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Abstract. We consider the number of blocks involved in the last merger of a �-coalescent started with n blocks. We give conditions
under which, as n → ∞, the sequence of these random variables (a) is tight, (b) converges in distribution to a finite random variable
or (c) converges to infinity in probability. Our conditions are optimal for �-coalescents that have a dust component. For general
�, we relate the three cases to the existence, uniqueness and non-existence of invariant measures for the dynamics of the block-
counting process, and in case (b) investigate the time-reversal of the block-counting process back from the time of the last merger.

Résumé. Nous considérons le nombre de blocs impliqués dans le dernier regroupement d’un �-coalescent issu de n blocs. Nous
donnons des conditions sous lesquelles, quand n tend vers l’infini, la suite de variables aléatoires (a) est tendue (b) converge en loi
vers une variable aléatoire finie ou (c) converge vers l’infini en probabilité. Nos conditions sont optimales pour les �-coalescents
qui ont une composante de poussière. Pour un � général, nous associons ces trois cas à l’existence, l’unicité et la non-existence
d’une mesure invariante pour la dynamique du processus de comptage des blocs. Dans le cas (b), nous étudions le retourné en
temps du processus de comptage des blocs depuis de le temps de dernier regroupement.

MSC: Primary 60J27; secondary 60K05; 60G51
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1. Introduction and main results

We consider coalescents with multiple mergers, also known as �-coalescents, which were introduced in 1999 by
Pitman [12] and Sagitov [13]. If � is a finite measure on [0,1], then the �-coalescent started with n blocks is a
continuous-time Markov chain (�n(t), t ≥ 0) taking its values in the set of partitions of {1, . . . , n}. It has the property
that whenever there are b blocks, each possible transition that involves merging k ≥ 2 of the blocks into a single block
happens at rate

λb,k =
∫ 1

0
pk−2(1 − p)b−k�(dp), (1)

and these are the only possible transitions. One can also define the �-coalescent started with infinitely many blocks,
which is a continuous-time Markov process (�∞(t), t ≥ 0) taking its values in the set of partitions of the positive
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integers such that for all n, the restriction of (�∞(t), t ≥ 0) to the integers {1, . . . , n} has the same law as (�n(t),

t ≥ 0).
Let Nn(t) be the number of blocks in the partition �n(t). Denote by Tn = inf{t : Nn(t) = 1} the time of the last

merger. In this paper, we are interested in the distribution of

Ln := Nn(Tn−),

the number of blocks that coalesce during the last merger. The asymptotic behaviour of the distribution of Ln depends
on how much mass the measure � has in the vicinity of point 1. Here it turns out to be decisive whether or not the
finiteness condition∫ 1

0

∣∣log(1 − p)
∣∣�(dp) < ∞ (2)

is valid. We shall prove that (2) together with a logarithmic nonlattice property implies convergence on the sequence
(Ln) in distribution. Without additional assumptions condition (2) entails tightness of (Ln), but in general not conver-
gence. In the presence of dust, (2) turns out to be necessary for tightness of (Ln). When the �-coalescent comes down
from infinity, which means that almost surely N∞(t) < ∞ for all t > 0, we have T∞ < ∞ almost surely. See [14] for
a necessary and sufficient condition for the �-coalescent to come down from infinity. In this case the distribution of
Ln converges as n → ∞ to the distribution of N∞(T∞−).

A second issue is the characterisation of the limit distribution of Ln in case of convergence by means of invariant
measures μ. Let

ρij :=
(

i

i − j + 1

)
λi,i−j+1, ρi :=

i−1∑
j=1

ρij , 1 ≤ j < i.

Then ρij is the rate at which Nn jumps from state i to j , and ρi is the total rate of a jump from i. In particular note
that ρi1 = λi,i . We consider locally finite measures μ = (μi)i≥2 on {2,3, . . .} which fulfill the equations

∞∑
j=i+1

μjρji = μiρi, i ≥ 2, and
∞∑

j=2

μjρj1 = 1. (3)

Note that for such measures μ we have μi > 0 for all i ≥ 2. The first property in (3) says that the measure μ on
{2,3, . . .} is ρ-invariant: for each i ≥ 2 the flow of mass into the state i ≥ 2 equals the flow out of i. The second
property says that the total flow out of the set {2,3, . . .} equals one. We shall address questions of existence and
uniqueness of solutions to (3) and shall in particular prove that in case of convergence of Ln the limiting distribution
has weights μiρi1, i ≥ 2, with (μi)i≥2 being the unique solution of (3). Moreover this representation of the limit will
allow us to identify the time-reversal of the block-counting process.

Hénard [8] and Möhle [11] were able to calculate the limiting distribution for Ln when � is the beta distribution
with parameters 2−α and α for 0 < α < 2. Note that this coalescent process comes down from infinity only when 1 <

α < 2. Earlier, Goldschmidt and Martin [6] had calculated this distribution for the Bolthausen-Sznitman coalescent,
which is the case α = 1. Abraham and Delmas found this limit for α = 1/2 in [1], and for all α ∈ (0,1/2] in [2].

We are now going to present our main results. Throughout, we will assume that � is a nonzero, finite measure on
[0,1]. Theorem 1 concerns tightness.

Theorem 1. Suppose that condition (2) is satisfied. Then the sequence (Ln)n≥1 is tight.

Under an additional regularity condition, we are able to show that the distribution of the number of blocks involved
in the last merger tends to a limit as n → ∞. We call the measure � log-nonlattice if

∀d > 0 :
∞∑

z=1

�
({

1 − e−zd
})

< �
(
(0,1]).
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Theorem 2. Suppose (2) holds, and � is log-nonlattice. Then the sequence (Ln)n≥1 converges in distribution.

In this theorem the log-nonlattice assumption cannot be completely avoided. Indeed we shall show below that
when � has all its mass at one single point within (0,1), the sequence (Ln)n≥1, though tight, does not converge in
distribution. It is natural to conjecture that in the lattice case we always will experience such non-convergence.

The next theorem shows that condition (2) is necessary for tightness of the size of the last merger in the presence
of dust.

Theorem 3. Suppose

∫ 1

0
p−1�(dp) < ∞ (4)

and hence in particular �({0}) = 0. Also suppose

∫ 1

0

∣∣log(1 − p)
∣∣�(dp) = ∞. (5)

Then for all positive integers �, we have

lim
n→∞P(Ln ≤ �) = 0. (6)

It was shown in [12] that (4) is the condition under which the �-coalescent has a dust component, which means
that for all t > 0, the partition �∞(t) contains singleton blocks almost surely. We can see from the statements of
Theorems 1 and 3 that when � satisfies (4), the condition (5) is necessary and sufficient for (6) to hold. Therefore, the
only case that remains open is the case when the �-coalescent fails to come down from infinity but there is no dust
component. In that case, we expect that it is possible that (5) holds but (6) fails to hold.

The central tool for the proof of Theorem 3 is a uniform approximation of logNn(t) by the solution of an SDE
driven by a subordinator, see Theorem 10 in Section 3 and its corollaries. These results can be seen as refinement
and generalization of the subordinator approximation by Gnedin, Iksanov, and Marynych [5] in the presence of a dust
component, see Remark 13 below.

Whenever the random variables Ln converge in distribution, it is natural to ask whether convergence in distribution
holds for the block-counting processes Nn = (Nn(t))t≥0 as n → ∞ in any finite observation window around state 1.
An appropriate description is by means of time-reversal. As a tool we use ρ-invariant measures satisfying equations
(3). Existence and uniqueness of such measures are closely related to the asymptotic behaviour of the sequence of
distributions of the last merger sizes Ln.

Theorem 4.

(i) If Ln → ∞ in probability as n → ∞, then there is no solution to (3).
(ii) If there is a probability measure π = (πi)i≥2 on {2,3, . . .} and a sequence of positive numbers αn, n ≥ 1, not

converging to 0, such that as n → ∞

P(Ln = i) ∼ αnπi

for all i ≥ 2, then the measure μ = (μi)i≥2 given by μiρi1 = πi , i ≥ 2, is the unique solution to (3). In particular,
if the sequence (Ln)n≥1 converges in distribution to a finite random variable L∞, then

P(L∞ = i) = μiρi1 = μiλi,i , i ≥ 2.

(iii) In all other cases, there exist at least two different solutions of (3). In particular we have at least two solutions if
the sequence (Ln)n≥1 is tight, but not convergent in distribution.
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In the case of a coalescent coming down from infinity, as already stated above, item (ii) applies. In the presence
of dust the three cases all occur (see Theorem 2, Theorem 3, and Section 5). At first sight one may expect that the
condition P(Ln = i) ∼ αnπi in item (ii) will occur only with αn → 1, that is the random variables Ln converge in
distribution. At the moment, however, we cannot exclude the possibility that the sequence (αn) is not convergent.

Theorem 4 will allow us to treat the time-reversal N̂n = (N̂n(t))t≥0 of the block-counting process Nn. This process
is defined as the càdlàg process given by

N̂n(t) :=
{

Nn((Tn − t)−) for 0 ≤ t < Tn,

n for t ≥ Tn.

In particular we have N̂n(0) = Ln.

Theorem 5. If the sequence (Ln)n≥1 converges in distribution, then also the sequence of processes (N̂n)n≥1 converges
in distribution in Skorohod space. The limit N̂∞ is a Markov jump process with values in {2,3, . . .} and jump rates

ρ̂ij := μjρji

μi

, i < j,

where the μi are the weights of the ρ-invariant measure from Theorem 4(ii).

Remark 6. For the Kingman coalescent a direct computation shows that the solution of (3) is given by

μi = 2

i(i − 1)
, i ≥ 2.

For � = Beta(2 − α,α) with α ∈ (0,2), Hénard [8] and Möhle [11] obtain

P(L∞ = i) =
⎧⎨
⎩

(−1)i−1α
(
α−1
i−1

) ∫
[0,1]

xi−1

1−(1−x)1−α dx if α 	= 1,

− 1
i−1

∫
[0,1]

xi−1

log(1−x)
dx if α = 1.

Since in this case λi,i = B(i−α,α)
B(2−α,α)

, we obtain from Theorem 4 an expression for the ρ-invariant measure μ obeying (3).

