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Abstract. We provide a new probabilistic proof of the connection between Rost’s solution of the Skorokhod embedding problem
and a suitable family of optimal stopping problems for Brownian motion, with finite time-horizon. In particular we use stochastic
calculus to show that the time reversal of the optimal stopping sets for such problems forms the so-called Rost’s reversed barrier.

Résumé. Nous donnons une nouvelle preuve probabiliste de la relation entre la solution de Rost du problème de plongement de
Skorokhod et une famille convenable de problèmes d’arrêt optimal pour le mouvement Brownien, à horizon de temps fini. En
particulier, nous utilisons le calcul stochastique pour montrer que le retourné en temps des ensembles d’arrêt optimal forme ce
qu’on appelle la barrière de Rost retournée.
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1. Introduction

In the 60’s Skorokhod [30] formulated the following problem: finding a stopping time τ of a standard Brownian
motion W such that Wτ is distributed according to a given probability law μ. Many solutions to this problem have
been found over the past 50 years via a number of different methods bridging analysis and probability (for a survey
one may refer for example to [23]). In recent years the study of Skorokhod embedding was boosted by the discovery
of its applications to model independent finance and a survey of these results can also be found in [19].

In this work we focus on the so-called Rost’s solution of the embedding (see [28]) and our main contribution is
a new fully probabilistic proof of its connection to a problem of optimal stopping. One of the key differences in our
approach compared to other existing proofs of this result ([9] and [21]) is that we tackle the optimal stopping problem
directly. Moreover, we rely only on stochastic calculus rather than using classical PDE methods, as in [21], or viscosity
theory, as in [9].

Here we consider Rost’s solutions expressed in terms of first hitting times of the time–space Brownian motion
(t,Wt )t≥0 to a set usually called reversed barrier [4]. A purely probabilistic construction of Rost’ s barrier relevant
to the present work was recently found in [7] in a very general setting. Cox and Peskir [7] proved that given a
probability measure μ one can find a unique couple of left continuous functions b, c : [0,∞) → R, with b increasing
and c decreasing, such that W stopped at the stopping time τb,c := inf{t > 0 : Wt ≤ c(t) or Wt ≥ b(t)} is distributed
according to μ. The curves b and c are the boundaries of Rost’s reversed barrier set and the stopping time τb,c fulfils
a number of optimality properties, e.g. it has the smallest truncated expectation among all stopping times realising the
same embedding.
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The optimal stopping problem object of our study is pointed out in [7, Remark 17] and it was originally linked to
Rost’s embedding via PDE methods by McConnell [21, Section 13]. Let T > 0, let ν and μ be probability measures
with cumulative distributions Fν and Fμ, denote B a Brownian motion and consider the optimal stopping problem

sup
0≤τ≤T

EG(Bτ ) with G(x) := 2
∫ x

0

(
Fν(z) − Fμ(z)

)
dz, x ∈ R, (1.1)

where τ is a stopping time of B . In this paper we prove that under mild assumptions on μ and ν (cf. Section 2) it
is optimal in (1.1) to stop (t,Bt )t≥0 at the first exit time from an open set CT ⊂ [0, T ] × R (continuation set) which
is bounded from above and from below by two right-continuous, monotone functions of time (one of these could be
infinite). For each T > 0 we denote DT := {[0, T ]×R} \CT (stopping set) and we construct a set D−∞ as the extension
to [0,∞) of the time reversal of the family {DT , T > 0}. Then we show that such D−∞ is a Rost’s barrier in the sense
that if Wν is another Brownian motion (independent of B) with initial distribution ν, the first hitting time σ∗ of (t,Wν

t )

to the set D−∞ gives Wν
σ∗ ∼ μ.

Our study was inspired by the work of McConnell [21]. He studied a free-boundary problem, motivated by a version
of the two sided Stefan problem, where certain boundary conditions are given in a generalised sense that involves the
measures μ and ν used in (1.1). His results of existence uniqueness and regularity of the solution rely mostly upon
PDE methods and some arguments from the theory of Markov processes. McConnell showed that the free-boundaries
of his problem are the boundaries of a Rost’s reversed barrier embedding the law μ (analogously to the curves b and
c of [7]) and he provided some insights as to how these free-boundaries should also be optimal stopping boundaries
for problem (1.1).

In the present paper we adopt a different point of view and begin by performing a probabilistic analysis of the
optimal stopping problem (1.1). We characterise its optimal stopping boundaries and carry out a deep study of the
regularity of its value function. It is important to notice that the second derivative of G in (1.1) only exists in the sense
of measures (except under the restrictive assumption of μ and ν absolutely continuous with respect to the Lebesgue
measure) and therefore our study of the optimal stopping problem naturally involves fine properties of Brownian
motion’s local time (via the occupation time formula). This feature seems fairly new in the existing literature on
finite time-horizon optimal stopping problems and requires some new arguments for the study of (1.1). Our analysis
of the regularity of the value function V of (1.1) shows that its time derivative Vt is continuous on [0, T ) × R (see
Proposition 3.15) although its space derivative Vx may not be. The proof of the continuity of Vt is entirely probabilistic
and to the best of our knowledge it represents a novelty in this literature and it is a result is of independent interest.

Building on the results concerning problem (1.1) we then show how the latter is linked to Rost’s embedding (see
proof of Theorem 2.3). We would like to stress that our line of arguments is different to the one in [21] and it is
only based on probability and stochastic calculus. Moreover our results extend those of [21] relative to the Skorokhod
embedding by considering target measures μ that may have atoms (McConnell instead only looked at continuous
measures).

It is remarkable that the connection between problem (1.1) and Rost’s embedding hinges on the probabilistic
representation of the time derivative of the value function of (1.1) (see Proposition 4.2). It turns out that Vt can be
expressed in terms of the transition density of (t,Bt ) killed when leaving the continuation set CT ; then symmetry
properties of the heat kernel allow us to rewrite Vt as the transition density of (t,Wν

t ) killed when hitting the Rost’s
reversed barrier D−∞ (see Lemma 4.1. McConnell obtained the same result via potential theoretic and PDE arguments).
The latter result and Itô’s formula are then used to complete the connection in Theorem 2.3.

One should notice that probabilistic connections between optimal stopping and Skorokhod embedding are not new
in the literature and there are examples relative for instance to the Azéma–Yor’s embedding [1] (see [18,22,24] and
[25] among others) and to the Vallois’ embedding [31] (see [5]). For recent developments of connections between
control theory, transport theory and Skorokhod embedding one may refer to [2] and [16] among others. Our work
instead is more closely related to the work of Cox and Wang [9] (see also [8]) where they show that starting from
the Rost’s solution of the Skorokhod embedding one can provide the value function of an optimal stopping problem
whose optimal stopping time is the hitting time of the Rost’s barrier. Their result holds for martingales under suitable
assumptions and clearly the optimal stopping problem that they find reduces to (1.1) in the simpler case of Brownian
motion. An important difference between this work and [9] is that the latter starts from the Rost’s barrier and constructs
the optimal stopping problem, here instead we argue reverse. Methodologies are also very different as [9] relies upon
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viscosity theory or weak solutions of variational inequalities. Results in [8] and [9] have been recently expanded in
[17] where viscosity theory and reflected FBSDEs have been used to establish the equivalence between solutions of
certain obstacle problems and Root’s (as well as Rost’s) solutions of the Skorokhod embedding problem.

Finally we would like to mention that here we address the question posed in [8, Rem. 4.4] of finding a probabilistic
explanation for the correspondence between hitting times of Rost’s barriers2 and suitable optimal stopping times.

When this work was being completed we have learned of a work by Cox, Obłój and Touzi [6] where optimal
stopping and a time reversal technique are also used to construct Root’s barriers for the Skorokhod embedding problem
with multiple marginals. In the latter paper the authors study directly an optimal stopping problem associated by [8]
to Root’s embedding. They prove that the corresponding stopping set is indeed the Root barrier for a suitable target
law μ and, using an iterative scheme, they extend the result to embeddings with multiple marginals. This is done
via a sequence of optimal stopping problems nested into one another. The approach in [6] is probabilistic but the
methods are different to the ones described here. Our results rely on C1 regularity properties of the value function for
(1.1) whereas, in [6], only continuity of the value function is obtained. The connection between optimal stopping and
Root’s embedding found in [6] uses an approximation scheme starting from finitely supported measures and it holds
for target measures μ which are centered and with finite first moment. The latter assumptions are not needed here
and we deal directly with a general μ without relying on approximations. Root and Rost embedding are somehow
the time-reversal of one another and therefore our work and [6] nicely complement each other. Although it should
be possible to extend our results and methods to a multi-marginal case, this is not a trivial task and is left for future
research.

The present paper is organised as follows. In Section 2 we provide the setting and give the main results. In Section 3
we completely analyse the optimal stopping problem (1.1) and its value function whereas Section 4 is finally devoted
to the proof of the link to Rost’s embedding. A technical Appendix collects some results and concludes the paper.

2. Setting and main results

Let (�,F,P) be a probability space, B := (Bt )t≥0 a one dimensional standard Brownian motion and denote (Ft )t≥0
the natural filtration of B augmented with P-null sets. Throughout the paper we will equivalently use the notations
Ef (Bx

t ) and Exf (Bt ), for f :R →R Borel-measurable, to refer to expectations under the initial condition B0 = x.
Let μ and ν be probability measures on R, i.e. with no atoms at infinity. We denote by Fμ(x) := μ((−∞, x]) and

Fν(x) := ν((−∞, x]) the (right-continuous) cumulative distributions functions of μ and ν. Throughout the paper we
will use the following notation:

a+ := sup{x ∈ R : x ∈ suppν} and a− := − inf{x ∈ R : x ∈ suppν}, (2.1)

μ+ := sup{x ∈ R : x ∈ suppμ} and μ− := − inf{x ∈R : x ∈ suppμ} (2.2)

and for the sake of simplicity but with no loss of generality we will assume a± ≥ 0. We also make the following
assumptions which are standard in the context of Rost’s solutions to the Skorokhod embedding problem (see for
example [7], and in particular Remark 2 on page 12 therein).

(D.1) There exist numbers b̂+ ≥ a+ and b̂− ≥ a− such that (−b̂−, b̂+) is the largest interval containing (−a−, a+)

with μ((−b̂−, b̂+)) = 0;
(D.2) If b̂+ = a+ (resp. b̂− = a−) then μ({b̂+}) = 0 (resp. μ({−b̂−}) = 0).

It should be noted in particular that in the canonical example of ν(dx) = δ0(x) dx we have a+ = a− = 0 and the above
conditions hold for any μ such that μ({0}) = 0.

Assumption (D.2) is made in order to avoid solutions of the Skorokhod embedding problem involving randomised
stopping times. On the other hand Assumption (D.1) guarantees that for any T > 0 the continuation set of problem
(1.1) is connected (see also the rigorous formulation (2.4) below). Although (D.1) is not necessary for our main
results to hold, the study of general non-connected continuation sets would require a case-by-case analysis. The latter
would not affect the key principles presented in this work but it substantially increases the difficulty of exposition. In

2To be precise the question in [8] was posed for Root’s barrier (see [27]), but Root’s and Rost’s solutions are known to be closely related.
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Remark 4.6 below we provide an example of ν and μ which do not meet condition (D.1) but for which our method
works in the same way.

The target measure μ could be entirely supported only on the positive or on the negative real half-line, i.e. supp{μ}∩
R− = ∅ or supp{μ} ∩ R+ = ∅, respectively. In the former case b̂− = +∞ and μ− = −b̂+, whereas in the latter
b̂+ = +∞ and μ+ = −b̂−. For the sake of generality in most of our proofs we will develop explicit arguments for the
case of μ supported on portions of both positive and negative real axis and will explain how these carry over to the
other simpler cases as needed.

For 0 < T < +∞ and (t, x) ∈ [0, T ] ×R we denote

G(x) := 2
∫ x

0

(
Fν(z) − Fμ(z)

)
dz (2.3)

and introduce the following optimal stopping problem

V (t, x) := sup
0≤τ≤T −t

ExG(Bτ ), (2.4)

where the supremum is taken over all (Ft )-stopping times in [0, T − t]. As usual the continuation set CT and the
stopping set DT of (2.4) are given by

CT := {
(t, x) ∈ [0, T ] ×R : V (t, x) > G(x)

}
, (2.5)

DT := {
(t, x) ∈ [0, T ] ×R : V (t, x) = G(x)

}
. (2.6)

Moreover for (t, x) ∈ [0, T ] ×R the natural candidate to be an optimal stopping time is

τ∗(t, x) = inf
{
s ≥ 0 : (t + s, x + Bs) ∈DT

}
. (2.7)

Throughout the paper we will often use the following notation: for a set A ⊂ [0, T ] ×R we denote A ∩ {t < T } :=
{(t, x) ∈ A : t < T }. Moreover we use f (t+) and f (t−) to denote the right and left limit, respectively, of f at t .

The first result of the paper concerns the geometric characterisation of CT and DT and confirms that (2.7) is indeed
optimal for problem (2.4).

Theorem 2.1. The minimal optimal stopping time for (2.4) is given by τ∗ in (2.7). Moreover, there exist two right-
continuous, non-increasing functions b+, b− : [0, T ] →R+ ∪ {+∞}, with b±(T −) = b̂±, such that

CT = {
(t, x) ∈ [0, T ) ×R : x ∈ (−b−(t), b+(t)

)}
, (2.8)

DT = {[0, T ] ×R
} \ CT . (2.9)

Theorem 2.1 will be proven in Section 3, where a deeper analysis of the boundaries’ regularity will be carried out.
A number of fundamental regularity results for the value function V will also be provided (in particular continuity
of Vt in [0, T ) × R) and these constitute the key ingredients needed to show the connection to Rost’s barrier and
Skorokhod embedding. In order to present such connection we must introduce some notation.

By arbitrariness of T > 0, problem (2.4) may be solved for any time horizon. Hence for each T we obtain a
characterisation of the corresponding value function, denoted now V T , and of the related optimal boundaries, denoted
now bT±. It is straightforward to observe that for T2 > T1 one has V T2(t + T2 − T1, x) = V T1(t, x) for all (t, x) ∈
[0, T1] × R and therefore, thanks to Theorem 2.1, b

T2± (t + T2 − T1) = b
T1± (t) for t ∈ [0, T1) since G is independent

of time. We can now consider a time reversed version of our continuation set (2.8) and extend it to the time interval
[0,∞). In order to do so we set T0 = 0, Tn = n, n ≥ 1, n ∈ N and denote sn±(t) := b

Tn± (Tn − t) for t ∈ (0, Tn]. Note
that, as already observed, for m > n and t ∈ (0, Tn] it holds sm± (t) = sn±(t).

Definition 2.2. Let s± : [0,∞) → R+ ∪ {+∞} be the left-continuous non-decreasing functions defined by taking
s±(0) := b̂± and

s±(t) :=
∞∑

j=0

s
j+2
± (t)1(Tj ,Tj+1](t), t ∈ (0,∞).
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For any T > 0 the curves s+ and −s− restricted to (0, T ] constitute the upper and lower boundaries, respectively,
of the continuation set CT after a time-reversal. The next theorem establishes that indeed s+ and −s− provide the
Rost’s reversed barrier which embeds μ. Its proof is given in Section 4.

Theorem 2.3. Let Wν := (Wν
t )t≥0 be a standard Brownian motion with initial distribution ν and define

σ∗ := inf
{
t > 0 : Wν

t /∈ (−s−(t), s+(t)
)}

. (2.10)

Then it holds

Ef
(
Wν

σ∗
)
1{σ∗<+∞} =

∫
R

f (y)μ(dy) for all f ∈ Cb(R). (2.11)

Remark 2.4. It was shown in [7, Thm. 10] that there can only exist one couple of left-continuous non-decreasing
functions s+ and s− such that our Theorem 2.3 holds. Therefore our boundaries coincide with those obtained in [7]
via a constructive method. As a consequence s+ and s− fulfil the optimality properties described by Cox and Peskir
in Section 5 of their paper, i.e., σ∗ has minimal truncated expectation amongst all stopping times embedding μ.

