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Abstract. We prove that the linear statistics of eigenvalues of β-log gases satisfying the one-cut and off-critical assumption with a
potential V ∈ C7(R) satisfy a central limit theorem at all mesoscopic scales α ∈ (0;1). We prove this for compactly supported test
functions f ∈ C6(R) using loop equations at all orders along with rigidity estimates.

Résumé. Nous prouvons que les statistiques linéaires du β-gaz de Coulomb confiné par un potentiel V ∈ C7(R) et avec une mesure
d’équilibre non critique à support connexe satisfont un théorème central limite à toutes les échelles mésoscopiques α ∈ (0;1). Nous
prouvons ce résultat pour toute fonction test f ∈ C6(R) à support compact en utilisant les équations de boucles et des estimées de
rigidité.
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1. Introduction

We consider a system of N particles on the real line distributed according to a density proportional to∏
1≤i<j≤N

|λi − λj |βe−N
∑

V (λi )
∏

dλi,

where V is a continuous potential and β > 0. This system is called the β-log gas, or general β-ensemble. For clas-
sical values of β ∈ {1,2,4}, this distribution corresponds to the joint law of the eigenvalues of symmetric, hermitian
or quaternionic random matrices with density proportional to e−N TrV (M) dM where N is the size of the random
matrix M .

Recently, great progress has been made to understand the behavior of β-log gases. At the microscopic scale, the
eigenvalues exhibit a universal behavior (see [3,4,8,9,22,25]) and the local statistics of the eigenvalues are described
by the Sineβ process in the bulk and the Stochastic Airy Operator at the edge (see [22,26] for definitions). In this
article, we study the linear fluctuations of the eigenvalues of general β-ensembles at the mesoscopic scale; we prove
that for α ∈ (0;1) fixed, f a smooth function (whose regularity and decay at infinity will be specified later), and E a
fixed point in the bulk of the spectrum

N∑
i=1

f
(
Nα(λi − E)

) − N

∫
f

(
Nα(x − E)

)
dμV (x)

converges towards a Gaussian random variable. At the macroscopic level (i.e when α = 0), it is known that the
eigenvalues satisfy a central limit theorem and the re-centered linear statistics of the eigenvalues converge towards a
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Gaussian random variable. This was first proved in [16] for polynomial potentials satisfying the one-cut assumption.
In [7], the authors derived a full expansion of the free energy in the one-cut regime from which they deduce the
central limit theorem for analytic potentials. The multi-cut regime is more complicated and in this setting, the central
limit theorem does not hold anymore for all test functions (see [6,24]). Similar results have also been obtained for the
eigenvalues of Random Matrices from different ensembles (see [1,20,23]). Interest in mesoscopic linear statistics has
surged in recent years. Results in this field of study were obtained in a variety of settings, for Gaussian random matrices
[11,14], and for invariant ensembles [13,17]. In many cases the results were shown at all scales α ∈ (0;1), often with
the use of distribution specific properties. In more general settings, the absence of such properties necessitates other
approaches to obtain the limiting behavior at the mesoscopic regime. For example, an early paper studying mesoscopic
statistics for Wigner Matrices was [12], here the regime studied was α ∈ (0; 1

8 ). This was pushed to α ∈ (0; 1
3 ) [19]

using improved local law results, and recent work has pushed this to all scales [15]. The central limit theorem at all
mesoscopic scales has also been obtained recently for the two dimensional β-log gas (or Coulomb gas) in [2,18].

Extending these results to one dimensional β-ensembles is a natural step. We also prove convergence at all meso-
scopic scales. The proof of the main Theorem relies on the analysis of the loop equations (see Section 2.1) from
which we can deduce a recurrence relationship between moments, and the rigidity results from [8,9] to control the
linear statistics. Similar results have been obtained before in [10, Theorem 5.4]. There, the authors showed the meso-
scopic CLT in the case of a quadratic potential, for small α (see Remark 5.5).

In Section 1, we introduce the model and recall some background results and Section 2 will be dedicated to the
proof of Theorem 1.5.

1.1. Definitions and background

We consider the general β-matrix model. For a potential V : R−→ R and β > 0, we denote the measure on R
N

P
N
V (dλ1, . . . , dλN) := 1

ZN
V

∏
1≤i<j≤N

|λi − λj |βe−N
∑

V (λi )
∏

dλi, (1.1)

with

ZN
V =

∫ ∏
1≤i<j≤N

|λi − λj |βe−N
∑

V (λi )
∏

dλi.

It is well known (see [21] for the Hölder case, and [16], Theorem 2.1 for the continuous case) that under P
N
V the

empirical measure of the eigenvalues converge towards an equilibrium measure:

Theorem 1.1. Assume that V :R−→R is continuous and that

lim inf
x→∞

V (x)

β log |x| > 1.

Then the energy defined by

E(μ) =
∫∫ (

V (x1) + V (x2)

2
− β

2
log |x1 − x2|

)
dμ(x1) dμ(x2) (1.2)

has a unique global minimum on the space M1(R) of probability measures on R.
Moreover, under P

N
V the normalized empirical measure LN = N−1 ∑N

i=1 δλi
converges almost surely and in ex-

pectation towards the unique probability measure μV which minimizes the energy.
The measure μV has compact support A and is uniquely determined by the existence of a constant C such that:

β

∫
log |x − y|dμV (y) − V (x) ≤ C,

with equality almost everywhere on the support.
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1.2. Results

Hypothesis 1.2. For what proceeds, we assume the following

• V is continuous and goes to infinity faster than β log|x|.
• The support of μV is a connected interval A = [a;b] and

dμV

dx
= ρV (x) = S(x)

√
(b − x)(x − a) with S > 0 on [a;b].

• The function V (·) − β
∫

log | · −y|dμV (y) achieves its minimum on the support only.

Remark 1.3. The second and third assumptions are typically known as the one-cut and off-criticality assumptions. In
the case where the support of the equilibrium measure is no longer connected, the macroscopic central limit theorem
does not hold anymore in generality (see [6,24]). Whether the theorem holds for critical potentials is still an open
question.

Remark 1.4. If the previous assumptions are fulfilled, and V ∈ Cp(R) then S ∈ Cp−3(R) (see [4], Lemma 3.2).

Theorem 1.5. Let 0 < α < 1, E a point in the bulk (a;b), V ∈ C7(R) and f ∈ C6(R) with compact support. Then,
under PN

V

N∑
i=1

f
(
Nα(λi − E)

) − N

∫
f

(
Nα(x − E)

)
dμV (x)

M−→N
(
0, σ 2

f

)
,

where the convergence holds in moments (and thus in distribution), and

σ 2
f = 1

2βπ2

∫∫ (
f (x) − f (y)

x − y

)2

dx dy.

Note that, as in the macroscopic central limit theorem, the variance is universal in the potential with a multiplicative
factor proportional to 1/β . Interestingly and in contrast with the macroscopic scale, the limit is always centered.

The proof relies on an explicit computation of the moments of the linear statistics. We will use two tools: optimal
rigidity for the eigenvalues of β-ensembles to provide a bound on the linear statistics (as in [8,9]) and the loop
equations at all orders to derive a recurrence relationship between the moments.

2. Proof of Theorem 1.5

For what follows, set

LN = 1

N

N∑
i=1

δλi
, MN =

N∑
i=1

δλi
− NμV ,

and for a measure ν and an integrable function h set

ν(h) =
∫

hdν and ν̃(h) =
∫

hdν −E
N
V

(∫
hdν

)
, (2.1)

when ν is random and where E
N
V is the expectation with respect to P

N
V . Further f will be any function as in Theo-

rem 1.5, and

fN(x) := f
(
Nα(x − E)

)
.
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Finally, for any function g ∈ Cp(R), let

‖g‖Cp(R) :=
p∑

l=0

sup
x∈R

∣∣g(l)(x)
∣∣,

when it exists.