The rest of this paper is organized as follows. We prove Theorem 1 in Section 2. In Section 3, we show how
to approximate the number of blocks in the �-coalescent by means of a subordinator when (4) holds. We prove
Theorem 2 in Section 4. In Section 5 we give an example in which (Ln)n≥1 is tight but does not converge in distribution
because the log-nonlattice assumption in Theorem 2 fails. We then derive Theorem 3 in Section 6, and we prove
Theorems 4 and 5 in Section 7.

2. Proof of Theorem 1

It will be useful throughout the paper to work with a Poisson process construction of the �-coalescent. The construc-
tion that we will give is a slight variation of the original such construction provided by Pitman in [12].

Assume �({0}) = 0. Let 	 be a Poisson point process on (0,∞) × (0,1] × [0,1]n with intensity

dt × p−2�(dp) × du1 × · · · × dun.

Let �n(0) = {{1}, . . . , {n}} be the partition of the integers 1, . . . , n into singletons. Suppose (t,p,u1, . . . , un) is a
point of 	 , and �n(t−) consists of the blocks B1, . . . ,Bb , ranked in order by their smallest element. Then �n(t) is
obtained from �n(t−) by merging together all of the blocks Bi for which ui ≤ p into a single block. These are the
only times that mergers occur. This construction is well-defined because almost surely for any fixed t0 < ∞, there are
only finitely many points (t,p,u1, . . . , un) of 	 for which t ≤ t0 and at least two of u1, . . . , un are less than or equal
to p. The resulting process �n = (�n(t), t ≥ 0) is the �-coalescent. When (t,p,u1, . . . , un) is a point of 	 , we say
that a p-merger occurs at time t .

We will need the following simple lemma pertaining to the rate at which the number of blocks decreases.
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Lemma 7. Consider the �-coalescent �n started with n blocks and let 0 < γ < 1. Let Wn = inf{t ≥ 0 : Nn(t) ≤ γ n}.
Then there exists a positive constant C, depending on � and γ but not on n, such that E[Wn] ≤ C for all n ≥ 2.

Proof. For 2 ≤ k ≤ n, the probability that k is the smallest integer in one of the blocks of �n(t) is bounded above by
the probability that the integers 1 and k do not merge before time t , which is e−λ2,2t . Therefore,

E
[
Nn(t)

] ≤ 1 + (n − 1)e−λ2,2t .

Thus, using Markov’s Inequality,

P(Wn > t) = P
(
Nn(t) > γn

) ≤ E[Nn(t)]
γ n

≤ 1

γ n
+ (n − 1)e−λ2,2t

γ n
.

Because λ2,2 = �([0,1]) > 0 by assumption, there exists t0 > 0 such that P(Wn > t0) ≤ 1/2 for sufficiently large n.
By increasing the value of t0 if necessary, we can arrange for this inequality to hold for all n ≥ 2. Then by repeatedly
applying the Markov property, we get P(Wn > mt0) ≤ 2−m for all positive integers m. It follows that E[Wn] ≤ 2t0
for all n ≥ 2, which gives the result. �

Lemma 8. Let Bb,p have a binomial distribution with parameters b and p. Then for all k, x > 0

P(Bb,p ≥ b − k) ≤ 2p
b/2k� (7)

and

P(Bb,p ≥ x) ≤ px2b. (8)

Moreover,

E

[
1

Bb,p + 1

]
= 1 − (1 − p)b+1

(b + 1)p
. (9)

Proof. To prove (7), let ξ1, . . . , ξb be independent random variables with P(ξi = 1) = p and P(ξi = 0) = 1 − p.
Observe that

P

(
j⋃

i=1

{ξi = 0}
∣∣∣∣

b∑
i=1

ξi ≥ b − k

)
≤ jP

(
ξ1 = 0

∣∣∣ b∑
i=1

ξi ≥ b − k

)
≤ jk

b
.

In particular, if j ≤ b/2k, then the right-hand side is less than 1/2 and, taking complements, we get

P

(
ξ1 = · · · = ξj = 1

∣∣∣ b∑
i=1

ξi ≥ b − k

)
≥ 1

2
.

It follows by taking j = 
b/2k� that

P

(
b∑

i=1

ξi ≥ b − k

)
≤ 2P(ξ1 = · · · = ξj = 1) = 2p
b/2k�,

which gives (7).
To show (8) we obtain from an exponential Markov inequality that

P(Bb,p ≥ x) ≤ e−λx
(
1 + peλ

)b (10)

with λ > 0. Putting λ = − logp the inequality follows.
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Finally, we have

E

[
1

Bb,p + 1

]
=

b∑
k=0

1

k + 1

(
b

k

)
pk(1 − p)b−k = 1

(b + 1)p

b∑
k=0

(
b + 1

k + 1

)
pk+1(1 − p)b−k,

which equals the right-hand side of (9). �

Theorem 1 is an immediate consequence of Proposition 9 below when m = 1. (We state this proposition in a more
general form, which we will use in the proof of Theorem 2.)

Proposition 9. Suppose that (2) holds. Then for all ε > 0, there exists a positive integer Kε such that P(m < Nn(t) ≤
Kεm for some t ≥ 0) > 1 − ε for all integers m and n such that 1 ≤ m < n.

Proof. For K ≥ 2, let Am,n be the complement of the event that m < Nn(t) ≤ Km for some t ≥ 0. If Am,n occurs,
then for some nonnegative integer �, a single merger takes the coalescent from between 2�Km + 1 and 2�+1Km

blocks down to m blocks or fewer.
Suppose there are b blocks in the �-coalescent at some time, where b ≥ 2�Km + 1, and then a p-merger occurs.

For the p-merger to take the coalescent down to m blocks or fewer, the number of blocks that participate in the merger
must be at least b − m + 1. By (7), if m ≥ 2, then the probability that this occurs is bounded above by

2p
b/2(m−1)� ≤ 2p
(2�Km+1)/(2(m−1))� ≤ 2p
2�(K/2)� ≤ 2p2�(K/2)−1.

If m = 1, this probability is bounded above by pb ≤ 2p2�(K/2)−1. Because, from the Poisson process construction of
the �-coalescent, we know that p-mergers take place at rate p−2�(dp), it follows that the rate of events that take the
coalescent down to m blocks or fewer is bounded above by

2
∫ 1

0
p2�(K/2)−3�(dp).

By Lemma 7, the expected amount of time for which the number of blocks is between 2�Km + 1 and 2�+1Km is
bounded above by C for all �. Therefore,

P(Am,n) ≤
∞∑

�=0

2C

∫ 1

0
p2�(K/2)−3�(dp)

= 2C

∫ 1

0

∞∑
�=0

p2�(K/2)−3�(dp)

≤ 2C

∫ 1

0

∞∑
�=0

p2�((K/2)−3)�(dp).

For any a > 0 and any x ∈ (0,1), we have

∞∑
�=0

x2�a = xa +
∞∑

�=1

2�∑
j=2�−1+1

x2�a

2�−1
≤ xa +

∞∑
�=1

2�∑
j=2�−1+1

2xja

j
= 2

∞∑
j=1

xja

j
= 2

∣∣log
(
1 − xa

)∣∣.
Therefore, if 1 ≤ m < n, then for K > 6

P(Am,n) ≤ 4C

∫ 1

0

∣∣log
(
1 − p(K/2)−3)∣∣�(dp).

It follows from (2) and the Dominated Convergence Theorem that this expression tends to zero as K → ∞, which
gives the result. �
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3. An approximation in the case of dust

Condition (4) allows us to approximate the number of blocks in the �-coalescent by a subordinator. For this, we will
use the construction of the �-coalescent from the Poisson point process 	 introduced at the beginning of Section 2.
Let φ : (0,∞) × (0,1] × [0,1]n → (0,∞) × (0,∞] be the function defined by

φ(t,p,u1, . . . , un) = (
t,− log(1 − p)

)
.

Now φ(	) is a Poisson point process, and we can define a pure jump subordinator (S(t), t ≥ 0) having the property
that S(0) = 0 and, if (t, x) is a point of φ(	), then S(t) = S(t−) + x. This subordinator first appeared in the work of
Pitman [12] and was used to approximate the block-counting process by Gnedin et al. [5] and Möhle [10]. The next
theorem provides a refinement.

Define

f (y) :=
∫ 1

0

1 − (1 − p)e
y

ey

�(dp)

p2
, y ∈R. (11)

From (4), we see that f (y) is finite for all y ∈ R. Also f is decreasing with limy→∞ f (y) = 0, because for fixed p

the integrand has this behaviour. Let Yn = (Yn(t))t≥0 be the solution of the SDE

logn − S(t) = Yn(t) −
∫ t

0
f

(
Yn(s)

)
ds, t ≥ 0. (12)

Our goal is to show that for coalescents with dust the log of the block-counting process follows closely the process
Yn, up to the time when Nn has nearly reached the state 1. The drift f (Yn(t)) dt appears because a merging of b out
of Nn(t) lines results in a decrease by b − 1 and not by b lines, see equation (23) below. For this purpose, we define
for any k > 1

τk,n := inf
{
t ≥ 0 : Nn(t) < k

}
. (13)

Theorem 10. Under assumption (4), for all ε > 0 there is an integer k ≥ 2 such that for all n,

P
(

sup
t∈[0,τk,n]∩[0,Tn)

∣∣logNn(t) − Yn(t)
∣∣ ≤ ε

)
> 1 − ε. (14)

Note that (14) controls the distance between Yn and logNn up to the first time point when Nn jumps below k. This
time point is excluded only if the jump leads directly to 1, i.e. on the event {τk,n = Tn}.

Before proving this theorem let us derive some consequences.

Corollary 11. Under assumption (4), for all ε > 0 there is an integer � such that

P
(

sup
0≤t<Tn

∣∣logNn(t) − Yn(t)
∣∣ ≤ �

)
> 1 − ε. (15)

Proof. For τk,n < t < Tn and | logNn(τk,n) − Yn(τk,n)| ≤ ε we have, since f (x) ≥ 0,

Yn(t) ≥ S(τk,n) − S(t) + Yn(τk,n) ≥ S(τk,n) − S(Tn) − ε.