Remark 2.5. Under the additional assumption that μ is continuous we were able to prove in [12] that s± uniquely
solve a system of coupled integral equations of Volterra type and can therefore be evaluated numerically.

3. Solution of the optimal stopping problem

In this section we provide a proof of Theorem 2.1 and extend the characterisation of the optimal boundaries b+ and
b− in several directions. Here we also provide a thorough analysis of the regularity of V in [0, T ] ×R and especially
across the two boundaries. Such study is instrumental to the proofs of the next section but it contains numerous results
on optimal stopping which are of independent interest.

We begin by providing finiteness, continuity and time monotonicity of V . The proof of these facts follows standard
arguments and it is postponed to the Appendix.

Proposition 3.1. For all (t, x) ∈ [0, T ] × R it holds |V (t, x)| < +∞. The map t �→ V (t, x) is non-increasing for
all x ∈ R and V ∈ C([0, T ] ×R). Moreover x �→ V (t, x) is Lipschitz continuous with constant LG independent of t

and T .

The above result implies that CT is open and DT is closed (see (2.5) and (2.6)) and standard theory of optimal stop-
ping guarantees that (2.7) is the smallest optimal stopping time for problem (2.4). Moreover from standard arguments,
which we collect in the Appendix for completeness, V ∈ C1,2 in CT and it solves the following problem(

Vt + 1

2
Vxx

)
(t, x) = 0, for (t, x) ∈ CT , (3.1)

V (t, x) = G(x), for (t, x) ∈ DT , (3.2)

V (t, x) ≥ G(x), for (t, x) ∈ [0, T ] ×R. (3.3)

According to standard theory V is super-harmonic, hence for (t, x) ∈ DT ∩{t < T } it must be Vt + 1
2Vxx = 1

2G′′(dx) ≤
0. Indeed we show in step 2 of the next theorem’s proof that ν(dx) = 0 for all (t, x) ∈ DT ∩ {t < T }.

We now characterise CT and prove an extended version of Theorem 2.1. For that we need to introduce the local
time of B at a point x ∈R and denote it by Lx := (Lx

t )t≥0.

Theorem 3.2. All the statements in Theorem 2.1 hold and moreover one has

(i) if supp{μ} ⊆R+ then b− ≡ ∞ and there exists t0 ∈ [0, T ) such that b+(t) < ∞ for t ∈ (t0, T ],
(ii) if supp{μ} ⊆R− then b+ ≡ ∞ and there exists t0 ∈ [0, T ) such that b−(t) < ∞ for t ∈ (t0, T ],

(iii) if supp{μ} ∩R+ �=∅ and supp{μ} ∩R− �=∅ then there exists t0 ∈ [0, T ) such that b±(t) < ∞ for t ∈ (t0, T ],
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(iv) if ν({a+}) > 0 (resp. ν({−a−}) > 0) then b+(t) > a+ for t ∈ [0, T ) (resp. b−(t) > a−).

Finally, letting �b±(t) := b±(t) − b±(t−) ≤ 0, for any t ∈ [0, T ] such that b±(t) < +∞ it also holds

�b+(t) < 0 ⇒ μ
((

b+(t), b+(t−)
)) = 0, (3.4)

�b−(t) < 0 ⇒ μ
((−b−(t−),−b−(t)

)) = 0. (3.5)

Proof. The proof is provided in a number of steps.
Step 1. Here we prove that DT ∩ {t < T } �= ∅. Arguing by contradiction assume that DT ∩ {t < T } = ∅. Fix

x ∈ supp{μ} and notice that with no loss of generality we may assume that dist(x, suppν) ≥ 2ε for some ε > 0.
Indeed if no such x and ε exist then (D.1) and (D.2) imply μ± = b̂± = a± with μ({a±}) = 0, hence a contradiction.

We define τε := inf{t ≥ 0 : Bt /∈ Ax
ε } with Ax

ε := (x − ε, x + ε) and also notice that μ(Ax
ε ) > 0. Then for arbitrary

t ∈ [0, T ) it holds

V (t, x) = G(x) +
∫
R

ExL
z
T −t (ν − μ)(dz) = G(x) +

∫
R

ExL
z
T −t1{τε≤T −t}ν(dz) −

∫
R

ExL
z
T −tμ(dz)

≤ G(x) +
∫
R

ExL
z
T −t1{τε≤T −t}ν(dz) −

∫
Ax

ε

ExL
z
T −tμ(dz), (3.6)

where we have used that Lz
T −t1{τε>T −t} = 0, Px -a.s. for all z ∈ supp{ν}, since Bt ∈ Ax

ε , for all t < τε , Px -a.s. We now
analyse separately the two integral terms in (3.6). For the second one we note that

∫
Ax

ε

ExL
z
T −tμ(dz) =

∫
Ax

ε

(∫ T −t

0

1√
2πs

e− 1
2s

(x−z)2
ds

)
μ(dz)

≥ μ
(
Ax

ε

)∫ T −t

0

1√
2πs

e− 1
2s

ε2
ds = μ

(
Ax

ε

)
E0L

ε
T −t , (3.7)

where we have used

ExL
z
T −t =

∫ T −t

0

1√
2πs

e− 1
2s

(x−z)2
ds. (3.8)

For the first integral in the last line of (3.6) we use strong Markov property and additivity of local time to obtain∫
R

ExL
z
T −t1{τε≤T −t}ν(dz) =

∫
R

Ex

[
Ex

(
Lz

T −t |Fτε

)
1{τε≤T −t}

]
ν(dz)

=
∫
R

Ex

[(
EBτε

(
Lz

T −t−τε

) + Lz
τε

)
1{τε≤T −t}

]
ν(dz)

=
∫
R

Ex

[
EBτε

(
Lz

T −t−τε

)
1{τε≤T −t}

]
ν(dz),

where we have also used Lz
τε

= 0, Px -a.s. for z ∈ supp{ν}. We denote A := {Bτε = x + ε} and Ac := {Bτε = x − ε},
then given that t �→ Lz

t is increasing∫
R

Ex

[
EBτε

(
Lz

T −t−τε

)
1{τε≤T −t}

]
ν(dz)

≤
∫
R

Ex

[
EBτε

(
Lz

T −t

)
1{τε≤T −t}

]
ν(dz)

=
∫
R

(
Ex+ε

[
Lz

T −t

]
Ex[1{τε≤T −t}1A] + Ex−ε

[
Lz

T −t

]
Ex[1{τε≤T −t}1Ac ])ν(dz).
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Now we recall that dist(x, suppν) ≥ 2ε so that by (3.8) it follows

Ex+ε

[
Lz

T −t

] ≤
∫ T −t

0

1√
2πs

e− 1
2s

ε2
ds = E0L

ε
T −t for all z ∈ supp{ν}

and analogously

Ex−ε

[
Lz

T −t

] ≤ E0L
ε
T −t for all z ∈ supp{ν}. (3.9)

Adding up (3.7)–(3.9) we find

V (t, x) ≤ G(x) + E0
(
Lε

T −t

)(
Px(τε ≤ T − t) − μ

(
Ax

ε

))
(3.10)

and since lims↓0 Px(τε ≤ s) = 0 by continuity of Brownian paths, one can find t close enough to T so that Px(τε ≤
T − t) < μ(Ax

ε ) and (3.10) gives a contradiction. Hence DT ∩ {t < T } �=∅.
Step 2. Here we show that [0, T ) × (−a−, a+) ⊆ CT and in particular if a− = a+ = 0 then [0, T ) × {0} ⊂ CT .

Moreover if ν({±a±}) > 0 then also [0, T ) × {±a±} ⊂ CT , and finally, if −b̂− < b̂+, then [0, T ) × (−b̂−, b̂+) ⊆ CT .
We analyse separately the cases in which b̂± > a± and those in which b̂+ = a+ and/or b̂− = a−.

Assume first

−b̂− < −a− ≤ a+ < b̂+.

Fix t ∈ [0, T ) and x ∈ (−b̂−, b̂+), then under Px define

τb := inf
{
s ≥ 0 : Bs /∈ (−b̂−, b̂+)

} ∧ (T − t).

Applying Itô–Tanaka–Meyer’s formula we get

V (t, x) ≥ ExG(Bτb
) = G(x) +

∫
R

ExL
z
τb

(ν − μ)(dz) = G(x) +
∫ a+

−a−
ExL

z
τb

ν(dz) > G(x) (3.11)

by using that B hits any point of [−a−, a+] before τb with positive probability under Px whereas Lz
τb

= 0, Px -a.s.

for all z ∈ supp{μ}. The latter is true because Bt ∈ (−b̂−, b̂+) for all t < τb, Px -a.s., and t �→ Lz
t is continuous. From

(3.11) it follows [0, T ) × (−b̂−, b̂+) ⊂ CT .
Let us now consider b̂+ = a+ = 0 and prove that [0, T ) × {0} ⊂ CT . From Assumption (D.2) we have μ({0}) = 0

and ν({0}) = 1. For an arbitrary ε > 0 and t ∈ [0, T ) we denote Aε := (−ε,+ε) and

τε := inf{s ≥ 0 : Bs /∈ Aε} ∧ (T − t).

Then it follows

V (t,0) ≥ E0G(Bτε ) = G(0) +
∫
R

E0L
z
τε

(ν − μ)(dz) = G(0) +
∫

Aε

E0L
z
τε

(ν − μ)(dz). (3.12)

From Itô–Tanaka’s formula we get∫
Aε

E0L
z
τε

ν(dz) = ν
({0})E0L

0
τε

= ν
({0})E0|Bτε |, (3.13)

∫
Aε

E0L
z
τε

μ(dz) ≤ μ(Aε)E0|Bτε |, (3.14)

where in the last inequality we have used E0L
z
τε

≤ E0|Bτε |. From (3.12), (3.13) and (3.14) we find

V (t,0) − G(0) ≥ E0|Bτε |
(
ν
({0}) − μ(Aε)

)
(3.15)
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and for ε > 0 sufficiently small the right-hand side of the last equation becomes strictly positive since μ(Aε) →
μ({0}) = 0 as ε → 0.

Notice that the arguments above hold even if ν({0}) ∈ (0,1), so that the same rationale may be used to show that
ν({±a±}) > 0 =⇒ [0, T ) × {±a±} ⊂ CT . Hence condition (iv) in the statement of the theorem holds as well.

All the remaining cases with b̂+ = a+ and/or b̂− = a− can be addressed by a combination of the methods above.
Step 3. Here we prove existence and monotonicity of the optimal boundaries. For each t ∈ [0, T ) we denote the

t -section of CT by

CT (t) := {
x ∈ R : (t, x) ∈ CT

}
(3.16)

and we observe that the family (CT (t))t∈[0,T ) is non-increasing in time since t �→ V (t, x) − G(x) is non-increasing
(Proposition 3.1). Next we show that for each t ∈ [0, T ) it holds CT (t) = (−b−(t), b+(t)) for some b±(t) ∈ [a±,∞].

Since DT ∩{t < T } �=∅, due to step 1 above, with no loss of generality we assume x ≥ a+ and such that (t, x) ∈DT

for some t ∈ [0, T ) (alternatively we could choose x ≤ −a− with obvious changes to the arguments below). It follows
that [t, T ] × {x} ∈ DT since t �→ CT (t) is non-increasing.

It is sufficient to prove that (t, y) ∈ DT for y ≥ x. We argue by contradiction and assume that there exists y > x

such that (t, y) ∈ CT . Recall τ∗ in (2.7) and notice that for all z ∈ supp{ν} we have Lz
τ∗ = 0, Py -a.s. because τ∗ ≤ τ̂a

with τ̂a the first entry time to [−a−, a+]. Hence we obtain the contradiction:

V (t, y) = EyG(Bτ∗) = G(y) +
∫
R

EyL
z
τ∗(ν − μ)(dz) ≤ G(y).

Finally, the maps t �→ b±(t) are non-increasing by monotonicity of t �→ CT (t).
Step 4. We now prove conditions (i), (ii) and (iii) on finiteness of the boundaries. In particular we only address (i)

as the other items follow by similar arguments.
In step 1 and 3 above we obtained that for any x ∈ supp{μ}, with x > a+, there is t ∈ [0, T ) such that [t, T ] ×

[x,+∞) ⊂ DT . Hence the second part of (i) follows. To prove that b− = +∞, we recall that [0, T ) × supp{ν} ⊆ CT

from step 2. If −a− < a+, then for any x < 0 and t < T a strategy consisting of stopping at the first entry time to
[0, a+], denoted by τ̂0, gives

V (t, x) ≥ ExG(Bτ̂0∧(T −t)) = G(x) +
∫
R

ExL
z
τ̂0∧(T −t)

ν(dz) > G(x) (3.17)

because supp{μ} ⊆ R+. If instead a+ = a− = 0 then there exists ε > 0 and δ > 0 such that [0, T − δ) × (−ε, ε) ⊆ CT

because CT is open and (0, T ) × {0} ⊆ CT . Therefore for x < −ε and t < T − δ we can repeat the argument used in
(3.17) by replacing τ̂0 with

τ̂ε,δ := inf{s ≥ 0 : x + Bs ≥ ε} ∧ (T − t − δ).

By arbitrariness of ε and δ it follows that [0, T ) ×R− ⊆ CT .
Step 5. In this final step we show continuity properties of the boundaries. Right continuity of the boundaries follows

by a standard argument which we repeat (only for b+) for the sake of completeness. Fix t0 ∈ [0, T ) and let (tn)n∈N
be a decreasing sequence such that tn ↓ t0 as n → ∞, then (tn, b+(tn)) → (t0, b+(t0+)) as n → ∞, where the limit
exists since b+ is monotone. Since (tn, b+(tn)) ∈ DT for all n and DT is closed, then it must be (t0, b+(t0+)) ∈ DT

and hence b+(t0+) ≥ b+(t0) by definition of b+. Since b+ is non-increasing then also b+(t0+) ≤ b+(t0) and b+ is
right-continuous.

Next we prove (3.4), which is equivalent to say that jumps of b± may only occur if μ is flat across the jump. For the
proof we borrow arguments from [10]. Let us assume that for a given and fixed t we have b+(t−) > b+(t) and then
take b+(t) ≤ x1 < x2 ≤ b+(t−) and 0 < t ′ < t . Notice that the limit b+(t−) exists because b+ is non-increasing. We
denote R the rectangular domain with vertices (t ′, x1), (t, x1), (t, x2), (t ′, x2) and denote ∂PR its parabolic boundary.
Then (3.1) implies that V ∈ C1,2(R) and it is the unique solution of

ut + 1

2
uxx = 0 on R with u = V on ∂PR. (3.18)
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Note that in particular V (t, x) = G(x) for x ∈ [x1, x2]. We pick ψ ∈ C∞
c (x1, x2) such that ψ ≥ 0 and

∫ x2
x1

ψ(y)dy = 1,
and multiplying (3.18) by ψ and integrating by parts we obtain∫ x2

x1

Vt(s, y)ψ(y)dy = −1

2

∫ x2

x1

V (s, y)ψ ′′(y) dy for s ∈ (
t ′, t

)
. (3.19)

We recall that Vt ≤ 0 in R by Proposition 3.1 and by taking limits as s ↑ t , dominated convergence implies

0 ≤
∫ x2

x1

V (t, y)ψ ′′(y) dy =
∫ x2

x1

G(y)ψ ′′(y) dy = −2
∫ x2

x1

ψ(y)μ(dy), (3.20)

where we have used that ν(dy) = 0 on (x1, x2) since b+(·) ≥ a+ on [0, T ) by step 2 above. Since (x1, x2) and ψ are
arbitrary we conclude that (3.20) is only possible if μ((b+(t), b+(t−))) = 0.