2.1. Loop equations

To prove the convergence, we use the loop equations at all orders. Loop equations have been used previously to derive
recurrence relationships between correlators and derive a full expansion of the free energy for β-ensembles in [6,7,24]
(from which the authors also derive a macroscopic central limit theorem). The first loop equation was used to prove
the central limit theorem at the macroscopic scale in [16] and used subsequently in [10]. Here, rather than using the
first loop equation to control the Stieltjes transform as in [16] and [10], we rely on the analysis of the loop equations
at all orders to compute directly the moments.

Proposition 2.1. Let h, h1, h2, . . . be a sequence of bounded functions in C1(R). Define

FN
1 (h) := Nβ

2

∫∫
h(x) − h(y)

x − y
dLN(x)dLN(y) − NLN

(
hV ′) +

(
1 − β

2

)
LN

(
h′) (2.2)

and for all k ≥ 1

FN
k+1(h,h1, . . . , hk) := FN

k (h,h1, . . . , hk−1)M̃N(hk) +
(

k−1∏
l=1

M̃N(hl)

)
LN

(
hh′

k

)
, (2.3)

where the product is equal to 1 when k = 1 and M̃N was defined by the convention Eq. (2.1). Then we have for all
k ≥ 1

E
N
V

(
FN

k (h,h1, . . . , hk−1)
) = 0, (2.4)

which is called the loop equation of order k.

Proof. The first loop equation (2.2) is derived by integration by parts (see also [16], Eq. (2.18) for a proof using a
change of variables). More precisely, for a fixed index l, integration by parts with respect to λl yields the equality:

E
N
V

(
h′(λl)

) = −E
N
V

(
h(λl)

(
β

∑
1≤i≤N

i 	=l

1

λl − λi

− NV ′(λl)

))
.

Summing over l we get by symmetry

E
N
V

(
β

2

N∑
l=1

∑
1≤i≤N

i 	=l

h(λl) − h(λi)

λl − λi

− N

N∑
l=1

V ′(λl)h(λl) +
N∑

l=1

h′(λl)

)
= 0.

Writing the sums in term of LN and taking the diagonal terms to be equal to h′(λl) gives Eq. (2.4) for k = 1.
To derive the loop equation at order k + 1 from the one at order k, replace V by V − δhk and notice that for any

functional F that is independent of δ,

∂EN
V −δhk

(F )

∂δ

∣∣∣∣
δ=0

= NE
N
V

(
FM̃N(hk)

)
.



Mesoscopic central limit theorem for general β-ensembles 1921

Also observe that the loop equation Eq. (2.4) is now

E
N
V −δhk

(
FN

k (h,h1, . . . , hk−1)
) + δNE

N
V −δhk

((
k−1∏
l=1

M̃N(hl)

)
LN

(
hh′

k

)) = 0,

by induction and the definitions given in eqns. (2.2) and (2.3). Differentiating both sides with respect to δ and setting
δ = 0 yields the loop equation at order k + 1. �

It will be easier to compute the moments of MN(fN) by re-centering the first loop equation – that is, we wish to
replace LN by LN − μV . To that end, define the operator � acting on smooth functions h :R−→R by

�h(x) := β

∫
h(x) − h(y)

x − y
dμV (y) − V ′(x)h(x).

This operator is central to our approach and had already been introduced in [4] to prove universality of general β-
ensembles using transport methods. We now prove the equilibrium relation (2.5) to recenter LN by μV . Consider for a
smooth function h : R−→ R and δ in a neighborhood of 0, μV,δ = (x + δh(x))#μV , where for a map T and measure
μ, T #μ refers to the push-forward measure of μ by T . Then by (1.2) we have E(μV,δ) ≥ E(μV ), which writes

∫∫ {
V (x1 + δh(x1)) + V (x2 + δh(x2))

2

− β

2
log

∣∣x1 − x2 + δ
(
h(x1) − h(x2)

)∣∣}dμV (x1) dμV (x2)

≥
∫∫ (

V (x1) + V (x2)

2
− β

2
log |x1 − x2|

)
dμV (x1) dμV (x2).

As δ approaches 0 we get

δ

(∫
V ′(x)h(x) dμV (x) − β

2

∫∫
h(x) − h(y)

x − y
dμV (x)dμV (y)

)
+ O

(
δ2) ≥ 0.

So that

β

2

∫∫
h(x) − h(y)

x − y
dμV (x)dμV (y) =

∫
V ′(x)h(x) dμV (x), (2.5)

and thus

β

2

∫∫
h(x) − h(y)

x − y
dLN(x)dLN(y) − LN

(
hV ′)

= 1

N
MN(�h) + β

2N2

∫∫
h(x) − h(y)

x − y
dMN(x)dMN(y).

Consequently, we can write

FN
1 (h) = MN(�h) +

(
1 − β

2

)
LN

(
h′) + 1

N

[
β

2

∫∫
h(x) − h(y)

x − y
dMN(x)dMN(y)

]
. (2.6)

One of the key features of the operator � is that, under the one-cut and non-critical assumptions, it is invertible (mod-
ulo constants) in the space of smooth functions. More precisely, we have the following Lemma (see [4, Lemma 3.2]
for the proof):
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Lemma 2.2 (Inversion of �). Assume that V ∈ Cp(R) and satisfies Hypothesis 1.2. Let [a;b] denote the support of
μV and set

dμV

dx
= S(x)

√
(b − x)(x − a) = S(x)σ (x),

where S > 0 on [a;b].
Then for any k ∈ Cr(R) there exists a unique constant ck and h ∈ C(r−2)∧(p−3)(R) such that

�(h) = k + ck.

Moreover the inverse is given by the following formulas:

• ∀x ∈ supp(μV )

h(x) = − 1

βπ2S(x)

(∫ b

a

k(y) − k(x)

σ (y)(y − x)
dy

)
. (2.7)

• ∀x /∈ supp(μV )

h(x) = β
∫ h(y)

x−y
dμV (y) + k(x) + ck

β
∫ 1

x−y
dμV (y) − V ′(x)

. (2.8)

And ck = −β
∫ h(y)

a−y
dμV (y) − k(a). Note that the definition (2.8) is proper since h has been defined on the support.

We shall denote this inverse by �−1k.

Remark 2.3. For f and V as in Theorem 1.5, p = 7 and r = 6 so �−1fN ∈ C4(R).

Remark 2.4. The denominator β
∫ 1

x−y
dμV (y)−V ′(x) is identically null on suppμV and behaves like a square root

at the edges. Since by the last point of Hypothesis 1.2 we can modify freely the potential outside any neighborhood
of the support (see for instance the large deviation estimates Section 2.1 of [7]), we may assume that it doesn’t vanish
outside μV .

In order to bound the linear statistics we use the following lemma to bound �−1(fN) and its derivatives.

Lemma 2.5. Let suppf ⊂ [−M,M] for some constant M > 0. For each p ∈ {0,1,2,3}, there is a constant C > 0
such that∥∥�−1(fN)

∥∥
Cp(R)

≤ CNpα logN. (2.9)

Moreover, there is a constant C such that whenever x ∈ suppμV and Nα|x − E| ≥ M + 1

∣∣�−1(fN)(p)(x)
∣∣ ≤ C

Nα(x − E)p+1
, (2.10)

and when x /∈ suppμV

∣∣�−1(fN)(p)(x)
∣∣ ≤ C logN

Nα
. (2.11)

Proof. We start by proving (2.9) on the support. For x ∈ suppμV we use

�−1(fN)(x) = − Nα

βπ2S(x)

∫ b

a

1

σ(y)

∫ 1

0
f ′(Nαt(x − E) + Nα(1 − t)(y − E)

)
dt dy
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so that

�−1(fN)(p)(x) = − 1

βπ2

p∑
l=0

{(
p

l

)(
1

S

)(p−l)

(x)

×
∫ b

a

N(l+1)α

σ (y)

∫ 1

0
t lf (l+1)

(
Nαt(x − E) + Nα(1 − t)(y − E)

)
dt dy

}
.

Let A(x) = {(t, y) ∈ [0;1] × [a;b],Nα|t (x − E) + (1 − t)(y − E)| ≤ M}. We have∫ 1

0
1A(x)(t, y) dt ≤ 2M

Nα|x − y| ∧ 1 (2.12)

and thus∫ b

a

N(l+1)α

σ (y)

∫ 1

0

∣∣f (l+1)
(
Nαt(x − E) + Nα(1 − t)(y − E)

)∣∣dt dy ≤ C logNNlα,

and this proves (2.9).
We now proceed with the proof of (2.10). First, let x ∈ suppμV such that Nα|x − E| ≥ M + 1. The inversion

formula (2.7) writes

�−1(fN)(x) = − 1

βπ2S(x)

∫ b

a

f (Nα(y − E))

σ (y)(y − x)
dy

= − 1

βπ2S(x)

∫ M

−M

f (u)

σ (E + u
Nα )(u − Nα(x − E))

du, (2.13)

and we can conclude in this setting by differentiating under the integral. Moreover we see that �−1(fN) is in fact of
class C5 on suppμV and similar bounds holds for p ∈ {4,5}.

We now prove the bounds for x /∈ suppμV . Let ψN be an arbitrary extension of �−1(fN)|suppμV
in C5(R), bounded

by C/Nα outside the support (and its five first derivatives as well). This is possible by what we just proved and a Taylor
expansion. Using (2.8) we notice that

�−1(fN)(x) = β
∫ ψN(y)

x−y
dμV (y) + cfN

β
∫ 1

x−y
dμV (y) − V ′(x)

= −β
∫ ψN(x)−ψN(y)

x−y
dμV (y) + βψN(x)

∫ dμV (y)
x−y

+ cfN

β
∫ 1

x−y
dμV (y) − V ′(x)

= ψN(x) − �(ψN)(x) − cfN

β
∫ 1

x−y
dμV (y) − V ′(x)

. (2.14)

Since f has compact support we may write �(ψN) − cfN
= �(ψN) − cfN

− fN on [a;a + ε] and [b − ε;b] for
ε small enough. Furthermore this quantity vanishes identically on these intervals by definition of ψN . In particular,
�(ψN) − cfN

and its four first derivatives vanish at the edges. By definition, and using the previous bounds we also
get that

|cfN
| =

∣∣∣∣β
∫

ψN(y)

a − y
dμV (y)

∣∣∣∣
≤ C logN

∫
|y−E|≤2M/Nα

dμV (y)

y − a
+ C

Nα

∫
|y−E|≥2M/Nα

dμV (y)

(y − a)|y − E|

≤ C
logN

Nα
.
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On the other hand, for p ∈ �0;4� and x /∈ suppμV ,

�(ψN)(p)(x) = βp!
∫

ψN(y) − ψN(x) − · · · − ψ
(p)
N (x)(y − x)p/p!

(y − x)p+1
dμV (y)

− (
V ′ψN

)(p)
(x).

By doing a similar splitting, and bounding the fifth derivative of ψN uniformly away from E, we obtain the same
bound C logN/Nα on �(ψN)(p) outside the support. By Remark 2.4 and (2.14), we conclude that we can bound the
C3 norm of �−1(fN) by C logN/Nα outside the support. �

2.2. Sketch of the proof

We have developed the tools we need to prove Theorem 1.5. In order to motivate the technical estimates in the
following section, we now sketch the proof by computing the first moments. The full proof of the theorem will be
given in Section 2.4. Consider a function f satisfying the hypothesis of Theorem 1.5. Applying (2.6) to �−1(fN)

yields

FN
1

(
�−1(fN)

) = MN(fN) +
(

1 − β

2

)
LN

((
�−1fN

)′)

+ 1

N

[
β

2

∫∫
�−1fN(x) − �−1fN(y)

x − y
dMN(x)dMN(y)

]
.

If the central limit theorem holds, we expect terms of the type MN(h) where h is fixed to be almost of constant order,
and this an easy consequence of the rigidity estimates from [8] (stated as Theorem 2.6 below). Due to the dependency
in N of fN (and its inverse under �), a little care must be taken for these estimates to yield a bound on the last term
in the right handside, and this is precisely the point of Lemma 2.9. Similarly, we have

LN

((
�−1fN

)′) = μV

((
�−1fN

)′) + 1

N
MN

((
�−1fN

)′)
,

and Lemma 2.8 shows the term in the right handside is a small error term. Thus admitting the results of the next
section, we would get with high probability and for εN small

FN
1

(
�−1(fN)

) = MN(fN) +
(

1 − β

2

)
μV

((
�−1fN

)′) + εN .

By the first loop equation from Proposition 2.1, the expectation of FN
1 is zero and this shows that the first moment

E
N
V

(
MN(fN)

) = −
(

1 − β

2

)
μV

((
�−1fN

)′) + o(1).

The term on the right handside is deterministic and is shown to decrease towards zero in Lemma 2.10. Thus the first
moment converges to 0.

In order to exhibit all the terms we will need to control, we proceed with the computation of the second moment.
By definition

FN
2

(
�−1(fN), fN

) = FN
1

(
�−1(fN)

)
M̃N(fN) + LN

(
�−1(fN)fN

′),
which we can write (with now an εN incorporating the deterministic mean converging to zero)

FN
2

(
�−1(fN), fN

) = MN(fN)M̃N(fN) + εNM̃N(fN) + LN

(
�−1(fN)f ′

N

)
.
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Lemma 2.8 ensures that εNM̃N(fN) remains small, and that the term in the right handside of the decomposition

LN

(
�−1(fN)f ′

N

) = μV

(
�−1(fN)f ′

N

) + 1

N
MN

(
�−1(fN)f ′

N

)
,

is also controlled. Consequently, using the second loop equation we see that

E
N
V

(
MN(fN)2) = −μV

(
�−1(fN)f ′

N

) + o(1). (2.15)

The limit of the term appearing on the right handside is then computed in Lemma 2.10, equation (2.33). The following
moments are computed similarly (see Section 2.4).

In the following section, we establish all the bounds we need for the proof of Theorem 1.5. The previous steps will
then be made rigorous in the last section.

2.3. Control of the linear statistics

We now make use of the strong rigidity estimates proved in [8] (Theorem 2.4) to control the linear statistics. We recall
the result here

Theorem 2.6. Let γi the quantile defined by∫ γi

a

dμV (x) = i

N
. (2.16)

Then, under Hypothesis 1.2 and for all ξ > 0 there exists constants c > 0 such that for N large enough

P
N
V

(|λi − γi | ≥ N−2/3+ξ ı̂−1/3) ≤ e−Nc

,

where ı̂ = i ∧ (N + 1 − i).

We will use the following lemma quite heavily in what proceeds.

Lemma 2.7. Let γi and ı̂ be as in Theorem 2.6. Let λi , i ∈ �1,N �, be a configuration of points such that |λi − γi | ≤
N−2/3+ξ ı̂−1/3 for 0 < ξ < (1 − α) ∧ 2

3 , and let M > 1 be a constant. Define the pairwise disjoint sets:

J1 := {
i ∈ �1;N �,

∣∣Nα(γi − E)
∣∣ ≤ 2M

}
, (2.17)

J2 :=
{
i ∈ J c

1 ,
∣∣(γi − E)

∣∣ ≤ 1

2
(E − a) ∧ (b − E)

}
, (2.18)

J3 := J c
1 ∩ J c

2 . (2.19)

The following statements hold:

(a) For all i ∈ J1 ∪J2, ı̂ ≥ CN , for some C > 0 that depend only on μV . For all such i, |γi −γi+1| ≤ C
N

for a constant
C > 0.

(b) Uniformly in all i ∈ J c
1 = J2 ∪ J3, x ∈ [γi, γi+1] and all t ∈ [0;1],∣∣Nαt(λi − x) + Nα(x − E)

∣∣ > M + 1, (2.20)

for N large enough.
(c) The cardinality of J1 is of order CN1−α , where again, C > 0 depends only on μV in a neighborhood of E.

Proof. The first part of statement (a) holds by the observation that for i ∈ J1 ∪ J2, γi is in the bulk, so

0 < c ≤
∫ γi

a

dμV (x) = i

N
≤ C < 1
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for constants C,c > 0 depending only on μV . For the second part of statement (a), the density of μV is bounded
below uniformly in i ∈ J1 ∪ J2, so

c|γi − γi+1| ≤
∫ γi+1

γi

dμV (x) = 1

N
.

Statement (b) can be seen as follows: let i ∈ J2 and consider first x = γi . On this set ı̂ ≥ CN by (a), so uniformly in
such i, Nα|λi − γi | ≤ CNα−1+ξ , which goes to zero, while Nα|γi −E| > 2M . On the other hand, for i ∈ J3, we have

Nα|γi − E| > 1
2Nα(E − a) ∧ (b − E), which goes to infinity faster than Nα|λi − γi | ≤ Nα− 2

3 +ξ , by our choice of ξ .
When we substitute γi by x, the same argument holds because Nα|x − γi | ≤ Nα|γi − γi+1|, which is of order Nα−1

on J2 (as we showed in statement (a)) and bounded by CNα− 2
3 on J3.

Statement (c) follows by the observation that on the set x ∈ [a, b] such that |x − E| ≤ 2M
Nα the density of μV is

bounded uniformly above and below, so

c

Nα
≤

∫
|x−E|≤ 2M

Nα

dμV (x) =
∑
i∈J1

∫ γi+1

γi

dμV (x) + O

(
1

N

)
≤ C

Nα
,

giving the required result. �

The rigidity of eigenvalues, Theorem 2.6, along with the previous Lemma leads to the following estimates

Lemma 2.8. For all 0 < ξ < (1 − α) ∧ 2
3 there exists constants C,c > 0 such that for N large enough we have the

concentration bounds

P
N
V

(∣∣MN(fN)
∣∣ ≥ CNξ‖f ‖C1(R)

) ≤ e−Nc

, (2.21)

P
N
V

(∣∣MN

(
�−1(fN)′

)∣∣ ≥ CNα+ξ‖f ‖C1(R)

) ≤ e−Nc

, (2.22)

P
N
V

(∣∣MN

(
�−1(fN)f ′

N

)∣∣ ≥ CNα+ξ‖f ‖C1(R)

) ≤ e−Nc

. (2.23)

Proof. Let M > 1 such that suppf ⊂ [−M,M] and fix 0 < ξ < (1 − α) ∧ 2
3 . For the remainder of the proof, we may

assume that we are on the event � := {∀i, |λi − γi | ≤ N−2/3+ξ ı̂−1/3}. This follows from the fact that, for example,

P
V
N

(∣∣MN(fN)
∣∣ ≥ CNξ‖f ‖C1(R)

)
≤ P

V
N

({∣∣MN(fN)
∣∣ ≥ CNξ‖f ‖C1(R)

} ∩ �
) + P

V
N

(
�c

)
,

and by Theorem 2.6, we may bound P
V
N(�c) by e−Nc

for some constant c > 0, and N large enough. On �, as the λi

satisfy the conditions of Lemma 2.7 we will utilize the sets J1, J2, and J3 as defined there.
We begin by controlling (2.21). We have that

∣∣MN(fN)
∣∣ =

∣∣∣∣∣
N∑

i=1

f
(
Nα(λi − E)

) − NμV (fN)

∣∣∣∣∣
=

∣∣∣∣∣
N∑

i=1

f
(
Nα(λi − E)

) − N

∫ γi+1

γi

f
(
Nα(x − E)

)
dμV (x)

∣∣∣∣∣
≤ N

N∑
i=1

∫ γi+1

γi

∣∣f (
Nα(λi − E)

) − f
(
Nα(x − E)

)∣∣dμV (x)

≤ N1+α
∑
i∈J1

∫ γi+1

γi

∫ 1

0
|λi − x|∣∣f ′(Nαt(λi − E) + Nα(1 − t)(x − E)

)∣∣dt dμV (x), (2.24)
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where we used Eq. (2.20). Using Lemma 2.7 item ((c)) and the definition of � we obtain

∣∣MN(fN)
∣∣ ≤ N1+α|J1|Nξ−1‖f ‖C1(R)

∫ γi+1

γi

dμV (x) ≤ CNξ‖f ‖C1(R).

This proves (2.21). We now proceed with the proof of (2.22).

∣∣MN

(
�−1(fN)′

)∣∣ =
∣∣∣∣∣

N∑
i=1

(
�−1(fN)′(λi) − N

∫ γi+1

γi

�−1(fN)′(x) dμV (x)

)∣∣∣∣∣
≤ N

N∑
i=1

∫ γi+1

γi

∣∣�−1(fN)′(λi) − �−1(fN)′(x)
∣∣dμV (x)

≤ N

N∑
i=1

∫ γi+1

γi

∫ 1

0
|λi − x|∣∣�−1(fN)(2)

(
t (λi − x) + x

)∣∣dt dμV (x).

Recall from the proof of Lemma 2.7 that uniformly in i ∈ J2 and x ∈ [γi, γi+1], |γi −E| ≥ 2M
Nα while |x −γi | ≤ C

N
. For

what follows, as |λi − x| ≤ CN−1+ξ for N large enough we can replace |t (λi − x) + (γi − E)| by |γi − E| uniformly
in t ∈ [0;1]. Likewise, uniformly in i ∈ J3, x ∈ [γi, γi+1] and t ∈ [0;1] we can bound below |t (λi − x) + (x − E)| by
a constant.

For i ∈ J2, by the observations in the previous paragraph, along with Lemma 2.7(b), Lemma 2.5 (2.10) and
Lemma 2.7(a),

N
∑
i∈J2

∫ γi+1

γi

∫ 1

0
|λi − x|∣∣�−1(fN)(2)

(
t (λi − x) + x

)∣∣dt dμV (x)

≤ N
∑
i∈J2

∫ γi+1

γi

∫ 1

0

C|λi − x|
Nα(|t (λi − x) + x − E|3) dt dμV (x) ≤

∑
i∈J2

CNξ−1−α

(γi − E)3
.

The same reasoning for i ∈ J3 using also (2.11) yields

N
∑
i∈J3

∫ γi+1

γi

∫ 1

0
|λi − x|∣∣�−1(fN)(2)

(
t (λi − x) + x

)∣∣dt dμV (x)

≤ logN
∑
i∈J3

CNξ−α− 2
3 ı̂−

1
3 .

For i ∈ J1, by Lemma 2.5 Eq. (2.9) and Lemma 2.7(a),

N
∑
i∈J1

∫ γi+1

γi

∫ 1

0
|λi − x|∣∣�−1(fN)(2)

(
t (λi − x) + x

)∣∣dt dμV (x)

≤ N
∑
i∈J1

∫ γi+1

γi

CN2α logN |λi − x|dμV (x) ≤
∑
i∈J1

CN2α+ξ−1 logN.

It follows that

∣∣MN

(
�−1(fN)′

)∣∣ ≤
∑
i∈J1

CN2α+ξ−1 logN +
∑
i∈J2

CNξ−1−α

(γi − E)3
+ logN

∑
i∈J3

CNξ−α− 2
3 ı̂−

1
3

≤ CNα+ξ logN + CNξ+α ≤ CNα+ξ logN,
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where we have used |J1| ≤ CN1−α and the following estimates:

∑
i∈J2

Nξ−α−1

(γi − E)3
≤ CNξ−α

(∫ E− 2M
Nα

a

dx

(x − E)3
+

∫ b

E+ 2M
Nα

dx

(x − E)3

)
≤ CNξ+α,

CNξ−α− 2
3
∑
i∈J3

ı̂−
1
3 ≤ CNξ−α × 1

N

N∑
i=1

(
i

N

)− 1
3 ≤ CNξ−α.

This proves (2.22). The bound (2.23) is obtained in a similar way and we omit the details. �

For convenience we introduce the following notation: for a sequence of random variable (XN)N∈N we write XN =
ω(1) if there exists constants c, C and δ > 0 such that the bound |XN | ≤ C

Nδ holds with probability greater than

1 − e−Nc
.

Lemma 2.9. We have

1

N

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dMN(x)dMN(y) = ω(1). (2.25)

Proof. The proof will be similar to the proof of Lemma 2.8. As in Lemma 2.8 we may restrict our attention to the

event � = {∀i : |λi −γi | ≤ N− 2
3 +ξ ı̂− 1

3 } by applying Theorem 2.6. Further, we use again the sets J1, J2 and J3 defined
in Lemma 2.7.

The general idea will be that we can use the uniform bounds (2.9) for particles close to the bulk point E (corre-
sponding to the indices in J1), and control the number of such particles. In the intermediary regime we will use the
bounds (2.11) or the explicit formula (2.13). On the other hand, for the particles far away from E (corresponding to
J3) we can use the uniform decay of �−1fN and its derivative by (2.10) and (2.11).

Define for j ∈ {1,2,3}:

M
(j)
N =

∑
i∈Jj

(δλi
− N1[γi ,γi+1]μV )

so that MN = M
(1)
N + M

(2)
N + M

(3)
N . We can write

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dMN(x)dMN(y)

=
∑

1≤j1,j2≤3

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dM

(j1)
N (x) dM

(j2)
N (y).

Integrating repeatedly for each (j1, j2), and using that NμV ([γi, γi+1]) = 1 for all indices i yields:

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dM

(j1)
N (x) dM

(j2)
N (y)

= N2
∑

i1∈Jj1
i2∈Jj2

∫ γi1+1

γi1

dμV (x1)

∫ γi2+1

γi2

dμV (x2)

∫
T

dudv dt
{
(λi1 − x1)(λi2 − x2)t (1 − t)

× �−1(fN)(3)
(
tv(λi1 − x1) + ut(x2 − λi2) + u(λi2 − x2) + t (x1 − x2) + x2

)}
, (2.26)

where T = [0;1]3. We will bound (2.26) for each pair (j1, j2).
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For (j1, j2) = (1,1). Recall by Lemma 2.7(c) that |J1| ≤ CN1−α , and from the proof of Lemma 2.7, uniformly in
i ∈ J1 |λi − x| ≤ CNξ−1 whenever x ∈ [γi, γi+1]. We use (2.26), Lemma 2.5 Eq. (2.9) to obtain the upper bound

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dM

(1)
N (x) dM

(1)
N (y)

≤ N2
∑
i1∈J1
i2∈J1

∫ γi1+1

γi1

∫ γi2+1

γi2

N3α logN |λi1 − x1||λi2 − x2|dμV (x1) dμV (x2) ≤ CN2ξ+α logN,

which is ω(1) when divided by N .
For (j1, j2) = (3,3). we do as in the previous case. Using (2.11) instead and the fact that uniformly uniformly in

i ∈ J3, |λi − x| ≤ CN− 2
3 +ξ ı̂− 1

3 ,

∫∫
�−1(fN)(x) − �−1(fN)(y)

x − y
dM

(3)
N (x) dM

(3)
N (y)

≤ N2
∑
i1∈J3
i2∈J3

∫ γi1+1

γi1

∫ γi2+1

γi2

logN

Nα
|λi1 − x1||λi2 − x2|dμV (x1) dμV (x2) ≤ CN2ξ−α logN,

which is ω(1) when divided by N .
For (j1, j2) = (2,2). We remark that the strategy is not as straightforward as the case i ∈ J2 in the proof of

Lemma 2.8 Eq. (2.22). This is because the term t (x1 − x2) + x2 appearing as an argument in (2.26) may enter
a neighborhood of E depending on the indices i1, i2 ∈ J2 and we may not use the bound Lemma 2.5 Eq. (2.10)
uniformly in i1, i2 ∈ J2. Some care is needed also because MN is a signed measure so |MN(g)| need not be bounded
by MN(|g|).

It will be convenient to use directly Eq. (2.13) from the proof of Lemma 2.5 (this can be done as J2 corresponds to
indices i such that γi is located outside the support of f ). We can write for x, y ∈ {z ∈ suppμV ,Nα|z − E| > M + 1}

�−1(fN)(x) − �−1(fN)(y)

x − y

= 1

βπ2

∫ M

−M

f (u)

σ (E + u
Nα )(x − y)

(
1

S(y)(u − Nα(y − E))
− 1

S(x)(u − Nα(x − E))

)
du

= 1

βπ2

∫ M

−M

f (u)

σ (E + u
Nα )

{
S(x) − S(y)

(x − y)

1

S(x)S(y)(u − Nα(y − E))

+ Nα

S(x)(u − Nα(x − E))(u − Nα(y − E))

}
du. (2.27)

When we integrate the term on the third line of (2.27) against M
(2)
N ⊗ M

(2)
N , we obtain

∫ M

−M

f (u)

σ (E + u
Nα )

{∫
M

(2)
N

(∫ 1

0

S′(t (· − y) + y)

S(·)S(y)
dt

)
1

(u − Nα(y − E))
dM

(2)
N (y)

}
du. (2.28)

Define the function

g(y) := M
(2)
N

(∫ 1

0

S′(t (· − y) + y)

S(·)S(y)
dt

)
.
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First, g(y) is bounded for any y ∈ [a;b]:∣∣∣∣M(2)
N

(∫ 1

0

S′(t (· − y) + y)

S(·)S(y)
dt

)∣∣∣∣
=

∣∣∣∣ N

S(y)

∑
i∈J2

∫ γi+1

γi

∫ 1

0

(
S′(t (λi − y) + y)

S(λi)
− S′(t (x − y) + y)

S(x)

)
dt dμV (x)

∣∣∣∣
≤

∣∣∣∣ N

S(y)

∑
i∈J2

∫ γi+1

γi

∫ 1

0

S′(t (λi − y) + y) − S′(t (x − y) + y)

S(λi)
dt dμV (x)

∣∣∣∣
+

∣∣∣∣ N

S(y)

∑
i∈J2

∫ γi+1

γi

∫ 1

0

S(x) − S(λi)

S(x)S(λi)
S′(t (x − y) + y

)
dt dμV (x)