Hence, since f is decreasing,

∣∣Yn(t) − Yn(τk,n)
∣∣ ≤ S(Tn) − S(τk,n) +

∫ Tn

τk,n

f
(
Yn(s)

)
ds

≤ S(Tn) − S(τk,n) + f
(
S(τk,n) − S(Tn) − ε

)
(Tn − τk,n)
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and therefore∣∣logNn(t) − Yn(t)
∣∣ ≤ ∣∣logNn(t) − logNn(τk,n)

∣∣ + ∣∣logNn(τk,n) − Yn(τk,n)
∣∣ + ∣∣Yn(τk,n) − Yn(t)

∣∣
≤ logk + ε + S(Tn) − S(τk,n) + f

(
S(τk,n) − S(Tn) − ε

)
(Tn − τk,n).

By the strong Markov property, Tn − τk,n is stochastically bounded from above by Tk and similarly S(Tn)−S(τk,n) by
S(Tk). Therefore supτk,n<t<Tn

| logNn(t)−Yn(t)| is stochastically bounded on the event | logNn(τk,n)−Yn(τk,n)| ≤ ε.
The claim now follows from Theorem 10. �

Since f (x) → 0 for x → ∞, the processes Yn and logn − S are in view of (12) close to each other, and one may
wonder whether also logn − S is suitable to approximate the log of the block-counting process. This works under a
stronger condition.

Corollary 12. Under the assumption∫ 1

0
| logp|�(dp)

p
< ∞, (16)

for all ε > 0 there is an integer k ≥ 2 such that for all n,

P
(

sup
t∈[0,τk,n]∩[0,Tn)

∣∣logNn(t) − logn + S(t)
∣∣ ≤ ε

)
> 1 − ε. (17)

Proof. For z ≥ 1 we have 1 − (1 − p)z ≤ pz ∧ 1. Therefore with z = ey

∫ ∞

0
f (y)dy =

∫ 1

0

∫ ∞

0

1 − (1 − p)e
y

ey
dy

�(dp)

p2

≤
∫ 1

0

(∫ | logp|

0
p dy +

∫ ∞

| logp|
e−y dy

)
�(dp)

p2

=
∫ 1

0

(| logp| + 1
)�(dp)

p
< ∞.

For any integer i we have on the event supt<τ2i ,n
| logNn(t) − Yn(t)| ≤ ε because of the monotonicity of f ,

∫ τ2i ,n

0
f

(
Yn(s)

)
ds ≤

∑
j≥i

∫ τ2j ,n

τ2j+1,n

f
(
logNn(s) − ε

)
ds

≤
∑
j≥i

f (j log 2 − ε)(τ2j ,n − τ2j+1,n).

From Lemma 7 and the strong Markov property there is a C > 0 such that

E

[∫ τ2i ,n

0
f

(
Yn(s)

)
ds

]
≤ C

∑
j≥i

f (j log 2 − ε) ≤ C

log 2

∫ ∞

(i−1) log 2−ε

f (y) dy.

Choosing i large enough this bound may be made arbitrarily small. In view of (12) and Theorem 10 our claim
follows. �

Remark 13. Gnedin, Iskanov, and Marynych [5] also studied the absorption time Tn by coupling with a subordinator.
The hypothesis of Lemma 4.2 in [5] is that∫ 1

0

(∫ x

0
ν(y) dy

)
x−1 dx < ∞,
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where ν(y) = ∫ 1
y

x−2�(dx). This condition is equivalent to (16). To see this, note that

∫ 1

0

(| logx| + 1
)
x−1�(dx) =

∫ 1

0
(−x logx + x)x−2�(dx) =

∫ 1

0

(∫ x

0
(− logy)dy

)
x−2�(dx)

=
∫ 1

0
(− logy)

(∫ 1

y

x−2�(dx)

)
dy =

∫ 1

0

(∫ 1

y

z−1 dz

)
ν(y) dy

=
∫ 1

0

(∫ z

0
ν(y) dy

)
z−1 dz.

We now come to the proof of Theorem 10. It requires two preparatory lemmas.

Lemma 14. Suppose X has a binomial distribution with parameters b and p. Then

log

(
X + 1

b + 1

)
− logp = 1

p

(
X + 1

b + 1
− p − 1 − p

b + 1

)
+ R, (18)

where

E
[|R|] ≤ 1 − p

(b + 1)p
.

Proof. By the Mean Value Theorem, if x > 0 and y > 0, then there exists a positive number z between x and y such
that logx − logy = z−1(x − y). Therefore, there exists a random variable Z between (X + 1)/(b + 1) and p such that

log

(
X + 1

b + 1

)
− logp = 1

Z

(
X + 1

b + 1
− p

)
= 1

p

(
X + 1

b + 1
− p

)
− R′,

where

R′ =
(

1

p
− 1

Z

)(
X + 1

b + 1
− p

)
.

Clearly R′ ≥ 0. It remains to bound E[R′]. Because Z must be between (X+1)/(b+1) and p, we see that |1/Z−1/p|
can be bounded from above by substituting (X + 1)/(b + 1) in place of Z. We get

R′ ≤
(

1

p
− b + 1

X + 1

)(
X + 1

b + 1
− p

)
= X + 1

(b + 1)p
+ (b + 1)p

X + 1
− 2.

Now by (9),

E

[
1

X + 1

]
≤ 1

(b + 1)p
.

Therefore,

E
[
R′] ≤ bp + 1

(b + 1)p
− 1 = 1 − p

(b + 1)p
.

Letting R = 1−p
(b+1)p

− R′ proves the lemma. �

Lemma 15. Suppose �((0,1]) > 0, and define τk,n as in (13). Then there exists a positive constant C1, depending on
� but not on n, such that for all 2 ≤ k ≤ n,

E

[∫ τk,n

0

1

Nn(s)
ds

]
≤ C1

k
. (19)
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Proof. Because �((0,1]) > 0, there exist positive numbers r and d such that �([r,1]) = d . This means that p-
mergers with p ≥ r occur at rate d . Let a ∈ (0, r ∧ 1/2) and c ∈ (0, d). By the Law of Large Numbers, there exists a
positive integer m such that for b ≥ m, whenever the coalescent has b blocks, the rate of mergers that will bring the
coalescent down to fewer than (1 − a)b blocks is at least c. Let eb be the expected time, when the coalescent starts
with b blocks, before the number of blocks drops below (1 − a)b. Let

C = max

{
1

c
, e2, . . . , em

}
.

Then, for all b ≥ 2, if the coalescent starts with b blocks, the expected time before the number of blocks drops below
(1 − a)b is at most C. For positive integers j , let

Bj = {
b ∈ N : (1 − a)−(j−1)k ≤ b < (1 − a)−j k

}
.

Then the expected Lebesgue measure of {t : Nn(t) ∈ Bj } is at most C. Therefore,

E

[∫ τk,n

0

1

Nn(s)
ds

]
≤

∞∑
j=1

C(1 − a)j−1

k
= C

ak
,

which implies (19) with C1 = C/a. �

Proof of Theorem 10. Again we construct the �-coalescent from the Poisson point process 	 , as described at the
beginning of Section 2. Enumerate the points of 	 as ((ti , pi, u1,i , . . . , un,i))

∞
i=1. For each i ∈ N, let

Xi =
Nn(ti−)∑

j=1

1{uj,i>pi },

which is the number of extant lines that are not included in the merger at time ti . Conditional on pi and Nn(ti−),
the distribution of Xi is binomial with parameters Nn(ti−) and 1 − pi . Also, for all i ∈ N, we have Nn(ti) = Xi +
1{Xi<Nn(ti−)}. Dividing both sides by Nn(ti−) and taking logs, we get

logNn(ti) − logNn(ti−) = log

(
Xi + 1{Xi<Nn(ti−)}

Nn(ti−)

)
.

Also,

S(ti) − S(ti−) = − log(1 − pi).

It follows that for t > 0,

logNn(t) − (
logn − S(t)

) =
∞∑
i=1

(
log

(
Xi + 1{Xi<Nn(ti−)}

Nn(ti−)

)
− log(1 − pi)

)
1{ti≤t}.

Noting

log

(
Xi + 1{Xi<Nn(ti−)}

Nn(ti−)

)
= log

(
Xi + 1

Nn(ti−) + 1

)
+ 1{Xi<Nn(ti−)} log

Nn(ti−) + 1

Nn(ti−)

and letting

Un(t) =
∞∑
i=1

1{Xi<Nn(ti−)} log
Nn(ti−) + 1

Nn(ti−)
1{ti≤t},
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we can write

logNn(t) − (
logn − S(t)

)
=

∞∑
i=1

(
1

1 − pi

(
Xi + 1

Nn(ti−) + 1
− (1 − pi) − pi

Nn(ti−) + 1

)
+ Ri

)
1{ti≤t} + Un(t),

where Ri is defined as in (18), with Nn(ti−) in place of n, Xi in place of X, and 1 − pi in place of p.
We now break this sum into pieces. Let ε > 0, and let J = {i ∈N : pi ≤ 1 − ε/(4Nn(ti−))}. For t ≥ 0, let

Mn(t) =
∞∑
i=1

1

1 − pi

(
Xi + 1

Nn(ti−) + 1
− (1 − pi) − pi

Nn(ti−) + 1

)
1{ti≤t∧Tn}1{i∈J }

and

Vn(t) =
∞∑
i=1

Ri1{ti≤t∧Tn}1{i∈J }.

The probability that Nn(ti) = 1, conditional on Nn(ti−) and on the event {i /∈ J }, is at least 1 − ε/4. Therefore,

P
(
logNn(t) − Un(t) − (

logn − S(t)
) = Mn(t) + Vn(t) for all t < Tn

) ≥ 1 − ε/4,

which means that for k > 1

P

(
sup

t∈[0,τk,n]∩[0,Tn)

∣∣logNn(t) − Un(t) − (
logn − S(t)

)∣∣ >
ε

4

)

≤ ε

4
+ P

(
sup

t≤τk,n

∣∣Mn(t)
∣∣ >

ε

8

)
+ P

(
sup

t≤τk,n

∣∣Vn(t)
∣∣ >

ε

8

)
. (20)

Conditional on pi and Nn(ti−), the random variable

1

1 − pi

(
Xi + (1 − pi)

Nn(ti−) + 1
− (1 − pi)

)

has mean zero and variance

Nn(ti−)pi

(Nn(ti−) + 1)2(1 − pi)
.