Finally we prove that b±(T −) = b̂±. As usual we only deal with b+ but the same arguments can be used for
b−. Recall from step 2 above that b+(T −) ≥ b̂+ and arguing by contradiction we assume that b+(T −) > b̂+. Then
the same steps as in (3.19)–(3.20) may be applied to the interval (b̂+, b+(T −)), and since μ((b̂+, b+(T −))) > 0 by
definition of b̂+ and the fact that Fμ is right-continuous, then we reach again a contradiction. �

The behaviour of b± as t approaches T is very important for our purposes and knowing that b±(T −) = b̂± may
not be sufficient in some instances. Therefore we provide here a refined result concerning these limits.

Lemma 3.3. If μ({b̂+}) > 0 (resp. μ({−b̂−}) > 0) then there exists t+ ∈ [0, T ) (resp. t− ∈ [0, T )) such that b+(t) =
b̂+ for all t ∈ [t+, T ] (resp. b−(t) = b̂− for all t ∈ [t−, T ]).

Proof. We give a proof only for μ({b̂+}) > 0 as the other case is completely analogous. Here it is convenient to adopt
the notation Et,x[·] = E[·|Bt = x] and with no loss of generality to think of � as the canonical space of continuous
trajectories so that the shifting operator θ· : � → � is well defined and θt {ω(s), s ≥ 0} = {ω(t + s), s ≥ 0}.

Recalling that μ({b̂+}) > 0 =⇒ b̂+ > a+ due to Assumption (D.2) we now argue by contradiction and assume
that [0, T ) × {b̂+} ∈ CT . By Itô–Tanaka–Meyer formula

0 < V (t, b̂+) − G(b+) = E
t,b̂+

∫
R

Lz
τ∗(ν − μ)(dz) for all t ∈ [0, T ), (3.21)

where τ∗ is optimal under P
t,b̂+ . We aim now at finding an upper bound for the right-hand side of (3.21). Notice that

E
t,b̂+

∫
R

Lz
τ∗(ν − μ)(dz) ≤ −μ

({b̂+})E
t,b̂+Lb̂+

τ∗ + E
t,b̂+

∫
R

Lz
τ∗ν(dz) (3.22)

and let us consider the two terms above separately.
For the first term we set τR := inf{s ≥ t : |Bs − b̂+| ≥ R} under P

t,b̂+ for some R > 0 and use that |Bτ∗∧τR
− b̂+|p ≤

Rp for any p > 0 to obtain

E
t,b̂+Lb̂+

τ∗ ≥ E
t,b̂+Lb̂+

τ∗∧τR
= E

t,b̂+|Bτ∗∧τR
− b̂+|

≥ 1

Rp
E

t,b̂+
[|Bτ∗∧τR

− b̂+|1+p
] ≥ cp

Rp
E

t,b̂+
[
(τ∗ ∧ τR − t)

1+p
2

]
, (3.23)

where in the last inequality we have used Burkholder–Davis–Gundy inequality and cp > 0 is a fixed constant.
Now for the second term in the right-hand side of (3.22) we pick a ∈ (a+, b̂+), set τa := inf{s ≥ t : Bs ≤ a} and

use strong Markov property along with the fact that for z ∈ supp{ν} it holds Lz
s∧τa

= 0, P
t,b̂+ -a.s. These give

∫
R

E
t,b̂+Lz

τ∗ν(dz) =
∫
R

E
t,b̂+

[
1{τ∗>τa}Lz

τ∗
]
ν(dz)
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=
∫
R

E
t,b̂+

[
1{τ∗>τa}

(
Lz

τa
+ E

t,b̂+
[
Lz

τ∗ ◦ θτa |Fτa

])]
ν(dz)

=
∫
R

E
t,b̂+

[
1{τ∗>τa}Eτa,Bτa

[
Lz

τ∗
]]

ν(dz)

≤ P
t,b̂+(τ∗ > τa)

∫
R

sup
t≤s≤T

Es,a

[
Lz

τ∗
]
ν(dz). (3.24)

Since we are interested in t → T and b+(T −) = b̂+ by Theorem 2.1, with no loss of generality we assume that
b+(s) ≤ R for s ∈ [t, T ] and for R > 0 sufficiently large. Then [a, b+(s)] ⊆ [b̂+ − R, b̂+ + R] for s ∈ [t, T ] for
suitable R. The latter implies that {τa < τ∗} = {τa < τ∗, τa < τR}. Therefore, denoting δ := |b̂+ − a| we can estimate

P
t,b̂+(τa < τ∗) ≤ P

t,b̂+(τa < τ∗ ∧ τR)

≤ P
t,b̂+

(
sup

t≤s≤τ∗∧τR

|Bs − b̂+| ≥ δ
)

≤ 1

δq
E

t,b̂+

[
sup

t≤s≤τ∗∧τR

|Bs − b̂+|q
]

≤ cq

δq
E

t,b̂+
[|Bτ∗∧τR

− b̂+|q] ≤ c′
q

δq
E

t,b̂+
[
(τ∗ ∧ τR − t)q/2], (3.25)

where q > 1 is arbitrary but fixed, and we have used Doob’s inequality and Burkholder–Davis–Gundy inequality with
cq , c′

q suitable positive constants.

To simplify notation we set μ0 := μ({b̂+}) > 0, Cp := cp/Rp , C′
q := c′

q/δq and

g(t) :=
∫
R

sup
t≤s≤T

Es,a

[
Lz

τ∗
]
ν(dz),

and observe that g(t) ↓ 0 as t → T since (Lz
s)t≤s≤T is continuous and ET ,aL

z
T = 0 for all z ∈ R. Plugging estimates

(3.22)–(3.25) into (3.21) and choosing q = 1 + p we obtain

0 < V (t, b̂+) − G(b̂+)

≤ − μ0CpE
t,b̂+

[
(τ∗ ∧ τR − t)

1+p
2

] + g(t)C′
qE

t,b̂+
[
(τ∗ ∧ τR − t)q/2]

≤ (
g(t)C′

q − μ0Cp

)
E

t,b̂+
[
(τ∗ ∧ τR − t)q/2].

Since g(t) ↓ 0 as t → 0, then for t < T but sufficiently close to T we find a contradiction. Therefore there must
exist t+ ∈ [0, T ) such that [t+, T ] × {b̂+} ∈ DT and since b+(·) ≥ b+(T −) = b̂+ by Theorem 2.1, then it follows that
b+(t) = b̂+ for all t ∈ [t+, T ] as claimed. �

To link our optimal stopping problem to the study of the Skorokhod embedding it is important to analyse also the
case when T = +∞ in (2.4) and to characterise the related optimal stopping boundaries. We define

v(x) := sup
τ≥0

Ex

[
G(Bτ )1{τ<+∞}

]
, x ∈ R, (3.26)

and the associated continuation region is

C∞ := {
x ∈ R : v(x) > G(x)

}
. (3.27)

It is known that v is the minimal concave majorant of G (see [13]). However in [13] (see p. 114–116) it is required
for G to be bounded, which is not true in our case. For completeness we provide a proof of our next result in the
Appendix. Recalling the notation for μ± (see (2.2)) and studying properties of G, we obtain v and C∞ explicitly.
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Proposition 3.4. The value function of (3.26) is given by

v(x) = max
{
G(+∞),G(−∞)

}
for x ∈R

(it could be v = +∞). Moreover, letting C∞ as in (3.27), the following holds:

(i) If max{G(+∞),G(−∞)} = +∞ then C∞ =R;
(ii) If G(−∞) < G(+∞) < +∞ then C∞ = (−∞,μ+);

(iii) If G(+∞) < G(−∞) < +∞ then C∞ = (−μ−,∞);
(iv) If G(+∞) = G(−∞) < +∞ then C∞ = (−μ−,μ+).

It is useful to remark that if C∞ = R then there is no optimal stopping time in (3.26). Now we give a corollary
which will be needed in the rest of the paper and follows immediately from the above proposition.

Corollary 3.5. Let b∞± > 0 (possibly infinite) be such that −b∞− and b∞+ are the lower and upper boundary, respec-
tively, of C∞. Then supp{μ} ⊆ [−b∞− , b∞+ ] and in particular b∞+ = +∞ (resp. b∞− = +∞) if supp{μ}∩R+ =∅ (resp.
supp{μ} ∩R− =∅).

Recall our notation V T for the value function of problem (2.4) with time-horizon T > 0 and bT± for the correspond-
ing optimal boundaries. We now characterise the limits of bT± as T → ∞ and we show that these coincide with b∞± of
the above corollary, as expected.

Proposition 3.6. Let b∞± be as in Corollary 3.5, then

lim
T →∞bT±(0) = b∞± .

Proof. Note that (V T )T >0 is a family of functions non-decreasing in T and such that V T (0, x) ≤ v(x) (cf. (3.26)).
Set

V ∞(x) := lim
T →∞V T (0, x), x ∈R (3.28)

and note that V ∞ ≤ v on R. To prove the reverse inequality we introduce the stopping times

τn := inf{t ≥ 0 : Bt ≥ n}, τ−m := inf{t ≥ 0 : Bt ≤ −m} (3.29)

for n,m ∈ N. With no loss of generality we consider the case v(x) = G(+∞) (possibly infinite) as the remaining
cases can be dealt with in the same way. For any T > 0 and for x ∈ (−m,n) we have

V T (0, x) ≥ Ex

[
G(Bτn∧τ−m∧T )

]
and since G is bounded on [−m,n] we can take limits as T → ∞ and use dominated convergence to obtain

V ∞(x) ≥ Ex

[
G(Bτn∧τ−m)

] = G(n)Px(τn < τ−m) + G(−m)Px(τn > τ−m)

= x + m

n + m
G(n) + n − x

n + m
G(−m). (3.30)

The plan now is to take m → ∞ while keeping n fixed. The first term in the last expression above clearly converges
to G(n) as m → ∞. For the second term we observe that, since Fν(z) ↓ 0 as z → −∞ and it is monotonic, then there
exists cn > 0 such that 0 ≤ Fν(z) ≤ n−2 for z ∈ (−∞,−cn]. Hence, taking m > cn we can estimate

1

m
G(−m) = 2

m

∫ 0

−m

(Fμ − Fν)(z) dz ≥ − 2

m

∫ 0

−m

Fν(z) dz

= − 2

m

(∫ −cn

−m

Fν(z) dz +
∫ 0

−cn

Fν(z) dz

)
≥ − 2

m

(
n−2(m − cn) + cn

)
. (3.31)
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Taking limits as m → ∞ in (3.30) and using (3.31) we obtain

V ∞(x) ≥ G(n) − 2(n − x)n−2

and, finally taking n → ∞ we conclude V ∞(x) ≥ G(+∞) = v(x). Since x ∈R was arbitrary we have

V ∞(x) = v(x), x ∈R. (3.32)

We are now ready to prove convergence of the related optimal boundaries. Note that if (0, x) ∈ CT for some T , then
v(x) ≥ V S(0, x) ≥ V T (0, x) > G(x) for any S ≥ T , thus implying that the families (bT±(0))T >0 are non-decreasing
in T and (−bT−(0), bT+(0)) ⊆ (−b∞− , b∞+ ) for all T > 0. It follows that

b̃± := lim
T →∞bT±(0) ≤ b∞± .

To prove the reverse inequality we take an arbitrary x ∈ C∞ and assume x /∈ (−b̃−, b̃+). Then v(x) ≥ G(x) + δ for
some δ > 0 and there must exist Tδ > 0 such that V T (0, x) ≥ G(x) + δ/2 for all T ≥ Tδ by (3.32) and (3.28). Hence
x ∈ (−bT−(0), bT+(0)) for all T sufficiently large and since (−bT−(0), bT+(0)) ⊆ (−b̃−, b̃+) we find a contradiction and
conclude that b̃± = b∞± . �

3.1. Further regularity of the value function

In this section 0 < T < +∞ is fixed and we use the simpler notation V = V T unless otherwise specified (as in Corol-
lary 3.10). We analyse the behaviour of Vx(t, ·) at points ±b±(t) of the optimal boundaries. We notice in particular
that under the generality of our assumptions the map x �→ Vx(t, x) may fail to be continuous across ±b±(t) due to
the fact that G is not everywhere differentiable.

More importantly we prove by purely probabilistic methods that Vt is instead continuous on [0, T ) × R. This is
a result of independent interest which, to the best of our knowledge, is new in the probabilistic literature concerning
optimal stopping and free-boundaries. For recent PDE results of this kind one may refer instead to [3]. Some of the
proofs are given in the Appendix since they follow technical arguments which are not needed to understand the main
results of the section. We start by providing useful continuity properties of the optimal stopping times.

Thanks to Theorem 2.1 we have that the interior of DT is not empty and we denote it by D◦
T . We also introduce

the entry time to D◦
T , denoted by

τ̃∗(t, x) := inf
{
s ≥ 0 : (t + s, x + Bs) ∈ D◦

T

} ∧ (T − t). (3.33)

We recall τ∗ as in (2.7) and notice that

τ∗(t, x) = τ̃∗(t, x), P-a.s. for all (t, x) ∈ [0, T ) ×R (3.34)

due to monotonicity of b± and the law of iterated logarithm (this fact is well known and the interested reader may find
a proof for example in [14, Lemma 6.2] or [11, Lemma 5.1]).

The next lemma, whose proof is given in the Appendix for completeness, is an immediate consequence of (3.34).
The second lemma below follows from the law of iterated logarithm and its proof is also postponed to the Appendix.

Lemma 3.7. Let (t, x) ∈ ∂CT , then for any sequence (tn, xn)n ∈ CT such that (tn, xn) → (t, x) as n → ∞ one has

lim
n→∞ τ∗(tn, xn) = 0, P-a.s. (3.35)

Lemma 3.8. Let (t, x) ∈ CT and assume that (tn)n≥0 is such that tn ↑ t as n → ∞. Then

lim
n→∞ τ∗(tn, x) = τ∗(t, x), P-a.s. (3.36)

and the convergence is monotonic from above.
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A simple observation follows from Proposition 3.1, that is

sup
[0,T ]×R

∣∣Vx(t, x)
∣∣ ≤ LG, (3.37)

with LG independent of T . Next we establish refined bounds for Vx at the optimal boundaries. The proof of the next
proposition is in the Appendix.

Proposition 3.9. For any t ∈ [0, T ) and for x := b+(t) < +∞ one has

G′(x) ≤ Vx(t, x−) ≤ G′(x−). (3.38)

For any t ∈ [0, T ) and for x := −b−(t) > −∞ one has

G′(x) ≤ Vx(t, x+) ≤ G′(x−). (3.39)

Notice that the above inequalities make sense because G is concave on R \ [−a−, a+]. There are two straightfor-
ward corollaries to the above result which will be useful later in the paper. The first corollary uses that G′ is continuous
at x ∈R \ [−a−, a+] if μ({x}) = 0.

Corollary 3.10. If μ({±b±(t)}) = 0 then Vx(t, ·) is continuous at ±b±(t) so that

Vx

(
t,±b±(t)

) = G′(±b±(t)
)
.

The next corollary follows by observing that, since μ({±∞}) = ν({±∞}) = 0, then

lim
x→±∞G′(x) = lim

x→±∞G′(x−) = 0.

Here we use the notation V T and bT± for the value function (2.4) and the corresponding optimal boundaries.

Corollary 3.11. Let bT := bT+(0), then if bT < +∞ for all T > 0, it holds

lim
T →∞bT = +∞ =⇒ lim

T →∞
∣∣V T

x (t, bT −) − G′(bT −)
∣∣ = 0.

On the other hand letting cT := −bT−(0), then if cT > −∞ for all T > 0, it holds

lim
T →∞ cT = −∞ =⇒ lim

T →∞
∣∣V T

x (t, cT +) − G′(cT )
∣∣ = 0.

In the lemma below we characterise the behaviour of (3.38) and (3.39) as t → T for a fixed T > 0 (with V = V T

and b± = bT±). The proof is given in the Appendix.

