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A SIMPLE EVOLUTIONARY GAME ARISING FROM THE STUDY
OF THE ROLE OF IGF-II IN PANCREATIC CANCER

BY RUIBO MA AND RICK DURRETT

Duke University

We study an evolutionary game in which a producer at x gives birth at
rate 1 to an offspring sent to a randomly chosen point in x + Nc, while a
cheater at x gives birth at rate λ > 1 times the fraction of producers in x +Nd

and sends its offspring to a randomly chosen point in x +Nc. We first study
this game on the d-dimensional torus (Z mod L)d with Nd = (Z mod L)d

and Nc = the 2d nearest neighbors. If we let L → ∞ then t → ∞ the frac-
tion of producers converges to 1/λ. In d ≥ 3 the limiting finite dimensional
distributions converge as t → ∞ to the voter model equilibrium with density
1/λ. We next reformulate the system as an evolutionary game with “birth-
death” updating and take Nc = Nd = N . Using results for voter model
perturbations we show that in d = 3 with N = the six nearest neighbors,
the density of producers converges to (2/λ) − 0.5 for 4/3 < λ < 4. Pro-
ducers take over the system when λ < 4/3 and die out when λ > 4. In
d = 2 with N = [−c

√
logN,c

√
logN ]2 there are similar phase transitions,

with coexistence occurring when (1 + 2θ)/(1 + θ) < λ < (1 + 2θ)/θ where

θ = (e3/(πc2) − 1)/2.

1. Introduction. Archetti, Ferraro, and Christofori [1] have recently analyzed
the dynamics of the production of insulin-like growth factor II (IGF-II) in tumor
cell lines from mouse insulinomas, a tumor of the pancreas in which cancer cells
produce insulin. In this system, some (cooperator) cells produce the growth factor
while other mutant (defector) cells that have lost both copies of this gene “free-
ride” on the growth factors produced by other cells. Thus this system is yet another
example of studying the interaction of cooperators and defectors in a spatial sys-
tem. For a classic example in which cooperators pay a price c to give a benefit b

to each of their neighbors see Ohtsuki et al. [19], and Section 1.6 in Cox, Durrett,
and Perkins [4].

In our system, space is represented by the d-dimensional lattice or torus
(Z mod L)d . ξt (x) gives the state of x at time t . We use very simple dynamics
that are a variant of the biased voter model. Let Nc be the competition neighbor-
hood. Producers (2’s) give birth at rate 1 and if the birth comes from x it replaces a
randomly chosen member of x +Nc. In d ≥ 3, Nc will typically be the 2d nearest
neighbors.
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Cheaters (1’s) have a diffusion neighborhood Nd that they use to compute the
local density of 2’s:

u(t, x) = 1

|Nd |
∣∣{y ∈ Nd : ξt (x + y) = 2

}∣∣,
where |S| is the number of elements in a set S. A 1 at x at time t gives birth
at rate λu(t, x) and sends the offspring to replace a randomly chosen member of
x +Nc. Since we are thinking about diffusion, it would be more natural to replace
the simple average by a weighted average using a p(y) that looks like a truncated
normal distribution but here we will choose simplicity over realism.

To analyze this system, it is useful to observe that it can be reformulated as an
evolutionary game with matrix

(1) G =
1 2

1 0 λ

2 1 1

and “birth-death” dynamics. Let ξt (z) be the strategy being used by the individual
at z at time t . The individual at x has fitness

φ(x) = 1

|Nd |
∑

y∈x+N d

G
(
ξt (x), ξt (y)

)
,

gives birth at rate φ(x), and the offspring replaces an individual at a site randomly
chosen from x +Nc.

1.1. Homogeneously mixing dynamics. If Nd = Nc = {1,2, . . . ,N} then in
the limit as N → ∞ the frequency of players using strategy i, ui , follows the
replicator equation:

(2)
dui

dt
= ui(Fi − F̄ ),

where Fi = ∑
j Gi,juj is the fitness of strategy i and F̄ = ∑

i uiFi is the average
fitness. See e.g., Hofbauer and Sigmund’s book [14]. Note that if we add a constant
ck to column k we add ukck to each Fi and hence also to F̄ so the behavior of the
replicator equation is not changed. The replicator equation for (1) is

du2

dt
= u2

(
1 − [u1λu2 + u2 · 1]) = u1u2(1 − λu2).

As t → ∞, u2(t) → 1/λ, u1(t) → 1 − 1/λ, which is a mixed strategy equilibrium
for the game.
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1.2. Global diffusion, local competition on the torus. Consider now the sys-
tem on the torus with Nd = (Z mod L)d , Nc the nearest neighbors. For simplicity
we suppose the initial state is a product measure with density u0. Let N = Ld ,
write y ∼ x if y is a nearest neighbor of x, and let

UL(t) = 1

N

∑
x

1{ξt (x)=2},

VL(t) = 1

2dN

∑
x,y∼x

1{ξt (x)=2,ξt (y)=1}.

The system on the torus is difficult to study because its statistics are random, and
eventually it will reach one of the absorbing states ≡ 1 and ≡ 2. To avoid this we
will let L → ∞ before taking t → ∞.

THEOREM 1. As L → ∞, UL → u(t) and VL(t) → v(t) with
du

dt
= v(t)

(
1 − λu(t)

)
, where u(0) = u0 and v(0) = u0(1 − u0).

In the limiting equation u(t) → 1/λ as t → ∞.

To see why this is true, note that if the initial density of 2’s u(0) > 1/λ then
the density of 2’s will decrease until u(t) ≈ 1/λ. The difficulty in proving this is
the usual one in interacting particle systems; to bound the decrease of the one-
dimensional distribution u(t), we need information about the two dimensional dis-
tribution v(t). A new difficulty is that the dynamics of the dual coalescing branch-
ing random walk depend on the density u(t)

When the density u(t) ≈ 1/λ the system behaves like the voter model. Based on
Theorem 1 the following should not be surprising. Let νp be the limit of the voter
model starting with product measure with density p. For the existence of the limit
and properties of these measures see [16] or [17].

THEOREM 2. If d ≥ 3 then as L → ∞, all of the empirical finite dimensional
distributions at time t converge to those of a translation invariant distribution μt

on {1,2}Zd
. As t → ∞, μt ⇒ ν1/λ.

Note that Theorem 1 holds in d ≤ 2. The particle system should cluster in d ≤ 2,
but the first step of our proof which is to show that the convergence u(t) → 1/λ in
Theorem 1 occurs exponentially fast uses d ≥ 3.

1.3. Weak selection d ≥ 3. To be able to use machinery we have developed
previously, [4, 7], we replace the game by Ḡ = 1 + wG where 1 is a matrix of all
1’s and w is small:

Ḡ =
1 2

1 1 1 + λw

2 1 + w 1 + w
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Note that by a remark after (2), the replicator equation for Ḡ is the same as that
for G.

If the game matrix is 1, then dynamics are those of the voter model, so when w

is small this is a voter model perturbation as defined in [4]. To make it easier to
compare with [4] and [7] we will let w = ε2. To be able to just quote the previous
results, we will assume that Nc = Nd = N . One can prove results when Nc �= Nd

but there are a number of small changes in the proof and some of the symmetry
that is useful in simplifying formulas is lost.

The key to the study of voter model perturbations is a result that says when
the system is suitably rescaled in space and time it converges to the solutions of a
reaction diffusion equation. We run time at rate ε−2 so that the perturbation will
have an effect, and scale space by ε. That is, we look at

ξ̄ ε
t (x) = ξtε−2(x/ε) for x ∈ εZd .

The last detail before we can state the result is to define the mode of convergence.
Pick a small r > 0 and divide εZd into boxes with side εr . Given an x ∈ R

d let
Bε(x) be the box that contains x, and let ūε

i (t, x) be the fraction of sites in Bε(x) in
state i at time tε−2. We say that the rescaled spatial model ξ̄ ε

t converges to u(t, x)

if for any L

sup
x∈[−L,L]d

∣∣ūε
i (t, x) − u(t, x)

∣∣ → 0 as ε → 0.

THEOREM 3. Suppose d ≥ 3. Let vi : Rd → [0,1] be continuous with v1 +
v2 = 1. If the initial condition ξ̄ ε

0 converges to vi in the sense described above then
ξ̄ ε
t converges to u(t, x) the solution of the system of partial differential equations:

∂

∂t
ui(t, x) = σ 2

2
�ui(t, x) + φi

(
u(t, x)

)
,

with initial condition ui(0, x) = vi(x). The reaction term

φi(u) = ∑
j �=i

〈
1(ξ(0)=j)hj,i(0, ξ) − 1(ξ(0)=i)hi,j (0, ξ)

〉
u,

where hi,j (0, ξ) is the rate 0 flips from i to j in the evolutionary game when the
configuration is ξ . The brackets 〈·〉u are expected value with respect to the station-
ary distribution νu for the d-dimensional nearest neighbor voter model in which
the densities are given by the vector u.

To give a formula for the reaction term in the case of a k-strategy evolutionary
games with weak selection, we use results in Section 12 of [7]. Let v1 and v2 be
independent and uniform over N . Let p(0|x|y) be the probability three indepen-
dent random walks start at 0, x, and y do not hit. Let p(0|x, y) be the probability
the walks starting at x and y coalesce but did not hit 0.

p1 = Ep(0|v1|v1 + v2) and p2 = Ep(0|v1, v1 + v2).
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The reaction term is p1 times the right-hand side of the replicator equation for
H = G + A where

Ai,j = θ(Gi,i − Gj,i + Gi,j − Gj,j ) and θ = p2

p1
.

Note that if we add ck to column k the perturbation matrix A is not changed, so if
we subtract 1 from the second column of G the reaction term in our situation is p1
times the right-hand side of the replicator equation for

H =
1 2

1 0 (1 + θ)(λ − 1) − θ

2 1 + θ − θ(λ − 1) 0

If we suppose that N = the nearest neighbors of 0 then θ ≈ 0.5, see page 13 of
[7], and the game becomes

1 2
1 0 (3/2)λ − 2
2 2 − λ/2 0

From this and Theorem 6.1 in [7], we see that when w is small

• If λ < 4/3 then (3/2)λ − 2 < 0 so strategy 2 dominates strategy 1 and the
1’s die out.

• If λ > 4 then 2 − λ/2 < 0 so strategy 1 dominates strategy 2 and the 2’s
die out.

• If 4/3 < λ < 4, the replicator equation converges to the mixed strategy
equilibrium

(ρ,1 − ρ) = (1.5 − 2/λ,2/λ − 0.5).

It follows that there is coexistence in the spatial game and in all stationary dis-
tributions that assign probability 1 to configurations with infinitely many 1’s and
infinitely many 2’s, the probability that x is in state 1 is close to ρ.

The simulations in Table 1 done by Mridu Nanda, a student at the North Car-
olina School for Science and Math, shows that the theory accurately describes the
behavior of the spatial game when w = 1/10 and works reasonably well even when
w = 1/2. The numbers in Table 1 give the equilibrium frequencies of strategy 1 for
the indicated values of w and λ and compare them with the theoretical predictions
about the limit w → 0.

1.4. Two dimensions. One of the drawbacks of the voter perturbation machin-
ery is that it requires the existence of a stationary distribution for each vector of
densities and hence cannot be used in two dimensions, where the only stationary
distributions for the voter model concentrate on absorbing states ξ(x) ≡ i. To over-
come this problem, one can note that for two dimensional nearest neighbor random
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TABLE 1
Simulation results for the concrete 2 × 2 example

λ 4/3 3/2 3 3.5 4

Original game 0.11 0.25 0.75 0.83 0.89
w = 1/2 0.01 0.19 0.79 0.88 0.96
w = 1/10 0.00 0.16 0.82 0.92 0.98
w → 0 limit 0 0.17 0.83 0.93 1

walk, the probability a random walk does not hit 0 by time t is asymptotically
c/ log t and then run time at ε−2 log(1/ε) to have particles created at rate O(1)

that don’t coalesce before a fixed finite time T . However, the fact that most parti-
cles do not escape coalescence brings a number of technical difficulties and there
are only a few systems that have been rigorously analyzed, see [5, 8, 10]. A second
unfortunate fact is that the probability that after a branching event that produces
three particles, the probability none of them coalesce by time t is O(1/ log3 t)

compared to O(1/ log t) for a pair of particles, see [5], so the limiting PDE can
only have quadratic reaction terms.

Here, we will follow in the footsteps of Ted Cox [2] and suppose that when
w = 1/N ,

Nd =Nc = [−c
√

logN,c
√

logN ]2.

Even though we are reusing the letter N , we hope the reader will not confuse it
with the size of the torus N = Ld . As we will show in Section 4 this is enough
to make our voter random walks transient in the sense that a random walk starting
at 0 has positive probability of not returning to 0 by time N logN . In a sense
we are making a large range assumption but

√
logN grows slowly so our results

should be relevant for processes with fixed finite range. For example if N = 106,√
logN = 3.717.
One should be able to prove results for general “long-range” voter model per-

turbations in d = 2, but for simplicity and concreteness, we will only consider
k-strategy evolutionary games with weak selection. As in Theorem 3, pick a small
r > 0 and divide εZ2/

√
N into boxes with side εr . Given an x ∈ R

d let Bε(x) be
the box that contains x, and let ūε

i (t, x) be the fraction of sites in Bε(x) in state i

at time tε−2. We say that the rescaled spatial model ξ̄ ε
t converges to u(t, x) if for

any L

sup
x∈[−L,L]d

∣∣ūε
i (t, x) − u(t, x)

∣∣ → 0 as ε → 0.

THEOREM 4. Suppose d = 2 and the interaction neighborhood is QN =
[−c

√
logN,c

√
logN ]2. If we scale space by dividing by

√
N logN and run time
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at rate N the spatial game converges (in the sense described above) to the solution
of the system of partial differential equations:

∂

∂t
ui(t, x) = σ 2

2
�ui(t, x) + φi

(
u(t, x)

)
.

Let b = 3/(2πc2), p1 = e−3b and p2 = (e−b − e−3b)/2. The reaction term is p1
times the right-hand side of the replicator equation for H = G + A where

Ai,j = p2

p1
(Gi,i − Gj,i + Gi,j − Gj,j ).

If we consider the special case in (1) and, as before, subtract 1 from the second
column (which does not effect A or the behavior of the replicator equation for
H ) we see that the reaction term is p1 times the right-hand side of the replicator
equation for

H =
1 2

1 0 (1 + θ)λ − (1 + 2θ)

2 (1 + 2θ) − λθ 0
,

but now θ = p2/p1 = (e2b −1)/2. The qualitative behavior is same as in d ≥ 3 but
the locations of the phase transitions have changed. The mixed strategy equilibrium
has

ρ1 = (1 + θ) − (1 + 2θ)/λ, ρ2 = (1 + 2θ)/λ − θ,

so there is coexistence when
1 + 2θ

1 + θ
< λ <

1 + 2θ

θ
.

When θ = 1/2 this reduces to the previous answer.
In the analysis above, the long range assumption is needed for the proof but we

do not think it is necessary for the conclusion. See the simulation in Figure 1. The
fact that the interfaces between the regions occupied by the two strategies break
down suggests that there is coexistence in the spatial model. For an explanation
of the heuristic see the analysis of the nonlinear voter model done by Molofsky et
al. [18].

2. Proof of Theorem 1. The first step is to construct the process from a graph-
ical representation. To make our process look more like the biased voter model, we
will change the notation for producers from 2 to 0. In the new notation

UL(t) = 1

N

∑
x

1{ξt (x)=0}.

Suppose that UL(0) > 1/λ. We will use a biased voter model type construction that
only works up to time T0(L) = inf{t : UL(t) < 1/λ}, but Lemma 2.2 will show that
T0(L) → ∞ as L → ∞.
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FIG. 1. In this simulation 1’s are white and 2’s are black. The initial state was a black square in a
sea of white.

For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson process
T

x,y
n , n ≥ 1 with rate 1/2d . At time T

x,y
n we draw an arrow from x to y and write

a δ at y to indicate that y will take on the “opinion” at x at that time.
For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson process

S
x,y
n , n ≥ 1 with rate (λ− 1)/2d and a collection of independent random variables

R
x,y
n that are uniform on [0, λ − 1]. At time S

x,y
n we draw an arrow from x to y if

λUL(S
x,y
n ) − 1 ≥ R

x,y
n . These arrows will create a 1 at y if there is a 1 at x.

Given an initial condition ξ0(x) we view the {x : ξ0(x) = 1} are sources of fluid.
The fluid moves up the graphical representation, being blocked by δ’s and mov-
ing across arrows in the direction of their orientation. In an arrow-δ the δ occurs
just before the arrival of the arrow, otherwise the arrow would do nothing. It is
easy to see that this approach, which goes back to Harris [13] and Griffeath [12],
constructs the process and the density UL(s), 0 ≤ s ≤ t .

As with the ordinary biased voter model we can for each x ∈ (Z mod L)d define
a set-valued dual processes ζ x,t

s for 0 ≤ s ≤ t . If one of the particles in ζ x,t
s is at

y and there is an arrow-δ from x to y at time t − s then the particle jumps to x.
If instead it encounters an arrow from x to y then the particle at y gives birth to a
new particle at x. If the jumping particle or the new born lands on an occupied site
the two coalesce to 1. From the definition of the dual we see that{

ξt (x) = 0
} = {

ξ0(y) = 0 for all y ∈ ζ
x,t
t

}
.
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If the initial state is a product measure with density u0 then

P
(
ξt (x) = 0

) = E
[
u

|ζ x,t
t |

0

]
.

Let N = Ld . On (Z mod L)d , we have the following differential equation for
uL(t) = EUL(t):

duL(t)

dt
= d

dt

1

N

∑
x

P
(
ξt (x) = 0

)

= E
1

N

(
− ∑

y∼x

1{ξt (x)=0,ξt (y)=1}
λUL

2d
+ ∑

y∼x

1{ξt (x)=1,ξt (y)=0}
1

2d

)
(3)

= E
[
VL(t)

(
1 − λUL(t)

)]
,

where VL(t) = 1
2Nd

∑
y∼x 1{ξt (x)=0,ξt (y)=1} ≤ 1. Let vL(t) = EVL(t). Note that the

capital letters are random variables while the lower case letters are their expected
values.

Our first goal is to show that UL(t) → u(t) and VL(t) → v(t). To prove this the
following lemma will be useful.

LEMMA 2.1. Given u(s) with u(0) = u0 and u(s) ≥ 1/λ for all s ≥ 0 define
for each t a coalescing branching random walk (CBRW) ζ t

s on Z
d in which branch-

ing at time s occurs at rate λu(t − s) − 1. There is a unique u with u(0) = u0 so
that for all t

u(t) = E
[
u

|ζ t
s |

0

]
.

PROOF. Suppose u1 and u2 are two solutions with u1(0) = u2(0) = u0. Fix t

and let ζ 1
s , ζ 2

s be the corresponding CBRWs defined for 0 ≤ s ≤ t . Since x → ux
0

is Lipschitz continuous on [1,∞) with Lipschitz constant 1
∣∣u1(t) − u2(t)

∣∣ = ∣∣E[
u

|ζ 1
s |

0

] − E
[
u

|ζ 2
s |

0

]∣∣ ≤ E
∣∣∣∣ζ 1

t

∣∣ − ∣∣ζ 2
t

∣∣∣∣.
Let v(t) = min{u1(t), u2(t)} and w(t) = max{u1(t), u2(t)}. Let ζ v

t and ζw
t be the

corresponding CBRWs. Clearly, these processes can be constructed on the same
space so that: ∣∣ζ v

s

∣∣ ≤ ∣∣ζ 1
s

∣∣, ∣∣ζ 2
s

∣∣ ≤ ∣∣ζw
s

∣∣,
and hence ∣∣∣∣ζ 1

s

∣∣ − ∣∣ζ 2
s

∣∣∣∣ ≤ ∣∣ζw
s

∣∣ − ∣∣ζ v
s

∣∣.
Let zw

t and zv
t be the corresponding BRWs with birth rates λw − 1 and λv − 1. If

we couple the births and random walk steps in the natural way then∣∣ζw
s

∣∣ − ∣∣ζ v
s

∣∣ ≤ ∣∣zw
s

∣∣ − ∣∣zv
s

∣∣.



IGF-II EVOLUTIONARY GAME 2905

The branching processes have

d

dt

(
E

∣∣zw
t

∣∣ − E
∣∣zv

t

∣∣) = λ
(
w(s) − v(s)

)
.

Integrating and the fact that |u1(t) − u2(t)| = w(t) − v(t)

E
∣∣zw

s

∣∣ − E
∣∣zv

s

∣∣ ≤ λ

∫ t

0

∣∣u1(s) − u2(s)
∣∣ds.

Combining our calculations we see that

∣∣u1(t) − u2(t)
∣∣ ≤ λ

∫ t

0

∣∣u1(s) − u2(s)
∣∣ds.

Gronwall’s inequality then implies u1(t) = u2(t). �

LEMMA 2.2. If uL(0) = u0 for all L then as L → ∞, uL(t) → u(t), the
function from Lemma 2.1.

PROOF. Since VL ≤ 1, it follows from (3) that duL/dt ≥ 1 − λuL(t), so
uL(t) > 1/λ for all t . Using (3) again we can see that uL(t) is Lipschitz con-
tinuous with Lipschitz constant 1. This implies that uL(t) is tight as a sequence of
continuous functions in C[0,∞). It is easy to see that any subsequential limit will
satisfy the conditions of Lemma 2.1. Since the solution is unique, the sequence
converges. �

Our next step is to show that the variances of UL(t) and VL(t) tend to 0. To
start to do this we will prove a random walk estimate. For x = (x1, . . . , xd) ∈
(Z mod L)d , define the distance from 0 by

|x| = max
k

min
(|xk|,L − |xk|).

LEMMA 2.3. Suppose St is a continuous time random walk on (Z mod L)d

with exponential rate 2 starting from 0. For all t , δ > 0

lim
L→∞P

(|St | ≥ Lδ − 2
) = 0.

PROOF. In order to have |St | ≥ Lδ − 2 we must have |Si
t | ≥ Lδ − 2 for some

i, so it suffices to prove the result for a one dimensional random walk. Let ϕ(θ) =
(eθ +e−θ )/2 be the moment generating function for one step. Steps in the direction
of the ith component happen at rate 2/d . Using Chebyshev’s inequality, we see that
if θ > 0

eθ(Lδ−2)P
(
St ≥ Lδ − 2

) ≤ EeθSt =
∞∑

k=0

e−2t/d (2t/d)k

k! ϕ(θ)k = e2t (ϕ(θ)−1)/d .
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Taking θ = 1 and rearranging

P
(
St ≥ Lδ − 2

) ≤ exp
(
(2t/d)

(
ϕ(1) − 1

) − Lδ + 2
) → 0,

as L → ∞, which proves the desired result. �

LEMMA 2.4. As L → ∞, var(UL(t)) → 0 and var(VL(t)) → 0.

PROOF. Let A = {ξt (x) = 0}, B = {ξt (y) = 0}. If |x − y| ≤ 2Lδ we use
| cov(1A,1B)| ≤ 1. To bound the covariance when |x − y| > 2Lδ , we use an old
trick due to David Griffeath [12]. We construct the dual process ζ x,t

s on graphical
representation #1, and the dual process ζ

y,t
s on an independent graphical represen-

tation #2. To have the correct joint distribution we adopt the priority rule that if a
particle z in ζ

y,t
s occupies the same site as a particle in ζ x,t

s , the graphical repre-
sentation #1 is used for moves and births from z in ζ

y,t
s . Let C be the event that the

duals starting from x and y do not intersect. Let 1∗
B be the indicator of the event

that B occurs when only graphical representation #2 is used. Since 1A and 1∗
B are

independent ∣∣cov(1A,1B)
∣∣ = ∣∣E[

1A1B − 1A1∗
B

]∣∣ ≤ P
(
Cc).

To bound P(Cc) let πt
i,j be the probability that by time t the dual starting from

x branches i times and the one starting from y branches j times. Breaking things
down according to the values of i and j

P
(
Cc) ≤ ∑

i,j≥0

πt
i,j (i + 1)(j + 1)P

(|St | ≥ Lδ − 2
)

= P
(|St | ≥ Lδ − 2

) ∑
i,j≥0

πt
i,j (i + 1)(j + 1) → 0,

as L → ∞, because comparison with a branching process shows
∑

i,j≥0 πt
i,j (i +

1)(j + 1) < ∞. To bound the variance now we note that

var
(
UL(t)

) ≤ 1

N2

[
N · (2L)dδ + N2P

(
Cc)] → 0,

as N → ∞. The argument for VL(t) is almost the same except that now four dual
processes are involved. �

LEMMA 2.5. There is a v(t) so that VL(t) → v(t).

PROOF. Lemmas 2.2 and 2.4 imply that UL(t) → u(t). Since the dual process
starting at time t branches at rate λu(t −s)−1 at time s, it follows that the dual pro-
cess converges in distribution to a limit. Since EVL(t) can be computed by running
the dual starting from two adjacent points at time t , EVL(t) converges to a limit
that we call v(t) and the result follows from another application of Lemma 2.4.

�
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To prove Lemmas 2.1–2.5 when u(0) < 1/λ, we use a different graphical rep-
resentation. For each x ∈ (Z mod L)d and nearest neighbor y we have a Poisson
process T

x,y
n , n ≥ 1 with rate 1/2d , and a collection of independent random vari-

ables R
x,y
n that are uniform on [0,1]. At time T

x,y
n , if λUL(T

x,y
n ) ≥ R

x,y
n , then

we draw an arrow from x to y and write a δ at y to indicate that y will take on
the “opinion” at x at that time. Otherwise, we draw an arrow from x to y. These
arrows will create a 0 at y if there is a 0 at x.

With this new dual, we have 1 − u(t) = E(1 − u(0))N(t), where N(t) is the
number of particles at time t . The proof of Lemma 2.1 goes through with minor
changes. Lemma 2.2 follows as before. Lemma 2.3 is a random walk estimate. The
proof of the covariance estimate Lemma 2.4 needs only minor changes and then
Lemma 2.5 follows as before.

2.1. Convergence of u(t) to 1/λ. Again we begin with the case u(0) > 1/λ.
Using (3) with Lemmas 2.2 and 2.5 we have

du

dt
= v(t)

(
1 − λu(t)

)
.

LEMMA 2.6. Let u(t) be the global density of producer cells at time t , and
suppose the system starts from the product measure with u(0) > 1/λ. Then u(t) →
1/λ as t → ∞.

PROOF. Take an ε > 0. We want to find a constant, Cε such that if u ≥
(1/λ) + ε on [0,Cε), then u(Cε) < 1/λ. First pick m, so that u(0)m < 1/(2λ).
The branching rate of the dual process is bounded from below by ελ. Hence
there is a K > 0, which does not depend on ε, such that Cε = K/(ελ) satisfies
P(N(Cε) < m) < 1/(2λ). Then

u(Cε) = Eu(0)N(Cε) ≤ u(0)m + P
(
N(Cε) < m

)
< 1/λ.

Thus, the density u(t) cannot stay away from 1/λ. Since 1/λ is an equilibrium for
the ODE of u(t), the convergence is established by contradiction. �

Up to this point all of our calculations are valid in any dimension. We will
now show that if d ≥ 3, the convergence mentioned in the lemma occurs expo-
nentially fast. The next lemma controls the covariance between neighbors. