee of the American College of Gastroenterology (2008)].
However, the absolute risk of developing EA for patient with BE appears to be
low (between 0.1% and 1% per year). One of the objectives of the study is to in-
vestigate the effects of hypoxia on the development of genomic instability. This
sub-study examined the genomic changes in BE cell lines that were cultured under
normoxic versus transient hypoxic conditions for various lengths of time. These
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TABLE 5
Estimates of cell line mixture for patient 852 at different time points. Sample names start with a C

are control samples, with a T are treatment samples. The number after C or T indicates the
time point

Est. prop., b = 0 Est. prop., b = 0.01 Est. ploidy ρ

Sample α0 α1 α2 α0 α1 α2 Top 2nd Flow

C1_852 3% 18% 79% 2% 19% 79% 3.7 2.6 2.8
C2_852 3% 28% 69% 2% 21% 77% 3.9 3.6 3.5
C4_852 3% 15% 82% 2% 21% 77% 3.7 3.0 3.5
C6_852 3% 22% 75% 2% 21% 77% 3.9 3.6 3.8
X1_852 3% 18% 79% 2% 20% 78% 4.3 3.9 3.3
X2_852 4% 21% 75% 3% 20% 77% 3.9 2.5 3.3
X4_852 3% 21% 76% 3% 20% 77% 3.8 3.3 4.2
X6_852 4% 22% 74% 4% 20% 76% 4.3 4.0 3.7

studies were undertaken because transient hypoxia is a common growth stress en-
countered in vivo during neoplastic development. After successive rounds of hy-
poxic treatments, a portion of the cell culture was assayed using 1M Illumina SNP
arrays. For each BE cell line, these experiments generated two sets of longitudi-
nal data: one from control cells cultured under normoxic conditions and one from
cells that underwent successive hypoxic treatments. To study the development of
genome instability under these different growth conditions, we estimated the per-
centage of each cell population as well as the copy numbers at different locations
in the genome for each cell population.

The estimation results for samples of patient 852 are given in Table 5. The last
column shows the estimated ploidy using flow cytometry. Flow cytometry is a
technology that is used to analyze the physical or chemical characteristics of parti-
cles which can be used to approximately measure the tumor ploidy. The estimated
ploidy using our proposed method is given in column 8 and column 9 for the top
two solutions when there is no prior (b = 0). We note that the ploidy for the sec-
ond solution (in column 9) is in good agreement with the approximate results from
flow cytometry. This results is another good example why it is often beneficial to
consider multiple solutions of our algorithm.

Based on the results, we make the following key observations. First, using the
proposed method for BAF estimation, we are able to detect even a slight devia-
tion from allelic balance. Although false positive segments may be created at the
same time, our segment-merging algorithm corrects such false detection. To illus-
trate, we plot the TCN and BAF for 2 chromosomes of patient 852 in Figure 6.
The panels on the left correspond to chromosome 13 of C2_852 (control sample
for patient 852 collected at time point 2). Allelic imbalance is detected in the high-
lighted region (in grey). Subsequent PSCN estimations also confirmed this finding.
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FIG. 6. Illustration of estimating the BAF. In the left panel, the highlighted region (in grey) corre-
spond to an allelic imbalance. In the right panel, the highlighted region (in grey) does not have an
allelic imbalance.

However, such imbalance can be difficult to detect without de-convoluting the in-
formation into separate parts for each clone: it is hard to distinguish whether the
BAFs for the highlighted segment are forming one band or two. In the panels on
the right, the highlighted segment shows a different situation: the estimated BAF
is 0.475, which suggests a slight allelic imbalance. However, the follow-up esti-
mation step identifies such finding as a false positive: the estimated PSCN for the
two tumor clones are (1,1) and (3,3), respectively.

Second, model ambiguity is a common issue for quantification of tumor clones.
Therefore, we believe that it is important to provide posterior probabilities for mul-
tiple possible solutions, as these probabilities provide a basis for a comparison be-
tween candidate solutions. In Figure 7, we show the contour plot of the estimated
posterior probabilities for each possible combinations of proportions for normal
cells and tumor 1 cells (the tumor 2 fraction follows from the fact that the three
proportions sum to 1; without loss of generality, we call tumor 1 the tumor with
the smaller proportion). The left panel shows the results for b = 0 (incorporating
no prior information). It is clear from the plot that there are multiple possible so-
lutions and they have similar posterior probabilities. The two modes correspond
to the combinations (7%,12%), and (7%,17%), for normal and tumor 1, respec-
tively. In this situation, without extra information on how the copy numbers are ex-
pected to be distributed, it is impossible to distinguish among these solutions based
on data on the LRR/TCN and BAF at the resolution available to us. Our method
allows us to identify all three candidate solutions using the posterior probabilities.
The middle panel and right panel incorporate different levels of prior information
on the distribution of PSCNs in the estimation of the posterior probabilities. Not
unexpectedly, as we put more weight on the prior knowledge, our model favors the
solution that is most compatible with the prior information.
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FIG. 7. Contour plots of the posterior probabilities of tumor mixture estimation under different
prior choices. The left figure shows the contour plot without incorporating prior information. The
middle figure shows the contour plot with weak prior information (b = 0.001), and the right figure
shows the contour plot with stronger prior information (b = 0.01).