Lemma 3.12. For fixed T > 0 one has

(i) If μ({b̂+}) > 0 and/or μ({−b̂−}) > 0, then

lim
t→T

Vx

(
t, b+(t)−) = G′(b̂+−) and/or lim

t→T
Vx

(
t,−b−(t)+) = G′(−b̂−). (3.40)

(ii) If μ({b̂+}) = 0 and/or μ({−b̂−}) = 0, then

lim
t→T

Vx

(
t, b+(t)−) = G′(b̂+) and/or lim

t→T
Vx

(
t,−b−(t)+) = G′(−b̂−−). (3.41)

To conclude our series of technical results concerning fine properties of Vx , we present a last lemma whose proof
is also provided in the Appendix. Such result will be needed in the proof of Lemma 3.14 below when dealing with
target measures μ entirely supported on the positive (resp. negative) half line.
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Fig. 1. A drawing of possible optimal stopping boundaries ±b± (on the left) and of the corresponding generalised inverse function T∗ (on the
right).

Lemma 3.13. If supp{μ} ∩R+ =∅ (resp. supp{μ} ∩R− =∅) then

lim
y→+∞ sup

0≤t≤T

∣∣Vx(t, y)
∣∣ = 0

(
resp. lim

y→−∞ sup
0≤t≤T

∣∣Vx(t, y)
∣∣ = 0

)
.

We are now going to prove that Vt is continuous on [0, T ) ×R. Let us first introduce the generalised inverse of the
optimal boundaries (see Figure 1), namely let

T∗(x) :=

⎧⎪⎨
⎪⎩

sup{t ∈ [0, T ] : −b−(t) < x}, x ∈ (−b−(0),0),

sup{t ∈ [0, T ] : b+(t) > x}, x ∈ [0, b+(0)),

0, elsewhere.

(3.42)

Note that x ∈ (−b−(t), b+(t)) if and only if t < T∗(x). Note also that T∗ is positive, non-decreasing and left-
continuous on [−b−(0),−b−(T )], non-increasing and right-continuous on [b+(T ), b+(0)] (hence lower semi-
continuous) with T∗(±b±(0)) = 0 if b±(0) < +∞.

Lemma 3.14. For h ∈ (0, T ) define the measure on R

σh(dy) := V (T ,y) − V (T − h,y)

h
dy. (3.43)

Then the family (σh)h∈(0,T ) is a family of negative measures such that

σh(dy) → −ν(dy) weakly as h → 0 (3.44)

and |σh(R)| ≤ LG for all h ∈ (0, T ).

Proof. We start by considering μ± > 0 so that we are in the setting of (iii) in Theorem 3.2. In particular fix h < T so
that b+ and b− are bounded on [T − h,T ]. Hence

supp{σh} = (−b−(T − h), b+(T − h)
)

for all h ∈ (0, h)

because V (T − h,y) = G(y) = V (T ,y) for all y /∈ (−b−(T − h), b+(T − h)).
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Take an arbitrary f ∈ C2
b(R), recall (3.42) and notice that

V
(
T∗(y) ∨ (T − h), y

) = V (T − h,y) = G(y) for y /∈ (−b−(T − h), b+(T − h)
)
,

V
(
T∗(y) ∨ (T − h), y

) = V
(
T∗(y), y

) = G(y) for y ∈ (−b−(T − h), b+(T − h)
)
.

Then we have∫
R

f (y)
V (T , y) − V (T − h,y)

h
dy

=
∫
R

f (y)
V (T , y) − V (T∗(y) ∨ (T − h), y)

h
dy

+
∫
R

f (y)
V (T∗(y) ∨ (T − h), y) − V (T − h,y)

h
dy

=
∫ b+(T −h)

−b−(T −h)

f (y)
V (T∗(y), y) − V (T − h,y)

h
dy.

Thanks to continuity of V all the integrals above are understood as integrals on open intervals, i.e.

∫ b+(s)

−b−(s)

· · ·dy =
∫

(−b−(s),b+(s))

· · ·dy. (3.45)

We now recall that Vt is continuous in CT and Vt = − 1
2Vxx in CT . Then we use Fubini’s theorem, integration by

parts and (3.2) to obtain

∫ b+(T −h)

−b−(T −h)

f (y)
V (T∗(y), y) − V (T − h,y)

h
dy

= 1

h

∫ b+(T −h)

−b−(T −h)

f (y)

∫ T∗(y)

T −h

Vt (s, y) ds dy

= − 1

2h

∫ T

T −h

∫ b+(s)

−b−(s)

f (y)Vxx(s, y) dy ds

= − 1

2h

∫ T

T −h

[
f (·)Vx(s, ·) − f ′(·)G(·)|b+(s)

−b−(s) +
∫ b+(s)

−b−(s)

f ′′(y)V (s, y) dy

]
ds. (3.46)

Notice that due to (3.45) we have

f (·)Vx(s, ·)|b+(s)

−b−(s) := f
(
b+(s)

)
Vx

(
s, b+(s)−) − f

(−b−(s)
)
Vx

(
s,−b−(s)+)

. (3.47)

Since we are interested in the limit of the above expressions as h → 0 it is useful to recall Lemma 3.12. For
simplicity we only illustrate in full details the case μ({b̂+}) > 0, a− = b̂− and ν({−a−}) > 0 but all the remaining
cases can be addressed with the same method.

Because of μ({b̂+}) > 0 then a+ < b̂+ (Assumption D.2) and we use (i) of Lemma 3.12; on the other hand for
a− = b̂− and ν({−a−}) > 0 we use (ii) of the same lemma. From (3.47) we have

lim
s→T

f (·)Vx(s, ·)|b+(s)

−b−(s) = f (b̂+)G′(b̂+−) − f (−b̂−)G′(−a−−). (3.48)

We take limits in (3.46) as h → 0, use (3.48) and undo the integration by parts to obtain

lim
h→0

∫
R

f (y)σh(dy)
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= −1

2

[(
f G′)(b̂+−) − (

f G′)(−a−−) − (
f ′G

)
(b̂+) + (

f ′G
)
(−a−) +

∫ b̂+

−a−
f ′′(y)G(y)dy

]

= −1

2

∫
R

1[−a−,a+](y)f (y)G′′(dy) = −
∫
R

f (y)ν(dy). (3.49)

Notice that in the penultimate equality we have used that G′(−a−) − G′(−a−−) = 2ν({−a−}) and

1[−a−,b̂+)
G′′(dy) = 21[−a−,a+]ν(dy)

(recall that μ((−b̂−, b̂+)) = 0 and μ({−a−}) = 0). It is important to remark that it is thanks to the fine study performed
in Lemma 3.12 that we obtain exactly the indicator of [−a−, a+] in (3.49).

To show that σh is finite on R it is enough to take f ≡ 1 in (3.46) and notice that

σh(R) = − 1

2h

∫ T

T −h

(
Vx

(
s, b+(s)

) − Vx

(
s,−b−(s)

))
ds for all h ∈ (0, h).

From the last expression and (3.37) it immediately follows that |σh(R)| ≤ LG.
In (3.49) we have not proven weak convergence of σh to −ν yet but this can now be done easily. In fact any g ∈

Cb(R) can be approximated by a sequence (fk)k ⊂ C2
b(R) uniformly converging to g on any compact. In particular,

for a compact A ⊇ supp{σh}, and for any ε > 0 we can always find Kε > 0 such that supA |fk − g| ≤ ε for all k ≥ Kε .
Since supp{ν} ⊆ supp{σh} ⊆ A for all h ∈ (0, h), the previous results give

lim
h→0

∣∣∣∣
∫
R

g(y)(σh + ν)(dy)

∣∣∣∣ ≤ lim
h→0

ε
(∣∣σh(R)

∣∣ + ν(R)
) + lim

h→0

∣∣∣∣
∫
R

fk(y)(σh + ν)(dy)

∣∣∣∣
≤ (1 + LG)ε

for all k ≥ Kε . Since ε > 0 is arbitrary (3.44) holds.
We now consider the case supp{μ} ∩ R+ = ∅, i.e. μ+ = −b̂−, and b+(·) ≡ +∞. Using Lemma 3.13 we can

repeat step by step the calculations above to obtain (3.49) with b̂+ = +∞ for any f ∈ C2
b(R) such that f (x) → 0 and

f ′(x)G(x) → 0 as x → ∞. So it only remains to prove that the density argument holds. For that we observe that by
Lemma 3.13 one has

σh

([x,+∞)
) = − 1

2h

∫ T

T −h

∫ ∞

x

Vxx(s, y) dy ds = 1

2h

∫ T

T −h

Vx(s, x) ds, x > a+, (3.50)

and moreover for any ε > 0 there exists xε > 0 such that |σh([x,+∞))| ≤ ε/2 for all x > xε . With no loss of generality
we may assume that also ν([xε,+∞)) ≤ ε/2 because ν puts no mass at infinity. Setting Aε = [−b−(T − h), xε], we
can find a sequence (fk)k ⊂ C2

b(R) with fk(x) → 0 and f ′
k(x)G(x) → 0 as x → ∞, and a number Kε > 0 such that

supAε
|fk − g| ≤ ε for all k ≥ Kε . With no loss of generality we may also assume ‖fk‖∞ ≤ c for all k and a given

c > 0. This gives

∣∣∣∣
∫
R

g(y)(σh + ν)(dy)

∣∣∣∣
≤

∣∣∣∣
∫
R

(g − fk)(y)(σh + ν)(dy)

∣∣∣∣ +
∣∣∣∣
∫
R

fk(y)(σh + ν)(dy)

∣∣∣∣
≤ ε

(
1 + ∣∣σh(R)

∣∣) + ‖g − fk‖∞
∣∣(σh + ν)

([xε,+∞)
)∣∣

+
∣∣∣∣
∫
R

fk(y)(σh + ν)(dy)

∣∣∣∣.
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In the limit as h → 0 we find

lim
h→0

∣∣∣∣
∫
R

g(y)(σh + ν)(dy)

∣∣∣∣ ≤ ε
(
1 + ∣∣σh(R)

∣∣ + ‖g‖∞ + c
)

and the claim follows by arbitrariness of ε. The case supp{μ} ∩R− = ∅ can be addressed by similar arguments and
we omit the proof for brevity. �

Let us denote

p(t, x, s, y) := 1√
2π(s − t)

e
− (x−y)2

2(s−t) for t < s, x, y ∈R (3.51)

the Brownian motion transition density. We can now give the main result of this section.

Proposition 3.15. It holds Vt ∈ C([0, T ) ×R).

Proof. Continuity of Vt holds separately inside CT and in DT , thus it remains to verify it across the boundary of CT .
First we fix t ∈ (0, T ) and x ∈ R such that (t, x) ∈ ∂CT , and take a sequence (tn, xn)n∈N ⊂ CT such that (tn, xn) →

(t, x) as n → ∞. For technical reasons that will be clear in what follows we assume t ≤ T − 2δ for some arbitrarily
small δ > 0 and with no loss of generality we also consider tn < T − δ for all n. Now we aim at providing upper
and lower bounds for Vt(tn, xn) for each n ∈ N. A simple upper bound follows by observing that t �→ V (t, x) is
non-increasing and clearly

Vt (tn, xn) ≤ 0 for all n ∈ N. (3.52)

For the lower bound we fix n and take h > 0 such that tn − h ≥ 0 and hence (tn − h,xn) ∈ CT . For simplicity
we denote τn = τ∗(tn, xn) and τn,h := τ∗(tn − h,xn) as in (2.7) so that τn,h is optimal for the problem with value
V (tn − h,xn). We use the superharmonic characterisation of V to obtain

V (tn, xn) − V (tn − h,xn)

≥ Exn

[
V

(
tn + τn,h ∧ (T − tn),Bτn,h∧(T −tn)

) − V (tn − h + τn,h,Bτn,h
)
]

= Exn

[(
V (tn + τn,h,Bτn,h

) − V (tn − h + τn,h,Bτn,h
)
)
1{τn,h<T −tn}

]
+ Exn

[(
V (T ,BT −tn ) − V (tn − h + τn,h,Bτn,h

)
)
1{τn,h≥T −tn}

]
. (3.53)

Observe that on the set {τn,h < T − tn} it holds V (tn −h+ τn,h,Bτn,h
) = G(Bτn,h

) and V (tn + τn,h,Bτn,h
) ≥ G(Bτn,h

).
On the other hand

Exn

[
V (tn − h + τn,h,Bτn,h

)|FT −tn

] = V (T − h,BT −tn ) on {τn,h ≥ T − tn}
by the martingale property of the value function inside the continuation region. Dividing (3.53) by h and taking
iterated expectations it then follows

1

h

(
V (tn, xn) − V (tn − h,xn)

)
≥ 1

h
Exn

[(
V (T ,BT −tn ) − V (T − h,BT −tn )

)
1{τn,h≥T −tn}

]
= Exn

[
V (T ,BT −tn ) − V (T − h,BT −tn )

h

]

− Exn

[
1{τn,h<T −tn}

V (T ,BT −tn ) − V (T − h,BT −tn )

h

]
. (3.54)
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Since for all n we have δ ≤ T − tn then {τn,h ≤ T − tn − δ} ⊆ {τn,h < T − tn} and since V (T ,BT −tn ) − V (T −
h,BT −tn ) ≤ 0 we obtain

−Exn

[
1{τn,h<T −tn}

V (T ,BT −tn ) − V (T − h,BT −tn )

h

]

≥ −Exn

[
1{τn,h≤T −tn−δ}

V (T ,BT −tn ) − V (T − h,BT −tn )

h

]

= −Exn

[
1{τn,h≤T −tn−δ}EBτn,h

(
V (T ,BT −tn−τn,h

) − V (T − h,BT −tn−τn,h
)

h

)]
, (3.55)

where the last expression follows by the strong Markov property. Recalling now (3.43) and (3.51), and using (3.54)
and (3.55) we obtain

V (tn, xn) − V (tn − h,xn)

h
≥

∫
R

fn,h(y)σh(dy), (3.56)

where

fn,h(y) := p(0, xn, T − tn, y) − Exn

[
1{τn,h≤T −tn−δ}p(0,Bτn,h

, T − tn − τn,h, y)
]
. (3.57)

Notice that |fn,h(y)| ≤ C for some constant independent of n and h (this is easily verified since T − tn −τn,h ≥ δ in
the second term of (3.57)). Recalling Lemma 3.8 it is not hard to verify that for any (yh)h>0 ⊂R such that yh → y ∈R

as h → 0 it holds

lim
h→0

fn,h(yh) ≥ fn(y) := p(0, xn, T − tn, y) − Exn

[
1{τn<T −tn−δ}p(0,Bτn, T − tn − τn, y)

]
,

where we have used that limh→0 1{τn,h≤T −tn−δ} ≤ 1{τn≤T −tn−δ} since τn,h ↓ τn. Moreover, Lemma 3.14 implies that
(σh(dy)/σh(R))h∈(0,h) forms a weakly converging family of probability measures. Therefore we can use a continuous
mapping theorem as in [20, Ch. 4, Thm. 4.27] to take limits in (3.56) as h → 0 and get

Vt(tn, xn) ≥ lim
h→0

∫
R

fn,h(y)σh(dy) = −
∫
R

fn(y)ν(dy).

Finally we take limits as n → ∞ in the last expression and we use dominated convergence, the fact that τn → 0 as
n → ∞ (see Lemma 3.7) and the upper bound (3.52), to obtain

lim
n→∞Vt (tn, xn) = 0.

Since the sequence (tn, xn) was arbitrary the above limit implies continuity of Vt at (t, x) ∈ ∂CT ∩ {t < T }. �

It is a remarkable fact that in this context continuity of the time derivative Vt holds at all points of the boundary
regardless of whether or not the x-derivative Vx is continuous there. As a consequence of the above theorem and of
(3.1) we also obtain:

Corollary 3.16. For any ε > 0 it holds that Vx and Vxx are continuous on the closure of CT ∩ {t ≤ T − ε}. In
particular for any (t, x) ∈ ∂CT and any sequence (tn, xn)n∈N ⊂ CT such that (tn, xn) → (t, x) as n → ∞, it holds

lim
n→∞Vxx(tn, xn) = 0.

