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Abstract. We establish that if a sequence of spaces equipped with resistance metrics and measures converge with respect to the
Gromov–Hausdorff-vague topology, and a certain non-explosion condition is satisfied, then the associated stochastic processes also
converge. This result generalises previous work on trees, fractals, and various models of random graphs. We further conjecture that
it will be applicable to the random walk on the incipient infinite cluster of critical bond percolation on the high-dimensional integer
lattice.

Résumé. Nous établissons que si une suite d’espaces équipée des métriques de résistance et de mesures converge par rapport à la
topologie de Gromov–Hausdorff-vague, et qu’une certaine condition de non explosion est satisfaite, alors les processus stochas-
tiques associés convergent également. Ces résultats généralisent des travaux précédents sur les arbres, fractals et divers modèles
de graphes aléatoires. De plus nous conjecturons que cela devrait s’appliquer à la marche aléatoire sur l’amas de percolation par
arêtes au point critique conditionné à être infini sur les réseaux entiers de grande dimension.
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1. Introduction

In the recent work [5] it was shown that if a sequence of tree-like measured metric spaces converge to a limit in the
Gromov–Hausdorff-vague topology (see Section 2.2 for a definition), then so do the associated stochastic processes
(cf. [6, Theorem 6.1]). That the convergence of metrics and measures is enough to yield convergence of processes
essentially stems from the fact that these provide the natural scale functions and speed measures in this setting.
(Hence [5] can be viewed as a generalisation of the one-dimensional result of [39].) To put this another way, on the
tree-like spaces considered, the distance can be interpreted as a so-called ‘resistance metric’, and this characterises, as
the electrical energy, a corresponding quadratic form [3] (see also [33]). Together with the specification of an invariant
measure, the metric thus determines uniquely a Dirichlet form and stochastic process. From such an observation, one is
naturally led to consider whether a similar result to that proved in [5] holds for other spaces equipped with a resistance
metric and measure. This question was addressed in [18], but only under a strong uniform volume doubling condition
(see Remark 1.3(b)). The aim of this article is to remove the latter restriction, and thereby establish the result in much
greater generality, enabling a wider range of examples to be handled.

For the setting and notation of the present work, we closely follow [18] (for further details, see Section 2.1). In
particular, we let F be the collection of quadruples of the form (F,R,μ,ρ), where: F is a non-empty set; R is
a resistance metric on F such that closed bounded sets in (F,R) are compact (note this implies (F,R) is complete,
separable and locally compact); μ is a locally finite Borel regular measure of full support on (F,R); and ρ is a marked
point in F . Note that the resistance metric is associated with a resistance form (E,F) (see Definition 2.1 below), and
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we will further assume that for elements of F this form is regular in the sense of Definition 2.2. In particular, this
ensures the existence of a related regular Dirichlet form (E,D) on L2(F,μ), which we suppose is recurrent, and also
a Hunt process ((Xt )t≥0, (Px)x∈F ).

The intention here is to show that if we have a sequence (Fn,Rn,μn,ρn)n≥1 in F that converges to some
(F,R,μ,ρ) ∈ F with respect to the Gromov–Hausdorff-vague topology, then the associated processes ((Xn

t )t≥0,

(P n
x )x∈Fn) also converge. The only additional assumption we make, formulated as part (b) of the following, regards

the growth of the resistance from ρn to the complement of the open ball Bn(ρn, r) in (Fn,Rn), and ensures that the
associated processes do not explode (see Remark 1.3(a) for further discussion of this point). It is a natural condition
in the context of recurrent processes (see Lemma 2.3).

Assumption 1.1.

(a) The sequence (Fn,Rn,μn,ρn)n≥1 in F satisfies

(Fn,Rn,μn,ρn) → (F,R,μ,ρ)

in the Gromov–Hausdorff-vague topology for some (F,R,μ,ρ) ∈ F.
(b) It holds that

lim
r→∞ lim sup

n→∞
Rn

(
ρn,Bn(ρn, r)

c
) = ∞.

We are now ready to state our main result.

Theorem 1.2. Under Assumption 1.1, it is possible to isometrically embed (Fn,Rn), n ≥ 1, and (F,R) into a common
metric space (M,dM) in such a way that

P n
ρn

((
Xn

t

)
t≥0 ∈ ·) → Pρ

(
(Xt )t≥0 ∈ ·)

weakly as probability measures on D(R+,M) (that is, the space of cadlag processes on M , equipped with the usual
Skorohod J1-topology).

Remark 1.3.

(a) As we will establish in the proof of Lemma 6.3 below, the resistance growth condition of Assumption 1.1(b)
ensures non-explosion of the processes Xn in the limit. To illustrate why it is necessary to have some additional
condition beyond merely assuming Gromov–Hausdorff-vague convergence as in Assumption 1.1(a), consider the
sequence (Fn,Rn,μn,ρn)n≥1 shown in Figure 1. In particular, Fn is Z+ with n additional vertices, Rn is the resistance
on the network obtained by assuming edge resistances as displayed, μn is the measure placing mass one on each vertex,
and ρn = 0. Clearly (Fn,Rn,μn,ρn) → (F0,R0,μ0, ρ0) (i.e. the limit is Z+, with no additional vertices). However,

Fig. 1. Example of a family of resistance forms failing to satisfy Assumption 1.1(b).
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the processes Xn do not converge to X0, rather the limiting process has a probability of exploding to infinity of 1
2 on

each visit to the origin. We observe this is consistent with our result, since

lim
r→∞ lim sup

n→∞
Rn

(
ρn,Bn(ρn, r)

c
) = 1

in this case. We also note that in [5], together with Gromov–Hausdorff-vague convergence of trees, a condition (A0) on
the lengths of edges leaving compact sets was assumed. Although the condition (A0) of [5] did not prevent explosion,
it and Assumption 1.1(b) play essentially the same role in the proofs of the relevant results, and neither condition
implies the other. As an example of a family of trees satisfying Assumption 1.1(b) but not (A0) in [5], consider
(Fn,Rn,μn,ρn)n≥1 as above, but with now only

√
n additional vertices (still connected by edges of resistance n).

Evidently the lengths of edges connected to ρn = 0 are unbounded as n → ∞, and so (A0) in [5] does not hold, but
Assumption 1.1(b) does hold. Moreover, it is easy to see that the processes Xn do converge to X0 in this case, since
the probability of explosion in the limit is zero.

(b) Assumption 1.1(b) is satisfied if all the spaces are compact. Moreover, it is also satisfied if the spaces exhibit
uniform volume growth with volume doubling, i.e. there exists a function v(r) satisfying v(2r) ≤ c0v(r) and for
which c1v(r) ≤ μn(Bn(x, r)) ≤ c2v(r), since in that case c3r ≤ Rn(ρn,Bn(ρn, r)

c) ≤ r (see [36, Lemma 4.1]). The
latter condition was the one included in [18, Assumption 1.2], and so this confirms the assumptions of this paper are
weaker.

(c) Whilst the resistance metric is naturally connected to the behaviour of processes, in a number of settings, there
might also be another relevant metric. For instance, in studying the random walk on the two-dimensional uniform
spanning tree in [6], or on the range of the high-dimensional random walk in [14], understanding the resistance metric
was crucial, but it was also relevant to consider the embedding into Euclidean space. Similarly, many self-similar
fractals are naturally defined as subsets of Rd (or some other metric space), and it might sometimes be preferable to
state results for graphs converging to such fractals in that space, rather than an abstract metric space isometric to the
resistance metrics. To allow for this, in Section 7 below, we consider an adaptation of the Gromov–Hausdorff-vague
topology that includes a continuous (but not necessarily isometric) embedding of our spaces into a common metric
space, and prove a convergence result for the embedded processes in this setting (see Theorem 7.1, cf. the result for
trees proved as [6, Theorem 6.1]). We also establish a version of this result for random spaces (see Theorem 7.2).

(d) As remarked in [35], the theory of resistance forms was introduced in the study of analysis on low-dimensional
fractals. Thus it is not surprising that it is within this sphere that our main result finds the greatest applicability. In
Section 8, we show how the present work subsumes a number of previous results for trees, fractals, and various
models of random graphs. We further present a conjecture about the incipient infinite cluster of bond percolation on
the high-dimensional integer lattice.

To prove Theorem 1.2, we follow a similar strategy to [5], that is, we first show tightness of the relevant processes,
and then characterise the limit using an occupation density formula. The key to the effectiveness of this approach is that
in the setting of resistance forms, as is also the case for trees, we have an explicit expression for the occupation density,
or to use alternative terminology, the resolvent kernel of the process killed on hitting a closed set (see Lemma 3.1
below). Since this is given in terms of the resistance metric, convergence of resistance metrics naturally implies
convergence of resolvents (see Proposition 3.3). We note that, in checking this and the tightness of the processes,
numerous variations in the technical details are required to the argument of [5] to deal with the fact that our spaces
are not trees in general. To fill the gaps, we often depend on tools developed for resistance forms in [35]. As such
our result might also be seen as a generalisation of the results regarding limits of random walks on networks from
[33,34], which were motivated by the study of stochastic processes on fractals, and essentially cover the case when
Fn is discrete and satisfies Fn ⊆ Fn+1.

As remarked above, the main result of this paper is moreover related to [18, Theorem 1.3], which established the
same conclusion, but under a uniform volume doubling condition. Whilst the present paper imposes less restrictive
assumptions, we note that the advantage of assuming the uniform volume doubling condition is that this also provides
equicontinuity and convergence of local times, which our argument does not do. This is potentially relevant in the study
of time-changes of processes associated with resistance forms according to time-dependent measures. The argument
of [18] was also slightly shorter and quite different in character, depending on finite graph approximations, rather than
a study of the resolvent.
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Finally, we note that the question of whether the distribution of a stochastic process is stable under perturbations in
the geometry of the underlying space is also relevant beyond the setting of resistance metrics, and has been considered
in various settings. We would particularly like to draw to the attention of the reader the recent work of [40,41]. Indeed,
building on [23], it was shown in the aforementioned articles that if a sequence of metric measure spaces satisfying
a certain ‘Riemannian curvature-dimension condition’ converge with respect to the measured Gromov–Hausdorff
topology, then the associated Brownian motions also converge. Although the statement of the result parallels ours, the
techniques applied are again very different, depending on the Mosco convergence of Cheeger energies.

The remainder of the article is organised as follows. In Section 2, we present preliminary results on resistance
forms and the Gromov–Hausdorff-vague topology. We then, in Section 3, introduce the resolvent kernel, and some of
its fundamental properties. In Sections 4 and 5, we establish tightness of the processes Xn, n ≥ 1, and show semigroup
convergence, in the case when the underlying spaces are compact. Section 6 then ties together the proceeding sections
to establish the main result, including extending this to the locally compact setting. The incorporation of embeddings
to other spaces is described in Section 7, before finally, in Section 8, we outline some example applications.

2. Preliminaries

2.1. Resistance forms and associated processes

Following [18], in this section we recall some basic properties of resistance forms, starting with their definition. The
reader is referred to [35] for further background.

Definition 2.1 ([35, Definition 3.1]). Let F be a non-empty set. A pair (E,F) is called a resistance form on F if it
satisfies the following five conditions.

RF1 F is a linear subspace of the collection of functions {f : F → R} containing constants, and E is a non-negative
symmetric quadratic form on F such that E(f,f ) = 0 if and only if f is constant on F .

RF2 Let ∼ be the equivalence relation on F defined by saying f ∼ g if and only if f − g is constant on F . Then
(F/ ∼,E) is a Hilbert space.

RF3 If x 
= y, then there exists a f ∈ F such that f (x) 
= f (y).
RF4 For any x, y ∈ F ,

R(x, y) := sup

{ |f (x) − f (y)|2
E(f,f )

: f ∈ F,E(f,f ) > 0

}
< ∞. (1)

RF5 If f̄ := (f ∧ 1) ∨ 0, then f̄ ∈ F and E(f̄ , f̄ ) ≤ E(f,f ) for any f ∈ F .

More generally than (1), for sets A,B ⊆ F , we can write

R(A,B) = (
inf

{
E(f,f ) : f ∈ F, f |A = 1, f |B = 0

})−1
,

which is the effective resistance between A and B (interpreted to be zero if the infimum is taken over an empty set).
With this definition, we clearly have R({x}, {y}) = R(x, y). The latter function gives a metric on F (see [35, Propo-
sition 3.3]); we call this the resistance metric associated with (E,F). As per the definition of F in the introduction,
we will henceforth assume that we have a non-empty set F equipped with a resistance form (E,F), and denote the
corresponding resistance metric R. Defining the open ball centred at x and of radius r with respect to the resistance
metric by BR(x, r) := {y ∈ F : R(x, y) < r}, and writing its closure as B̄R(x, r), we will also assume that B̄R(x, r) is
compact for any x ∈ F and r > 0 (again noting that this implies (F,R) is complete, separable and locally compact).
Furthermore, we will restrict our attention to resistance forms that are regular, as described by the following.