∣∣∣∣ ≤ CNξ ,

where in the final line we used S and S′ are smooth on [a;b] (and therefore uniformly Lipschitz), S > 0 in a neigh-
borhood of [a;b], further |x − λi | ≤ CNξ−1, and |J2| ≤ CN . Moreover, g(y) is uniformly Lipschitz in [a;b] with
constant CNξ , since:

M
(2)
N

(∫ 1

0

S′(t (· − y) + y)

S(·)S(y)
− S′(t (· − z) + z)

S(·)S(z)
dt

)

= (z − y)M
(2)
N

(∫ 1

0

∫ 1

0

tS′′(ut (z − y) + t (· − z) + y)

S(·)S(y)
dt du

)

+ S(z) − S(y)

S(z)S(y)
M

(2)
N

(∫ 1

0

S′(t (· − z) + z)

S(·) dt

)

and both terms appearing in M
(2)
N above are of the same form as g so they are bounded by CNξ . Returning to (2.28),

we may bound∣∣∣∣M(2)
N

(
g(y)

u − Nα(y − E)

)∣∣∣∣
=

∣∣∣∣N ∑
i∈J2

∫ γi+1

γi

g(λi) − g(x)

(u − Nα(λi − E))
+ Nα(λi − x)g(x)

(u − Nα(λi − E))(u − Nα(x − E))
dμV (x)

∣∣∣∣
≤

∫
[a;b]∩{|x−E|≥ 2M

Nα }
CN2ξ

|u − Nα(x − E)| + CN2ξ+α

(u − Nα(x − E))2
dx

≤ CN2ξ−α logN + CN2ξ ,

uniformly in u ∈ [−M;M]. Thus (2.28) is bounded by CN2ξ as f is bounded.
The remaining term in (2.27) is

Nα

∫ M

−M

f (u)

σ (E + u
Nα )

M
(2)
N

(
1

S(·)(u − Nα(· − E))

)
M

(2)
N

(
1

u − Nα(· − E)

)
du. (2.29)

Repeating our argument in the previous paragraph gives:∣∣∣∣M(2)
N

(
1

S(·)(u − Nα(· − E))

)∣∣∣∣ ≤ CNξ−α logN + CNξ ,

∣∣∣∣M(2)
N

(
1

u − Nα(· − E)

)∣∣∣∣ ≤ CNξ ,
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where in the first inequality we use 1/S is uniformly bounded and uniformly Lipschitz on [a;b]. Inserting the bounds
into (2.29) gives an upper bound of CN2ξ+α , as f is bounded.

Altogether

∣∣∣∣�−1(fN)(x) − �−1(fN)(y)

x − y
dM

(2)
N (x) dM

(2)
N (y)

∣∣∣∣ ≤ CN2ξ+α,

which is ω(1) when divided by N .
For (j1, j2) = (1,2). By the bounds |λij − γij | ≤ CNξ−1, |γij − xj | ≤ C

N
for xj ∈ [γij ;γij +1], whenever

Nα
∣∣tv(λi1 − x1) + ut(x2 − λi2) + t (x1 − x2) + u(λi2 − x2) + x2 − E

∣∣ ≥ M + 1, (2.30)

we have

Nα
(∣∣t (γj1 − γj2) + (γj2 − E)

∣∣ + CNξ−1) ≥ M + 1,

and

1

|tv(λi1 − x1) + ut(x2 − λi2) + t (x1 − x2) + u(λi2 − x2) + x2 − E|

≤ C

|t (γi1 − γi2) + (γi2 − E)| ,

where the constant C only depends on M . Therefore, whenever (2.30) is satisfied, applying Lemma 2.5 Eq. (2.10)
yields

∣∣�−1(fN)(3)
(
tv(λi1 − x1) + ut(x2 − λi2) + t (x1 − x2) + u(λi2 − x2) + x2

)∣∣
≤ C

Nα(t (γi1 − γi2) + γi2 − E)4
. (2.31)

Now fix t ∈ (0,1) and define the sets

K1
t :=

{
j ∈ J2, t

(
E − 2M

Nα
− γj

)
+ γj − E ≥ 2M

Nα

}
,

K2
t :=

{
j ∈ J2, t

(
E + 2M

Nα
− γj

)
+ γj − E ≤ −2M

Nα

}
,

Kt := K1
t ∪ K2

t .

By construction, if i2 ∈ K1
t then

∣∣t (γi1 − γi2) + (γi2 − E)
∣∣ ≥ 2M

Nα

uniformly in i1 ∈ J1. Thus for such i2 ∈ K1
t , (2.30) is satisfied for N sufficiently large. The same statement holds for

K2
t .



1932 F. Bekerman and A. Lodhia

We now proceed to bound (2.26) for j1 = 1 and j2 = 2 by splitting J2 into the regions K1
t , K2

t and J2\Kt . We start
with K1

t (the argument for K2
t is identical). Our observations from the previous paragraph along with (2.3) gives:∫

T

dudv dt

∣∣∣∣N2
∑
i1∈J1
i2∈K1

t

∫ γi1+1

γi1

dμV (x1)

∫ γi2+1

γi2

dμV (x2)
{
(λi1 − x1)(λi2 − x2)t (1 − t)

× �−1(fN)(3)
(
tv(λi1 − x1) + ut(x2 − λi2) + u(λi2 − x2) + t (x1 − x2) + x2

)}∣∣∣∣
≤

∫ 1

0

∑
i1∈J1
i2∈K1

t

CN2ξ−2−αt (1 − t)

(t (γi1 − γi2) + (γi2 − E))4
dt ≤

∫ 1

0

∑
i2∈K1

t

CN2ξ−1−2αt (1 − t)

((1 − t)(γi2 − E) − t2M
Nα )4

dt,

where in the final line we used |J1| ≤ CN1−α from Lemma 2.7(c). Next, note that

1

N

∑
i2∈K1

t

1

((1 − t)(γi2 − E) − t2M
Nα )4

≤ C

∫ E+ 1
2 (E−a)∧(b−E)

E+ 2M
Nα ( 1+t

1−t
)

dx

((1 − t)(x − E) − t2M
Nα )4

≤ CN3α

1 − t
,

since, by definition of K1
t , γi2 ≥ E + 2M

Nα ( 1+t
1−t

). We conclude,∫ 1

0

∑
i2∈K1

t

CN2ξ−1−2αt (1 − t)

((1 − t)(γi2 − E) − t2M
Nα )4

dt ≤ CN2ξ+α.

We continue with J2\Kt . By the same argument as in Lemma 2.7(c) |J2\Kt | ≤ CN1−α

1−t
where the constant C does not

depend on t , we use this in addition with Lemma 2.5 Eq. (2.10), |J1| ≤ CN1−α , and |λij − xj | ≤ CNξ−1 to obtain the
bound∫

T

dudv dt

∣∣∣∣N2
∑
i1∈J1

i2∈J2\Kt

∫ γi1+1

γi1

dμV (x1)

∫ γi2+1

γi2

dμV (x2)
{
(λi1 − x1)(λi2 − x2)t (1 − t)

× �−1(fN)(3)
(
tv(λi1 − x1) + ut(x2 − λi2) + u(λi2 − x2) + t (x1 − x2) + x2

)}∣∣∣∣
≤ C

∫ 1

0
N3α logN × N2ξ−2 × N2−2αt dt ≤ CNα+2ξ logN.

Combining the bounds we have obtained gives∣∣∣∣
∫∫

�−1fN(x) − �−1fN(y)

x − y
dM

(1)
N (x) dM

(2)
N (y)

∣∣∣∣ ≤ CNα+2ξ logN,

which is ω(1) when divided by N for ξ small enough.
For j1 = 1 or 2 and j2 = 3. The proof is similar and we omit the details. �

Using Lemma 2.8 we also prove the following bounds:

Lemma 2.10. The following estimates hold:

LN

(
�−1(fN)′

) = ω(1), (2.32)

LN

(
�−1(fN)f ′

N

) + σ 2
f = ω(1). (2.33)
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Proof. For both (2.32) and (2.33), we use

LN

(
�−1(fN)′

) = MN(�−1(fN)′)
N

+ μV

(
�−1(fN)′

)
,

LN

(
�−1(fN)f ′

N

) = MN(�−1(fN)f ′
N)

N
+ μV

(
�−1(fN)f ′

N

)
.