We conclude the section with a technical lemma that will be useful in the rest of the paper.
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Lemma 3.17. For any f ∈ Cb(R) one has

lim
t↑T

∫
R

f (x)Vt (t, x) dx = −
∫
R

f (x)ν(dx) (3.58)

i.e. it holds Vt (t, x) dx → −ν(dx) weakly as a measure, in the limit as t ↑ T .

Proof. The proof is very similar to that of Lemma 3.14. It suffices to prove the claim for μ± > 0 and f ∈ C2
b(R) since

arguments as in the final part of the proof of Lemma 3.14 allow us to extend the result to f ∈ Cb(R) and any μ±.
We take h > 0 as in the proof of Proposition 3.9 and we let A ⊂R be an open bounded interval such that [−b−(T −

h), b+(T − h)] ⊂ A. Then for any f ∈ C2
b(R), t ∈ (T − h,T ) we use Proposition 3.15 along with (3.1) and (3.2) to

obtain∫
A

f (y)Vt (t, y) dy = − 1

2

∫ b+(t)

−b−(t)

f (y)Vxx(t, y) dy

= − 1

2

[
f (·)Vx(t, ·) − f ′(·)G(·)|b+(t)

−b−(t) +
∫

A

f ′′(y)V (t, y) dy

]
.

Taking limits as t → T and arguing as in (3.49) we obtain (3.58). �

4. The Skorokhod embedding

In this section we will show that the optimal boundaries b± found in Theorem 2.1 are the boundaries of the time
reversed Rost’s barrier associated to μ.

Here we recall the notation introduced in Section 2 and let s− and s+ be the reversed boundaries from Definition 2.2.
We denote

C−∞ := {
(t, x) ∈ [0,+∞) ×R : x ∈ (−s−(t), s+(t)

)}
,

D−∞ := {
(t, x) ∈ [0,+∞) ×R : x ∈ (−∞,−s−(t)

] ∪ [
s+(t),+∞)}

,

again with the convention (−∞,−∞] = [+∞,+∞) =∅.
Arguing as in (3.42) we introduce the (generalised) inverse of s± defined by (see Figure 2)

ϕ(x) :=

⎧⎪⎨
⎪⎩

inf{t ≥ 0 : −s−(t) < x}, x ≤ −s−(0),

0, x ∈ (−s−(0), s+(0)),

inf{t ≥ 0 : s+(t) > x}, x ≥ s+(0).

(4.1)

Notice that x ∈ (−s−(t), s+(t)) if and only if ϕ(x) < t and note also that for each T > 0 it holds (see (3.42))

T∗(x) = T − ϕ(x) for x ∈ [−s−(T ), s+(T )
]
.

It is not hard to see that ϕ is positive, non-increasing left-continuous on R− and non-decreasing right-continuous on
R+ (hence upper semi-continuous).

Our first step is to use stochastic calculus to find a probabilistic representation of Vt . Let us start by introducing
some notation. Along with the Brownian motion B we consider another Brownian motion W := (Wt)t≥0 independent
of B and we denote (FW

t )t≥0 the filtration generated by W and augmented with P-null sets. Recalling τ∗, τ̃∗ and
(3.34), we now introduce similar concepts relative to the sets C−∞ and D−∞. For (t, x) ∈R+ ×R we now set

τ−(t, x) := inf
{
u > 0 : x + Wu /∈ (−s−(t + u), s+(t + u)

)}
, (4.2)

τ̃−(t, x) := inf
{
u > 0 : x + Wu /∈ [−s−(t + u), s+(t + u)

]}
. (4.3)
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Fig. 2. A drawing of possible reversed boundaries s+ and −s− (on the left) and of the corresponding generalised inverse function ϕ (on the right).

It is clear that τ− and τ̃− are (FW
t )-stopping times. Moreover in [7] (see eq. (2.9) therein) one can find an elegant

proof of the fact that3

Pt,x(τ− = τ̃−) = 1 for all (t, x) ∈ [0,+∞) ×R. (4.4)

The latter plays a similar role to (3.34) in the case of the sets C−∞ and D−∞. In what follows, and in particular for
Lemma 4.1, we will find sometimes convenient to use τ̃− instead of τ− to carry out our arguments of proof.

The stopping times τ− and τ̃− are introduced in order to link Vt to the transition density of the process (t,Wt )

killed upon leaving the set C−∞. This is done in Proposition 4.2. The latter is then used to prove that D−∞ is indeed the
Rost’s barrier (see the proof of Theorem 2.3 provided below).

From now on we denote pC(t, x, s, y), s > t , the transition density associated with the law Pt,x(Bs ∈ dy, s ≤ τ∗)
of the Brownian motion killed at τ∗. Similarly we denote pC−(t, x, s, y), s > t , the transition density associated with
the law Pt,x(Ws ∈ dy, s ≤ τ−) of W killed at τ−. It is well known that

pC(t, x, s, y) = p(t, x, s, y) − Et,x1{s>τ∗}p(τ∗,Bτ∗ , s, y) (4.5)

for (t, x), (s, y) ∈ CT and

pC−(t, x, s, y) = p(t, x, s, y) − Et,x1{s>τ−}p(τ−,Wτ− , s, y) (4.6)

for (t, x), (s, y) ∈ C−∞ (see e.g. [20, Ch. 24]).
The next lemma provides a result which can be seen as an extension of Hunt’s theorem as given in [20, Ch. 24,

Thm. 24.7] to time–space Brownian motion. Although such result seems fairly standard we could not find a precise
reference for its proof in the time–space setting and for the sake of completeness we provide it in the Appendix.

Lemma 4.1. For all 0 ≤ t < s ≤ T and x ∈ (−b−(t), b+(t)), y ∈ (−b−(s), b+(s)), it holds pC(t, x, s, y) = pC−(T −
s, y, T − t, x).

For future frequent use we also define

UT (t, x) := V T (t, x) − G(x), (t, x) ∈ [0, T ] ×R (4.7)

3To avoid confusion note that in [7] our functions s+ and −s− are denoted respectively b and c.
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then UT ∈ C([0, T ] ×R) and (3.1)–(3.2) imply(
UT

t + 1

2
UT

xx

)
(t, x) = −(ν − μ)(dx), x ∈ (−b−(t), b+(t)

)
, t ∈ [0, T ), (4.8)

UT (t, x) = 0, x ∈ (−∞,−b−(t)
] ∪ [

b+(t),∞)
, t ∈ [0, T ), (4.9)

UT (T , x) = 0, x ∈ R, (4.10)

where the first equation holds in the sense of distributions, and in the second one we shall always understand
(−∞,−∞] = [+∞,+∞) =∅.

We can now use Lemma 4.1 to find a convenient expression for UT
t in terms of pC−.

Proposition 4.2. Fix T > 0 and denote U = UT for simplicity (see (4.7)). Then Ut ∈ C([0, T ) ×R) and it solves(
(Ut )t + 1

2
(Ut )xx

)
(t, x) = 0, (t, x) ∈ CT , (4.11)

Ut(t, x) = 0, (t, x) ∈ ∂CT ∩ {t < T }, (4.12)

lim
t↑T

∫
R

f (x)Ut (t, x) dx = −
∫
R

f (x)ν(dx), for all f ∈ Cb(R). (4.13)

Moreover the function Ut has the following representation

−Ut(t, x) =
∫
R

pC(t, x, T , y)ν(dy) =
∫
R

pC−(0, y, T − t, x)ν(dy), (t, x) ∈ [0, T ) ×R. (4.14)

Proof. The proof is divided in a number of steps.
Step 1. We have already shown in Proposition 3.15 that Vt is continuous on [0, T ) × R and equals zero along the

boundary of CT for t < T . Moreover Lemma 3.17 implies the terminal condition (4.13). In the interior of CT one has
Vt ∈ C1,2 by standard results on Cauchy–Dirichlet problems (see for instance [15, Ch. 3, Thm. 10]). It then follows
that Ut solves (4.11) by differentiating (4.8) with respect to time.

Step 2. We now aim at showing (4.14). For (t, x) in the interior of DT the result is trivial since Ut = 0 therein.
Hence we prove it for (t, x) ∈ CT and the extension to ∂CT will follow since Ut is continuous on [0, T ) ×R.

In what follows we fix (t, x) ∈ CT and set τ∗ = τ∗(t, x). For ε > 0 we use Itô’s formula, (4.11)–(4.13), strong
Markov property and the definition of pC to obtain

−Ut(t, x) = −ExUt

(
t + τ∗ ∧ (T − t − ε),Bτ∗∧(T −t−ε)

)
= −ExUt (T − ε,BT −t−ε)1{τ∗≥T −t−ε} = −

∫
R

Ut(T − ε, y)pC(t, x, T − ε, y) dy.

Now we want to pass to the limit as ε → 0 and use Lemma 3.17 and a continuous mapping theorem to obtain (4.14).
This is accomplished in the next two steps.

Step 3. First we assume that b̂± > a±. Note that from (4.5) one can easily verify that (s, y) �→ pC(t, x, s, y) is
continuous at all points in the interior of CT by simple estimates on the Gaussian transition density. Therefore for any
y ∈ [−a−, a+], any sequence (εj )j∈N with εj → 0 as j → ∞, and any sequence (yεj

)j∈N converging to y as j → ∞
there is no restriction in assuming (T − εj , yεj

) ∈ CT so that pC(t, x, T − εj , yεj
) → pC(t, x, T , y) as j → ∞. Hence

taking limits as ε → 0 and using (3.58) and a continuous mapping theorem as in [20, Ch. 4, Thm. 4.27] we obtain

−Ut(t, x) =
∫
R

pC(t, x, T , y)ν(dy) =
∫
R

pC−(0, y, T − t, x)ν(dy),

where the last equality follows from Lemma 4.1.
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Step 4. Here we consider the opposite situation to step 3 above, i.e. the case b̂± = a±. For arbitrary δ > 0 we
introduce the approximation

Fδ
μ(x) :=

⎧⎪⎨
⎪⎩

Fμ(x), x ∈ (−∞,−b̂− − δ],
Fμ(−b̂− − δ), x ∈ (−b̂− − δ, b̂+ + δ),

Fμ(x) − [Fμ((b̂+ + δ)−) − Fμ(−b̂− − δ)], x ∈ [b̂+ + δ,∞),

which is easily verified to fulfil

lim
δ→0

sup
x∈R

∣∣Fδ
μ(x) − Fμ(x)

∣∣ = 0 (4.15)

since Fμ is continuous at ±b̂± by Assumption D.2. Moreover for μδ(dx) := Fδ(dx) we have

μδ(dx) =
{

μ(dx), x ∈ (−∞,−b̂− − δ] ∪ [b̂+ + δ,+∞),

0, x ∈ (−b̂− − δ, b̂+ + δ).

Associated to each Fδ
μ we consider an approximating optimal stopping problem with value function V δ . The latter

is defined as in (2.4) with G replaced by Gδ , and Gδ defined as in (2.3) but with Fδ
μ in place of Fμ. It is clear that

the analysis carried out in Theorem 3.2 and Proposition 3.9 for V and G can be repeated with minor changes when
considering V δ and Gδ . Indeed the only conceptual difference between the two problems is that Fδ

μ does not describe
a probability measure on R being in fact μδ(R) < 1.

In particular the continuation set for the approximating problem, i.e. the set where V δ > Gδ , is denoted by Cδ
T and

there exists two right-continuous, non-increasing, positive functions of time bδ± with bδ±(T −) = b̂± + δ such that

Cδ
T := {

(t, x) ∈ [0, T ) ×R : x ∈ (−bδ−(t), bδ+(t)
)}

.

It is clear from the definition of Fδ
μ that for any Borel set A ∈ R it holds μδ(A) ≤ μδ′

(A) if δ′ < δ. Hence for
δ′ < δ, (t, x) ∈ [0, T ) ×R we obtain the following key inequality

V δ(t, x) − Gδ(x) = sup
0≤τ≤T −t

Ex

∫
R

Lz
τ

(
ν − μδ

)
(dz)

≥ sup
0≤τ≤T −t

Ex

∫
R

Lz
τ

(
ν − μδ′)

(dz) = V δ′
(t, x) − Gδ′

(x)

by Itô–Tanaka–Meyer formula. The above also holds if we replace V δ′ − Gδ′
by V − G and it implies that the family

of sets (Cδ
T )δ>0 decreases as δ ↓ 0 with Cδ

T ⊇ CT for all δ > 0. We claim that

lim
δ→0

Cδ
T = CT and lim

δ→0
bδ±(t) = b±(t) for all t ∈ [0, T ). (4.16)

The proof of the above limits follows from standard arguments and is given in Appendix where it is also shown that

lim
δ→0

sup
(t,x)∈[0,T )×K

∣∣V δ(t, x) − V (t, x)
∣∣ = 0, K ⊂R compact. (4.17)

Now for each δ > 0 we can repeat the arguments that we have used above in this section and in Section 3 to
construct a set Cδ,−∞ which is the analogue of the set C−∞. All we need to do for such construction is to replace the
functions s+ and s− by their counterparts sδ+ and sδ− which are obtained by pasting together the reversed boundaries

s
δ,n
± (t) := b

δ,Tn± (Tn − t), t ∈ (0, Tn] (see Definition 2.2 and the discussion preceding it).
As in (2.7) and (3.33) we define by τ δ∗ the first time the process (t,Bt )t≥0 leaves Cδ

T and by τ̃ δ∗ the first time
(t,Bt )t≥0 leaves the closure of Cδ

T . Similarly to (4.2) and (4.3) we also denote by τ δ− and τ̃ δ− the first strictly positive
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times the process (Wt)t≥0 leaves (−sδ−(t), sδ+(t)) and [−sδ−(t), sδ+(t)], t > 0, respectively. It holds again, as in (4.4),
that

Pt,x

(
τ δ− = τ̃ δ−

) = 1 for all (t, x) ∈ [0,+∞) ×R. (4.18)

It is clear that τ δ− decreases as δ → 0 (since δ �→ Cδ
T is non-increasing) and τ δ− ≥ τ−, P-a.s. for all δ > 0. We show

in the Appendix that in fact

lim
δ→0

τ δ− = τ−, P-a.s. (4.19)

The same arguments used to prove Proposition 3.15 (up to a refinement of Lemmas 3.13 and 3.14 which we
discuss in the penultimate section of the Appendix) can now be applied to show that V δ

t is continuous on [0, T ) ×R

and V δ
t = 0 outside of Cδ

T ∩ {t < T }. Therefore, for fixed δ > 0, we can use the arguments of step 1, step 2 and step 3
above since b̂± + δ > a± and obtain

−Uδ
t (t, x) =

∫
R

pC,δ(t, x, T , y)ν(dy) =
∫
R

p
C,δ
− (0, y, T − t, x)ν(dy), (4.20)

where obviously the transition densities pC,δ and p
C,δ
− have the same meaning of pC and pC− but with the sets CT and

C−∞ replaced by Cδ
T and Cδ,−∞ , respectively. Note that Uδ

t ≤ 0, then for fixed t ∈ [0, T ) the expression above implies
(see (4.5) and (4.6))

sup
x∈R

∣∣Uδ
t (t, x)

∣∣ ≤ sup
x∈R

∫
R

p(0, y, T − t, x)ν(dy) < +∞ for all δ > 0

and therefore there exists g ∈ L∞(R) such that Uδ
t (t, ·) converges along a subsequence to g as δ → 0 in the weak*

topology relative to L∞(R). Moreover since (4.17) holds and the limit is unique, it must also be g(·) = Ut(t, ·).
Now, for an arbitrary Borel set B ⊆ [−s−(T − t), s+(T − t)], (4.20) gives

−
∫

B

Uδ
t (t, x) dx =

∫
R

Py

(
WT −t ∈ B,T − t ≤ τ δ−

)
ν(dy).