In particular, the process (Mn(t), t ≥ 0) is a martingale. Recalling the definition of τk,n from (13) and putting lp :=
�ε/(4(1 − p))�, we get for the bracket process 〈Mn〉

〈Mn〉(τk,n) ≤
∫ τk,n

0

∫ 1−ε/(4Nn(s))

0

p

(Nn(s) + 1)(1 − p)

�(dp)

p2
ds

≤
∫ 1

0

1

1 − p

(∫ τk,n

0

1

Nn(s)
1{Nn(s)≥ε/(4(1−p))} ds

)
�(dp)

p

≤
∫ 1

0

1

1 − p

(∫ τk,n∧τlp,n

0

1

Nn(s)
ds

)
�(dp)

p
.

Combining this result with (19) and using τk,n ∧ τlp,n = τk∨lp,n we obtain

E
[〈Mn〉(τk,n)

] ≤
∫ 1

0

1

1 − p
· C1

(
1

k
∧ 4(1 − p)

ε

)
· �(dp)

p
,
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which is finite by (4) and goes to 0 for k → ∞. Therefore, by the L2 Maximum Inequality for martingales and
Markov’s inequality, we get that for k sufficiently large

E
[

sup
t≤τk,n

∣∣Mn(t)
∣∣2

]
≤ ε3

4 · 64
andP

(
sup

t≤τk,n

∣∣Mn(t)
∣∣ >

ε

8

)
≤ ε

4
. (21)

We now consider the process (Vn(t), t ≥ 0). By Lemma 14,

E
[

sup
t≤τk,n

∣∣Vn(t)
∣∣] ≤ E

[ ∞∑
i=1

|Ri |1{ti≤τk,n}1{i∈J }

]

≤ E

[∫ τk,n

0

∫ 1−ε/(4Nn(s))

0

p

(Nn(s) + 1)(1 − p)

�(dp)

p2
ds

]
.

Thus as above, if k is sufficiently large,

E
[

sup
t≤τk,n

∣∣Vn(t)
∣∣] ≤ ε2

32
andP

(
sup

t≤τk,n

∣∣Vn(t)
∣∣ >

ε

8

)
≤ ε

4
.

Together with (20) and (21) we arrive at

P

(
sup

t∈[0,τk,n]∩[0,Tn)

∣∣logNn(t) − Un(t) − (
logn − S(t)

)∣∣ >
ε

4

)
≤ 3ε

4
. (22)

Now we approximate Un(t) by
∫ t

0 f (logNn(s)) ds, uniformly for t ≤ τk,n. Note that by (4), there are only finitely
many ti such that ti ≤ Tn and Xi < Nn(ti−). Denote these points by s1 < · · · < sm, and also set s0 = 0 and sm+1 = ∞.
Note that sm = Tn. When the coalescent has b blocks, the points si appear at rate

ρ(b) =
∫ 1

0

b∑
k=1

(
b

k

)
pk(1 − p)b−k �(dp)

p2
=

∫ 1

0

(
1 − (1 − p)b

)�(dp)

p2
. (23)

Therefore, the random variables Gi = (si+1 − si)ρ(Nn(si)) for 0 ≤ i ≤ m − 1 are independent standard exponential
random variables, also independent of the process Nn(sj ), j ≥ 1. Recalling (11), we have ρ(b) = bf (logb). Now for
t ≤ Tn

∫ t

0
f

(
logNn(s)

)
ds =

m−1∑
i=0

f
(
logNn(si)

)(
(si+1 − si)1{si+1≤t} + (t − si)1{si<t<si+1}

)

=
m−1∑
i=0

Gi

Nn(si)

(
1{si+1≤t} + t − si

si+1 − si
1{si<t<si+1}

)
.

Consequently, since Un(t) = ∑m−1
i=0 log((Nn(si) + 1)/Nn(si))1{si+1≤t},

∫ t

0
f

(
logNn(s)

)
ds − Un(t) =

m−1∑
i=0

Gi − 1

Nn(si)
1{si+1≤t} +

m−1∑
i=0

Gi

Nn(si)

t − si

si+1 − si
1{si<t<si+1}

+
m−1∑
i=0

(
1

Nn(si)
− log

Nn(si) + 1

Nn(si)

)
1{si+1≤t}.
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Using that the second sum has just one non-vanishing summand, and that x − log(1 + x) ≤ x2 for x ≥ 0, we have for
t ≤ τk,n

∣∣∣∣
∫ t

0
f

(
logNn(s)

)
ds − Un(t)

∣∣∣∣
≤

∣∣∣∣∣
m−1∑
i=0

Gi − 1

Nn(si)
1{si+1≤t}

∣∣∣∣∣ + max
0≤i≤m−1

Gi

Nn(si)
1{si<τk,n} +

m−1∑
i=0

1

Nn(si)2
1{si<τk,n}. (24)

We show that for k sufficiently large the supremum over t ≤ τk,n of the right-hand side gets arbitrarily small in
probability, uniformly in n. To this end we deal with the three summands on the r.h.s. of (24) in reverse order.

First we have

m−1∑
i=0

1

Nn(si)2
1{si<τk,n} ≤

n∑
j=k

1

j2
+

m−1∑
i=1

1

Nn(si)2
1{Nn(si )=Nn(si−1)}1{si<τk,n}

and so by Lemma 15

E

[
m−1∑
i=0

1

Nn(si)2
1{si<τk,n}

]
≤ 2

k
+ E

[∫ 1

0

∫ τk,n

0

Nn(s)p(1 − p)Nn(s)−1

Nn(s)2
ds

�(dp)

p2

]

≤ 2

k
+

∫ 1

0
E

[∫ τk,n

0

1

Nn(s)
ds

]
�(dp)

p

≤ 1

k

(
2 + C1

∫ 1

0

�(dp)

p

)
. (25)

Second, since E[G2
i ] = 2, we have for u > 0

P

(
max

0≤i≤m−1

Gi

Nn(si)
1{si<τk,n} > u

)
≤ E

[
m−1∑
i=0

P

(
Gi

Nn(si)
1{si<τk,n} > u

∣∣∣Nn(si), i ≥ 1

)]

≤ 1

u2
E

[
m−1∑
i=0

2

Nn(si)2
1{si<τk,n}

]

≤ 2

u2k

(
2 + C1

∫ 1

0

�(dp)

p

)
,

where we used (25) in the last inequality.
Third let

M ′
n(t) =

m−1∑
i=0

Gi − 1

Nn(si)
1{si+1≤t}.

Then (M ′
n(t), t ≥ 0) is a martingale with

E
[〈
M ′

n

〉
(τk,n)

] = E

[
m−1∑
i=0

1

Nn(si)2
1{si+1≤τk,n}

]
≤ E

[
m−1∑
i=0

1

Nn(si)2
1{si<τk,n}

]
,
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and again by means of the L2 Maximum inequality and (25)

E

[
sup

t≤τk,n

∣∣∣∣∣
m−1∑
i=0

Gi − 1

Nn(si)
1{si+1≤t}

∣∣∣∣∣
2]

≤ 4

k

(
2 + C1

∫ 1

0

�(dp)

p

)
.

Using these three estimates we obtain from (24) that for any ε > 0

P

(
sup

t≤τk,n

∣∣∣∣
∫ t

0
f

(
logNn(s)

)
ds − Un(t)

∣∣∣∣ >
ε

4

)
≤ ε

4
,

if k is sufficiently large. Combining this bound with (22) we arrive at the formula

P

(
sup

t∈[0,τk,n]∩[0,Tn)

∣∣∣∣logNn(t) −
∫ t

0
f

(
logNn(s)

)
ds − (

logn − S(t)
)∣∣∣∣ >

ε

2

)
≤ ε. (26)

To finish the proof we define for t ≥ 0

�n(t) := logNn(t) −
∫ t

0
f

(
logNn(s)

)
ds − (

logn − S(t)
)

= logNn(t) −
∫ t

0
f

(
logNn(s)

)
ds −

(
Yn(t) −

∫ t

0
f

(
Yn(s)

)
ds

)
.

For fixed t and n we consider the event A≥ := {t < Tn, t ≤ τk,n, logNn(t) ≥ Yn(t)} and define the random time

σt := sup
{
s ≤ t : logNn(s) ≤ Yn(s)

}
.

Then on the event A≥ we have logNn(σt−) − Yn(σt−) ≤ 0 and f (logNn(s)) − f (Yn(s)) ≤ 0 for s > σt , since f is
decreasing. Thus, on A≥,

0 ≤ logNn(t) − Yn(t)

= logNn(σt−) − Yn(σt−) +
∫ t

σt

(
f

(
logNn(s)

) − f
(
Yn(s)

))
ds + �n(t) − �n(σt−)

≤ �n(t) − �n(σt−)

≤ 2 sup
t∈[0,τk,n]∩[0,Tn)

∣∣�n(t)
∣∣.

Similarly on A≤ := {t < Tn, t ≤ τk,n, logNn(t) ≤ Yn(t)},
0 ≤ Yn(t) − logNn(t) ≤ 2 sup

t∈[0,τk,n]∩[0,Tn)

∣∣�n(t)
∣∣.

Recalling (26), this implies that for sufficiently large k,

P
(

sup
t∈[0,τk,n]∩[0,Tn)

∣∣logNn(t) − Yn(t)
∣∣ > ε

)
≤ P

(
sup

t∈[0,τk,n]∩[0,Tn)

∣∣�n(t)
∣∣ >

ε

2

)
≤ ε,

which was the claim. �

4. Proof of Theorem 2

In this section we prove Theorem 2. First we provide a lemma which gives a uniform lower bound for the probability
that the block-counting process does not jump over certain intervals.
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Lemma 16. Assume (2) and that � is log-nonlattice. Fix 0 < δ < 1 and K > 1. Suppose m < n ≤ Km. Then there
exist constants C > 0 and α ∈ (0,1], depending on δ and K but not on m or n, such that P((1 − δ)αm ≤ Nn(t) ≤
αm for some t ≥ 0) ≥ C.

Proof. We distinguish two cases. First assume that for all η > 0 we have �((0, η]) > 0. Let η = 4−2K/δ and define
N ′

n, N ′′
n to be the block-counting processes belonging to the two coalescents arising by restricting � to the intervals

either [0, η] or (η,1], and using the same Poisson process 	 . The processes N ′
n, N ′′

n are independent, therefore for
any u > 0

P
(
(1 − δ)m ≤ Nn(t) ≤ m for some t ≥ 0

)
≥ P

(
N ′′

n (u) = n,N ′
n(u) ≤ (1 − δ)m, sup

t≤u

(
N ′

n(t−) − N ′
n(t)

) ≤ δm
)

≥ P
(
N ′′

n (u) = n,N ′
n(u) ≤ (1 − δ)n/K, sup

t≤u

(
N ′

n(t−) − N ′
n(t)

) ≤ δn/K
)

≥ P
(
N ′′

n (u) = n
)
P

(
N ′

n(u) ≤ (1 − δ)n/K
) − P

(
sup
t≤u

(
N ′

n(t−) − N ′
n(t)

)
> δn/K

)
.

By assumption the process N ′
n is non-degenerate. Thus in view of Lemma 7 the expectation of W ′

n := min{t ≥ 0 :
N ′

n(t) ≤ (1 − δ)n/K} is bounded by a constant κ , depending on δ and K but not on n. Choosing u = 2κ we obtain
from Markov’s Inequality

P
(
N ′

n(2κ) > (1 − δ)n/K
) = P

(
W ′

n ≥ 2κ
) ≤ 1

2κ
E

[
W ′

n

] ≤ 1

2
.

Moreover

P
(
N ′′

n (2κ) = n
) ≥ e

−2κ
∫ 1
η p−2�(dp)

> 0.

Finally, for the rate at which N ′
n performs at time t a jump of size larger than δn/K , we obtain from (8) and from

the choice of η for n ≥ 4K/δ the bound∫ η

0
P(BN ′

n(t−),p > δn/K)
�(dp)

p2
≤

∫ η

0
pδn/K2N ′

n(t−) �(dp)

p2

≤ ηδn/(2K)2n�
([0,1]) = 2−n�

([0,1]).
Therefore

P
(

sup
t≤2κ

(
N ′

n(t−) − N ′
n(t)

)
> δn/K

)
≤ 2κ2−n�

([0,1]).
Putting our estimates together we arrive at

P
(
(1 − δ)m ≤ Nn(t) ≤ m for some t ≥ 0

) ≥ 1

4
e
−2κ

∫ 1
η p−2�(dp)

> 0

for n sufficiently large and any m with m < n ≤ Km. A further lowering of this bound makes the estimate valid for
all n. Letting α = 1 our claim follows.

For the second part of the proof let �([0, η]) = 0 for some η > 0. Then (16) is satisfied such that we may resort
to Corollary 12. Note that our log-nonlattice assumption means that the random walk (S(i), i ∈ N0) is non-lattice
in the usual sense. Condition (2) implies E[S(1)] < ∞. Therefore the classical renewal theorem implies that with α

sufficiently small there is a constant 0 < C ≤ 1/2 depending on δ such that for all s ≥ 0

P

(
∃i ∈N0 : s − logα − 1

3
log(1 − δ) ≤ S(i) ≤ s − logα − 2

3
log(1 − δ)

)
≥ 2C,
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and consequently for m < n (letting s = logn − logm)

P

(
∃t ≥ 0 : 2

3
log(1 − δ) + logαm ≤ logn − S(t) ≤ 1

3
log(1 − δ) + logαm

)
≥ 2C. (27)

Next, choose k according to Corollary 12 so that (17) holds with ε = 1
4C ∧ 1

3 | log(1 − δ)|. Let k be so large that by
Theorem 1, we have P(τk,n = Tn) = P(Nn(Tn−) ≥ k) ≤ 1

4C for all n. Then

P

(
sup

t≤τk,n

∣∣logNn(t) − logn + S(t)
∣∣ ≥ 1

3

∣∣log(1 − δ)
∣∣) ≤ 1

2
C. (28)

In particular with t = τk,n, since k ≥ Nn(τk,n),

P

(
logn − S(τk,n) ≥ logk − 1

3
log(1 − δ)

)
≤ 1

2
C

and hence for n sufficiently large, because m ≥ n/K , and because of a.s. monotonicity of S,

P

(
∀t > τk,n : logn − S(t) < logαm + 2

3
log(1 − δ)

)
≥ 1 − 1

2
C.

Intersecting this event with the event in (27) we obtain

P

(
∃t ≤ τk,n : 2

3
log(1 − δ) + logαm ≤ logn − S(t) ≤ 1

3
log(1 − δ) + logαm

)
≥ 3

2
C.

Hence from (28) it follows for n sufficiently large and m < n ≤ Km

P
(∃t ≤ τk,n : log(1 − δ) + logαm ≤ logNn(t) ≤ logαm

) ≥ C.

Again by suitably lowering the constant C this estimate holds for all n, which then translates into our claim. �

Proof of Theorem 2. We prove this result by coupling. Let ε > 0. It suffices to show that there exists a positive
integer n0 such that if n0 < n1 < n2, then we can construct �-coalescents (�n1(t), t ≥ 0) and (�n2(t), t ≥ 0) started
with n1 and n2 blocks respectively such that

P
(
Nn1(Tn1−) = Nn2(Tn2−)

)
> 1 − ε. (29)

By Theorem 1, we can choose a positive integer � such that P(Nn(Tn−) ≤ �) > 1 − ε/4 for all n. Let C be the
constant from Lemma 16 with δ = ε/(4�) and with the constant K = K1/2 from Proposition 9. Choose a positive
integer J large enough that

(
1 − C2

4

)J

<
ε

2
.

Then for 1 ≤ j ≤ J , let mj = 
nj/J

0 �. For 1 ≤ j ≤ J and i ∈ {1,2}, let Ai,j be the event that mj < Nni
(t) ≤ Kmj

for some t ≥ 0, and let Di,j be the event that (1 − δ)αmj ≤ Nni
(t) ≤ αmj for some t ≥ 0, with the constant α as in

Lemma 16. It follows from Proposition 9 and Lemma 16 that for 1 ≤ j ≤ J and i ∈ {1,2}, we have

P(Di,j ) ≥ P(Di,j ∩ Ai,j ) = P(Ai,j )P (Di,j |Ai,j ) ≥ 1

2
C. (30)

We will need to establish that a similar inequality holds when we condition on the events Di,k for k > j . To this
end, let Ui,J = 0 for i ∈ {1,2}, and for 1 ≤ j ≤ J − 1 and i ∈ {1,2}, define the stopping time Ui,j = inf{t ≥ 0 :
Nni

(t) ≤ αmj+1}. For 1 ≤ j ≤ J and i ∈ {1,2}, let Gi,j = {Nni
(Ui,j ) > mj }. Let (Fi (t), t ≥ 0) be the natural filtration
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associated with the process (�ni
(t), t ≥ 0). With Nni

(Ui,j ) figuring as the new starting point, the reasoning leading
to (30) implies that for 1 ≤ j ≤ J and i ∈ {1,2}, we have, on the event Gi,j ,

P
(
Di,j |Fi (Ui,j )

) ≥ 1

2
C a.s. (31)

Because mj+1/mj → ∞ as n0 → ∞, it follows from Proposition 9 that

lim
n0→∞P(Gi,j ) = 1. (32)

Since Di,k ∈ Fi (Ui,j ) for 1 ≤ j < k ≤ J and i ∈ {1,2}, the results (31) and (32) imply that if the processes
(�n1(t), t ≥ 0) and (�n2(t), t ≥ 0) are independent, then

lim sup
n0→∞

P

(
J⋃

j=1

(D1,j ∩ D2,j )

)
≥ 1 −

(
1 − C2

4

)J

> 1 − ε

2
. (33)

We now couple the processes (�n1(t), t ≥ 0) and (�n2(t), t ≥ 0). We allow the two processes to evolve indepen-
dently until the times U1,J−1 and U2,J−1 respectively. If D1,J ∩ D2,J occurs, then we stop. Otherwise, we allow
the processes to continue to evolve independently until the times U1,J−2 and U2,J−2 respectively. Then we stop if
D1,J−1 ∩ D2,J−1 occurs, and otherwise continue as before. According to (33), with probability at least 1 − ε/2, we
will eventually come to a value of j such that D1,j ∩ D2,j occurs. In that case, the independent constructions will be
stopped at the times U1,j−1 and U2,j−1 respectively, at which times both processes will have between (1− δ)αmj and
αmj blocks.

We now suppose the independent constructions are stopped at the times U1,j−1 and U2,j−1. Set n′
1 = Nn1(U1,j−1)

and n′
2 = Nn2(U2,j−1). Without loss of generality, assume n′

1 < n′
2. Let B1,1, . . . ,B1,n′

1
and B2,1, . . . ,B2,n′

2
denote

the blocks of the partitions �n1(U1,j−1) and �n2(U2,j−1) respectively. We now construct (�n1(U1,j−1 + t), t ≥ 0)

and (�n2(U2,j−1 + t), t ≥ 0) from the same Poisson point process 	 , as described at the beginning of Section 2.
This means both processes will have p-mergers at the same times, and the number of blocks in �n2(U2,j−1 + t) that
contain integers from one or more of the blocks B2,1, . . . ,B2,n′

1
will equal Nn1(U1,j−1 + t). Recall that Tn2 is the

time of the last merger in (�n2(t), t ≥ 0). Unless one or more blocks of �n2(Tn2−) contains only integers from the
blocks B2,n′

1+1, . . . ,B2,n′
2
, we will have Nn1(Tn1−) = Nn2(Tn2−). By the exchangeability of the coalescent dynamics,

conditional on n′
1 and n′

2, the probability that a particular block of �n2(Tn2−) contains only integers from the blocks
B2,n′

1+1, . . . ,B2,n′
2

is at most (n′
2 − n′

1)/n′
2, which is at most δ because we are assuming that D1,j ∩ D2,j occurs.

Therefore, recalling that � was chosen so that P(Nn2(Tn2−) > �) < ε/4, we have

P
(
Nn1(Tn1−) 	= Nn2(Tn2−)

) ≤ ε

2
+ ε

4
+ �δ = ε,

which implies (29). �

5. Non-convergence for Eldon–Wakeley coalescents

To provide an example where the distribution of the size of the last merger does not converge as n → ∞, we now
focus on the class of coalescents proposed in [4] and thus assume that the measure � is concentrated in one point
p 	= 0,1. Because of Theorem 1, for such coalescents the size of the last merger is tight. We claim that still Ln does
not converge in distribution as n → ∞. There are obvious relations to non-convergence and periodicity phenomena in
the so-called leader election, see e.g. Grübel and Hagemann [7] and references therein.

For notational convenience we restrict ourselves to the case � = p2δp and p = e−1. Then the points of the Possion
point process 	 are of the form (σi,p,u1, . . . , un), i = 1,2, . . . , where the numbers 0 < σ1 < σ2 < · · · form a
standard Poisson point process on R+. Define τk,n as in (13).

We shall argue by contradiction, so let us assume that Ln does converge in distribution. Then, as shown in Theo-
rem 5, the sequence of time-reversed Markov chains converges as n → ∞ in distribution to a limiting Markov chain.
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This implies

∀ε > 0 ∃k > 0: Nn(τk,n)
d→ N∞,k with P(N∞,k ≥ 2) ≥ 1 − ε. (34)

Together with Nn we consider a process Nn ≥ Nn defined inductively as follows: Nn(0) = Nn(0) and at times σi

the random number Nn(σi) is thinned according to p and afterwards is increased by one. Thinking of Nn and Nn

as numbers of lines, the difference between both processes only arises, when by a thinning no line of Nn is affected.
Then Nn does not change its value but Nn increases by 1. Given Nn(t) = m this takes place with probability qm with
q = 1 − p. This may occur several times, and, as long as Nn stays at level m, the expected increase of Nn is bounded
from above by qm/(1 − qm) ≤ qm/p. Therefore, given ε > 0 there is a k such that

E
[
Nn(τk,n) − Nn(τk,n)

] ≤
∑
m≥k

qm

p
= qk

p2
≤ ε and P

(
Nn(τk,n) = Nn(τk,n)

) ≥ 1 − ε.

Combined with (34) we obtain that also for Nn the size of the first jump to 1 converges in distribution with n → ∞.
Now consider a representation Nn = Un +Vn with random variables Un(0) and Vn(0) to be specified below, where

at the times σi both Un and Vn are thinned independently according to p and then Vn is enlarged by 1. Note that for
independent Un(0) and Vn(0) the Markov chains Un and Vn are independent as well. Also Un converges a.s. to zero,
whereas Vn is an aperiodic, irreducible chain, which is positive recurrent in view of E[Vn(σm+1)−Vn(σm)|Vn(σm)] =
1 − pVn(σm) a.s. Let π be its stationary distribution.

Let us study the case N
λ = Uλ +V with independent Markov chains Uλ and V , both with the dynamics described

above, where now Uλ(0) is Poisson(eλ)-distributed with λ ∈ R and V (0) has the distribution π . Since p = e−1, the

random variable Uλ(σm) is Poisson(eλ−m)-distributed. Let ρ = inf{t : N
λ
(t) = 1} and ρ′ = inf{t : Uλ(t) = 0}. Note

that ρ′ ≤ ρ.

We now focus on the event {Nλ
(ρ−) = 2}. It can occur in two different ways, either ρ′ = ρ or ρ′ < ρ. The first

instance takes place if and only if for some m ≥ 0 we have Uλ(σm) = 1, Uλ(σm+1) = 0, and V (σm) = V (σm+1) = 1.
By independence this event has probability

π(1)e−1
∞∑

m=0

e−eλ−m

eλ−me−1.

In case of the event {ρ′ < ρ} we have V (ρ′) ≥ 2 and V (ρ−) = 2. This will occur if and only if, defining h so that
ρ′ = σh, we have for some � > h that V (σi) ≥ 2 for i = h,h+1, . . . , �−2, V (σ�−1) = 2, and V (σ�) = 1. By applying
the strong Markov property at time σh and using the independence of the two chains, we see that, letting σ0 = 0, the
probability that this occurs is

α := P
(
V (σ0), . . . , V (σ�−2) ≥ 2,V (σ�−1) = 2,V (σ�) = 1 for some � ≥ 1

)
.

Replacing λ by λ + n and letting n → ∞ we obtain

lim
n→∞P

(
N

λ+n
(ρ−) = 2

) = α + π(1)e−2f (λ) with f (λ) :=
∞∑

m=−∞
e−eλ−m

eλ−m.

The function f is smooth with period 1. By our assumption that Ln converges in distribution as n → ∞, the function
f does not depend on λ. To get a contradiction we compute its Fourier coefficients. They are given by

f̂ (k) =
∫ ∞

−∞
e−eλ

eλe−2πikλ dλ = E
[
e−2πikG

]
,

where the distribution of G is standard Gumbel. The characteristic function of the standard Gumbel distribution is
equal to ϕ(t) = �(1 − it), t ∈ R. Also the gamma function is known to possess no zeros in the complex plane,
thus none of the Fourier coefficients of f vanishes. Therefore f is non-constant, and we arrive at the promised
contradiction.
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6. Proof of Theorem 3

Our proof of Theorem 3 relies on an overshoot estimate for subordinators. The Renewal Theorem for subordinators
(see, for example, Corollary 5.3 in [9]) implies that if (S(t), t ≥ 0) is a subordinator and E[S(1)] = ∞, then for all
y > 0,

lim
x→∞P

(
S(t) ∈ [x, x + y] for some t

) = 0.

To prove Theorem 3, we will need to establish a version of this result which holds for processes that can be obtained
by adding a small state-dependent negative drift to a subordinator.

Proposition 17. Let (St , t ≥ 0) be a subordinator with E[S1] = ∞. Let g :R→ R
+ be a nonincreasing function such

that

lim
x→∞g(x) = 0. (35)

For all z > 0, define the process (Y z
t )t≥0 to be the solution to the SDE

Y z
t = z −

(
St −

∫ t

0
g

(
Y z

s

)
ds

)
. (36)

For all y ∈ R, let τ z
y = inf{t ≥ 0 : Y z

t ≤ y}. Then for all real numbers K > 0, we have

lim
z→∞P

(
Y z

τz
K

∈ [−K,K]) = 0. (37)

Equation (37) says that for any bounded interval the probability that Y z jumps over the interval [−K,K] tends to
one as the starting point z → ∞.

Proof. We will prove this result by following some of the ideas from [3] in the proof of Blackwell’s Renewal Theorem
in the infinite mean case. Let βz

K = P(Y z
τz
K

∈ [−K,K]), and let

βK = lim sup
z→∞

βz
K. (38)

Seeking a contradiction, suppose βK > 0 for some K . Because βK is a nondecreasing function of K , it suffices to
obtain a contradiction when K is chosen to be a sufficiently large positive integer. We will choose K to be large
enough to satisfy the following four conditions:

1. We require g(K) < K , which is true for sufficiently large K by (35).
2. We require

P
(
St ∈ (

2(� − 1)K,2�K
]

for some t ≥ 0
)
> 0 (39)

for all positive integers �. Note that (39) may fail for small values of K , in particular when S1 has a lattice
distribution, but will hold for sufficiently large K .

3. We require

P
(

sup
t≥0

(
g(K)t − St

)
> 1

)
<

1

2
. (40)

Note that this holds for sufficiently large K in view of (35) and the fact that t−1St → ∞ as t → ∞ by the Law of
Large Numbers for subordinators.
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4. Let

αK = E
[
inf

{
t ≥ 0 : St − g(K)t ≥ 2

}]
, (41)

which tends to a finite limit as K → ∞ by (35). We require

2αK(8K + 1)g(K)

K
≤ βK

3
. (42)

If βK > 0 for some K , then this condition holds for sufficiently large K by (35) and the fact that βK is a nonde-
creasing function of K .

Because (37) does not depend on the behavior of the process after time τ z
K , we may consider instead the processes

(Zz
t )t≥0, defined as the solution to the SDE

Zz
t = z −

(
St −

∫ t∧τ z
K

0
g

(
Zz

s

)
ds

)
. (43)

The processes Zz and Y z are the same until time τ z
K , which implies that

βz
K = P

(
Y z

τK
∈ [−K,K]) = P

(
Zz

τK
∈ [−K,K]).

However, after time τK
z the process Zz is no longer affected by the drift term involving g. Because g is nonincreasing,

we have Zz
t ≤ z − St + g(K)t for all t ≥ 0. Therefore, (40) implies that

P
(

sup
t≥0

Zz
t > z + 1

)
<

1

2
. (44)

Let Uz denote the potential measure associated with the process Zz, meaning that

Uz(A) =
∫ ∞

0
P

(
Zz

t ∈ A
)
dt

for all Borel subsets A of R. Suppose z > K , and n > K is a positive integer. If the process Zz enters the interval
(n − 1, n], then it drops below n − 2 after a time whose expectation is at most αK , and then by (44) and the strong
Markov property, the probability that the process Zz never returns to (n − 1, n] is at least 1/2. It follows that

Uz

(
(n − 1, n]) ≤ 2αK. (45)

Let 0 < H1 < H2 < · · · denote the points of a rate one Poisson process, independent of (St )t≥0. Note that the process
(Zz

Hn
)∞n=1 has the same potential measure as (Zz

t )t≥0, in the sense that for all Borel subsets A of R,

Uz(A) =
∞∑

n=1

P
(
Zz

Hn
∈ A

)
.

We can choose an increasing sequence (zm)∞m=1 tending to infinity such that

lim
m→∞β

zm

K = βK. (46)

It follows from (43) and the monotonicity of g that

zm − SH1 ≤ Z
zm

H1
≤ zm + g(zm − SH1)H1. (47)

Let ε > 0. Choose a positive integer L large enough that P(SH1 ≥ 2LK) < ε. By (35) we can choose a positive integer
m0 large enough that for all m ≥ m0

P
(
g(zm − SH1)H1 ≥ 2K

)
< ε.



Size of last merger in �-coalescents 1547

This together with (47) implies for all

P
(
zm − 2LK ≤ Z

zm

H1
≤ zm + 2K

) ≥ 1 − 2ε.

For the following we also require that zm0 − 2LK > K .
Let μz denote the distribution of Zz

H1
. By applying the strong Markov property at time H1, we get for m ≥ m0,

β
zm

K ≤
L∑

�=0

∫
[zm−2�K,zm−2(�−1)K)

βx
Kμzm(dx) + 2ε. (48)

Write

am,� =
∫

[zm−2�K,zm−2(�−1)K)

βx
Kμzm(dx). (49)

It follows from (46) and (48) that

βK − 2ε ≤ lim inf
m→∞

L∑
�=0

am,� ≤ lim sup
m→∞

L∑
�=0

am,� ≤ βK. (50)

By (35), for all � ∈ {0,1, . . . ,L} we have

lim
m→∞P

(
Z

zm

H1
∈ [

zm − 2�K, zm − 2(� − 1)K
)) = P

(
SH1 ∈ (

2(� − 1)K,2�K
])

. (51)

It follows from (38) and (51) that for � ∈ {0,1, . . . ,L}, we have

lim sup
m→∞

am,� ≤ βKP
(
SH1 ∈ (

2(� − 1)K,2�K
])

,

and then (50) yields

lim inf
m→∞ am,� ≥ βKP

(
SH1 ∈ (

2(� − 1)K,2�K
]) − 2ε.

By taking ε → 0, we see that for any fixed nonnegative integer �, we have

lim
m→∞am,� = βKP

(
SH1 ∈ (

2(� − 1)K,2�K
])

. (52)

Now we also see from (49) and (51) that

lim inf
m→∞ am,� ≤

(
lim inf
m→∞ sup

x∈[zm−2�K,zm−2(�−1)K)

βx
K

)
P

(
SH1 ∈ (

2(� − 1)K,2�K
])

.

In view of (39) and (52), it follows that for all � ∈ {1, . . . ,L} and therefore for all positive integers �, we have

lim inf
m→∞ sup

x∈[zm−2�K,zm−2(�−1)K)

βx
K = βK. (53)

Fix a positive integer M . By (46) and (53), we can choose m sufficiently large that β
zm

K > 2βK/3 and for � ∈
{1, . . . ,3M}, there exists a point x� ∈ [zm − 2�K, zm − 2(� − 1)K) such that β

x�

K > 2βK/3. Set x0 = zm. We now
consider the processes Zx0 ,Zx3 ,Zx6 , . . . ,Zx3M , which satisfy the stochastic differential equation (43) with the same
driving subordinator but different initial values. For 1 ≤ � ≤ M , we have

4K ≤ Z
x3(�−1)

0 − Z
x3�

0 ≤ 8K. (54)
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Because g is nonincreasing, the processes Zx3(�−1) and Zx3� get closer together over time but do not cross, which
means

0 ≤ Z
x3(�−1)

t − Z
x3�
t ≤ 8K (55)

for all t ∈ [0, τ
x3�

K ]. Thus,

∫ τ
x3�
K

0

∣∣g(
Z

x3�
t

) − g
(
Z

x3(�−1)

t

)∣∣dt ≤
∞∑

n=0

∫ τ
x3�
K

0

∣∣g(
Z

x3�
t

) − g
(
Z

x3(�−1)

t

)∣∣1{Zx3�
t ∈(K+n,K+n+1]} dt

≤
∞∑

n=0

∫ τ
x3�
K

0

∣∣g(K + n) − g(K + n + 1 + 8K)
∣∣1{Zx3�

t ∈(K+n,K+n+1]} dt.

In view of (45), we get a telescoping sum, and

E

[∫ τ
x3�
K

0

∣∣g(
Z

x3(�−1)

t

) − g
(
Z

x3�
t

)∣∣dt

]
≤ 2αK

∞∑
n=0

(
g(K + n) − g(K + n + 1 + 8K)

)

≤ 2αK

8K∑
n=0

g(K + n)

≤ 2αK(8K + 1)g(K). (56)

Let D� be the event that

∫ τ
x3�
K

0

∣∣g(
Z

x3(�−1)

t

) − g
(
Z

x3�
t

)∣∣dt ≤ K.

By Markov’s Inequality and (56),

P
(
Dc

�

) ≤ 2αK(8K + 1)g(K)

K
. (57)

It follows from (54) that on the event D�, we have Z
x3(�−1)

t − Z
x3�
t ≥ 3K for all t ∈ [0, τ

x3�

k ]. Furthermore, after time
τ

x3�

K , the process Zx3� is no longer affected by the drift term involving g, and thus it decreases at least as fast as
Zx3(�−1) . It follows that on D�, we have Z

x3(�−1)

t − Z
x3�
t ≥ 3K for all t ≥ 0, and thus the process Zx3� can not be in the

interval [−(K + 1),K] at the same time as Zx3(�−1) or any other process Zx3j with j < �. Let

I� =
{

{t ≥ 0 : −(K + 1) ≤ Z
x3�
t ≤ K and τ

x3�

K ≤ t ≤ τ
x3�

K + 1} on D�,

∅ on Dc
�.

The discussion above implies that the sets I� are disjoint. Let

κ = E
[
1 ∧ inf{t : St > 1}].

Given the event D� ∩ {Z
τ

x3�
K

∈ [−K,K]}, the expected Lebesgue measure of I� is at least κ . Therefore, using (57) and

the fact that β
x3�

K > 2βK/3 followed by (42), we get

E

[∫ ∞

0
1{t∈I�} dt

]
≥ κ

(
2βK

3
− 2αK(8K + 1)g(K)

K

)
≥ κβK

3
.
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On the event that Z
x3�

τ
x3�
K

∈ [−K,K], because of (55), we have Z
zm

τ
x3�
K

≤ (8�+1)K . During the next time unit, the process

Zzm can increase by at most g(K), so if t ∈ I�, then using that g(K) < K , we get

Z
zm
t ≤ (8� + 1)K + g(K) ≤ 10�K.

We next note that if t ∈ I� then Z
zm
t ≥ K because Z

zm
t − Z

x3�
t ≥ 3K as described above. It follows that

Uzm
([K,10�K]) = E

[∫ ∞

0
1{K≤Z

zm
t ≤10�K} dt

]
≥

�∑
j=1

E

[∫ ∞

0
1{t∈Ij } dt

]
≥ κβK�

3
,

and therefore if y ≥ 10K , then

Uzm
([K,y)

) ≥ κβKy

60K
. (58)

Because the process (Z
zm

Hn
)∞n=0 is decreasing after it drops below the level K , it can only jump below zero one time.

In particular, the expected number of times the process jumps below zero is bounded above by one. Therefore, letting
νx denote the conditional distribution of Z

zm

Hn
− Z

zm

Hn+1
given ZHn = x, we have

1 ≥
∫ ∞

K

νx

([x,∞)
)
Uzm(dx) ≥

∫ 3M

K

νx

([x,∞)
)
Uzm(dx).

Let μ denote the distribution of the random variable SH1 − H1g(K). Because g is decreasing, we have νx([x,∞)) ≥
μ([x,∞)) for all x ≥ K . Therefore,

1 ≥
∫ 3M

K

μ
([x,∞)

)
Uzm(dx) =

∫ ∞

K

∫ y∧3M

K

Uzm(dx)μ(dy) ≥
∫ 3M

K

Uzm
([K,y)

)
μ(dy).

Combining this result with (58) gives

1 ≥ κβK

60K

∫ 3M

10K

yμ(dy).

Because E[S1] = ∞, we have E[SH1 − H1g(K)] = ∞, so the right-hand side is bigger than one for sufficiently large
positive integers M , a contradiction. �

Proof of Theorem 3. Let K ≥ 2 be a positive integer. If 2 ≤ Nn(Tn−) ≤ K and the event in (15) holds, then

−L + log 2 ≤ logn −
(

S(Tn−) −
∫ Tn

0
f

(
Yn(s)

)
ds

)
≤ L + logK, (59)

with f defined in (11), and the left inequality holds with Tn− replaced by any t ∈ [0, Tn). In particular, putting
K ′ := L + logK , we have

−K ′ ≤ Yn(t) for all t ∈ [0, Tn). (60)

The right inequality in (59) says that Yn(Tn−) ≤ K ′. With z := logn we have Yn(t) = Y z
t in the notation of Propo-

sition 17, hence τ z
K ′ < Tn. Thus −K ′ ≤ Y z

τz

K ′
by (60). On the other hand we have Y z

τz

K ′
≤ K ′ by definition, and

consequently Y z
τz

K ′
∈ [−K ′,K ′]. Note that E[S1] = ∞ by (5). Therefore, combining (37) and (15) we see that

P(Nn(Tn−) ≤ K) → 0 as n → ∞, which proves Theorem 3. �
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7. Proof of Theorems 4 and 5

We prepare the proof of Theorem 4 by a few lemmas.

Lemma 18. Let i ≥ 2 and ε > 0. Then there is a k > i such that for all n

P
(
Ln = i,Nn(t) /∈ [i + 1, k] for all t ≥ 0

) ≤ ε.

Proof. Without loss of generality �({0}) = 0, because otherwise the coalescent comes down from infinity, and the
claim is immediate.

Recall the definition of τk,n in (13). We have

P
(
Ln = i,Nn(t) /∈ [i + 1, k] for all t ≥ 0

) ≤ P
(
Nn(τ�,n) = i

)
with � = k + 1. As before, let (tm,pm), m ≥ 1, be the first two coordinates of the points of 	 in an arbitrary order.
Denote p̃ := pm if tm = τ�,n. Define for κ = 6i/ε the events

A :=
{
∃i ≥ 1 : tm ≤ τ�,n,

1

κNn(tm−)
< 1 − pi ≤ κ

Nn(tm−)

}
,

B :=
{

1 − p̃ ≤ 1

κNn(τ�,n−)

}
,

C :=
{

1 − p̃ >
κ

Nn(τ�,n−)

}
.

Then

P
(
Nn(τ�,n) = i

) ≤ P(A) + P
({

Nn(τ�,n) = i
} ∩ B

) + P
({

Nn(τ�,n) = i
} ∩ C

)
. (61)

We estimate these probabilities.
First denote

σj = τn/κj ,n, j = 0,1, . . . ,

and let r be the smallest integer such that n/κr ≤ �. Then

P(A) ≤
r−1∑
j=0

P

(
∃i : σj < tm ≤ σj+1,

1

κNn(tm−)
< 1 − pm ≤ κ

Nn(ti−)

)

≤
r−1∑
j=0

P

(
∃i : σj < tm ≤ σj+1,

κj−1

n
< 1 − pi ≤ κj+2

n

)
.