Definition 2.2 ([35, Definition 6.2]). Let C0(F ) be the collection of compactly supported, continuous (with respect
to R) functions on F , and ‖ · ‖F be the supremum norm for functions on F . A resistance form (E,F) on F is called
regular if and only if F ∩ C0(F ) is dense in C0(F ) with respect to ‖ · ‖F .
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We next introduce related Dirichlet forms and stochastic processes. First, suppose μ is a Borel regular measure on
(F,R) such that 0 < μ(BR(x, r)) < ∞ for all x ∈ F and r > 0. Moreover, write D to be the closure of F ∩ C0(F )

with respect to the inner product E1 on F ∩L2(F,μ) given by E1(f, g) := E(f, g)+ ∫
F

fg dμ. Under the assumption
that (E,F) is regular, we then have from [35, Theorem 9.4] that (E,D) is a regular Dirichlet form on L2(F,μ) (see
[20] for the definition of a regular Dirichlet form). Moreover, standard theory gives us the existence of an associated
Hunt process ((Xt )t≥0, (Px)x∈F ) (e.g. [20, Theorem 7.2.1]). Note that such a process is, in general, only specified
uniquely for starting points outside a set of zero capacity. However, in this setting every point has strictly positive
capacity (see [35, Theorem 9.9]), and so the process is defined uniquely everywhere.

For (F,R,μ,ρ) ∈ F, it is an assumption that (E,D) is recurrent. We recall that a Dirichlet form being recurrent is
equivalent to 1 ∈ De and E(1,1) = 0 both holding, where De is the extended Dirichlet space, given by the collection
of μ-measurable functions f : F → R such that |f | < ∞, μ-a.e., and there exists an E -Cauchy sequence (fn)n≥0
in D with fn(x) → f (x), μ-a.e. (see [20, Theorem 1.6.3]). The following result yields that, in the present setting,
recurrence is also equivalent to the ‘resistance to infinity’ being infinite, i.e. (2) holding. In particular, the latter
condition holds whenever (F,R,μ,ρ) ∈ F, and the resistance growth condition of Assumption 1.1(b) requires that it
holds uniformly for all (Fn,Rn,μn,ρn)n≥1 in the relevant sequence.

Lemma 2.3. (E,D) is recurrent if and only if

lim
r→∞R

(
ρ,BR(ρ, r)c

) = ∞. (2)

Proof. Suppose (E,D) is recurrent, so 1 ∈ De and E(1,1) = 0. By the definition of De and the regularity of (E,D),
it follows that there exists a sequence (fn)n≥1 in C0(F ) ∩D with E(fn, fn) → 0 and fn(x) → 1, μ-a.e. It is further
known that, when (E,D) is recurrent, De = F (see [30, Proposition 2.13]), and so we may assume that (fn)n≥1
in C0(F ) ∩ F . Now, let x be a point with fn(x) → 1. From the definition of R, we have that |fn(ρ) − fn(x)|2 ≤
R(ρ,x)E(fn, fn) → 0, and so it is also the case that fn(ρ) → 1. Define f̃n(·) = fn(·)/fn(ρ), which is in C0(F ) ∩F
(at least for large n). Moreover, if the support of fn is contained in BR(ρ, r), then it holds that R(ρ,BR(ρ, r)c)−1 ≤
E(f̃n, f̃n), which implies

lim sup
r→∞

R
(
ρ,BR(ρ, r)c

)−1 ≤ E(fn, fn)

fn(ρ)2
.

Since the upper bound here converges to zero, we obtain (2).
To prove the converse, we start by observing (2) implies that, for each r , there exists a function fr ∈ F such that

fr(ρ) = 1 and f |BR(ρ,r)c = 0, and also E(fr − 1, fr − 1) = E(fr , fr) → 0 as r → ∞. For such functions, we have
that fr ∈ C0(F ) ∩F ⊆D, and

∣∣1 − fr(x)
∣∣2 = ∣∣fr(ρ) − fr(x)

∣∣2 ≤ R(x,ρ)E(fr , fr) → 0, ∀x ∈ F.

Hence 1 ∈De (and E(1,1) = 0), as required for (E,D) to be recurrent. �

In the next two lemmas, we recall two further properties of the process X. Lemma 2.4 is a version of the commute
time identity, which is well known for random walks on graphs, and Lemma 2.5 gives the existence of corresponding
local times. Throughout the article, we write

σA := inf{t > 0 : Xt ∈ A} (3)

for the hitting time of a set A by X, and abbreviate σx := σ{x}. Moreover, we denote by Fc the subset of F containing
elements (F,R,μ,ρ) such that (F,R) is compact.

Lemma 2.4 ([18, Proof of Lemma 2.9]). If (F,R,μ,ρ) ∈ Fc, then

Exσy + Eyσx = R(x, y)μ(F ), ∀x, y ∈ F.
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Lemma 2.5 ([18, Lemma 2.4(b)]). If (F,R,μ,ρ) ∈ F, then X admits jointly measurable local times (Lt (x))x∈F,t≥0

that satisfy Px -a.s. for any x,

∫ t

0
1A(Xs) ds =

∫
A

Lt(y)μ(dy)

for all measurable subsets A ⊆ F and t ≥ 0.

Finally, we characterise the process X observed on a compact subset A ⊆ F , with respect to a (finite) Borel measure
ν that has A as its support. First, define a continuous additive functional (At )t≥0 by setting At := ∫

A
Lt (x)ν(dx), and

let (τ (t))t≥0 be its right-continuous inverse, i.e. τ(t) := inf{s > 0 :As > t}. It is then the case that ((Xν
t )t≥0, (Px)x∈A)

is also a strong Markov process, where Xν
t := Xτ(t); this is the trace of X on A, with respect to ν. Conveniently, we

have the following connection, which is an application of the trace theorem for Dirichlet forms (see [20, Section 6.2]
for further background on the traces of Dirichlet forms).

Lemma 2.6 ([18, Theorem 2.5 and Lemma 2.6]). If (F,R,μ,ρ) ∈ F, A ⊆ F is a compact set containing ρ, and ν

is a finite Borel measure with support A, then (A,R|A×A, ν,ρ) ∈ Fc, and the associated process is Xν .

2.2. Gromov–Hausdorff-vague topology

In this section we introduce the Gromov–Hausdorff-vague topology. For further details, see [4]. We start by defining
a topology on Fc , which we recall is the subset of F containing elements (F,R,μ,ρ) such that (F,R) is compact. In
particular, for (F,R,μ,ρ), (F ′,R′,μ′, ρ′) ∈ Fc , we set �c((F,R,μ,ρ), (F ′,R′,μ′, ρ′)) to be equal to

inf
M,ψ,ψ ′

{
dH
M

(
ψ(F),ψ ′(F )

) + dP
M

(
μ ◦ ψ−1,μ′ ◦ ψ ′−1) + dM

(
ψ(ρ),ψ ′(ρ′))}, (4)

where the infimum is taken over all metric spaces M = (M,dM) and isometric embeddings ψ : (F,R) → (M,dM),
ψ ′ : (F ′,R′) → (M,dM), and we define dH

M to be the Hausdorff distance between compact subsets of M , and dP
M to

be the Prohorov distance between finite Borel measures on M . It is known that �c defines a metric on the equivalence
classes of Fc (where we say two elements of Fc are equivalent if there is a measure and root preserving isometry
between them).

To extend this topology to one on the equivalence classes of F, we consider bounded restrictions of elements of
F. More precisely, for (F,R,μ,ρ) ∈ F, define (F (r),R(r),μ(r), ρ(r)) by setting: F (r) to be the closure of the ball in
(F,R) of radius r centred at ρ, i.e. B̄R(ρ, r); R(r) and μ(r) to be the restriction of R and μ respectively to F (r), and
ρ(r) to be equal to ρ. By assumption, F (r) is a compact subset of F , and μ(r) is a finite measure of full support on
F (r). So, we have from Lemma 2.6 that (F (r),R(r),μ(r), ρ(r)) ∈ Fc. We then say (Fn,Rn,μn,ρn) → (F,R,μ,ρ) in
the Gromov–Hausdorff-vague topology if and only if

�c

((
F (r)

n ,R(r)
n ,μ(r)

n , ρ(r)
n

)
,
(
F (r),R(r),μ(r), ρ(r)

)) → 0

for Lebesgue almost-every r ≥ 0, cf. [4, Definition 5.8]. From [4, Proposition 5.9], we have the following important
consequence of convergence in this topology.

Lemma 2.7. Suppose (Fn,Rn,μn,ρn), n ≥ 1, and (F,R,μ,ρ) are elements of F such that (Fn,Rn,μn,ρn) →
(F,R,μ,ρ) in the Gromov–Hausdorff-vague topology. It is then possible to embed (Fn,Rn), n ≥ 1, and (F,R)

isometrically into the same metric space (M,dM) in such a way that, for Lebesgue almost-every r ≥ 0,

dH
M

(
F (r)

n ,F (r)
) → 0, dP

M

(
μ(r)

n ,μ(r)
) → 0, dM

(
ρ(r)

n , ρ(r)
) → 0, (5)

where we have identified the various objects with their embeddings. Moreover, the space (M,dM) can be chosen so
that closed, bounded subsets of it are compact.
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3. The resolvent operator and kernel

In this section, we study the resolvents of killed processes of resistance forms. More specifically, after recalling
various basic properties of such from [35] in Lemma 3.1, we give an approximation result for the resolvent kernel (see
Lemma 3.2), and demonstrate that, if Assumption 1.1 holds and the spaces are compact, then the associated resolvents
converge (see Proposition 3.3).

Let us start by introducing the objects of interest. Given (F,R,μ,ρ) ∈ Fc and non-empty closed subset A ⊆ F ,
define an operator GA by setting

GAf (y) := Ey

(∫ σA

0
f (Xs) ds

)
(6)

for y ∈ F and measurable f : F → R+, where we recall from (3) that σA is the hitting time of A; GA is the resolvent
of the process X killed on hitting A. For x ∈ F , we will use the abbreviation Gx := G{x}. The following lemma gives
an explicit description of the corresponding resolvent kernel. Its proof relies on results from [35].

Lemma 3.1. Let (F,R,μ,ρ) ∈ Fc and A be a non-empty closed subset of F . For any measurable f : F → R+, it
holds that

GAf (y) =
∫

F

gA(y, z)f (z)μ(dz), ∀y ∈ F, (7)

where

gA(y, z) := R(y,A) + R(z,A) − RA(y, z)

2
, (8)

with

RA(y, z) := sup
{
E(f,f )−1 : f ∈F, f (y) = 1, f (z) = 0, f |A constant

}
being the resistance between y and z in the network with A ‘fused’. Note that the function gA satisfies 0 ≤ gA(y, z) =
gA(z, y) ≤ gA(y, y) = R(y,A) and∣∣gA(y, z) − gA(y,w)

∣∣ ≤ R(w,z), ∀y, z,w ∈ F. (9)

Furthermore, if A = {x}, then gx := g{x} is given by

gx(y, z) := R(x, y) + R(x, z) − R(y, z)

2
. (10)

Proof. From [35, Theorem 4.1], we have that there exists a unique function gA : F × F → R such that, for every
y ∈ F , gA(y, ·) ∈F and

E
(
gA(y, ·), u) = u(y) (11)

for every u ∈ {f ∈F : f |A = 0}. By [35, Theorem 4.3 and Corollary 5.4], this function can be written as (8). Moreover,
by [35, Theorem 10.10], we have that

gA(y, z) =
∫ ∞

0
p

F\A
t (y, z) dt, ∀y, z ∈ F,

where (p
F\A
t (y, z))y,z∈F,t>0 is the transition density of the process X killed on hitting A, which exists and is

continuous on F × F × (0,∞) by [35, Theorem 10.4]. This readily implies (7), as desired. That gA satisfies
0 ≤ gA(y, z) = gA(z, y) ≤ gA(y, y) = R(y,A) and (9) is proved as part of [35, Theorem 4.1]. The result at (10)
follows immediately from (8) on noting that R{x}(y, z) = R(y, z) by definition. �

We now prove our approximation result for the resolvent kernel.
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Lemma 3.2. If (F,R,μ,ρ) ∈ Fc , then

gx(y, z) − 2ε ≤ gB̄R(x,ε)(y, z) ≤ gx(y, z), ∀x, y, z ∈ F,ε > 0.

Proof. The upper bound is easy. Indeed, by the definition of the killed resolvent at (6), the fact that μ has full support,
and the continuity of the resolvent kernel from (9), we have that

0 ≤ Gx1BR(z,δ)(y) − GB̄R(x,ε)1BR(z,δ)(y)

μ(BR(z, δ))
=

∫
BR(z,δ)

(gx(y,w) − gB̄R(x,ε)(y,w))μ(dw)

μ(BR(z, δ))

→ gx(y, z) − gB̄R(x,ε)(y, z),

as δ → 0.
For the lower bound, by the fact that gx(y, z) ≤ min{R(x, y),R(x, z)} and the positivity of gB̄R(x,ε) (as noted in

Lemma 3.1), it will suffice to consider the case when min{R(x, y),R(x, z)} > ε. In this case, consider the function g̃

given by

g̃(z) := max

{
gx(y, z) − ε

R(x, y) − ε
,0

}
.