We take limits in the above equation as δ → 0 (up to selecting a subsequence), we use dominated convergence and
(4.19) for the right-hand side, and weak* convergence of Uδ

t for the left-hand side, and obtain

−
∫

B

Ut (t, x) dx =
∫
R

Py(WT −t ∈ B,T − t ≤ τ−)ν(dy).

Finally, since B is arbitrary we can conclude that (4.14) holds in general.
After step 3 and 4 the remaining intermediate cases are: (i) b̂+ = a+ and b̂− > a−, and (ii) b̂− = a− and b̂+ > a+.

These may be addressed by a simple combination of the methods developed in steps 3 and 4 and we omit further
details. �

Now we are ready to prove the main result of this section, i.e. Theorem 2.3, whose statement we recall for conve-
nience.

Theorem 2.3. Let Wν := (Wν
t )t≥0 be a standard Brownian motion with initial distribution ν and define

σ∗ := inf
{
t > 0 : Wν

t /∈ (−s−(t), s+(t)
)}

. (4.21)

Then it holds

Ef
(
Wν

σ∗
)
1{σ∗<+∞} =

∫
R

f (y)μ(dy) for all f ∈ Cb(R). (4.22)
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Proof. We start by recalling that since s±(T ) = bT±(0), then Proposition 3.6 and Corollary 3.5 imply that

lim
T →∞ s±(T ) = b∞± ≥ μ±, (4.23)

where we also recall that μ± are the endpoints of supp{μ} (see (2.2)). Notice that by monotonicity of the boundaries
if s+(t0) = +∞, then s+(t) = +∞ for t ≥ t0 and the same is true for s−.

Fix an arbitrary time horizon T and denote UT = U as in (4.7). Throughout the proof all Stieltjes integrals with
respect to measures ν and μ on R are taken on open intervals, i.e.

∫ b

a

· · · =
∫

(a,b)

· · · for a < b.

Let f ∈ C2
b(R) and consider the sequence (fn)n≥0 ⊂ C2

b(R) with fn(x) = f (x) for |x| ≤ n and fn(x) = 0 for
|x| ≥ n + 1. Notice that

Ef
(
Wν

σ∗∧T

) = lim
n→∞ Efn

(
Wν

σ∗∧T

)
(4.24)

by dominated convergence and the fact that fn → f pointwise at all x ∈ R.
Now, for arbitrary n a straightforward application of Itô’s formula gives

Efn

(
Wν

σ∗∧T

) =
∫
R

fn(y)ν(dy) + 1

2
E

∫ σ∗∧T

0
f ′′

n

(
Wν

u

)
du

=
∫
R

fn(y)ν(dy) + 1

2

∫ T

0
E1{u≤σ∗}f ′′

n

(
Wν

u

)
du. (4.25)

Notice that σ∗ = τ− = τ̃− (see (4.2)–(4.4)) up to replacing the initial condition in the definitions of τ− and τ̃− by an
independent random variable with distribution ν. Recall the probabilistic representation (4.14) of Ut . Then we observe
that for u > 0

E1{u≤σ∗}f ′′
n

(
Wν

u

) =
∫
R

f ′′
n (y)

(∫
R

pC−(0, x,u, y)ν(dx)

)
dy = −

∫ s+(u)

−s−(u)

Ut (T − u,y)f ′′
n (y) dy

by (4.12). An application of Fubini’s theorem and the fact that y ∈ (−s−(u), s+(u)) ⇐⇒ u > ϕ(y) (see (4.1)) gives

∫ T

0
E1{u≤σ∗}f ′′

n

(
Wν

u

)
du = −

∫ T

0

(∫
R

1{y∈(−s−(u),s+(u))}Ut(T − u,y)f ′′
n (y) dy

)
du

= −
∫
R

f ′′
n (y)

(∫ T

0
1{ϕ(y)<u}Ut(T − u,y)du

)
dy

=
∫
R

f ′′
n (y)

(
U(0, y) − U

(
T − ϕ(y), y

))
dy

=
∫
R

f ′′
n (y)U(0, y) dy, (4.26)

where in the last line we have also used that (T −ϕ(y), y) = (T∗(y), y) ∈ ∂CT and U |∂CT
= 0 (see (4.9)). Hence from

(4.25) and (4.26), and using that U(0, y) = 0 for y /∈ (−s−(T ), s+(T )), we conclude

Efn

(
Wν

σ∗∧T

) =
∫
R

fn(y)ν(dy) + 1

2

∫ s+(T )

−s−(T )

f ′′
n (y)U(0, y) dy. (4.27)

Notice that the last term above makes sense even if s±(T ) = +∞, because fn is supported on a compact.
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The left-hand side of (4.27) has an alternative representation and in fact one has

Efn

(
Wν

σ∗∧T

) = E1{T ≤σ∗}fn

(
Wν

T

) + E1{σ∗<T }fn

(
Wν

σ∗
)

=
∫ s+(T )

−s−(T )

(∫
R

fn(y)pC−(0, x, T , y)ν(dx)

)
dy + E1{σ∗<T }fn

(
Wν

σ∗
)
.

By using (4.14) once more we obtain

∫ s+(T )

−s−(T )

(∫
R

fn(y)pC−(0, x, T , y)ν(dx)

)
dy

= −
∫ s+(T )

−s−(T )

fn(y)Ut (0, y) dy

=
∫ s+(T )

−s−(T )

fn(y)(ν − μ)(dy) + 1

2

∫ s+(T )

−s−(T )

fn(y)Uxx(0, y) dy, (4.28)

where the last expression follows from (4.8).
To simplify the notation we set

�−
T := Ux

(
0,−s−(T )+)

and �+
T := Ux

(
0, s+(T )−)

and notice that �±
T may be non-zero due to the lack of smooth-fit at the boundaries. Now integrating by parts the last

term on the right-hand side of (4.28), using (4.9), and the fact that fn(x) = f ′
n(x) = f ′′

n (x) = 0 for |x| ≥ n + 1, we get

Efn

(
Wν

σ∗∧T

) = E1{σ∗<T }fn

(
Wν

σ∗
) −

∫ s+(T )

−s−(T )

fn(y)μ(dy)

+
∫
R

fn(y)ν(dy) + 1

2

∫ s+(T )

−s−(T )

f ′′
n (y)U(0, y) dy

+ 1

2

[
fn

(
s+(T )

)
�+

T 1{s+(T )≤n+1} − fn

(−s−(T )
)
�−

T 1{s−(T )≤n+1}
]
. (4.29)

Direct comparison of (4.29) and (4.27) then gives for all n ≥ 1

E1{σ∗<T }fn

(
Wν

σ∗
) =

∫ s+(T )

−s−(T )

fn(y)μ(dy)

− 1

2

[
fn

(
s+(T )

)
�+

T 1{s+(T )≤n+1} − fn

(−s−(T )
)
�−

T 1{s−(T )≤n+1}
]
.

Taking limits as n → ∞ and using dominated convergence and pointwise convergence we have

E1{σ∗<T }f
(
Wν

σ∗
) =

∫ s+(T )

−s−(T )

f (y)μ(dy)

− 1

2

[
f

(
s+(T )

)
�+

T 1{s+(T )<+∞} − f
(−s−(T )

)
�−

T 1{s−(T )<+∞}
]
. (4.30)

It remains to take limits as T → ∞. If there exists t0 > 0 such that s+(t0) = s−(t0) = +∞, then the proof is
complete because s+(t) = s−(t) = +∞ for all t ≥ t0 and we only need to take T ≥ t0 in the last expression above. As
it will be clarified in Corollary 4.5 this situation never occurs in practice.

Let us now analyse the case in which there exists t0 > 0 such that s+(t0) = +∞ whereas s−(t) < +∞ for all t > 0.
The remaining cases, with s+(t) < +∞ for all t > 0 and s−(t) ≤ +∞, may be addressed by the same methods.
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Case 1. [μ− = +∞]. In this case (4.23) implies s−(T ) → ∞ as T → ∞ with |s−(T )| < +∞ for all T > 0, and
Corollary 3.11 implies �−

T → 0. Hence taking limits as T → ∞, using dominated convergence and (4.30) we get

E1{σ∗<∞}f
(
Wν

σ∗
) =

∫
R

f (y)μ(dy). (4.31)

Case 2. [μ− < +∞ and μ({−μ−}) = 0]. In this case G′ is continuous at −μ−, therefore (3.39) implies �−
T → 0

as T → ∞ since s−(T ) → μ−. Hence arguing as in case 1 above we get (4.31).
Case 3. [μ− < +∞ and μ({−μ−}) > 0]. This case requires more work. We approximate the measure μ via a

sequence of measures (μk)k whose cumulative distributions are constructed as follows: for each k ≥ 1

Fμk
(x) =

⎧⎪⎨
⎪⎩

0, x < −μ− − 1
k
,

k · (x + μ− + 1
k
)Fμ(−μ−), x ∈ [−μ− − 1

k
,−μ−),

Fμ(x), x ∈ [−μ−,+∞).

(4.32)

Since Fμk
(x) → Fμ as k → ∞ for all points x where Fμ is continuous, then μk ⇀ μ (see [29], Thm. 1, Ch. 3.1). It is

important to notice that Fμk
is continuous at the lower endpoint of its support, i.e. at −μ

(k)
− := −μ− − 1/k.

Letting Gk be defined as in (2.3) but with Fμ replaced by Fμk
we can now consider the corresponding problem (2.4)

with value function denoted by V T
k . Repeating the characterisation of the optimal stopping region for this problem we

obtain the relative optimal boundaries b
(k)
± , which then produce two time-reversed boundaries s

(k)
± . In particular it is

not hard to verify that (4.23) in this case implies that limT →∞ s
(k)
− (T ) = μ− + 1/k and limT →∞ s

(k)
+ (T ) = +∞ (for

all k sufficiently large).
Since Fμk

is continuous at −μ
(k)
− we argue as in case 2 above to get

E1{σ (k)∗ <∞}f
(
Wν

σ
(k)∗

) =
∫
R

f (y)μk(dy), (4.33)

where σ
(k)∗ is the analogue of (4.21) with s

(k)
± instead of s±. We claim here and prove in the Appendix that

lim
k→+∞σ (k)∗ = σ∗, P-a.s. (4.34)

so that taking limits in (4.33), again we obtain (4.31).
Since (4.31) holds for any f ∈ C2

b(R) we can extend to arbitrary continuous functions by a simple density argument.
For any f ∈ Cb(R) we consider an approximating sequence (fk)k∈N ⊂ C2

b(R) such that fk → f pointwise as k → ∞.
For each fk the equation (4.31) holds, then taking limits as k → ∞ and using dominated convergence we obtain
(4.22). �

As corollaries of the above result we obtain interesting and non-trivial regularity properties for the free-boundaries
of problem (2.4). These are fine properties which are difficult to obtain in general via a direct probabilistic study of
the optimal stopping problem. Namely we obtain: (i) flat portions of either of the two boundaries may occur if and
only if μ has an atom at the corresponding point (i.e. Gt + 1

2Gxx has an atom. See Corollary 4.3); (ii) jumps of the
boundaries may occur if and only if Fμ is flat on an interval (see (3.4), (3.5) and Corollary 4.4). Note that the latter
condition corresponds to saying that Gt + 1

2Gxx = 0 on an interval is a necessary and sufficient condition for a jump
of the boundary (precisely of the size of the interval) and therefore it improves results in [10] where only necessity
was proven. It should also be noticed that Cox and Peskir [7] proved (i) and (ii) constructively but did not discuss its
implications for optimal stopping problems.

Corollary 4.3. Let x0 ∈R be such that μ({x0}) > 0 then

(i) if x0 > 0 there exist 0 ≤ t1(x0) < t2(x0) < +∞ such that s+(t) = x0 for t ∈ (t1, t2],
(ii) if x0 < 0 there exist 0 ≤ t1(x0) < t2(x0) < +∞ such that s−(t) = x0 for t ∈ (t1, t2].
On the other hand, let either s+ or s− be constant and equal to x0 ∈ R on an interval (t1, t2], then μ({x0}) > 0.
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Proof. We prove (i) arguing by contradiction. First notice that if x0 > 0 and μ({x0}) > 0, then the upper boundary
must reach x0 for some t0 > 0 due to Theorem 2.3. Let us assume that s+(t0) = x0 for some t0 > 0 and let us assume
that s+ is strictly increasing on (t0 − ε, t0 + ε) for some ε > 0. Then μ({x0}) = P(Wν

σ∗ = x0) = P(Wν
t0

= s+(t0)) = 0,
hence a contradiction.

To prove the final claim let us assume with no loss of generality s+(t) = x0 for t ∈ (t1, t2], then μ({x0}) = P(Wν
σ∗ =

x0) = P(Wν
t = x0 for some t ∈ (t1, t2], σ∗ > t1) > 0. �

Corollary 4.4. Let (a, b) ⊂R be an open interval such that μ((a, b)) = 0 and for any ε > 0 it holds μ((a, b+ε)) > 0,
μ((a − ε, b)) > 0, i.e. a and b are endpoints of a flat part of Fμ. Then

(i) If s+(t) = a for some t > 0 then s+(t+) = b;
(ii) If −s−(t) = b for some t > 0 then −s−(t+) = a.

Proof. It is sufficient to prove (i) since the argument is the same for (ii). Let us assume s+(t+) < b, then there exists
t ′ > t such that s+(u) < b for u ∈ (t, t ′). With no loss of generality we also assume s+ strictly monotone on (t, t ′)
otherwise μ should have an atom on (s+(t), s+(t ′)) (see Corollary 4.3) hence contradicting that μ((a, b)) = 0. Then
we have

μ
(
(a, b)

) ≥ μ
((

s+(t+), s+
(
t ′
))) = P

(
Wν

σ∗ ∈ (
s+(t+), s+

(
t ′
)))

≥ P
(

sup
t≤s≤t ′

Wν
s ≥ s+

(
t ′
)
, σ∗ > t

)
> 0,

which contradicts the assumptions. �

Notice that for f ≡ 1 (4.22) gives P(σ∗ < +∞) = μ(R) = 1. As anticipated in the proof of Theorem 2.3, this
implies that there cannot exist a time t0 > 0 such that s+(t) = s−(t) = +∞ for all t ≥ t0.

Corollary 4.5. For all t > 0, either s+(t) < +∞ or s−(t) < +∞ or both.

We conclude the paper with a discussion on the role of Assumption (D.1).

Remark 4.6. As anticipated in Section 2, although Assumption (D.1) is not necessary to implement the methods
illustrated in this paper, it is a convenient one for the clarity of exposition. Here we illustrate how our methods may
be used to deal with a pair ν and μ which does not meet (D.1).

Take

ν(dx) = 1

2

(
δ−1(x) + δ1(x)

)
dx, μ(dx) = 1[− 1

2 , 1
2 ](x) dx. (4.35)

Then G is non-positive, it equals −3/4 on (−∞,−1) ∪ (1,+∞), it is non-decreasing on (−1,0) and non-increasing
on (0,1), with maximum value G(0) = 0. Arguing as in Proposition 3.4, for T = +∞ we obtain v(x) = 0 and
C∞ =R \ {0}.