From Lemma 7 we have E[σj+1 − σj ] ≤ Cκ for a suitable constant Cκ depending on κ , thus

P(A) ≤
r−1∑
j=0

E[σj+1 − σj ]
∫

[1−κj+2/n,1−κj−1/n)

�(dp)

p2

≤ 3Cκ

∫
[1−κr+1/n,1)

�(dp)

p2

≤ 3Cκ

∫
[1−κ/�,1)

�(dp)

p2
.
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Thus, if we choose � sufficiently large we obtain

P(A) ≤ ε

3
. (62)

Second we have on the event B with b = Nn(τ�,n−)

p̃

(b − i + 2)(1 − p̃)
≥ 1

b

(
1

1 − p̃
− 1

)
≥ bκ − 1

b
≥ κ

2

and consequently on the event B with α = ∑
j<�

(
b

j−1

)
(1 − p̃)j−1p̃b−j+1

P
({

Nn(τ�,n) = i
} ∩ B|p̃,Nn(τ�,n−) = b,B

)
= 1

α

(
b

i − 1

)
(1 − p̃)i−1p̃b−i+1

= b − i + 2

i − 1

1 − p̃

p̃
P

({
Nn(τ�,n) = i − 1

} ∩ B|p̃,Nn(τ�,n−) = b,B
)

≤ 2

κ(i − 1)
.

Thus, since κ ≥ 6/ε

P
({

Nn(τ�,n) = i
} ∩ B

) ≤ ε

3
. (63)

Third we have on the event C, again with b = Nn(τ�,n−) and with b ≥ 2i

p̃

(b − i + 1)(1 − p̃)
≤ 2

b

1

1 − p̃
≤ 2

κ

and consequently for � ≥ 2i

P
({

Nn(τ�,n) = i
} ∩ C|p̃,Nn(τ�,n−) = b,C

)
= i

b − i + 1

p̃

1 − p̃
P

({
Nn(τ�,n) = i + 1

} ∩ C|p̃,Nn(τ�,n−) = b,C
)

≤ 2i

κ

implying

P
({

Nn(τ�,n) = i
} ∩ C

) ≤ ε

3
(64)

for κ = 6i/ε . Now from (61), (62), (63) and (64) our claim follows. �

Recall that ρij denotes the rate for a jump of Nn from state i to j , and ρi is the rate at which Nn leaves i. Next let
for n ∈ N

μ
(n)
i := 1

ρi

P
(
Nn(t) = i for some t ≥ 0

)
.

Also let

Pij := ρij

ρi

, 1 ≤ j < i,

be the transition probability from state i to j of the block-counting process of our �-coalescent.
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Lemma 19. Suppose that there are numbers μi , i ≥ 2, not all vanishing, such that for some increasing sequence
(nm)m≥1 of natural numbers, as m → ∞,

μ
(nm)
i → μi

for all i ≥ 2. Then the measure μ = (μi)i≥2 is ρ-invariant, i.e. satisfies the first condition in (3).

Proof. First we have for i ≥ 2

μ
(n)
i ρi1 = P

(
Nn(t) = i for some t ≥ 0

)
Pi1 = P(Ln = i)

and therefore in the limit (along the specified sequence) by Fatou’s Lemma

∑
i≥2

μiρi1 ≤ 1.

Second for 2 ≤ i < k

P
(
Ln = i,Nn(t) /∈ [i + 1, k] for all t ≥ 0

) =
∑
j>k

P
(
Nn(t) = j for some t ≥ 0

)
PjiPi1

=
∑
j>k

μ
(n)
j ρjiPi1.

Applying Lemma 18 to the left-hand term it follows that for any ε > 0 there is a k such that for all n

∑
j>k

μ
(n)
j ρji ≤ ε.

Therefore we may proceed in the equation

μ
(n)
i ρi =

n∑
j=i+1

μ
(n)
j ρji

along the given subsequence to the limit to obtain

μiρi =
∞∑

j=i+1

μjρji, i ≥ 2. (65)

Thus μ is ρ-invariant. �

Lemma 20. Let ν = (νi)i≥2 be a measure satisfying (3). Then for any integer a ≥ 1 there are probability measures
ωa = (ωi,a)1≤i≤a on {1, . . . , a} such that for any i ≥ 2 we have ωi,a → 0 as a → ∞, and for 1 ≤ i ≤ a

νi =
a∑

n=i

μ
(n)
i ωn,a. (66)

Proof. Denote for i, j ≥ 1

P̃ij := νjρji

νiρi

= νjρj

νiρi

Pji,
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where we set the undefined quantity ν1ρ1 equal to 1. Then the ρ-invariance and the norming of ν (according to the
second condition in (3)) implies

∑
j P̃ij = 1 for i ≥ 1. Thus we may consider the Markov chain (X̃r )r=0,1,... on N

with initial state X̃0 = 1 and transition matrix (P̃ij ). We claim that it fulfils the equation

νjρj = P(X̃r = j for some r), j ≥ 1.

We show this claim by induction. For j = 1 both terms are equal to 1. Suppose that it holds for 1 ≤ i ≤ j − 1. Then

P(X̃r = j for some r) =
j−1∑
i=1

νiρiP̃ij = νjρj

j−1∑
i=1

Pji = νjρj .

Next define for an integer a > 1 the random times

ξa := max{r ≥ 0 : X̃r ≤ a}
and for 1 ≤ i < a

ηia := P(X̃1 > a|X̃0 = i).

Then for a > 1 and 1 = i0 < i1 < i2 < · · · < ir ≤ a

P (X̃0 = i0, X̃1 = i1, X̃2 = i2, . . . , X̃r = ir , ξa = r) = P̃1i1 P̃i1i2 · · · P̃ir−1ir ηira

= ωir ,aPir ir−1 · · ·Pi2i1Pi11

with

ωi,a := νiρiηia, 1 ≤ i < a

and ir = 1 in the case r = 0 (then both products of transition probabilities are set to be 1). For fixed i, summing over
1 < i1 < i2 < · · · < ir := i ≤ a and r ≥ 0 we obtain the equality P(X̃ξa = i)ηia = ωi,a , and thus

∑
1≤i≤a ωi,a = 1.

Therefore we may view the time-reversed process Y0 = X̃ξa , Y1 = X̃ξa−1, . . . , Yξa = X̃0 as a Markov chain on
{1, . . . , a} with initial distribution ωa , transition probabilities Pij and killed after reaching 1. This process coincides
in distribution with the block-counting process of our original coalescent in discrete time, now with initial distribution
ωa . This gives another way to express νi : For 1 ≤ i < a

ρiνi = P(Yr = i for some r ≤ ξa) =
a−1∑
n=i

ρiμ
(n)
i ωn,a,

which is (66). Also ηia → 0 for a → ∞, which implies ωi,a → 0. Thus the proof is finished. �

Proof of Theorem 4. (i) Let i ≥ 2. If Ln → ∞ in probability, then as n → ∞

μ
(n)
i = P(Ln = i)

ρi1
→ 0.

Now suppose that there is a measure ν satisfying (3). Then we may apply Lemma 20. Let ε > 0 and b > i such that
μ

(n)
i ≤ ε for n > b. From (66) for a > b

νi ≤
b∑

n=i

1

ρi1
ωn,a +

a∑
n=b+1

εωn,a ≤
b∑

n=i

1

ρi1
ωn,a + ε.

In the limit a → ∞, since ωn,a → 0 for fixed n, we obtain νi ≤ ε. Thus νi = 0 for all i ≥ 2, which is a contradiction.
Hence there is no solution to (3).
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(ii) Now by assumption there is an increasing sequence of natural numbers nm, m ≥ 1, such that as m → ∞

μ
(nm)
i = P(Lnm = i)

ρi1
→ α

πi

ρi1

for all i ≥ 2 and for some α > 0. From Lemma 19 it follows that μi := πi/ρi1 are the weights of a ρ-invariant
measure μ.

Now let ν be any solution of (3). By assumption we have μ
(n)
i ∼ μi

μ2
μ

(n)
2 as n → ∞. Therefore from Lemma 20 it

follows by a similar argument as in the proof of (i) that, as a → ∞,

νi =
a∑

n=i

μ
(n)
i ωn,a ∼

a∑
n=i

μi

μ2
μ

(n)
2 ωn,a ∼ μi

μ2

a∑
n=2

μ
(n)
2 ωn,a = μi

μ2
ν2.

This shows that ν is a multiple of μ.
(iii) In the remaining situation by means of a diagonal argument there are two increasing sequences such that μ

(n)
i

converges along both sequences for all i ≥ 2, but now the limiting measures are not multiples of each other. Thus
another application of Lemma 19 gives the claim. This finishes the proof. �

Proof of Theorem 5. Let 0 = γ0 < γ1 < · · · < γζn = Tn be the jump times of N̂n and let �i := γi+1 − γi the interim
times. For the proof it is now sufficient to show for fixed r ≥ 1 convergence in distribution of the random vectors
(N̂n(0),�0, . . . , N̂n(γr),�r) to the corresponding limiting distribution. The event {ζn < r} has vanishing probability
as n → ∞. In view of the strong Markov property of Nn as n → ∞ we have for 2 ≤ i0 < i1 < · · · < ir < n

P
(
N̂n(0) = i0,�0 ∈ dt0, . . . , N̂n(γr) = ir ,�r ∈ dtr

)
= P

(
Nn

(
(Tn − γr)−

) = ir ,�r ∈ dtr , . . . ,Nn(Tn−) = i0,�0 ∈ dt0
)

= μ
(n)
ir

ρir · e−ρir tr · ρir ir−1 dtr · · · e−ρi0 t0 · ρi01 dt0.

Theorem 4(ii) implies

P
(
N̂n(0) = i0,�0 ∈ dt0, . . . , N̂n(γr) = ir ,�r ∈ dtr

)
→ μir ρir · e−ρir tr · ρir ir−1 dtr · · · e−ρi0 t0 · ρi01 dt0.

For i < j define rates ρ̂ij and ρ̂i by

μiρ̂ij = μjρji, ρ̂i :=
∑
j>i

ρ̂ij .

Since μ is ρ-invariant,

ρ̂i = 1

μi

∑
j>i

μjρji = ρi.

With these terms the above convergence statement transforms into

P
(
N̂n(0) = i0,�0 ∈ dt0, . . . , N̂n(γr) = ir ,�r ∈ dtr

)
→ μi0ρi01 · e−ρ̂i0 t0 · ρ̂i0i1 dt0 · · · e−ρ̂ir−1 tr−1 · ρ̂ir−1ir dtr−1 · e−ρ̂ir tr · ρ̂ir dtr

= P
(
N̂∞(0) = i0,�0 ∈ dt0, . . . , N̂∞(γr) = ir ,�r ∈ dtr

)
.

This is our claim. �
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