Note that, since gx(y, y) = R(x, y), g̃(y) = 1, and (9) implies that g̃(z) = 0 for z ∈ B̄R(x, ε). Moreover, since we
have that gx(y, ·) ∈ F (see the proof of Lemma 3.1), we have from RF1 and RF5 of Definition 2.1 that g̃ ∈ F , and

E(g̃, g̃) ≤ E(gx(y, ·), gx(y, ·))
(R(x, y) − ε)2

= gx(y, y)

(R(x, y) − ε)2
= R(x, y)

(R(x, y) − ε)2
,

where the first equality is a consequence of (11), and we again apply that gx(y, y) = R(x, y). Hence

R
(
y, B̄R(x, ε)

) = sup
{
E(f,f )−1 : f (y) = 1, f |B̄R(x,ε) = 0

}
≥ E(g̃, g̃)−1 ≥ R(x, y) − 2ε. (12)

Similarly, R(z, B̄R(x, ε)) ≥ R(x, z) − 2ε. It is further clear that from the definition that RB̄R(x,ε)(y, z) ≤ R(y, z), and
thus the result follows from the expression for the resolvent kernel given at (8). �

For the final result of the section, we suppose that Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R)

are isometrically embedded into a common metric space (M,dM) in the way described in Lemma 2.7. We denote by
Gn

xn
the resolvent associated with (Fn,Rn,μn,ρn) when the relevant process is killed on hitting xn ∈ Fn, and gn

xn
the

corresponding kernel.

Proposition 3.3. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. If xn, yn ∈ Fn

and x, y ∈ F are such that dM(xn, x) → 0, and dM(yn, y) → 0, then

Gn
xn

f (yn) → Gxf (y)

for any continuous, bounded f : M →R.

Proof. Let 
 : M3 → R be defined by setting 
(x,y, z) = (dM(x, y) + dM(x, z) − dM(y, z))/2, and note that
|
(x,y, z) − 
(x′, y′, z′)| ≤ dM(x, x′) + dM(y, y′) + dM(z, z′). Moreover, by (10), we have that 
(xn, yn, ·) =
gn

xn
(yn, ·) on Fn, and 
(x,y, ·) = gx(y, ·) on F . Hence, for any continuous, bounded f : M → R,

∣∣Gn
xn

f (yn) − Gxf (y)
∣∣ =

∣∣∣∣
∫

M


(xn, yn, z)f (z)μn(dz) −
∫

M


(x,y, z)f (z)μ(dz)

∣∣∣∣
≤ (

dM(xn, x) + dM(yn, y)
)‖f ‖∞μn(Fn)

+
∣∣∣∣
∫

M


(x,y, z)f (z)μn(dz) −
∫

M


(x,y, z)f (z)μ(dz)

∣∣∣∣.
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For the embedding given by Lemma 2.7, we may assume that the space M is compact and μn → μ weakly. Hence
both terms above converge to zero as n → ∞, and we are done. �

4. Tightness of processes

The aim of this section is to prove the tightness of processes under Assumption 1.1 in the case when the state spaces
are compact. That is, we prove the following, for which we again assume the spaces (Fn,Rn), n ≥ 1, and (F,R) are
isometrically embedded into a common metric space (M,dM) in the way described in Lemma 2.7.

Proposition 4.1. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. For any sequence
(xn)n≥1 with xn ∈ Fn, the laws of Xn under P n

xn
, n ≥ 1, are tight in D(R+,M).

The next lemma is a key estimate in the proof of Proposition 4.1. Its proof is modelled on that of [5, Lemma 4.4],
though requires additional technical input to give us appropriate control of local times.

Lemma 4.2.

(a) Suppose (F,R,μ,ρ) ∈ Fc . If x ∈ F , A is a non-empty closed subset of F\{x}, and δ ∈ (0,R(x,A)), then

Px(σA ≤ t) ≤ 2

[
1 −

(
R(x,A) − δ

R(x,A) + δ

)
e
− 2t

μ(BR(x,δ))(R(x,A)−δ)

]
, ∀t ≥ 0. (13)

(NB. Under the given assumptions R(x,A) > 0 by [35, Theorem 4.3 and Corollary 5.4].) In particular, if x, y ∈ F ,
ε ∈ (0,R(x, y)/2), δ ∈ (0,R(x, y) − 2ε), then

Px(σB̄R(y,ε) ≤ t) ≤ 4

[
δ

R(x, y) − 2ε
+ t

μ(BR(x, δ))(R(x, y) − 2ε − δ)

]
, ∀t ≥ 0. (14)

(b) Suppose (F,R,μ,ρ) ∈ F. If δ ∈ (0,R(x,BR(ρ, r)c)), then

Pρ(σBR(ρ,r)c ≤ t) ≤ 4

[
δ

R(ρ,BR(ρ, r)c)
+ t

μ(BR(ρ, δ))(R(ρ,BR(ρ, r)c) − δ)

]
, ∀t ≥ 0. (15)

NB. If BR(ρ, r)c =∅, then we interpret the right-hand side as being equal to zero.

Proof. First note that, by Lemma 2.5, we can write

σA =
∫

F

LσA
(z)μ(dz) ≥

∫
BR(x,δ)

LσA
(z)μ(dz).

So, for any λ > 0, Px(σA ≤ t) ≤ Px(λμ{z ∈ BR(x, δ) : LσA
(z) ≥ λ} ≤ t). Taking λ = 2t/μ(BR(x, δ)), this gives

Px(σA ≤ t) ≤ Px

(
μ

{
z ∈ BR(x, δ) : LσA

(z) ≤ 2t

μ(BR(x, δ))

}
≥ μ(BR(x, δ))

2

)

≤ 2

μ(BR(x, δ))

∫
BR(x,δ)

Px

(
LσA

(z) ≤ 2t

μ(BR(x, δ))

)
μ(dz)

= 2

μ(BR(x, δ))

∫
BR(x,δ)

[
1 − Px(σz ≤ σA)Pz

(
LσA

(z) >
2t

μ(BR(x, δ))

)]
μ(dz), (16)

where for the second inequality we apply Markov’s inequality, and the equality is obtained by applying the strong
Markov property at min{σz, σA}. Now, the strong Markov property for the process X killed on hitting A yields that,
under Pz, LσA

(z) is an exponential random variable (see argument around [37, (3.189)], for example). Moreover, by
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applying [37, Theorem 3.6.3 (equation (3.105) in particular)] to the killed process, we have that ExLσA
(z) = gA(x, z).

From these two observations, we deduce that

Pz

(
LσA

(z) >
2t

μ(BR(x, δ))

)
= e

− 2t
μ(BR(x,δ))R(z,A) . (17)

Since

gA(x, z) = ExLσA
(z) = Px(σz ≤ σA)EzLσA

(z) = Px(σz ≤ σA)gA(z, z),

we also have

Px(σz ≤ σA) = gA(x, z)

gA(z, z)
= R(x,A) + R(z,A) − RA(x, z)

2R(z,A)
(18)

(cf. [37, (3.109)]). To estimate R(z,A) in (17) and (18), we first note that [35, Theorem 4.3 and Corollary 5.4]
implies that RA is a metric on (F\A) ∪ {A}. Hence, applying the triangle inequality with this metric (and noting that
RA(x, z) ≤ R(x, z)), we find that, for z ∈ BR(x, δ),

R(x,A) = RA(x,A) ≤ RA(x, z) + RA(z,A) ≤ R(x, z) + R(z,A) < δ + R(z,A),

and similarly R(z,A) ≤ R(x,A) + δ . Hence, we obtain that, for z ∈ BR(x, δ),

Px(σz ≤ σA)Pz

(
LσA

(z) >
2t

μ(BR(x, δ))

)
≥

(
R(x,A) − δ

R(x,A) + δ

)
e
− 2t

μ(BR(x,δ))(R(x,A)−δ) .

Substituting this bound into (16), we obtain (13).
For (14), we start with the elementary observation that

R(x,A) − δ

R(x,A) + δ
≥ 1 − 2δ

R(x,A)
,

which, together with 1 − x ≤ e−x , implies

1 −
(

R(x,A) − δ

R(x,A) + δ

)
e
− 2t

μ(BR(x,δ))(R(x,A)−δ) ≤ 2δ

R(x,A)
+ 2t

μ(BR(x, δ))(R(x,A) − δ)
. (19)

Moreover, from (12), we have that R(x, B̄R(y, ε)) ≥ R(x, y) − 2ε. Combining (13), (19) and the latter observation
yields the result.

For part (b), consider the space (F̃ , R̃, μ̃, ρ̃) obtained by setting: F̃ := BR(ρ, r) ∪ {BR(ρ, r)c}, R̃ := RBR(ρ,r)c ,
μ̃ := μ(· ∩ BR(ρ, r)) + δ{BR(ρ,r)c} (where the second term here is the probability measure placing all its mass on the
point set {BR(ρ, r)c}), and ρ̃ := ρ. From [35, Theorems 4.3, 6.3 and 6.4], we have that (F̃ , R̃, μ̃, ρ̃) ∈ Fc . Hence we
can apply (13) to obtain

P̃ρ̃ (σ̃{BR(ρ,r)c} ≤ t) ≤ 4

[
δ

R(ρ,BR(ρ, r)c)
+ t

μ(BR(ρ, δ))(R(ρ,BR(ρ, r)c) − δ)

]
, (20)

where we denote by P̃ρ̃ and σ̃{BR(ρ,r)c} the law and hitting time of the process associated with (F̃ , R̃, μ̃, ρ̃). (For
this, note that R(ρ,BR(ρ, r)c) = R̃(ρ̃, {BR(ρ, r)c}), and also that μ(BR(ρ, δ)) ≤ μ̃(B

R̃
(ρ̃, δ)).) Finally, from [20,

Section 4.4], we have that the domain of the Dirichlet form of X killed on exiting BR(ρ, r) is given by

Fkill := {f ∈ D : f |BR(ρ,r)c = 0} = {f ∈F : f |BR(ρ,r)c = 0},
where the equality holds because D = De ∩ L2(F,μ) = F ∩ L2(F,μ) (the first equality here is [20, Theo-
rem 1.5.2(iii)], and the second is a consequence of [30, Proposition 2.13]). Similarly, the Dirichlet form of the process
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associated with (F̃ , R̃, μ̃, ρ̃), is given by (E, F̃), where F̃ := {f ∈ F : f |BR(ρ,r)c constant}, and the corresponding
killed process has domain

{f ∈ F̃ : f |BR(ρ,r)c = 0} =Fkill.

This implies the Dirichlet forms of the two killed processes are the same, and therefore, up to exiting BR(ρ, r), the
processes associated with (F,R,μ,ρ) and (F̃ , R̃, μ̃, ρ̃) are also the same. In particular, the left-hand side of (20) is
equal to the left-hand side of (15), and the result follows. �

We next apply the hitting time bound of Lemma 4.2 to control fluctuations in the sample paths of X. We write
N(F, ε) to denote the minimal size of an ε-net of (F,R) (where we recall an ε-net of (F,R) is a subset A ⊆ F such
that

⋃
x∈A BR(x, ε) = F ). In the case (F,R) is compact, N(F, ε) < ∞ for every ε > 0.

Lemma 4.3. Suppose (F,R,μ,ρ) ∈ Fc . For any ε > 0, δ ∈ (0, ε/8],

sup
x∈F

Px

(
sup
s≤t

R(x,Xs) ≥ ε
)

≤ 32N(F, ε/4)

ε

(
δ + t

infx∈F μ(BR(x, δ))

)
.

Proof. Let (xi)
N(F,ε/4)

i=1 be an (ε/4)-net of F . Clearly BR(x, ε)c ⊆ ⋃
i:R(x,xi )≥3ε/4 B̄R(xi, ε/4). Hence

Px

(
sup
s≤t

R(x,Xs) ≥ ε
)

≤
∑

i:R(x,xi )≥3ε/4

Px(σB̄R(xi ,ε/4) ≤ t),

and applying (14) with ε replaced by ε/4, we obtain the result. �

The following result extends the previous bound to a uniform one for sequences of compact resistance forms
satisfying Assumption 1.1.

Lemma 4.4. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. For any ε > 0,

lim
t→0

lim sup
n→∞

sup
x∈Fn

P n
x

(
sup
s≤t

Rn

(
x,Xn

s

) ≥ ε
)

= 0.

Proof. From Lemma 4.3, it will be sufficient to check that, for each ε > 0, δ ∈ (0, ε/8),

sup
n≥1

N(Fn, ε/4) < ∞,

and also

inf
n≥1

inf
x∈Fn

μn

(
Bn(x, δ)

)
> 0.

However, both these are ready consequences of the convergence in Gromov–Hausdorff-vague topology; see [11,
Proposition 7.4.12] and [4, Corollary 5.7] respectively. �

We can now complete the proof of the tightness result of Proposition 4.1.

Proof of Proposition 4.1. It is easy to check Lemma 4.4 implies Aldous’ tightness criterion, which implies the result
(see [31, Theorem 16.10 and 16.11], for example). �
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5. Convergence of semigroups

We now turn to the study of the semigroups associated with a sequence (Fn,Rn,μn,ρn)n≥1 in F satisfying As-
sumption 1.1. Since each semigroup is defined on a different space, following [5], we capture these via functions on
M1(M), the space of Borel probability measures on M . In particular, assuming all the spaces are embedded into a
common metric space in the way described by Lemma 2.7, for each n ≥ 1, we define a map Qn : Fn ×R+ →M1(M)

by setting

Qn(x, t) := P n
x

(
Xn

t ∈ ·).
Similarly, for the limiting space (F,R,μ,ρ) ∈ F, we define Q : F ×R+ → M1(M) by setting

Q(x, t) := Px(Xt ∈ ·).
The main aim of this section is to establish the following limit result, where we denote by dP

M the Prohorov metric on
M1(M).

Proposition 5.1. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. It is then the case
that, for every T > 0,

lim
δ→0

lim sup
n→∞

sup
x∈F,y∈Fn:
dM(x,y)≤δ

sup
s,t∈[0,T ]:
|s−t |≤δ

dP
M

(
Q(x, s),Qn(y, t)

) = 0.

The strategy we adopt for proving the above result will be similar to that of [5], namely we first establish the
existence of subsequential limits (Lemma 5.3, cf. [5, Lemmas 5.3 and 5.4]), then show any limit points are Feller
(Lemma 5.4, cf. [5, Proposition 5.2]) and have the same resolvent as X (Lemma 5.6, cf. [5, Proposition 5.6]), and
finally check these properties uniquely characterise the limit (cf. [5, Proposition 5.1]). Towards the first of these goals,
the following equicontinuity result is key. Note that in the proof we write σn

A for the hitting time of a set A ⊆ Fn by
Xn, and σn

x := σn{x}.

Lemma 5.2. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. It is then the case
that

lim
δ→0

sup
n≥1

sup
x,y∈Fn:

Rn(x,y)≤δ

sup
s,t∈R+:
|s−t |≤δ

dP
M

(
Qn(x, s),Qn(y, t)

) = 0.

Proof. As in the proof of [5, Lemma 5.3], the proof proceeds via a coupling of Qn(x, s) and Qn(y, t). In particular,
for (F,R,μ,ρ) ∈ Fc , x, y ∈ F , 0 ≤ s ≤ t , and ε, η > 0, note that we have

Px

(
R(Xs,Xt+σy ) ≥ ε

) ≤ Px(σy > η) + Px

(
sup

u∈[t,t+η]
R(Xs,Xu) ≥ ε

)
.

Now, by the commute time identity (Lemma 2.4), the first term here is bounded above by R(x, y)μ(F )/η. Moreover,
by the Markov property and Lemma 4.3, the second term is bounded above by

sup
z∈F

Pz

(
sup

u∈[0,t+η−s]
R(z,Xu) ≥ ε

)
≤ 32N(F, ε/4)

ε

(
η′ + t + η − s

infx∈F μ(BR(x, η′))

)

for any η′ ≤ ε/8. Hence, under Assumption 1.1, we obtain (similarly to the proof of Lemma 4.3) that

sup
x,y∈Fn:

Rn(x,y)≤δ

sup
s,t≥0:

|s−t |≤δ

P n
x

(
R

(
Xn

s ,Xn
t+σn

y

) ≥ ε
) ≤ c1η

−1δ + c2

(
η′ + η + δ

infx∈Fn μn(Bn(x, η′))

)
,
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for some finite constants c1, c2 that are independent of n, δ, η and η′ (though may depend on ε). Taking η′ small,
and then η = √

δ small, the bound above can be made arbitrarily small (uniformly in n). Finally, we observe that if
(Xn

t )t≥0 has law P n
x , then the process (Xn

t+σn
y
)t≥0 has law P n

y (note that the commute time identity gives that the

stopping time is almost-surely finite). Hence the previous bound implies the result. �

Given Lemma 5.2, it is straightforward to deduce the existence of subsequential limits by a standard Arzelà–Ascoli
type-argument (cf. [5, Lemma 5.4]). We therefore present the statement without proof.

Lemma 5.3. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. There exists a subse-
quence (nm)m≥1 and function Q̃ : F ×R+ → M1(M) such that, for every T > 0,

lim
δ→0

lim sup
m→∞

sup
x∈F,y∈Fnm :
dM(x,y)≤δ

sup
s,t∈[0,T ]:
|s−t |≤δ

dP
M

(
Q̃(x, s),Qnm(y, t)

) = 0. (21)

We will call any function Q̃ : F ×R+ →M1(M) that satisfies (21) a subsequential limit of (Qn)n≥1. Note that it is
immediate from (21) that any such function is continuous. Moreover, if xnm ∈ Fnm , x ∈ F is such that dM(xnm, x) → 0,
then Qnm(xnm, t) → Q̃(x, t) for all t ≥ 0. For a given Q̃ : F × R+ → M1(M), define a family of operators (S̃t )t≥0
on C(F) (the space of continuous functions on F , which we assume is equipped with the supremum norm) by setting

S̃t f (x) :=
∫

F

f dQ̃(x, t), ∀f ∈ C(F), x ∈ F, t ≥ 0.

The following lemma shows this definition yields a nice semigroup for any subsequential limit.

Lemma 5.4. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. If Q̃ is a subsequential
limit of (Qn)n≥1, then (S̃t )t≥0 is a conservative Feller semigroup (see [31, Chapter 19] for background). Moreover,
if (nm)m≥1 is the subsequence along which convergence takes place, and xnm ∈ Fnm is such that dM(xnm, x) → 0 for
some x ∈ F , then

P nm
xnm

((
X

nm
t

)
t≥0 ∈ ·) → P̃x

(
(X̃t )t≥0 ∈ ·) (22)

weakly as probability measures on D(R+,M), where ((X̃t )t≥0, (P̃x)x∈F ) is the Markov process associated with the
semigroup (S̃t )t≥0.

Proof. It is clear from the construction that (S̃t )t≥0 are a family of positive contraction operators on C(F). Moreover,
since each Q̃(x, t) is a probability measure, we have that S̃t1 = 1. Hence to establish that (S̃t )t≥0 is a conservative
Feller semigroup, it remains to show the semigroup property:

S̃t+sf = S̃t S̃sf, ∀f ∈ C(F), s, t ≥ 0, (23)

and also the two Feller regularity properties:

S̃t f ∈ C(F), ∀f ∈ C(F), t ≥ 0, (24)

lim
t→0

S̃t f (x) = f (x), ∀f ∈ C(F), x ∈ F. (25)

Recall from the remark above the lemma that Q̃ is continuous. Hence if we have a sequence (xn)≥1 in F such that
xn → x ∈ F , then Q̃(xn, t) → Q̃(x, t) weakly in M1(M). It follows immediately that S̃t f (xn) → S̃t f (x) for any
f ∈ C(F), which confirms (24) holds.

Towards proving (23) and (25), we start by checking that, for any f ∈ Lip1(M) (that is, any 1-Lipschitz function
on M), we have that

lim
δ→0

lim sup
m→∞

sup
x∈F,y∈Fnm :
dM(x,y)≤δ

sup
s,t∈[0,T ]:
|s−t |≤δ

∣∣S̃sf (x) − S
nm
t f (y)

∣∣ = 0, (26)
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where Sn is the semigroup of Xn. In particular, note that, for any f ∈ Lip1(M), x ∈ F , y ∈ Fnm , s, t ≥ 0,

∣∣S̃sf (x) − S
nm
t f (y)

∣∣ =
∣∣∣∣
∫

M

f dQ̃(x, s) −
∫

M

f dQnm(y, t)

∣∣∣∣
≤ (

1 + diamdM
(M)

)
dP
M

(
Q̃(x, s),Qnm(y, t)

)
,

where the second inequality is comes from a standard comparison of the Wasserstein and Prohorov metrics (see [22,
Theorem 2], for example), with diamdM

(M) being the diameter of the metric space (M,dM). From this bound and
Lemma 5.3, we obtain (26).

We next prove (25). First note that, by the continuity of Q̃, we have that S̃t f (x) → S̃0f (x) as t → 0, for any
f ∈ C(F), and x ∈ F . Thus we are required to show S̃0f (x) = f (x). Since we can approximate any continuous
function on a compact metric space uniformly by Lipschitz functions [21], it will suffice to prove the latter result
when f ∈ Lip1(F ). Note that, if f ∈ Lip1(F ), then it can be extended to a function in Lip1(M). Thus, if xnm ∈ Fnm ,
x ∈ F is such that dM(xnm, x) → 0, then from (26) we obtain

S̃0f (x) = lim
m→∞S

nm

0 f (xnm) = lim
m→∞f (xnm) = f (x),

as desired.
To complete the proof that (S̃t )t≥0 is Feller, we check the semigroup property (23). Again taking xnm ∈ Fnm , x ∈ F

such that dM(xnm, x) → 0, we have from (26) and the semigroup property of (S
nm
t )t≥0 that

S̃t+sf (x) = lim
m→∞S

nm
t+sf (xnm) = lim

m→∞S
nm
t Snm

s f (xnm)

for any f ∈ Lip1(M). Now, since S̃sf ∈ C(F) (by (24)), it can be extended to a function in C(M), and we obtain∣∣Snm
t Snm

s f (xnm) − S
nm
t S̃sf (xnm)

∣∣ ≤ sup
y∈Fnm

∣∣Snm
s f (y) − S̃sf (y)

∣∣. (27)

To bound the right-hand side here, we note that, under Assumption 1.1, it is possible to define a function gn : Fn → F

such that

lim
n→∞ sup

y∈Fn

dM

(
y,gn(y)

) = 0. (28)

Returning to (27), we can write∣∣Snm
t Snm

s f (xnm) − S
nm
t S̃sf (xnm)

∣∣ ≤ sup
y∈Fnm

∣∣Snm
s f (y) − S̃sf

(
gnm(y)

)∣∣
+ sup

y∈Fnm

∣∣S̃sf
(
gnm(y)

) − S̃sf (y)
∣∣. (29)

From (26), (28) and the continuity of S̃sf , this expression converges to zero as m → ∞. Hence we deduce that

S̃t+sf (x) = lim
m→∞S

nm
t S̃sf (xnm) = S̃t S̃sf (x),

where the second equality holds because Qnm(xnm, t) → Q̃(x, t) (by Lemma 5.3) and S̃f ∈ C(M). This completes
the proof of (23) for f ∈ Lip1(F ) (again recalling that any such function can be extended to a function in Lip1(M)),
and the extension to f ∈ C(F) follows from an elementary approximation argument.

Finally, to prove the convergence of processes as at (22), it will suffice to show convergence of finite-dimensional
distributions, since we already have tightness from Proposition 4.1. This follows a standard argument (see [31, Theo-
rem 19.25], for example), though a little care is needed to account for the discrepancy between state spaces. Indeed,
we are required to show that, for any f1, . . . , fK ∈ C(M) and 0 ≤ t1 < · · · < tK ,

lim
m→∞Enm

xnm

( ∏
k≤K

fk

(
X

nm
tk

)) = Ẽx

( ∏
k≤K

fk(X̃tk )

)
.
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We proceed by induction. For K = 1, the result is clear from Lemma 5.3. Suppose the result holds for a product of
K − 1 terms. Applying the Markov property at tK−1, we can write

Enm
xnm

( ∏
k≤K

fk

(
X

nm
tk

)) = Enm
xnm

( ∏
k≤K−1

fk

(
X

nm
tk

) × S
nm
tK−tK−1

fK

(
X

nm
tK−1

))
.

Observe that S̃tK−tK−1fK ∈ C(F), and so can be extended to a function in C(M). For this function, arguing as at (29),
we have supy∈Fnm

|Snm
tK−tK−1

fK(y) − S̃tK−tK−1fK(y)| → 0. Hence

lim
m→∞Enm

xnm

( ∏
k≤K

fk

(
X

nm
tk

)) = lim
m→∞Enm

xnm

( ∏
k≤K−1

fk

(
X

nm
tk

) × S̃tK−tK−1fK

(
X

nm
tK−1

))

= Ẽx

( ∏
k≤K−1

fk(X̃tk ) × S̃tK−tK−1fK(X̃tK−1)

)

= Ẽx

( ∏
k≤K

fk(X̃tk )

)
,

where the penultimate equality is an application of the inductive hypothesis. �

The main task in the remainder of the section is to show that any subsequential limit Q̃ is actually equal to Q. We
do this by studying its resolvent, starting with the resolvent of a killed version of the process. In particular, for the
associated Markov process, we define, for measurable f : F → R+,

G̃xf (y) := Ẽy

(∫ σ̃x

0
f (X̃s) ds

)
, ∀x, y ∈ F,

where σ̃x is the hitting time of x by X̃, which may a priori be infinite. In the following result, we show that G̃x is
equal to Gx , as defined at (6). The proof is similar to that of [5, Proposition 5.6], but we avoid making an appeal
to the ‘closed interval property’ that was used there. We do, though, apply our resolvent approximation result from
Lemma 3.2, and the resolvent convergence result of Proposition 3.3.

Lemma 5.5. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. If Q̃ is a subsequential
limit of (Qn)n≥1, then

G̃xf (y) = Gxf (y), ∀x, y ∈ F,

for every measurable f : F →R+.

Proof. We start by showing G̃xf (y) ≥ Gxf (y) for all x, y ∈ F and positive f ∈ C(F). Note that, because F is
closed in M , we can extend such a function to a positive function in C(M). Suppose (nm)m≥1 is the subsequence
giving rise to the limit Q̃. Let x, y ∈ F and (xnm)m≥1, (ynm)m≥1 be sequences with xnm, ynm ∈ Fnm , dM(xnm, x) → 0,
and dM(ynm, x) → 0. Then, applying that Xnm started from ynm converges in distribution to X̃ started from y (as
established in Lemma 5.4), for any ε > 0 we obtain

G̃xf (y) ≥ lim sup
m→∞

Enm
ynm

(∫ σ
nm

B̄nm (xnm ,ε)

0
f

(
Xnm

s

)
ds

)

= lim sup
m→∞

G
nm

B̄nm(xnm ,ε)
f (ynm)

= lim sup
m→∞

∫
Fnm

g
nm

B̄nm(xnm ,ε)
(ynm, z)f (z)μnm(dz)
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≥ lim sup
m→∞

(∫
Fnm

gnm
xnm

(ynm, z)f (z)μnm(dz) − 2ε‖f ‖∞μnm(Fnm)

)

= lim sup
m→∞

(
Gnm

xnm
f (ynm) − 2ε‖f ‖∞μnm(Fnm)

)
= Gxf (y) − 2ε‖f ‖∞μ(F),

where for the second inequality we apply Lemma 3.2, and for the final equality we apply Proposition 3.3. Since ε was
arbitrary, this establishes the desired result.

Towards proving the reverse inequality, we start by showing that σ̃x = σ̃ ′
x , P̃y -a.s., where σ̃ ′

x = inf{t > 0 : X̃t− = x}.
In particular, for any ε, δ, t0 > 0 we have that

P̃y

(
R(x, X̃σ̃ ′

x
) ≥ ε

) ≤ Ẽy

(
P̃

X̃σ̃
B̄R(x,δ)

(
sup
s≤t0

R(x, X̃s) ≥ ε
))

+ P̃y

(
σ̃ ′

x − σ̃B̄R(x,δ) ≥ t0
)
, (30)

where we have applied the fact that Feller processes are strong Markov (see [31, Theorem 19.17], for example). Now,
by the right-continuity of X̃ at time zero (see [31, Lemma 19.3]), we have that

P̃x

(
sup
s≤t0

R(x, X̃s) > ε
)

→ 0,

as t0 → 0. Hence, we can choose t0 such that the probability on the left-hand side here is smaller that ε/4. It follows
from this and [31, Theorem 19.25] that there exists a δ such that

sup
z∈B̄R(x,δ)

P̃z

(
sup
s≤t0

R(x, X̃s) ≥ ε
)

≤ ε/2. (31)

Moreover, it is clear from the definition that σ̃B̄R(x,δ) → σ̃ ′
x as δ → 0, P̃y -a.s., and so, we can choose δ so that, in

addition to (31), we also have

P̃y

(
σ̃ ′

x − σ̃B̄R(x,δ) ≥ t0
)
< ε/2. (32)

Applying (31) and (32) in (30), we obtain that P̃y(R(x, X̃σ̃ ′
x
) ≥ ε) < ε, and since ε was arbitrary, this establishes the

desired result. It thus follows that, in the setting of the first part of the proof

G̃xf (y) = Ẽy

(∫ σ̃ ′
x

0
f (X̃s) ds

)

= lim
ε→0

Ẽy

(∫ σ̃B̄R(x,ε)

0
f (X̃s) ds

)

≤ lim
ε→0

lim inf
m→∞ Enm

ynm

(∫ σ
nm

B̄nm (xnm ,ε)

0
f

(
Xnm

s

)
ds

)

≤ lim inf
m→∞ Gnm

xnm
f (ynm)

= Gxf (y),

where the second inequality is clear from the definition of the resolvent (or Lemma 3.2), and the final equality is a
consequence of Proposition 3.3.

We have so far shown that G̃xf (y) = Gxf (y) for all x, y ∈ F and positive f ∈ C(F). The extension to measurable
f : F → R+ is elementary. �

In the next result, we extend Lemma 5.5 to hold for the α-resolvent of the killed and unkilled processes. In partic-
ular, for α > 0, we write, for measurable f : F → R+,

Gα
xf (y) := Ey

(∫ σx

0
e−αsf (Xs) ds

)
, ∀x, y ∈ F,
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and also

Gαf (y) := Ey

(∫ ∞

0
e−αsf (Xs) ds

)
, ∀y ∈ F.

We define G̃α
x and G̃α from X̃ similarly.

Lemma 5.6. Suppose Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are compact. If Q̃ is a subsequential
limit of (Qn)n≥1, then

G̃α
xf (y) = Gα

xf (y), ∀x, y ∈ F,α > 0, (33)

for every measurable f : F →R+. It moreover holds that

G̃αf (y) = Gαf (y), ∀y ∈ F,α > 0, (34)

for every measurable f : F →R+.

Proof. We start by noting that Lemma 5.5 gives, for bounded, measurable f : F →R+, and x ∈ F ,

‖G̃xf ‖∞ = ‖Gxf ‖∞ ≤ ‖f ‖∞ sup
y∈F

Eyσx ≤ ‖f ‖∞diamR(F )μ(F ),

where the final inequality follows from the commute time identity (Lemma 2.4), with diamR(F ) the diameter of
(F,R), which is finite. Thus the Markov property for X̃ implies the following resolvent equation: for every α > 0 and
bounded, measurable f : F →R+,

G̃α
xf (y) = G̃xf (y) − αG̃xG̃

α
xf (y), ∀x, y ∈ F, (35)

with all the above terms being finite. Indeed, to check this, we start by expanding the final term

αG̃xG̃
α
xf (y) = αẼy

(∫ σ̃x

0
ẼX̃s

(∫ σ̃x

0
e−αtf (X̃t ) dt

)
ds

)

= αẼy

(∫ ∞

0

∫ ∞

0
e−αtf (X̃t+s)1{σ̃x>s+t} dt ds

)
,

where the second inequality is the aforementioned application of the Markov property. Making the substitution u =
t + s, and reversing the order of integration, it follows that

αG̃xG̃
α
xf (y) = αẼy

(∫ ∞

0

∫ ∞

s

e−α(u−s)f (X̃u)1{σ̃x>u} duds

)

= αẼy

(∫ σ̃x

0

(∫ u

0
eαs ds

)
e−αuf (X̃u) du

)

= G̃xf (y) − G̃α
xf (y),

as desired. Iterating (35), we obtain that, for α < (diamR(F )μ(F ))−1,

G̃α
xf (y) =

∞∑
i=1

(−α)i−1G̃◦i
x f (y), ∀x, y ∈ F,

where G̃◦i
x is the i-fold composition of G̃x . By the same argument, the corresponding result also holds for Gα

x . Hence,
Lemma 5.5 yields that (33) holds for bounded, measurable f : F → R+ and α < (diamR(F )μ(F ))−1. To extend to
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all α > 0, note that G̃α
xf (y) is the Laplace transform of Ẽy(f (X̃t )1t<σ̃x

) (considered as a function of t ), and similarly
Gα

xf (y) is the Laplace transform of Ey(f (Xt )1t<σx ). Since the two Laplace transforms agree on an open interval,
they must agree for all α > 0. Extending to arbitrary measurable f : F →R+ is elementary.

To establish (34), we apply the strong Markov property. In particular, fix x0, x1 ∈ F with x0 
= x1, and denote by
σ0 = σx0 , and

σi+1 := inf{t > σi : Xt = x0, x1 ∈ X[σi ,t]}.
From the strong Markov property and the strong law of large numbers, we obtain that σi → ∞, Py -a.s. Hence, for
bounded, measurable f : F →R+, α > 0, y ∈ F ,

Gαf (y) = Ey

(∫ σ0

0
e−αsf (Xs) ds

)
+

∞∑
i=0

Ey

(∫ σi+1

σi

e−αsf (Xs) ds

)

= Gα
x0

f (y) +
∞∑
i=0

Ey

(
e−ασ0

)
Ex0

(
e−ασi

)
Ex0

(∫ σ1

0
e−αsf (Xs) ds

)
.

Now, it is a simple computation that

Ey

(
e−ασ0

) = 1 − αGα
x0

1(y),

Ex0

(
e−ασi

) = ((
1 − αGα

x1
1(x0)

)(
1 − αGα

x0
1(x1)

))i
,

and

Ex0

(∫ σ1

0
e−αsf (Xs) ds

)
= Gα

x1
f (x0) + (

1 − αGα
x1

1(x0)
)
Gα

x0
f (x1),

i.e. Gαf (y) can be expressed purely in terms of the killed resolvent. The same is true for the process X̃. Hence we
obtain (34) from (33). �

Given what we have established so far, the proof of Proposition 5.1 is almost immediate.

Proof of Proposition 5.1. Given Lemma 5.3, it will suffice to check that Q̃ = Q, where Q̃ is any subsequential limit
of (Qn)n≥1. Since both (S̃t )t≥0 and (St )t≥0 are Feller (where the latter is the semigroup of X), we have from [31,
Theorem 19.4 and Lemma 19.5] that they are uniquely determined by their resolvents G̃α and Gα respectively (for
any α > 0). Lemma 5.6 gives us that the latter two operators are identical, and thus we have that so are (S̃t )t≥0 and
(St )t≥0, from which the result readily follows. �

6. Proof of main result

In view of the results of the previous two sections, it is now relatively straightforward to prove Theorem 1.2. As
previously, throughout this section, we suppose that Assumption 1.1 holds, and that (Fn,Rn), n ≥ 1, and (F,R) are
isometrically embedded into a common metric space (M,dM) in the way described in Lemma 2.7. The next lemma
gives the result for compact spaces.

Lemma 6.1. If Assumption 1.1 holds, and (Fn,Rn), n ≥ 1, and (F,R) are compact, then the conclusion of Theo-
rem 1.2 holds.

Proof. This is an immediate consequence of Propositions 4.1 and 5.1, cf. the subsequential convergence result estab-
lished as part of Lemma 5.4. �
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To extend to the locally compact case, we consider restrictions to bounded subsets. In particular, for (F,R,μ,ρ) ∈
F and r ≥ 0, recall the notation (F (r),R(r),μ(r), ρ(r)) from Section 2.2. For each r ≥ 0, we introduce a continuous
additive functional by setting

A
(r)
t :=

∫
F (r)

Lt (x)μ(dx),

and let τ (r)(t) := inf{s : A(r)
s > t} be its right-continuous inverse. From Lemma 2.6, we have that

(
X

(r)
t

)
t≥0 := (Xτ(r)(t))t≥0 (36)

is the process associated with (F (r),R(r),μ(r), ρ(r)) ∈ Fc . In the following lemma, we establish that X(r) converges
in distribution to X as r → ∞.

Lemma 6.2. Let (F,R,μ,ρ) ∈ F. As r → ∞,

Pρ

((
X

(r)
t

)
t≥0 ∈ ·) → Pρ

(
(Xt )t≥0 ∈ ·)

weakly as probability measures on D(R+,F ).

Proof. Let ε, t > 0, and observe that

Pρ

(
sup
s≤t

R
(
Xs,X

(r)
s

)
> ε

)
≤ Pρ

(
A

(r)
t+1 
= t + 1

) ≤ Pρ(σBR(ρ,r)c < t + 1).

Now, since X is recurrent, we have from Lemma 2.3 that R(ρ,BR(ρ, r)c) → ∞. Hence we obtain from Lemma 4.2(b)
that, for large r ,

Pρ

(
sup
s≤t

R
(
Xs,X

(r)
s

)
> ε

)
≤ 4

[
1

R(ρ,BR(ρ, r)c)
+ t + 1

μ(BR(ρ,1))(R(ρ,BR(ρ, r)c) − 1)

]
, (37)

where the right-hand side here converges to 0 as r → ∞. The result follows. �

We next seek to extend the above result across elements of a sequence (Fn,Rn,μn,ρn)n≥1 in F satisfying Assump-
tion 1.1. We define Xn,r from Xn in the way X(r) was defined from X at (36), and note this is the process naturally
associated with (F

(r)
n ,R

(r)
n ,μ

(r)
n , ρ

(r)
n ).

Lemma 6.3. Suppose Assumption 1.1 holds. It is then the case that, for any ε, t > 0,

lim
r→∞ lim sup

n→∞
P n

ρn

(
sup
s≤t

Rn

(
Xn

s ,Xn,r
s

)
> ε

)
= 0.

Proof. As at (37), we have that

P n
ρn

(
sup
s≤t

Rn

(
Xn

s ,Xn,r
s

)
> ε

)
≤ 4

[
1

Rn(ρ,Bn(ρn, r)c)
+ t + 1

μn(Bn(ρn,1))(Rn(ρ,Bn(ρn, r)c) − 1)

]

whenever Rn(ρn,Bn(ρn, r)
c) > 1. Since lim infn→∞ μn(Bn(ρn,1)) ≥ μ(BR(ρ,1)) > 0, the lemma thus follows from

the resistance growth condition of Assumption 1.1(b). �

Proceeding exactly as for Lemma 6.1, we can also obtain the convergence of the restricted processes. The only
additional point to note in establishing the following lemma is that the embeddings of Lemma 2.7 can be chosen in
such a way that the result holds simultaneously for Lebesgue almost-every r ≥ 0.
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Lemma 6.4. Suppose Assumption 1.1 holds. It is then the case that, for Lebesgue almost-every r ≥ 0,

P n
ρn

((
X

n,r
t

)
t≥0 ∈ ·) → Pρ

((
X

(r)
t

)
t≥0 ∈ ·)

weakly as probability measures on D(R+,M).

From Lemmas 6.2, 6.3 and 6.4, the conclusion of Theorem 1.2 is standard (see [31, Theorem 4.28], for example).

7. Spatial embeddings

As raised in Remark 1.3(c), it might sometimes be natural to consider the convergence of processes with respect to a
different topology than that generated by the resistance metric. In particular, the spaces of interest might already be
embedded into some common space, upon which one might hope to prove a convergence statement. In this section, we
present a result aimed at tackling this problem, in the case when the relevant embeddings are continuous with respect
to the resistance metric (see Theorem 7.1 below), and also a variation of this for random spaces (Theorem 7.2).
In particular, we now consider the space of spatial, measured resistance metric spaces F

∗, which is defined to be
the collection of quintuplets (F,R,μ,ρ,φ) such that (F,R,μ,ρ) ∈ F, and φ : F → (N,dN) is a continuous map,
where the image space (N,dN) is a complete, separable metric space (fixed across all elements of F∗). Note that the
terminology ‘spatial’ is borrowed from [19], where a similar space of real trees with an embedding into Euclidean
space was introduced.

To define a topology on F
∗, it will be convenient to start by considering the larger space K

∗ of elements
(K,dK,μ,ρ,φ), where now we simply assume: (K,dK) is a metric space in which closed bounded sets are compact,
μ is a locally finite Borel measure on K , ρ is a marked point of K , and φ is a continuous map from K into N .
Similarly to Section 2.2, we first consider the case when (K,dK) is compact; write K

∗
c for the subset of K∗ for which

this is the case. For two elements of K∗
c , we set �∗

c ((K,dK,μ,ρ,φ), (K ′, dK ′ ,μ′, ρ′, φ′)) to be equal to

inf
M,ψ,ψ ′,C:
(ρ,ρ′)∈C

{
dP
M

(
μ ◦ ψ−1,μ′ ◦ ψ ′−1) + sup

(x,x′)∈C
(
dM

(
ψ(x),ψ ′(x′)) + dN

(
φ(x),φ′(x′)))},

where the infimum is taken over all metric spaces (M,dM), isometric embeddings ψ : (K,dK) → M , ψ ′ :
(K ′, dK ′) → M , and correspondences C between K and K ′. Note that, by a correspondence C between K and K ′,
we mean a subset of K × K ′ such that for every x ∈ K there exists at least one x′ ∈ K ′ such that (x, x′) ∈ C and
conversely for every x′ ∈ K ′ there exists at least one x ∈ K such that (x, x′) ∈ C. We note that it is possible to check
that (K∗

c ,�
∗
c ) is a separable metric space exactly as in [6, Proposition 3.1] (cf. [17, Lemma 2.1]). More generally, for

elements of K∗, we consider restrictions to compact subsets. Specifically, given (K,dK,μ,ρ,φ) ∈ K
∗, write K(r) for

the closure of the ball of radius r about ρ, i.e. K(r) := B̄K(ρ, r), d
(r)
K := dK |K(r)×K(r) , μ(r) := μ(· ∩ K(r)), ρ(r) := ρ,

and φ(r) := φ|K(r) . We then say (Kn, dKn,μn,ρn,φn) → (K,dK,μ,ρ,φ) in the spatial Gromov–Hausdorff-vague
topology if and only if

�∗
c

((
K(r)

n , d
(r)
Kn

,μ(r)
n , ρ(r)

n , φ(r)
n

)
,
(
K(r), d

(r)
K ,μ(r), ρ(r), φ(r)

)) → 0

for Lebesgue almost-every r ≥ 0.
We are now in a position to state our main conclusion for stochastic processes associated with spatial, measured

resistance metric spaces.

Theorem 7.1. If a sequence (Fn,Rn,μn,ρn,φn)n≥1 in F
∗ satisfies

(Fn,Rn,μn,ρn,φn) → (F,R,μ,ρ,φ)

in the spatial Gromov–Hausdorff-vague topology for some (F,R,μ,ρ,φ) ∈ F
∗, and Assumption 1.1(b) holds, then

P n
ρn

((
φn

(
Xn

t

))
t≥0 ∈ ·) → Pρ

((
φ(Xt )

)
t≥0 ∈ ·)

weakly as probability measures on D(R+,N).
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Before proving this result, let us also state a version that is useful for random spaces. In particular, in the following
result, we suppose that we have random elements (Fn,Rn,μn,ρn,φn)n≥1 and (F,R,μ,ρ,φ) of F∗, built on a proba-
bility space with probability measure P. We will show that if (Fn,Rn,μn,ρn,φn) → (F,R,μ,ρ,φ) in a distributional
sense with respect to the spatial Gromov–Hausdorff-vague topology, and a probabilistic version of Assumption 1.1(b)
holds, then we also have convergence of embedded stochastic processes under the annealed measure, that is the prob-
ability measure on D(R+,N) obtained by integrating out the randomness of the state spaces, i.e. the annealed law of
the limit process is given by

Pρ

((
φ(Xt )

)
t≥0 ∈ ·) :=

∫
Pρ

((
φ(Xt)

)
t≥0 ∈ ·)dP,

and we define P
n
ρn

, n ≥ 1, similarly.

Theorem 7.2. Suppose (Fn,Rn,μn,ρn,φn)n≥1 and (F,R,μ,ρ,φ) are random elements of F∗ such that

(
F (r)

n ,R(r)
n ,μ(r)

n , ρ(r)
n , φ(r)

n

) d→ (
F (r),R(r),μ(r), ρ(r), φ(r)

)
(38)

in the spatial Gromov–Hausdorff-vague topology for Lebesgue almost-every r ≥ 0, and

lim
r→∞ lim inf

n→∞ P
(
Rn

(
ρn,Bn(ρn, r)

c
) ≥ λ

) = 1, ∀λ ≥ 0, (39)

then

P
n
ρn

((
φn

(
Xn

t

))
t≥0 ∈ ·) → Pρ

((
φ(Xt )

)
t≥0 ∈ ·)

weakly as probability measures on D(R+,N).

The following lemma provides the key technical points that will be needed for the proof of Theorem 7.1. Firstly,
it incorporates correspondences and spatial embeddings to Lemma 2.7. Secondly, it gives pointwise convergence and
equicontinuity for spatial embeddings.

Lemma 7.3.

(a) Suppose (Fn,Rn,μn,ρn,φn), n ≥ 1, and (F,R,μ,ρ,φ) are elements of F∗
c such that (Fn,Rn,μn,ρn,φn) →

(F,R,μ,ρ,φ) in the spatial Gromov–Hausdorff-vague topology. It is then possible to embed (Fn,Rn), n ≥ 1, and
(F,R) isometrically into the same compact metric space (M,dM) in such a way that, for Lebesgue almost-every
r ≥ 0, the claims at (5) hold. Moreover, it is simultaneously possible to find correspondences Cn ⊆ F × Fn such that

ε(1)
n := sup

(x,y)∈Cn

dM(x, y) → 0, (40)

ε(2)
n := sup

(x,y)∈Cn

dN

(
φ(x),φn(y)

) → 0, (41)

where we have identified the various objects with their embeddings into M .
(b) In the setting of part (a), we also have that if xn ∈ Fn, n ≥ 1, and x ∈ F are such that dM(xn, x) → 0, then

dN

(
φn(xn),φ(x)

) → 0. (42)

Moreover,

lim
δ→0

lim sup
n→∞

sup
x,y∈Fn:

Rn(x,y)≤δ

dN

(
φn(x),φn(y)

) = 0. (43)
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Proof. An embedding satisfying the requirements of part (a) of the lemma is described (in a very slightly modified
setting, with no marked point, and where the functions φ are replaced by a function with two arguments plus a time
parameter) in the proof of [17, Lemma 2.2]. We now check part (b). First, suppose xn ∈ Fn, n ≥ 1, and x ∈ F are such
that dM(xn, x) → 0. Let x′

n ∈ F be such that (x′
n, xn) ∈ Cn. Then

dN

(
φn(xn),φ(x)

) ≤ dN

(
φn(xn),φ

(
x′
n

)) + dN

(
φ
(
x′
n

)
, φ(x)

)
≤ ε(2)

n + sup
y,z∈F :

R(y,z)≤dM(x,xn)+ε
(1)
n

dN

(
φ(y),φ(z)

)
,

which converges to zero by (40), (41), and the continuity of φ. This establishes (42). For (43), we proceed similarly.
In particular, given x, y ∈ Fn with Rn(x, y) ≤ δ, choose x′, y′ ∈ F such that (x′, x), (y′, y) ∈ Cn, then

dN

(
φn(x),φn(y)

) ≤ dN

(
φn(x),φ

(
x′)) + dN

(
φ
(
x′), φ(

y′)) + dN

(
φ
(
y′), φn(y)

)
≤ 2ε(2)

n + sup
y,z∈F :

R(y,z)≤δ+2ε
(1)
n

dN

(
φ(y),φ(z)

)
,

from which (43) follows by again applying (40), (41), and the continuity of φ. �

With these preparations in place, we are ready to prove the main results of this section.

Proof of Theorem 7.1. To begin with, suppose (Fn,Rn,μn,ρn,φn), n ≥ 1, and (F,R,μ,ρ,φ) are elements of F∗
c .

From the argument used to prove Theorem 1.1, we know that

P n
ρn

((
Xn

t

)
t≥0 ∈ ·) → Pρ

(
(Xt )t≥0 ∈ ·)

weakly as probability measures on D(R+,M). Consequently, the finite-dimensional distributions converge, meaning
that, for any 0 ≤ t1 < · · · < tK , we have that (Xn

tk
)Kk=1 → (Xtk )

K
k=1 in distribution in MK . From (42), it thus follows

that (φn(X
n
tk
))Kk=1 → (φ(Xtk ))

K
k=1 in distribution in NK . To extend from this finite-dimensional distribution statement

to convergence in D(R+,N), we need to check tightness. For this, it will suffice to check the analogue of Lemma 4.4.
To this end, observe that, under P n

x ,

sup
s≤t

dN

(
φn(x),φn

(
Xn

s

)) ≤ sup
y∈Fn:

Rn(x,y)≤sups≤t Rn(x,Xn
s )

dN

(
φn(x),φn(y)

)
.

Hence from Lemma 4.4 and (43), we obtain that

lim
t→0

lim sup
n→∞

sup
x∈Fn

P n
x

(
sup
s≤t

dN

(
φn(x),φn

(
Xn

s

)) ≥ ε
)

= 0,

as desired. In particular, we have now shown in the compact case that

P n
ρn

((
φn

(
Xn

t

))
t≥0 ∈ ·) → Pρ

((
φ(Xt )

)
t≥0 ∈ ·)

weakly as probability measures on D(R+,N). One can extend this result to the locally compact case by exactly the
same strategy as was applied in the proof of Theorem 1.2, namely the consideration of the traces of the relevant
processes on compact subsets. �

Proof of Theorem 7.2. First, suppose r > 0 is chosen such that (38) holds. Since (K∗
c ,�

∗
c ) is separable, it is pos-

sible to find realisations of the spaces (F
(r)
n ,R

(r)
n ,μ

(r)
n , ρ

(r)
n , φ

(r)
n ), n ≥ 1, and (F (r),R(r),μ(r), ρ(r), φ(r)) so that the

convergence takes place almost-surely [31, Theorem 4.30]. For these realisations, we obtain from Theorem 7.1 that,
almost-surely,

P n
ρn

((
φn

(
X

n,r
t

))
t≥0 ∈ ·) → Pρ

((
φ
(
X

(r)
t

))
t≥0 ∈ ·)
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weakly as probability measures on D(R+,N), where Xn,r and X(r) are the processes introduced in Section 6. Inte-
grating out over the state spaces thus yields

P
n
ρn

((
φn

(
X

n,r
t

))
t≥0 ∈ ·) → Pρ

((
φ
(
X

(r)
t

))
t≥0 ∈ ·) (44)

weakly as probability measures on D(R+,N). Next, similarly to the proof of Lemma 6.3, we have that, for any r0 > 0,

P
n
ρn

(
sup
s≤t

dN

(
φn

(
Xn

s

)
, φn

(
Xn,r

s

))
> ε

)

≤ E
[

min

{
1,4

(
2r0

λ
+ t + 1

μn(Bn(ρn,2r0))(λ − 2r0)

)}]
+ P

(
Rn

(
ρn,Bn(ρn, r)

c
)
< λ

)
.

In particular, choosing r0 so that (38) holds, we have that μn(B̄n(ρn, r0)) → μ(B̄R(ρ, r0)), and so we obtain

lim sup
n→∞

P
n
ρn

(
sup
s≤t

dN

(
φn

(
Xn

s

)
, φn

(
Xn,r

s

))
> ε

)

≤ E
[

min

{
1,4

(
2r0

λ
+ t + 1

μ(B̄R(ρ, r0))(λ − 2r0)

)}]
+ lim sup

n→∞
P
(
Rn

(
ρn,Bn(ρn, r)

c
)
< λ

)
.

Letting r → ∞ and then λ → ∞ (and applying (39)), we thus deduce

lim
r→∞ lim sup

n→∞
P

n
ρn

(
sup
s≤t

dN

(
φn

(
Xn

s

)
, φn

(
Xn,r

s

))
> ε

)
= 0. (45)

The same argument yields that

lim
r→∞Pρ

(
sup
s≤t

dN

(
φ(Xs),φ

(
X(r)

s

))
> ε

)
= 0. (46)

Putting together (44), (45) and (46) completes the proof. �

8. Examples

8.1. Trees

Since the shortest path metric on a tree is a resistance metric, such objects fit naturally into the framework of this
article. With the scaling of stochastic processes on trees now being well-understood, however, we will not present
details of particular cases here. Rather, to illustrate the applicability of the results, we simply list some previous work
on scaling stochastic processes on trees that the conclusion of [5] and this article covers (see the cited references for
further details).

• Critical Galton–Watson trees, conditioned on their size, both finite variance [12] and infinite variance [15]. Also,
the incipient infinite cluster of the critical Galton–Watson tree with finite variance [5, Section 7.4] (see [32] for the
initial work on the random walk on this object). In [5], the discussion further covers the so-called ‘height process’
of the latter random walk model, that is, the process which measures the distance from the root of the tree to the
walker; by taking spatial embeddings (into R+) given by the height function, one can obtain convergence of height
processes as an application of Theorem 7.2. One might alternatively take as the spatial embedding the height of the
‘projection to the backbone’ of the random walk (note the incipient infinite cluster of a critical Galton–Watson tree
almost-surely has a unique path to infinity, which is referred to as its backbone), and apply Theorem 7.2 to recover
the scaling result proved in [9] for this function of the random walk (in the aforementioned article, a detailed
characterisation of the limiting process is given in terms of a so-called ‘spatially-subordinated Brownian motion’).

• The (non-lattice) branching random walk, where the underlying tree is a critical Galton–Watson tree with expo-
nential tails for the offspring distribution, and the steps have a centred, continuous distribution with fourth order
polynomial tail decay [13]. (This is an example to which Theorem 7.2 applies, with embeddings into R

d .)
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• The uniform spanning tree in two dimensions – a subsequential version of the relevant convergence result was first
proved in [6], and the full result has since been established in [28]. (With its canonical embedding into R

2, this is
another example to which Theorem 7.2 applies.)

• 
-coalescent measure trees [5, Section 7.5].

Of course, there are also many other interesting examples of families of trees known to converge under scaling with
respect to the Gromov–Hausdorff-vague topology for which convergence of processes would also follow from [5] or
Theorem 1.2. These include the model of Markov branching trees [24], and the minimal spanning tree of the complete
graph [2].

A potential advantage of the wider setting of this article compared to previous work on trees is that it gives a route
for proving similar results for graphs that are not trees, but which have a tree as a scaling limit. Indeed, one model for
which an appealing conjecture can be made is the incipient infinite cluster of bond percolation on Z

d in high dimen-
sions, that is when d > 6. In particular, it is expected that this model satisfies the same scaling properties as branching
random walk, and thus one might anticipate that if IIC is the incipient infinite cluster (see [43] for a construction),
RIIC is the resistance metric on this (when individual edges have unit resistance), μIIC is the counting measure on IIC
(placing mass one on each vertex), and IIIC : IIC → R

d is the identity map, then (IIC,RIIC,μIIC,0, IIIC) ∈ F
∗, and the

rescaled sequence

(
IIC, n−2RIIC, n−4μIIC,0, n−1IIIC

)
, n ≥ 1,

satisfies the conditions of Theorem 7.2, with limit being (an unbounded version of) the continuum random tree mapped
into Euclidean space by a tree-indexed Brownian motion (or, to state this another way, the integrated super-Brownian
excursion), cf. the conjecture of [13], where the Brownian motion on the limiting space was constructed for d ≥ 8.
Note that early work connecting the incipient infinite cluster and the integrated super-Brownian excursion was accom-
plished in [26]. See also [27] for up-to-date work on random walks and resistance on the incipient infinite cluster in
high dimensions, which supports the above scaling picture. Finally, we note that, in this direction, the corresponding
limit for the random walk on the lattice branching random walk has recently been established in [7]. The latter work
appeals to a general scaling theorem proved in [8], which, similarly to the present work, depends critically on the
connections between the resistance metric and stochastic processes.

8.2. Range of random walk

Continuing the discussion from the previous section, we now present a simple example of a random graph that is
asymptotically a tree, and for which we can check the conditions of Theorems 7.1 and 7.2 hold; this is the random
walk on the range of a random walk in high dimensions. More precisely, for (Sn)n≥0 a simple random walk on Z

d

started from 0 (built on a probability space with probability measure P), set G = (V (G),E(G)) to be the graph with
vertex set

V (G) := {Sn : n ≥ 0},

and edge set

E(G) := {{Sn,Sn+1} : n ≥ 0
}
.

For d ≥ 5, it is known that this graph is essentially one-dimensional, and that the associated random walk behaves
like simple random walk on a half-line [14]. Here we explain how to reprove the main results of the latter article
using our resistance form approach (since the result is already known, we attempt to keep the exposition brief, and
so omit detailed computations). We will denote by: RG the resistance on G, supposing individual edges have unit
resistance; μG for the measure on V (G) placing mass one on each vertex; and dG the shortest path graph distance on
G. In particular, with IG being the identity map from G to R

d , both (G,RG,μG,0, dG(0, ·)) and (G,RG,μG,0, IG) are
(P-a.s.) in versions of F∗ (with embeddings into R+ and R

d respectively). NB. The trace of a random walk is always
a recurrent graph [10].
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To capture the one-dimensional nature of the graph G, it is useful to introduce the collection of cut-times of S, that
is the set

T := {n : S[0,n] ∩ S[n+1,∞) =∅}.
One has that, P-a.s., T is infinite, and so we can write its elements as 0 ≤ T1 < T2 < · · · . The associated set of cut-
points is given by C := {n ≥ 1 : Cn}, where Cn := STn . Applying laws of large numbers for various graph quantities
measured at cut-times, we are able to deduce the following. Note that we write: dE for the Euclidean metric on R+;
L for Lebesgue measure on R+; and (Wt)t≥0 for a d-dimensional Brownian motion, started from 0, also built on the
probability space with probability measure P.

Proposition 8.1. For some deterministic constants c1, c2, c3, c4 ∈ (0,∞), the following statements hold.

(a) P-a.s., the sequence(
G, n−1RG, n−1μG,0, n−1dG(0, ·)), n ≥ 1,

satisfies the conditions of Theorem 7.1, with limit given by (R+, c1dE, c2L,0, c3dE(0, ·)).
(b) Under P, the sequence(

G, n−1RG, n−1μG,0, n−1/2IG
)
, n ≥ 1,

satisfies the conditions of Theorem 7.2, with (random) limit given by (R+, c1dE, c2L,0, c4W·).

Proof. We first claim that there exist deterministic constants such that, P-a.s.,

Tn

n
→ c1,

RG(0,Cn)

n
→ c2,

μG({S0, S1, . . . , STn})
n

→ c3,
dG(0,Cn)

n
→ c4. (47)

To prove this, we observe that the results corresponding to the first, second and fourth of these limits for the two-sided
simple random walk (S̃n)n∈Z (that is, where (S̃n)n≥0 and (S̃−n)n≥0 are independent simple random walks started from
0) readily follows from the ergodic theory argument of [14, Lemmas 2.1 and 2.2]. Moreover, the result corresponding
to the third limit in the two-sided case can be established in an identical fashion. Note that, in the two-sided case, the
set of cut-times is given by T̃ := {n : S̃(−∞,n] ∩ S̃[n+1,∞)}, the elements of which can be written as · · · < T̃−1 < T̃0 <

0 ≤ T̃1 < T̃2 < · · · , and the set of cut-points C̃ := {n ∈ Z : C̃n}, where C̃n := S̃
T̃n

. Identifying (Sn)n≥0 and (S̃n)n≥0, one

clearly has that P-a.s., Cn := C̃n−n0 for some (random, but almost-surely finite) n0. Applying this, it is elementary to
deduce the limits for the one-sided process, as stated at (47). Moreover, given (47), it is a simple exercise to verify part
(a) of the lemma. To prove part (b) of the lemma, one only needs to incorporate the fact that (n−1/2Snt )t≥0 → (Wt )t≥0
in distribution under P. �

In view of this proposition, Theorems 7.1 and 7.2 immediately give convergence of the corresponding processes
with respect to the quenched and annealed laws respectively. We write ((XG

t )t≥0, (P
G
x )x∈V (G)) for the process asso-

ciated with (G,RG,μG,0) ∈ F. Moreover, we denote by P
G
0 := ∫

PG
0 dP the corresponding annealed law (when the

process is viewed as a random element of D(R+,Rd)). To describe the limiting process, we let (Bt )t≥0 be a one-
dimensional Brownian motion, so that (|Bt |)t≥0 is the process associated with (R+, dE,L,0) ∈ F, and P0 be its law.
Finally, we set P0 := P × P0.

Corollary 8.2 (cf. [14, Theorem 1.1]). For some deterministic constants c1, c2 ∈ (0,∞), the following statements
hold.

(a) P-a.s.,

PG
0

((
n−1dG

(
0,XG

tn2

))
t≥0 ∈ ·) → P0

((|Bc1t |
)
t≥0 ∈ ·)

weakly as probability measures on D(R+,R+).
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(b)

P
G
0

((
n−1XG

tn2

)
t≥0 ∈ ·) → P0

(
(W|Bc2 t |)t≥0 ∈ ·)

weakly as probability measures on D(R+,Rd).

8.3. Fused resistance forms

Another example of a family of random graphs that are nearly trees, and which the results of this article are applicable
is the Erdős-Rényi random graph at criticality. More precisely, the Erdős–Rényi random graph G(n,p) is obtained
by running bond percolation with edge retention probability p on the complete graph with n vertices. In the critical
window (that is, when p = n−1 + λn−4/3 for some λ ∈ R), it was shown in [1] that the graphs could be rescaled to
a limiting metric space consisting of a tree ‘glued’ together at a finite number of pairs of points. This picture was
applied in [16] to describe the scaling of the associated random walks, with the limit being described in terms of a
‘fused’ resistance form. In this section, we show that the operation of fusing resistance forms at disjoint pairs of points
is continuous with respect to the Gromov–Hausdorff-vague topology (see Proposition 8.4). Consequently, the results
of this article give a general strategy for establishing results such as that proved in [16].

Let us start by introducing the operation of fusing an element (F,R,μ,ρ) ∈ Fc over a finite number of subsets.
(The restriction to compact spaces is to keep the presentation brief.) Suppose (Vj )

J
j=1 are a collection of non-empty

disjoint compact subsets of F , and write

F̃ :=
(

F\
J⋃

j=1

Vj

)
∪

(
J⋃

j=1

{Vj }
)

,

i.e. we consider each of the subsets as a single point. Let π : F → F̃ be the canonical projection map that is the
identity on F\⋃J

j=1 Vj , and maps points x ∈ Vj to {Vj }, j = 1, . . . , J . Then, define

Ẽ(f,f ) := E(f ◦ π,f ◦ π), ∀f ∈ F̃, (48)

where

F̃ := {f : f ◦ π ∈F} = {
f ◦ π−1 : f ∈ F, f |Vj

constant, ∀j ∈ {1, . . . , J }}. (49)

The form (Ẽ, F̃) is the fused form, and the next lemma ensures it is indeed a resistance form. In the following result,
we write μ̃ := μ ◦ π−1, ρ̃ := π(ρ).

Lemma 8.3 (cf. [35, Theorem 4.3] and [16, Proposition 2.3]). In the setting described above, (Ẽ, F̃) is a regular
resistance form on F̃ . Moreover, if R̃ is the associated resistance metric, then (F̃ , R̃, μ̃, ρ̃) ∈ Fc.

Proof. Checking RF1 and RF5 of Definition 2.1 for (Ẽ, F̃) is straightforward. RF2 is also not difficult, though let us
explain how to check the completeness of the domain. Suppose (fn)n≥1 is Cauchy with respect to Ẽ . Then (fn ◦π)n≥1

is Cauchy with respect to E , so has a limit g ∈F . If u,v ∈ Vj for some j , then fn ◦ π(u) = fn ◦ π(v), and so∣∣g(u) − g(v)
∣∣ = ∣∣g(u) − fn ◦ π(u) − g(v) + fn ◦ π(v)

∣∣ ≤ R(u, v)E(g − fn ◦ π,g − fn ◦ π) → 0.

Hence f := g◦π−1 ∈ F̃ , and fn → f with respect to Ẽ . We next check RF3. Let x, y ∈ F̃ , x 
= y, and set U = π−1(x),
V = π−1(y). Moreover, write W = (V ∪ ⋃J

j=1 Vj )\U . Note that U and W are disjoint compact subsets of F . Now
consider gW (u, ·) for u ∈ U , where we are applying the definition of the resolvent kernel from Lemma 3.1. From the
latter result, we deduce that gW (u, ·)|W = 0, and gW (u,u) = R(u,W) > 0 (where the strict positivity is a consequence
of [35, Theorem 4.1 and Corollary 5.4]). Since functions in F are continuous, for each u ∈ U , there exists a εu > such
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that gW (u, ·)|BR(u,εu) > 0. Thus a compactness argument yields the existence of a finite sequence (uk)
K
k=1 in U such

that U ⊆ ⋃
k=1,...,K BR(uk, εuk

). Write now

g :=
K∑

k=1

gW (uk, ·),

so that, by construction, g|W = 0 and g > 0 on U . Continuity and compactness implies moreover that there exists an
ε > 0 such that g > ε on U , and so g̃ := min{g, ε} ∈F is constant on U . Hence setting f := g̃ ◦ π−1 gives a function
in F̃ for which f (x) 
= f (y). For RF4, we simply observe that

R̃
(
π(x),π(y)

) ≤ R(x, y), ∀x, y ∈ F. (50)

This completes the proof that (Ẽ, F̃) is a resistance form on F̃ . Moreover, (50) yields that (F̃ , R̃) is compact. Regular-
ity of (Ẽ, F̃) therefore follows from [35, Corollary 6.4]. Checking the remaining requirements for (F̃ , R̃, μ̃, ρ̃) ∈ Fc

is easy. �

We next specialise to the case when each of the subsets (Vj )
J
j=1 are given by pairs of points. In particular, we sup-

pose Vj = {uj , vj } for each j = 1, . . . , J , so that the elements of interest can be written (F,R,μ,ρ,u1, v1, . . . , uJ ,

vJ ), where (F,R,μ,ρ) ∈ Fc . For convenience, we assume henceforth that J is fixed. We define a distance �′
c be-

tween (F,R,μ,ρ,u1, v1, . . . , uJ , vJ ) and (F ′,R′,μ′, ρ′, u′
1, v

′
1, . . . , u

′
J , v′

J ) by adding
∑J

j=1(dM(ψ(uj ),ψ
′(u′

j ))+
dM(ψ(vj ),ψ

′(v′
j ))) inside the infimum at (4). It is possible to check via standard arguments that this yields a met-

ric (cf. [38, Section 6]), and we call the associated topology the Gromov–Hausdorff-vague topology with additional
points. The next result gives the main result of this section, which is the continuity of the fusing map with respect to
this topology.

Proposition 8.4. If(
Fn,Rn,μn,ρn,u

n
1, vn

1 , . . . , un
J , vn

J

) → (F,R,μ,ρ,u1, v1, . . . , uJ , vJ ), (51)

in the Gromov–Hausdorff-vague topology with additional points, where (Fn,Rn,μn,ρn), n ≥ 1, and (F,R,μ,ρ) are
elements of Fc, and u1, v1, . . . , uJ , vJ ∈ F are distinct, then the associated fused spaces satisfy

(F̃n, R̃n, μ̃n, ρ̃n) → (F̃ , R̃, μ̃, ρ̃) (52)

in the Gromov–Hausdorff-vague topology.

Proof. We start by observing that, since (Fn,Rn,μn,ρn) → (F,R,μ,ρ), then

lim inf
n→∞ inf

x∈Fn

μn

(
B̄n(x, δ)

)
> 0, ∀δ > 0,

see [4, Theorem 6.1]. From (50), we thus obtain that

lim inf
n→∞ inf

x∈F̃n

μ̃n

(
B̄

R̃n
(x, δ)

)
> 0, ∀δ > 0.

Hence, by applying [4, Theorem 6.1] again, to complete the proof it will suffice to show (52) in the (pointed) Gromov-
weak topology (that is, for the topology generated by distance given by (4), but without the dH

M(ψ(F),ψ ′(F )) term).
Applying the alternative definition of the latter topology from [5, Definition 2.5], this is equivalent to checking

∫
f

((
R̃n(xi, xj )

)
0≤i,j≤K

) K∏
k=1

μ̃n(dxk) →
∫

f
((

R̃(xi, xj )
)

0≤i,j≤K

) K∏
k=1

μ̃(dxk), (53)
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for any continuous bounded function f : RK(K+1)/2 → R, where x0 = ρn on the left-hand side, and x0 = ρ on the
right-hand side above. Now, note that we can write

∫
f

((
R̃(xi, xj )

)
0≤i,j≤K

) K∏
k=1

μ̃(dxk) =
∫

f
((

R
(
π(xi),π(xj )

))
0≤i,j≤K

) K∏
k=1

μ(dxk),

and similarly for the left-hand side of (53). Moreover, we have that the convergence at (51) yields convergence of the
relevant objects suitably embedded into a common compact metric space (M,dM), as in the conclusion of Lemma 2.7,
but also with convergence of the additional points. (We shall assume that the objects are embedded in such a way for
the remainder of the proof.) As a consequence of these observations, to check (53) it will be sufficient to show

R̃n

(
πn(xn),πn(yn)

) → R̃
(
π(x),π(y)

)
(54)

whenever dM(xn, x) → 0 and dM(yn, y) → 0, where we write πn for the canonical projection from Fn to F̃n.
Now, let x, y ∈ F be such that x, y,u1, v1, . . . , uJ , vJ are distinct, and write V for this collection of vertices. Let

ν be the counting measure on V (placing mass one on each vertex), so that (V ,R|V ×V , ν, x) ∈ Fc (by Lemma 2.6).
Since the state space is discrete, we can write the associated resistance form as

EV (f,f ) = 1

2

∑
z,w∈V

cV (z,w)
(
f (y) − f (x)

)2
, (55)

where the conductances (cV (z,w))z,w∈V are uniquely determined by the resistance R|V ×V [33, Theorem 1.7]; the
domain of EV is all functions from V to R. Similarly, (π(V ),R|π(V )×π(V ), ν ◦ π−1,π(x)) ∈ Fc , and we have that the
associated form can be written

Eπ(V )(f, f ) = 1

2

∑
z,w∈π(V )

cπ(V )(z,w)
(
f (z) − f (w)

)2
, (56)

for conductances (cπ(V )(z,w))z,w∈π(V ), and the associated domain is all functions from π(V ) to R. Now, by [35,
Theorem 8.4], we note that an alternative characterisation of EV is as the trace of (E,F) on V , namely

EV (f,f ) = inf
{
E(g, g) : g ∈F, g|V = f

}
. (57)

Correspondingly, we have that

Eπ(V )(f, f ) = inf
{
Ẽ(g, g) : g ∈ F̃, g|π(V ) = f

}
. (58)

From (57), (58), and the definition of (Ẽ, F̃) at (48) and (49), it is possible to deduce that Eπ(V )(f, f ) = EV (f ◦π,f ◦
π). Putting this together with (55) and (56), it follows that

cπ(V )(z,w) =
∑

z′,w′∈V :
π(z′)=z,π(w′)=w

cV

(
z′,w′) (59)

(cf. the argument of [16, Lemma 2.2]). We can proceed in exactly the same way for elements of an approximating
sequence. Indeed, writing Vn to be the subset of Fn consisting of xn, yn,u

n
1, vn

1 , . . . , un
J , vn

J , where dM(xn, x) → 0 and
dM(yn, y) → 0, we obtain conductances (cVn(z,w))z,w∈Vn and (cπn(Vn)(z,w))z,w∈πn(Vn). Moreover, since for large n it
is the case that Vn has the same cardinality as V , we have a natural correspondence between the latter quantities and the
conductances on V and π(V ) respectively. Clearly, by assumption, we have that (Rn(z,w))z,w∈Vn → (R(z,w))z,w∈V

(using the natural bijection between elements of Vn and V , which exists for large n). By the argument of [18,
Lemma 3.3], it follows that (cVn(z,w))z,w∈Vn → (cV (z,w))z,w∈V . Hence, by (59) and the analogous formula for the
nth level objects, we find that (cπn(Vn)(z,w))z,w∈πn(Vn) → (cπ(V )(z,w))z,w∈π(V ), from which it readily follows that
(R̃n(z,w))z,w∈πn(Vn) → (R̃(z,w))z,w∈π(V ). In particular, this confirms (54) when x, y,u1, v1, . . . , uJ , vJ are distinct.
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Next, consider the case when x,u1, v1, . . . , uJ , vJ are distinct, and y = u1. Again suppose that xn, yn ∈ Fn are such
that dM(xn, x) → 0 and dM(yn, y) → 0. Then define V := {x,u1, v1, . . . , uJ , vJ }, Vn := {xn,u

n
1, vn

1 , . . . , un
J , vn

J }, and
proceed as above to deduce that R̃n(πn(xn),πn(u

n
1)) → R̃(π(x),π(u1)). Since it also holds that R̃n(π(yn),π(un

1)) ≤
Rn(yn,u

n
1) ≤ dM(yn, y) + dM(u1, u

n
1) → 0, we obtain (54) in this case too. The remaining cases are similar. �

As a corollary of this result and Theorem 1.2, we deduce that if we have convergence of spaces and marked points
as at (51), then we also have convergence of processes associated with the fused spaces. Although we will not present
details here, [1] (see also the summary of results from that article in [16]) gives the required assumption for the critical
Erdős-Rényi random graph, from which the above result yields convergence of the associated rescaled simple random
walks. Although the intuition regarding fusing was present in [16], the approach there was based on a sample path
argument.

8.4. Time-changed processes

In [18], time-changes of stochastic processes on resistance forms were studied, with the main illustrative examples
being the Liouville Brownian motion (LBM), the Bouchaud trap model (BTM), and the random conductance model
(RCM). Since these were comprehensively covered in the latter article, here we will simply highlight where the
present results allow extensions beyond the case of uniform volume doubling (UVD) to be made. Firstly, for the
LBM, one advantage of the UVD assumption is that it yields strong estimates on the continuity of the Gaussian field
defining the Liouville measure in the model. Whilst we do require some regularity for this [42], we do not need as
strong a condition as UVD. Indeed, for establishing convergence of LBM on critical Galton–Watson trees to LBM
on the continuum random tree, the desired convergence of Gaussian fields follows from results of [29] in the case
of an offspring distribution with exponential tails, even though this model will not satisfy UVD. Secondly, for BTM,
Theorem 1.2 shows that the requirement of UVD made in [18, Assumption 5.1], specifically through the appeal to [18,
Assumption 1.2], is not needed; it is possible to obtain convergence of the BTM with the latter replaced by our weaker
Assumption 1.1. Finally, for the RCM, the argument for trees of [18, Section 6.1] does not depend on UVD, and
so [18, Assumption 1.2] can again be replaced by our weaker Assumption 1.1. For fractals, however, all the models
studied in [18, Section 6.2] naturally satisfy UVD, and so the present work does not extend these results. This is, of
course, not to say that the UVD is essential for obtaining scaling limits of stochastic processes on fractals in general;
as an example for which we have Gromov–Hausdorff-vague convergence of fractal spaces, but not uniform volume
doubling, see [25]. (Note the latter article also provides an example of a convergent sequence of resistance metric
spaces that have been fused over a countably infinite number of sets, cf. Section 8.3.)
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