For T < +∞, using the same arguments as in Section 3 one finds a non-connected continuation set of the form

CT = {
(t, x) ∈ [0, T ) ×R : x ∈ (−∞,−bT−(t)

) ∪ (
bT+(t),+∞)}

, (4.36)

where the functions bT± are continuous on [0, T ), non-decreasing and positive, with bT±(T −) = 1
2 . Since G′ is contin-

uous on [− 1
2 , 1

2 ] we also have V ∈ C1([0, T ) ×R) by the same arguments as those used in Section 3.1.
In the same spirit of Definition 2.2 we define s±, continuous and non-increasing, as the time reversal of bT± for

T > 0. Notice that s±(t) ≥ 0 for all t ≥ 0 and s±(+∞) = 0. Following Section 4 we have

C−∞ = {
(t, x) ∈ [0,+∞) ×R : x ∈ (−∞,−s−(t)

) ∪ (
s+(t),+∞)}

. (4.37)
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Due to the fact that CT is not connected and bT± ≥ 0, then for (t, x) ∈ CT the time–space Brownian motion (t + s, x +
Bs)s≥0 can only enter the stopping set DT , by crossing bT+ if x > 0, and by crossing −bT− if x < 0.

Proposition 4.2 holds in the same form and its proof can be repeated up to minor changes. In particular (4.14) reads

−2UT
t (t, x) = pC−(0,−1, T − t, x) + pC−(0,1, T − t, x), (4.38)

where indeed we notice that pC−(0,−1, T − t, x) = 0 for x > 0 and pC−(0,1, T − t, x) = 0 for x < 0, because C−∞ is
not connected. Using the latter representation one can repeat step by step the arguments of proof of Theorem 2.3, with
obvious changes, to obtain that (2.11) holds with

σ∗ := inf
{
t > 0 : Wν

t ∈ [−s−(t), s+(t)
]}

.

Appendix

Proof of Proposition 3.1. Finiteness is a simple consequence of sublinear growth of G at infinity and of T < +∞.
Since G is independent of time then t �→ V (t, x) is non-increasing on [0, T ] for each x ∈ R by simple comparison.
To show that V ∈ C([0, T ] ×R) we take 0 ≤ t1 < t2 ≤ T and x ∈ R, then

0 ≤ V (t1, x) − V (t2, x) ≤ sup
0≤τ≤T −t1

Ex

[(
G(Bτ ) − G(BT −t2)

)
1{τ≥T −t2}

]

≤ LGEx

[
sup

T −t2≤s≤T −t1

|Bs − BT −t2 |
]

→ 0 as t2 − t1 → 0,

where we have used that x �→ G(x) is Lipschitz on R with constant LG ∈ (0,4] and the limit follows by dominated
convergence. Now we take x, y ∈ R and t ∈ [0, T ], then

∣∣V (t, x) − V (t, y)
∣∣ ≤ LGE

[
sup

0≤s≤T −t

∣∣Bx
s − B

y
s

∣∣] = LG|x − y|.

Since V (·, x) is continuous on [0, T ] for each x ∈R and V (t, ·) is continuous on R uniformly with respect to t ∈ [0, T ]
continuity of (t, x) �→ V (t, x) follows. �

Proof of equations (3.1)–(3.3). Condition (3.2) and (3.3) are obvious whereas to prove (3.1) we use a well known
argument (see for instance [26, Section 7.1]). Since CT is an open set and it is not empty (see step 2 in the proof of
Theorem 3.2) we can consider an open, bounded rectangular domain U ⊂ CT with parabolic boundary ∂PU . Then the
following boundary value problem

ut + 1

2
uxx = 0 on U with u = V on ∂PU (A.1)

admits a unique classical solution u ∈ C1,2(U) ∩ C(U) (cf. for instance [15, Thm. 9, Section 4, Ch. 3]). Fix (t, x) ∈ U
and denote by τU the first exit time of (t + s, x + Bs)s≥0 from U . Then Dynkin’s formula gives

u(t, x) = E
[
u(t + τU , x + BτU )

] = E
[
V (t + τU , x + BτU )

] = V (t, x),

where the last equality follows from the fact that V (t + s ∧ τ∗, x +Bs∧τ∗), s ≥ 0 is a martingale according to standard
optimal stopping theory and τU ≤ τ∗, P-a.s.

Since U is arbitrary in CT the equation (3.1) follows. �

Proof of Proposition 3.4. We proceed in two simple steps.
Step 1. Here we collect some geometric properties of G. Since G′(x) = 2(Fν − Fμ)(x), then the limits

G(+∞) := lim
x→∞G(x) and G(−∞) := lim

x→−∞G(x)



1126 T. De Angelis

exist because G′ changes its sign at most once due to (D.1). Notice however that G(±∞) might be equal to +∞.
Moreover

supp{μ} ⊆R− =⇒ G′ ≤ 0 on R and supp{μ} ⊆ R+ =⇒ G′ ≥ 0 on R. (A.2)

On the other hand, if μ is supported on both sides of [−a−, a+] (hence a± < ∞) then there exists a unique a0 ∈
[−a−, a+] for which Fμ ≥ Fν on (−∞, a0) and Fμ ≤ Fν on (a0,+∞). Hence G has a unique global minimum at a0.

Since G(0) = 0, using the above discussion we conclude that

G := sup
x∈R

G(x) = max
{
G(+∞),G(−∞)

}
. (A.3)

Notice that atoms of μ and ν correspond to discontinuities of G′ and, if μ and ν are purely atomic, then G is
continuous and piecewise linear. Finally we have G concave on (−∞,−a−) ∪ (a+,+∞) and convex on [−a−, a+]
because G′′(dx) = 2(ν − μ)(dx).

Step 2. Now we study the value function v and the continuation set C∞. From the analysis in step 1 we deduce that
G is the smallest concave majorant of G, hence we expect v(x) = G.

Due to (A.3) we immediately have v(x) ≤ G from (3.26), so we need to prove the reverse inequality. With no loss of
generality we may consider G(+∞) = max{G(+∞),G(−∞)} and regardless of whether or not G(+∞) is finite we
can argue as follows: we pick τn := inf{t ≥ 0 : Bt ≥ n} so that v(x) ≥ ExG(Bτn) = G(n) because Px(τn < +∞) = 1.
Taking the limit as n → ∞ we get v(x) ≥ G(+∞) as needed.

If v = +∞ then C∞ = R since G(x) is finite for all x ∈ R. The geometry of C∞ in the remaining cases can be
worked out easily. Let us consider for example the setting of (ii). Since G(+∞) > G(−∞) then it must be supp{μ} ∩
R+ �=∅, due to (A.2). It follows that 0 ≤ a+ < μ+, because μ+ = a+ is ruled out by (D.2). Then G′ > 0 on [a+,μ+),
which implies that G(x) < G(μ+) for x < μ+ and G(x) = G(μ+) for all x ≥ μ+. Hence G(+∞) = G(μ+), and
since v(x) = G(+∞) then C∞ = (−∞,μ+). We notice that the argument holds also if μ+ = +∞.

The geometry of C∞ in cases (iii) and (iv) may be obtained by analogous considerations. �

Proof of Lemma 3.7. Because of (3.34) we have τ̃∗(t, x) = 0, P-a.s. In particular this means that for any fixed
ω ∈ � \ N , with N a null set, and for any δ > 0 there is s = s(ω) ∈ (0, δ) such that (t + s, x + Bs(ω)) ∈ D◦

T .
Since (tn + s, xn + Bs(ω)) → (t + s, x + Bs(ω)) as n → ∞, and D◦

T is open, then there exists Nω ∈ N such that
(tn + s, xn + Bs(ω)) ∈D◦

T for all n ≥ Nω. Thus τ̃∗(tn, xn)(ω) < δ for all n ≥ Nω and

lim sup
n→∞

τ̃∗(tn, xn)(ω) < δ.

Recalling (3.34) and that δ was arbitrary we obtain

lim
n→∞ τ∗(tn, xn)(ω) = lim

n→∞ τ̃∗(tn, xn)(ω) = 0.

Since ω was also arbitrary we conclude the proof. �

Proof of Lemma 3.8. For simplicity set τ∗ = τ∗(t, x) and τn = τ∗(tn, x). By monotonicity of the optimal boundaries
it is not hard to see that (τn)n≥0 forms a family which is non-increasing in n with τn ≥ τ∗ for all n, P-a.s. We denote
τ∞ := limn→∞ τn, P-a.s., so that τ∞ ≥ τ∗ and arguing by contradiction we assume that there exists �0 ⊂ � such
that P(�0) > 0 and τ∞ − τ∗ > 0 on �0. Notice that τ∗ < T − t on �0, otherwise τ∞ > τ∗ leads immediately to a
contradiction.

Let us pick ω ∈ �0 and with no loss of generality let us assume that

x + Bτ∗(ω) ≥ b+
(
t + τ∗(ω)

)
(A.4)

(similar arguments hold for b−). Since we are on �0, then there exists δω > 0 such that τ∞(ω) − τ∗(ω) ≥ δω and for
all n > 0 it must be

x + Bτ∗+s(ω) < b+
(
tn + τ∗(ω) + s

)
, s ∈ (0, δω/2]. (A.5)
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For any ε ∈ (0, δω/2) we find nε sufficiently large to get t − tn < ε for n ≥ nε and consequently tn + s ≥ t for
s ∈ (ε, δω/2]. Monotonicity of b+ implies that for n ≥ nε we have

b+
(
tn + τ∗(ω) + s

) ≤ b+
(
t + τ∗(ω)

)
, s ∈ (ε, δω/2]

and hence, by (A.5), also

x + Bτ∗+s(ω) < b+
(
t + τ∗(ω)

)
, s ∈ (ε, δω/2]. (A.6)

Letting now ε → 0 in (A.6), the latter and (A.4) would imply Bτ∗+s(ω) − Bτ∗(ω) ≤ 0 for s ∈ (0, δω/2], which contra-
dicts the law of iterated logarithm. �

Proof of Proposition 3.9. We only provide a full proof for (3.38) as the argument for (3.39) is completely analogous
up to trivial changes. Let t ∈ [0, T ) and x := b+(t) < +∞ then it is easy to see that

lim sup
ε→0

1

ε

(
V (t, x) − V (t, x − ε)

) ≤ lim sup
ε→0

1

ε

(
G(x) − G(x − ε)

) = G′(x−). (A.7)

Moreover (3.1) implies Vxx = −2Vt ≥ 0 in CT so that Vx(t, ·) is non-decreasing for all x ∈ (−b−(t), b+(t)) and its
limit at x = b+(t) is well defined. Hence (A.7) implies

Vx(t, x−) ≤ G′(x−). (A.8)

For the other inequality in (3.38) we denote

τε := inf
{
s ≥ 0 : (t + s,Bx−ε

s

) ∈ DT

}
,

τa− := inf
{
s ≥ 0 : Bx−ε

s ≤ −a−
}
,

set ρε := τε ∧ τa− , and recall that

Y ε
s := V

(
t + s ∧ ρε,B

x−ε
s∧ρε

)
is a martingale,

whereas Ys := V (t + s,Bx
s ) is a supermartingale for s ∈ [0, T − t]. We notice that

P(τa− > 0) = 1. (A.9)

If −a− < a+ the result in (A.9) is trivial. If a− = a+ = 0, then ν({0}) = 1 and b+(t) > 0 for t ∈ [0, T ) by (iv) in
Theorem 3.2. Hence b+(t) − ε > 0 for ε sufficiently small and (A.9) holds.

Using the (super)martingale property of Y and Y ε we have

V (t, x) − V (t, x − ε) ≥ E
[
V

(
t + ρε,B

x
ρε

) − V
(
t + ρε,B

x−ε
ρε

)]
= E

[
1{τε<τa−}∩{ρε≤δ}

(
G

(
Bx

τε

) − G
(
Bx−ε

τε

))]
+ E

[
1{τε>τa−}∩{ρε≤δ}

(
V

(
t + τa− ,Bx

τa−
) − V

(
t + τa− ,Bx−ε

τa−
))]

+ E
[
1{ρε>δ}

(
V

(
t + ρε,B

x
ρε

) − V
(
t + ρε,B

x−ε
ρε

))]
. (A.10)

Recalling the Lipschitz continuity of V (t, ·) (Proposition 3.1) and since Bx
ρ − Bx−ε

ρ = ε P-a.s. for any stopping time
ρ, we obtain the lower bounds

E
[
1{τε>τa−}∩{ρε≤δ}

(
V

(
t + τa− ,Bx

τa−
) − V

(
t + τa− ,Bx−ε

τa−
))] ≥ −εLGP(τε > τa− , ρε ≤ δ),

E
[
1{ρε>δ}

(
V

(
t + ρε,B

x
ρε

) − V
(
t + ρε,B

x−ε
ρε

))] ≥ −εLGP(ρε > δ).
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We notice that since b+ is non-increasing, then on the event {ρε ≤ δ} ∩ {τε < τa−} one has x − ε + Bτε ≥ b+(t + δ) ≥
a+. Moreover G is concave and non-decreasing on [a+,+∞) and therefore also on the interval (Bx−ε

τε
,Bx

τε
) when

considering the event {ρε ≤ δ} ∩ {τε < τa−}. Using these facts we obtain

E
[
1{τε<τa−}∩{ρε≤δ}

(
G

(
Bx

τε

) − G
(
Bx−ε

τε

))]
≥ εE

[
1{τε<τa−}∩{ρε≤δ}G′(x + Bτε )

] ≥ εG′(b+(t) + ε
)
P(τε < τa− , ρε ≤ δ),

where for the last inequality we have used again concavity of G and that x − ε + Bτε ≤ b+(t) because the boundary
b+ is monotonic non-increasing.

Plugging in (A.10) the lower bounds obtained for the terms on the right-hand side, and dividing by ε we find

1

ε

(
V (t, x) − V (t, x − ε)

) ≥ G′(b+(t) + ε
)
P(τε < τa− , ρε ≤ δ)

− LG

(
P(τε > τa− , ρε ≤ δ) + P(ρε > δ)

)
. (A.11)

Notice that due to (A.9) for any η > 0 there is η′ > 0 such that P(τa− ≥ η′) ≥ 1 − η and therefore P(τε > τa−) ≤
η + P(τε ≥ η′). The latter implies that letting ε → 0 in (A.11), and using that τε → 0 P-a.s. (Lemma 3.7) and G′ is
right-continuous, gives

Vx(t, x−) ≥ G′(b+(t)
) + η = G′(x) + η.

Since η is arbitrary, (A.8) and the above inequality imply (3.38). �

Proof of Lemma 3.12. We will only give details for the limits involving b+ as those involving b− can be obtained in
the same way.

Step 1 (Proof of (ii)). If μ({b̂+}) = ν({b̂+}) = 0 then G′ is continuous at b̂+. Moreover since b+(t) → b̂+ as t → T

we can take limits as t → T in (3.38) and obtain (3.40). If instead ν({b̂+}) > μ({b̂+}) = 0, i.e. a+ = b̂+ and ν has an
atom at that point, then (iv) of Theorem 3.2 implies that b+(t) converges to a+, as t → T , strictly from above. Hence,
by right-continuity of G′ and concavity of G on (b̂+,+∞) we get

G′(b̂+) = lim
t→T

G′(b+(t)
) ≤ lim

t→T
G′(b+(t)−) ≤ G′(b̂+)

and (ii) holds due to (3.38).
Step 2 (Proof of (i)). The more interesting case is when μ({b̂+}) > 0 and therefore b̂+ > a+ due to Assumption

(D.2). For this part of the proof it is convenient to use the notation Et,x[·] = E[·|Bt = x] and to think of � as the space
of continuous functions, with θ· : � → � denoting the shifting operator.

In particular we take t ∈ [t+, T ) so that b+(t) = b̂+ and V (t, b+(t)) = G(b+(t)) (see Lemma 3.3). We also pick
a ∈ (a+, b̂+) and denote τa := inf{s ≥ 0 : Xs ≤ a}. For ε > 0 such that b̂+ − ε > a we have

V (t, b̂+) − V (t, b̂+ − ε) = G(b̂+) − G(b̂+ − ε) −
∫
R

E
t,b̂+−ε

[
Lz

τ∗
]
(ν − μ)(dz) (A.12)

with τ∗ as in (2.7). To find a lower bound for the last term in (A.12) we notice that Lz
τ∗1{τ∗≤τa}ν(dz) = 0 and

Lz
τa

ν(dz) = 0, P
t,b̂+−ε

-a.s. and use the strong Markov property as follows∫
R

E
t,b̂+−ε

[
Lz

τ∗
]
(ν − μ)(dz) ≤

∫
R

E
t,b̂+−ε

[
1{τ∗>τa}Lz

τ∗
]
ν(dz)

=
∫
R

E
t,b̂+−ε

[
1{τ∗>τa}

(
Lz

τa
+ E

t,b̂+−ε

[
Lz

τ∗ ◦ θτa |Fτa

])]
ν(dz)

=
∫
R

E
t,b̂+−ε

[
1{τ∗>τa}Eτa,a

[
Lz

τ∗
]]

ν(dz)

≤ P
t,b̂+−ε

(τa < τ∗)
∫
R

sup
t≤s≤T

Es,a

[
Lz

τ∗
]
ν(dz).
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Setting g(t) := ∫
R

supt≤s≤T Es,a[Lz
τ∗ ]ν(dz) and substituting the above bound in (A.12) we get

V (t, b̂+) − V (t, b̂+ − ε) ≥ G(b̂+) − G(b̂+ − ε) − g(t)P
t,b̂+−ε

(τa < τ∗). (A.13)

Notice that since b+(t) = b̂+ for all t ∈ [t+, T ] then {τa < τ∗} ⊂ {τa < τ
b̂+ ∧ (T − t)}, P

t,b̂+−ε
-a.s. where τ

b̂+ :=
inf{s ≥ 0 : Xs ≥ b̂+}. Therefore

P
t,b̂+−ε

(τa < τ∗) ≤ P
t,b̂+−ε

(
τa < τ

b̂+ ∧ (T − t)
) ≤ P

t,b̂+−ε
(τa < τ

b̂+) = ε

b̂+ − a
,

where the last equality follows by well known properties of the scale function of Brownian motion. Plugging the
above in (A.13), dividing by ε and taking limits as ε → 0 gives

Vx(t, b̂+−) ≥ G′(b̂+−) − g(t)(b̂+ − a)−1. (A.14)

Now letting t → T and noticing that g(t) → 0 we obtain (3.40) upon recalling (3.38). �

Proof of Lemma 3.13. We only prove the statement for supp{μ} ∩ R+ = ∅ as the arguments for the the other case
are the same. Let t ∈ [0, T ] and x > 0, so that (t, x) ∈ CT and (t, x + ε) ∈ CT for all ε > 0, since the stopping set is all
contained in [0, T ] ×R− (recall (ii) of Theorem 3.2).

For τ∗ = τ∗(t, x) we have

1

ε

(
V (t, x + ε) − V (t, x)

) ≥ 1

ε
E
[
G(x + ε + Bτ∗) − G(x + Bτ∗)

]
and

1

ε

(
V (t, x) − V (t, x − ε)

) ≤ 1

ε
E
[
G(x + Bτ∗) − G(x − ε + Bτ∗)

]
.

Since V ∈ C1,2 inside CT and G′ is right-continuous then taking limits as ε → 0 gives

ExG
′(Bτ∗) ≤ Vx(t, x) ≤ ExG

′(Bτ∗−). (A.15)

Notice that G′(x) → 0 as x → ∞ (recall that ν({+∞}) = 0), hence for any ε > 0 there exists xε > 0 such that
|G′(x)| ≤ ε for x ∈ [xε,+∞). We fix ε > 0 and with no loss of generality consider x > xε . Then we have

Ex

∣∣G′(Bτ∗)
∣∣ = Ex

[∣∣G′(Bτ∗)
∣∣1{τ∗<T −t} + ∣∣G′(BT −t )

∣∣1{τ∗=T −t}
]

≤ LGPx(τ∗ < T − t) + Ex

[∣∣G′(BT −t )
∣∣1{τ∗=T −t}∩{BT −t≤xε}

] + ε

≤ LG

(
Px(τ∗ < T − t) + Px(BT −t ≤ xε)

) + ε.

An analogous inequality clearly holds for Ex |G′(Bτ∗−)|.
Since x > xε , then both Px(τ∗ < T − t) and Px(BT −t ≤ xε) are bounded from above by P(sup0≤s≤T |Bs | ≥ |xε −

x|). Therefore from (A.15) and the estimates above we obtain

sup
0≤t≤T

∣∣Vx(t, x)
∣∣ ≤ 2LGP

(
sup

0≤s≤T

|Bs | ≥ |xε − x|
)

+ ε.

Letting x → ∞ and recalling that ε > 0 was arbitrary the proof is completed. �

Proof of Lemma 4.1. The proof is a generalisation of the proof of [20, Thm. 24.7] and it will be sufficient to give it in
the case with t = 0 and s = T . In particular it is enough to show that for any A,B ∈ B(R) with A ⊆ [−b−(0), b+(0)]
and B ⊆ [−s−(0), s+(0)] one has∫

A

Px(BT ∈ B,T ≤ τ∗) dx =
∫

B

Px(WT ∈ A,T ≤ τ−) dx. (A.16)
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Recalling (3.34) and (4.4), we find it convenient (with no loss of generality) to prove (A.16) with τ̃∗ and τ̃− instead of
τ∗ and τ−.

For the sake of this proof and with no loss of generality we can consider the canonical space � = C([0,∞)) with
the Borel σ -algebra F = B(C([0,∞))). Given that (A.16) only involves the laws of B and W we can simplify the
notation and consider a single Brownian motion X = (Xt )t≥0 defined as the coordinate process Xt(ω) = ω(t) with its
filtration (FX

t )t≥0 augmented with the P-null sets. With a slight abuse of notation, here we denote by P the Wiener
measure on (�,F). In this setting τ̃∗ coincides with the first exit time of (Xt )t≥0 from [−b−(t), b+(t)], t ∈ [0, T ] and
τ̃− coincides with the first (strictly positive) exit time of (Xt )t≥0 from [−s−(t), s+(t)], t ≥ 0.

Due to (3.34) and (4.18) it is not difficult to see that

{T ≤ τ̃∗} =
⋂

q∈[0,T ]∩Q

{
Xq ∈ [−b−(q), b+(q)

]}
(A.17)

and

{T ≤ τ̃−} =
⋂

q∈[0,T ]∩Q

{
Xq ∈ [−s−(q), s+(q)

]}
. (A.18)

For simplicity and without loss of generality we assume T ∈ Q. Now, we can consider a sequence (πn)n∈N of
dyadic partitions of [0, T ] defined by πn := {tn0 , tn1 , . . . , tnn } where tnk := k

2n T , k = 0,1,2, . . . ,2n and then

{T ≤ τ̃∗} = lim
n→∞

⋂
q∈πn

{
Xq ∈ [−b−(q), b+(q)

]}
, (A.19)

{T ≤ τ̃−} = lim
n→∞

⋂
q∈πn

{
Xq ∈ [−s−(q), s+(q)

]}
. (A.20)

We set hn = tnk+1 − tnk = T/2n and denote pn
h(x, y) = 1√

2πhn
exp− 1

2hn
(x − y)2. By using monotone convergence and

Chapman–Kolmogorov equation we obtain∫
B

Px(XT ∈ A,T ≤ τ̃−) dx

= lim
n→∞

∫
B

Px

(
Xq ∈ [−s−(q), s+(q)

]
for all q ∈ πn,XT ∈ A

)
dx

= lim
n→∞

∫
pn

h(x0, x1)p
n
h(x1, x2) · · ·pn

h(x2n−1, x2n) dx0 dx1 · · ·dx2n , (A.21)

where the last integral is taken with respect to x0 ∈ B , x2n ∈ A and xk ∈ [−s−(tnk ), s+(tnk )] for k = 1,2, . . . ,2n − 1.
We interchange order of integration, relabel variables x2n−k = yk for k = 0,1,2, . . . ,2n and use symmetry of the heat
kernel along with the fact that s±(q) = b±(T − q) to conclude∫

B

Px(XT ∈ A,T ≤ τ̃−) dx

= lim
n→∞

∫
pn

h(y0, y1)p
n
h(y1, y2) · · ·pn

h(y2n−1, y2n) dy0 dy1 · · ·dy2n

= lim
n→∞

∫
A

Px

(
Xq ∈ [−b−(q), b+(q)

]
for all q ∈ πn,XT ∈ B

)
dx

=
∫

A

Px(XT ∈ B,T ≤ τ̃∗) dx.

Hence (A.16) follows and the generalisation to arbitrary t < s can be obtained with the same arguments. �
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Proof of (4.16). It is sufficient to show that bδ+(t) ↓ b+(t) for all t ∈ [0, T ) since the proof for b− is analogous and
the convergence of the related sets easily follows from the same arguments. Note that for each t the limit b0+(t) :=
limδ→0 bδ+(t) exists and b0+(t) ≥ b+(t) since δ �→ bδ+(t) decreases as δ → 0 and bδ+(t) ≥ b+(t) for all δ > 0. Let us
assume that there exists t̄ ∈ [0, T ) such that b0+(t̄) > b+(t̄). Pick x̄ ∈ (b+(t̄), b0+(t̄)), then by definition of b0+ it should
follow that infδ>0 V δ(t̄, x̄)−Gδ(x̄) ≥ η > 0 for some η = η(t̄, x̄) independent of δ. However this is clearly impossible
since V δ(t̄, x̄) − Gδ(x̄) converges to V (t̄, x̄) − G(x̄) = 0 as δ → 0 by (4.17). �

Proof of (4.17). We denote ‖ · ‖∞ the L∞(R) norm. By direct comparison we obtain

(
V δ − V

)
(t, x) ≤ sup

0≤τ≤T −t

Ex2
∫ Bτ

0

(
Fμ − Fδ

μ

)
(z) dz

= 2
∥∥Fμ − Fδ

μ

∥∥∞ sup
0≤τ≤T −t

Ex |Bτ | (A.22)

and the same bound can be found for (V − V δ)(t, x). Then by an application of Jensen inequality and using that
Ex(Bτ )

2 = x2 + E0B
2
τ = x2 + E0τ we get

∣∣V δ − V
∣∣(t, x) ≤ 2

∥∥Fμ − Fδ
μ

∥∥∞ sup
0≤τ≤T −t

(
Ex |Bτ |2

) 1
2 ≤ 2

(|x| + √
T

)∥∥Fμ − Fδ
μ

∥∥∞. (A.23)

The latter goes to zero as δ → 0 by (4.15), uniformly for t ∈ [0, T ] and x in a compact. �

Proof of (4.19). Thanks to (4.4) and (4.18) it is sufficient to prove that τ̃ δ− ↓ τ̃− as δ → 0. We denote τ0 := limδ→0 τ̃ δ−,
P-a.s. (the limit exists since the sequence is monotone by (4.16)). Note that τ0 ≥ τ̃− and let us now prove that the
reverse inequality also holds.

Fix ω̂ ∈ �, then if τ̃−(ω̂) = +∞ we immediately obtain τ0(ω̂) = τ̃−(ω̂). On the other hand let ηω̂ > 0 be such
that τ̃−(ω̂) < ηω̂. Then there exists t ∈ (τ̃−(ω̂), ηω̂) (also depending on ω̂) such that Wν

t (ω̂) /∈ [−s−(t), s+(t)], i.e.
with no loss of generality we may assume that there exists εt,ω̂ > 0 such that Wν

t (ω̂) > s+(t) + εt,ω̂ . By (4.16) it then
follows that Wν

t (ω̂) > sδ+(t) for all δ sufficiently small and hence τ0(ω̂) < ηω̂. Since ηω̂ was arbitrary we conclude
that τ0(ω̂) ≤ τ̃ (ω̂). Repeating the argument for all ω ∈ � the claim is proved. �

Proof of a refined version of Lemmas 3.13 and 3.14. Here we discuss a technicality needed to make the proof of
V δ

t ∈ C([0, T )×R) rigorous. In fact we need a refined version of Lemma 3.13 in order to be able to prove Lemma 3.14
in the cases supp{μ} ∩ R+ = ∅ or supp{μ} ∩ R− = ∅. We only give full details for the former case as the latter can
be addressed by similar methods.

Let supp{μ} ∩R+ = ∅ (hence b+ ≡ +∞), then for any δ > 0 one has μδ(R) < 1 and limx→∞(Gδ)′(x) = gδ > 0
for some constant gδ . Therefore Lemma 3.13 holds in a different form and in particular we claim that

lim
y→∞ sup

0≤s≤T

∣∣V δ
x (s, y) − gδ

∣∣ = 0. (A.24)

If the above limit holds then one can replace (3.50) in the final part of the proof of Lemma 3.14 by

σh

([x,+∞)
) = − 1

2h

∫ T

T −h

(
gδ − V δ

x (s, x)
)
ds,

and notice that |σh([x,+∞))| < ε/2 for x sufficiently large. Once this is accomplished the rest of the proof of
Lemma 3.14 follows in the same way and one can then repeat the same steps to prove all the remaining properties of
V δ

t .
It remains to prove (A.24). As in (A.15) we obtain

Ex

[(
Gδ

)′
(Bτ∗) − gδ

] ≤ V δ
x (t, x) − gδ ≤ Ex

[(
Gδ

)′
(Bτ∗−) − gδ

]
.
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Moreover for any ε > 0 there is xε > 0 such that |(Gδ)′(x) − gδ| ≤ ε for x ∈ [xε,+∞) and therefore

Ex

[∣∣(Gδ
)′
(Bτ∗) − gδ

∣∣] ≤ c
(
Px(τ∗ < T − t) + Px(BT −t ≤ xε)

) + ε.

Taking limits as x → ∞ the right-hand side of the expression above goes to ε. Since the latter is arbitrary (A.24)
follows. �

Proof of (4.34). For k ≥ 1 we denote μ
(k)
− = μ− +1/k. Notice that μk(dx) = μk+1(dx) for x ∈ [−μ−,+∞) whereas

μk+1(dx) ≥ μk(dx) for x ∈ [−μ
(k+1)
− ,−μ−) since F ′

μk+1
= (k + 1)Fμ(−μ−) ≥ kFμ(−μ−) = F ′

μk
on that interval.

On the other hand if we denote by τk+1 the optimal stopping time for the problem with value function V T
k+1, we also

observe that Lz
τk+1

= 0, Pt,x -a.s. for all z ≤ −μ
(k+1)
− since b

(k+1)
− (t) ≤ μ

(k+1)
− for all t ∈ [0, T ]. It then follows for any

(t, x)

Et,x

∫
R

Lz
τk+1

μk+1(dz) = Et,x

∫
[−μ

(k+1)
− ,+∞)

Lz
τk+1

μk+1(dz)

≥ Et,x

∫
[−μ

(k+1)
− ,+∞)

Lz
τk+1

μk(dz) = Et,x

∫
R

Lz
τk+1

μk(dz).

Therefore we obtain

V T
k+1(t, x) − Gk+1(x) = Et,x

∫
R

Lz
τk+1

(ν − μk+1)(dz)

≤ Et,x

∫
R

Lz
τk+1

(ν − μk)(dz) ≤ V T
k (t, x) − Gk(x)

for all (t, x) ∈ [0, T ]×R. For Uk := V T
k −Gk , the sequence (Uk)k≥0 is non-increasing. Hence, denoting Ck := {(t, x) :

Uk(t, x) > 0}, k ≥ 1 the corresponding continuation sets, one has Ck ⊇ Ck+1 for all k ≥ 1. On the other hand it is easy
to verify that by construction

lim
k→∞ sup

x∈R

∣∣Gk(x) − G(x)
∣∣ = 0

and therefore also

lim
k→∞ sup

(t,x)∈[0,T ]×R

∣∣V T
k (t, x) − V T (t, x)

∣∣ = 0.

Now arguing exactly as in the proof of (4.16) and (4.19) we can demonstrate that Ck ↓ CT and σ
(k)∗ ↓ σ∗ P-a.s. as

required. �
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