We give an example to show the benefit of providing multiple possible solu-
tions for the copy numbers. For each segment, we compute posterior probabilities
for each combination of copy numbers (for tumor 1 and tumor 2), and select the
combination with the largest posterior probability. In practice, we may observe sit-
uations where the two best solutions have similar posterior probabilities. In such
situation, we can present both combinations to reflect this uncertainty. This situa-
tion is observed on chromosome 9 of sample X1_89 (treatment sample for patient
89 collected at time point 1). In the left panel, we use dotted line for the top so-
lution and dashed line for the second top solution and plot the expected TCN and
mBAF. In the right panel, we use dotted line for tumor clone 1 and dashed line
for tumor clone 2 and plot the PSCNs for each solution in Figure 8. In the largest
part of the left arm of chromosome 5, for the first solution, tumor 1 has a propor-
tion of 17% and PSCNs of 1 and 2, while tumor 2 has a proportion of 76% and
PSCNs of 2 and 4. For the second solution, tumor 1 has a proportion of 17% and
PSCNs of 1 and 2, while tumor 2 has a proportion of 76% and PSCNs of 2 and 3.
We note here that our model does not include a term that compares the PSCN for
consecutive segments. For the two solutions shown in Figure 8, we note that for
the 1st solution there are more differences in PSCN between the first segment and
the second segment (one dotted and one dashed line jump), while for the second
solution only one PSCN changes (a dashed one). Thus, conceivably, the second
solution may be more likely than the first one. In a situation like this, it is desirable
to consider both configurations and decide with cancer geneticists the plausibility
of each configuration.
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FIG. 8. Configurations based on the top two solutions for copy numbers on chromosome 5 of
X1_89. Dotted and dashed lines in the left panel give the estimated copy numbers. Dotted and
dashed lines in the right panel give the estimated parent specific copy numbers.

Among all possible types of CNA, the ability to detect LOH will be most
affected by the tumor mixture structure [e.g., Staaf et al. (2008)]. Because our
method is capable of de-convoluting multiple clones’ mixtures, we are able to de-
tect LOH in several difficult scenarios. We show TCN and BAF for chromosome
1 of sample X1_89 in Figure 9. It is clear that the right arm of chromosome 1
displays allelic imbalance and that its copy number is greater than 2.0, which is
a typical pattern for copy number gain. However, if it is assumed that only one
tumor is present, this situation would typically be interpreted as a copy number
gain. Our method identifies this segment as a mixture of LOH tumor cells for one
tumor clone and copy number gain for the other tumor clone.

FIG. 9. Illustration of LOH detection on chromosome 1 of sample X1_89.
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4. Discussion. We have developed a general statistical framework for decon-
volution of multiple tumor clones from both SNP array and WGS data while
accounting for both intratumor heterogeneity and stromal contamination. We in-
corporate biological knowledge as prior information to alleviate the identifiability
issue. Software will be made available through CRAN.

Our proposed method quantifies the level of intratumor heterogeneity, which
is now recognized as a common feature for tumors. It can facilitate the under-
standing of tumor progression and different stages of tumor evolution. This could
potentially lead to identification of oncogenes or important CNAs that are associ-
ated with tumor development. Modeling the intratumor heterogeneity will benefit
in two ways. First, it helps us to estimate the proportion of normal cells more accu-
rately, especially when the normal contamination level is low or medium. Second,
it helps to understand the tumor structure better by modeling a mixture structure
with multiple major tumor clones. For example, as we showed in the Results sec-
tion, we were able to detect LOH in a situation where methods assuming only one
major tumor clone cannot.

Compared to other existing methods on quantification of multiple tumor clones,
our method is advantageous in the following three perspectives. First, our model is
flexible enough to accommodate different types of data (both SNP array data and
WGS data), while most of the existing method are tailored for a specific data type.
Second, with the use of both R and BAF information, we obtain more accurate
results. Third, we make no strict assumptions on the number of CNA events per
loci, thus our method is more general toward such assumptions.

Currently, our method only uses copy number information to infer the tumor
clonal structure. Additional clonal information can be leveraged from variant call-
ing frequencies (VCF) of sequencing data, provided the depth of sequencing is
high (e.g., >300). On the other hand, copy number alterations can be obtained
from SNP or low-depth sequencing, much cheaper than deep sequencing. As such,
we expect that copy number data will be more common in the near future. That
said, as future work, it is interesting to combine the copy number data with the
VCF data to provide better estimates of intratumoral heterogeneity. Clearly, more
complex modeling is needed as currently we only provide a snapshot of the current
tumor clone structure instead a history of the clone developments.

Finally, we note that we observed that the R from SNP arrays along the genome
is significantly correlated. This observation is supported by the data in previous
studies [Li et al. (2014); Gu et al. (2010)]. We showed that such correlation per-
tains to probes that are distant away (e.g., >1Mb) and overlooking such correlation
could lead to biased estimates. Future development of methods with consideration
of correlation of intensities along the genome can improve accuracy of data analy-
sis, such as segmentation and change point detection.
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