Lemma 2.8 implies that the first term in both equations are ω(1) so (2.32) and (2.33) simplify to deterministic state-
ments about the speed of convergence of the integrals against μV above.

To show (2.32), integration by parts yields:∫ (
�−1fN

)′
(x) dμV (x) = −

∫ b

a

(
�−1fN

)
(x)

(
S′(x)σ (x) + S(x)σ ′(x)

)
dx.

Inserting the formula for �−1fN we obtain∣∣∣∣
∫ (

�−1fN

)′
(x) dμV (x)

∣∣∣∣ ≤ 1

βπ2

∫ b

a

∫ b

a

∣∣∣∣fN(x) − fN(y)

y − x

∣∣∣∣
(∣∣∣∣S′(x)σ (x)

S(x)σ (y)

∣∣∣∣ +
∣∣∣∣σ ′(x)

σ (y)

∣∣∣∣
)

dx dy.

Recall that S is bounded below on [a, b], S′ is bounded above on [a, b], further, up to a constant, σ ′(x)
σ (y)

can be bounded

above by (σ (x)σ (y))−1. We define the sets

AN := [
Nα(a − E);Nα(b − E)

]
,

BN :=
[

1

2
Nα(a − E); 1

2
Nα(b − E)

]
.

By the observations above, and the change of variable u = Nα(x − E) and v = Nα(y − E) we get∣∣∣∣
∫ (

�−1fN

)′
(x) dμV (x)

∣∣∣∣
≤ C

Nα

∫∫
A2

N

∣∣∣∣f (u) − f (v)

u − v

∣∣∣∣
(

σ(E + u
Nα )

σ (E + v
Nα )

+ 1

σ(E + u
Nα )σ (E + v

Nα )

)
dudv. (2.34)

For large enough N , on the set (u, v) ∈ (AN\BN)2, the function |f (u)− f (v)| is always zero, thus the integral on the
right above can be divided into integrals over the sets:

(AN × AN) ∩ (AN\BN × AN\BN)c = BN × BN ∪ BN × (AN\BN) ∪ (AN\BN) × BN. (2.35)

We bound the integral in (2.3) over each set in (2.35). We begin with the first set in (2.35). For (u, v) ∈ BN × BN ,
σ(E + u

Nα ) and σ(E + v
Nα ) are uniformly bounded above and below. Therefore, the integral in (2.3) can be bounded

in this region by∫∫
B2

N

∣∣∣∣f (u) − f (v)

u − v

∣∣∣∣dudv

=
∫∫

[−M;M]2

∣∣∣∣f (u) − f (v)

u − v

∣∣∣∣dudv + 2
∫ M

−M

∫
BN∩{|u|≥M}

∣∣∣∣ f (v)

u − v

∣∣∣∣dudv,

the integral over [−M;M]2 exists by the differentiability of f , while:∫ M

−M

∫
BN∩{|u|≥M}

∣∣∣∣ f (v)

u − v

∣∣∣∣dudv ≤ C

∫ M

−M

∣∣f (v)
∣∣ log

[
N |v + M||v − M|]dv ≤ C logN,

for N large enough.
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For the second set in (2.3), observe that for (u, v) ∈ BN × (AN\BN), f (v) is 0 for N sufficiently large, and
σ(E + u

Nα ) is bounded uniformly above and below while f (u) is 0 outside [−M;M]. This implies that the integral
in (2.3) can be bounded in this region by

∫
AN\BN

∫ M

−M

∣∣∣∣ f (u)

u − v

∣∣∣∣
(

σ(E + u
Nα )

σ (E + v
Nα )

+ 1

σ(E + u
Nα )σ (E + v

Nα )

)
dudv

≤ C‖f ‖C(R)

Nα

∫
AN \BN

1

σ(E + v
Nα )

dv ≤ C,

where in the final line we used |u − v| ≥ cNα for u ∈ [−M;M], v ∈ AN\BN .
We can do similarly for the third set in (2.3) and putting together these bounds on the right hand side of (2.3) gives∣∣∣∣

∫ (
�−1fN

)′
(x) dμV (x)

∣∣∣∣ ≤ C logN

Nα
,

which is ω(1) as claimed.
We continue with (2.33). Recall that we reduced this problem to computing the limit of μV (�−1(fN)f ′

N). Using
the inversion formula we see that∫

�−1fN(x)f ′
N(x)dμV (x) = − 1

βπ2

∫ b

a

∫ b

a

σ (x)f ′
N(x)(fN(x) − fN(y))

σ (y)(x − y)
dx dy.

Observe that

1

2
∂x

(
fN(x) − fN(y)

)2 = f ′
N(x)

(
fN(x) − fN(y)

)
,

∂x

(
σ(x)

x − y

)
= − 1

2 (a + b)(x + y) + ab + xy

σ(x)(x − y)2
.

Therefore, integration by parts yields

∫
�−1fN(x)f ′

N(x)dμV (x) = − 1

2βπ2

∫ b

a

∫ b

a

σ (x)∂x(fN(x) − fN(y))2

σ(y)(x − y)
dx dy

= 1

2βπ2

∫ b

a

∫ b

a

(
fN(x) − fN(y)

x − y

)2(ab + xy − 1
2 (a + b)(x + y)

σ (x)σ (y)

)
dx dy.

By changing variables again to (u, v) = (Nα(x − E),Nα(y − E)) and observing that

ab + xy − 1

2
(a + b)(x + y) = −σ(E)2 + u + v

Nα

(
a + b

2
+ E

)
+ uv

N2α
,

we obtain∫
�−1fN(x)f ′

N(x)dμV (x)

= − 1

2βπ2

∫∫
A2

N

(
f (u) − f (v)

u − v

)2(σ(E)2 − u+v
Nα ( a+b

2 + E) − uv

N2α

σ (E + u
Nα )σ (E + v

Nα )

)
dudv. (2.36)

As before, (f (u)−f (v))2 is zero for all (u, v) ∈ (AN\BN)2 for large enough N , therefore we split the above integral
into the regions defined in (2.35).
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Notice that uniformly in u ∈ BN

1

σ(E + u
Nα )

= 1

σ(E)
+ O

( |u|
Nα

)
,

and further notice (u + v)/Nα and uv/N2α are bounded uniformly by constants in the entire region AN × AN .
Consequently the integral (2.3) over the region BN × BN is:

∫∫
B2

N

(
f (u) − f (v)

u − v

)2(σ(E)2 − u+v
Nα ( a+b

2 + E) − uv

N2α

σ (E + u
Nα )σ (E + v

Nα )

)
dudv

=
∫∫

B2
N

(
f (u) − f (v)

u − v

)2

dudv + O

(
1

Nα

∫∫
B2

N

(
f (u) − f (v)

u − v

)2(|u| + |v|)dudv

)
. (2.37)

The first term of (2.3) is equal to,

1

2βπ2

∫∫ (
f (u) − f (v)

u − v

)2

dudv + O

(
1

Nα

)

while the second term in (2.3) can be written as

∫∫
B2

N

(
f (u) − f (v)

u − v

)2(|u| + |v|)dudv =
∫∫

[−M;M]2

(
f (u) − f (v)

u − v

)2(|u| + |v|)dudv

+ 2
∫ M

−M

∫
BN∩{|u|≥M}

(
f (v)

u − v

)2(|u| + |v|)dudv,

the integral over [−M;M]2 is finite by differentiability of f while the second is bounded by

∫ M

−M

∫
BN∩{|u|≥M}

∣∣f (v)
∣∣2

(
1

|u − v| + 2|v|
|u − v|2

)
dudv

≤ C

∫ M

−M

∣∣f (v)
∣∣2

(
1

|v − M| + 1

|M + v| + log
[
N |v − M||v + M|]) ≤ C logN

since suppf ⊂ [−M,M].
In the region (u, v) ∈ BN ×(AN\BN), σ(E+ u

Nα ) is bounded above and below while, for N large enough f (v) = 0,
thus the integral over BN × (AN\BN) is bounded above by

∫
AN\BN

∫
BN

(
f (u) − f (v)

u − v

)2( 1

σ(E + u
Nα )σ (E + v

Nα )

)
dudv

≤
∫

AN\BN

∫ M

−M

(
f (u)

u − v

)2 1

σ(E + v
Nα )

dudv ≤ C

N2α

∫
AN\BN

1

σ(E + v
Nα )

dv ≤ C

Nα
,

where in the second line we used |u − v| ≥ cNα for u ∈ [−M;M] and v ∈ AN\B . By symmetry of the integrand in
(2.3) this argument extends to the region (u, v) ∈ (AN\BN) × BN .

Altogether, our bounds show

∫
�−1fN(x)f ′

N(x)dμV (x) = − 1

2βπ2

∫∫ (
f (x) − f (y)

x − y

)2

dx dy + O

(
logN

Nα

)
,

which shows (2.33). �
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2.4. Proof of Theorem 1.5

We proceed with the proof of Theorem 1.5. As we did in the sketch of the proof, (2.6) applied to h = �−1(fN) yields

FN
1

(
�−1(fN)

) = MN(fN) +
(

1 − β

2

)
LN

((
�−1fN

)′)

+ 1

N

[
β

2

∫∫
�−1fN(x) − �−1fN(y)

x − y
dMN(x)dMN(y)

]
.

Combining Lemma 2.9 Eq. 2.25 and Lemma 2.10 Eq. (2.32) we can bound the two terms on the right hand side to get

FN
1

(
�−1(fN)

) = MN(fN) + ω(1). (2.38)

We consider an event A1 of probability higher than 1 − e−Nc
on which

∣∣FN
1

(
�−1(fN)

) − MN(fN)
∣∣ ≤ C

Nδ
, (2.39)

for some positive constants c, C and δ. Using the first loop equation from Proposition 2.1, and the trivial deterministic
bounds

MN(fN) = O
(
N‖f ‖∞

)
, FN

1

(
�−1(fN)

) = O
(
N

(‖f ‖∞ + ∥∥�−1(fN)
∥∥

C1(R

)) = O
(
N3),

we obtain

0 = E
N
V

(
FN

1

(
�−1(fN)

)) = E
N
V

(
FN

1

(
�−1(fN)

)
1A1

) +E
N
V

(
FN

1

(
�−1(fN)

)
1Ac

1

)
= E

N
V

(
MN(fN)1A1

) + o(1) + O
(
N3

P
N
V

(
Ac

1

))
= E

N
V

(
MN(fN)

) + o(1), (2.40)

and thus

E
N
V

(
MN(fN)

) = o(1). (2.41)

We now show recursively that

FN
k

(
�−1(fN), fN, . . . , fN

) = M̃N(fN)k − (k − 1)σ 2
f M̃N(fN)k−2 + ω(1). (2.42)

Here, the set on which the bound holds might vary from one k to another but each bound has probability greater than
1 − e−Nck for each fixed k.

The bound holds for k = 1, by (2.38). Now, assume this holds for k ≥ 1. On a set of probability greater than
1 − e−Nck+1 we have by the induction hypothesis, Lemma 2.8 Eq. (2.21) and Lemma 2.10 Eq. (2.33), for some δ > 0
and a constant C

∣∣FN
k

(
�−1(fN), fN, . . . , fN

) − M̃N(fN)k + (k − 1)σ 2
f M̃N(fN)k−2

∣∣ ≤ C

Nδ
,

∣∣LN

(
�−1(fN)f ′

N

) + σ 2
f

∣∣ ≤ C

Nδ
,

∣∣MN(fN)
∣∣ ≤ Nδ/2k.

On this set, using the definition of FN
k+1 from Proposition 2.1,

FN
k+1

(
�−1(fN), fN, . . . , fN

) = FN
k

(
�−1(fN), fN, . . . , fN

)
M̃N(fN)

+ M̃N(fN)k−1LN

(
�−1(fN)f ′

N

)
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=
(

M̃N(fN)k − (k − 1)σ 2
f M̃N(fN)k−2 + O

(
1

Nδ

))
M̃N(fN)

+ M̃N(fN)k−1
(

−σ 2
f + O

(
1

Nδ

))

= M̃N(fN)k+1 − kσ 2
f M̃N(fN)k−1 + O

(
1

Nδ/2

)

and this proves the induction. Using the fact that Fk is bounded polynomially and deterministically as before, we see
that for any k ≥ 1

E
N
V

(
MN(fN)k+1) = σ 2

f kEN
V

(
MN(fN)k−1) + o(1). (2.43)

Coupled with (2.41), the computation of the moments is then straightforward and we obtain for all k ∈N

E
N
V

(
MN(fN)2k

) = σ 2k
f

(2k)!
2kk! + o(1),

E
N
V

(
MN(fN)2k+1) = o(1).

(2.44)

This concludes the proof of Theorem 1.5.

2.5. A few remarks

The result of Theorem 1.5 naturally extends to the joint law of the fluctuations of finite families. More precisely, for
any fixed k, if f 1, . . . , f k satisfy the hypothesis of the theorem then (MN(f 1

N), . . . ,MN(f k
N)) converges in distribution

towards a centered Gaussian vector with covariance matrix

�i,j = 1

2βπ2

∫∫ (
f i(x) − f i(x)

x − y

)(
f j (x) − f j (x)

x − y

)
dx dy.

We would also like to point out that a similar proof should also yield the macroscopic central limit Theorem already
shown in [6,16,24] (one-cut and off-critical cases) with appropriate decay conditions on f . Indeed, in the macroscopic
case we get uniform bounds on �−1f and its derivatives instead of the bounds obtained in Lemma 2.5. The major
issue when dealing with the multicut and critical cases is that the operator � is not invertible (as an operator acting on
smooth functions). When dealing with functions that lie in the image of � and with additional regularity assumptions,
one can show using transport methods similar to [18] that the central limit Theorem do hold at the macroscopic scale.
This is the object of a future work [5].

Another interesting direction would be to study the fluctuations at the edge (i.e, E = a or b). We expect the same
result to hold with covariance matrix(if for instance E = a) equal to

�i,j = 1

2βπ2

∫ ∞

0

∫ ∞

0

(
f i(x) − f i(y)

x − y

)(
f j (x) − f j (y)

x − y

)
x + y√

xy
dx dy.

Additional technical estimates as in Lemma 2.5 would be needed to reproduce the proof in the edge case. These
estimates are not straightforward because of the singular behaviour of �−1(fN) at the edges and this is the subject of a
future work. However the covariance (in the case k = 1) would still be given by taking the limit of −μV (�−1(fN)f ′

N)

as in Lemma 2.10, which yields the above formula.
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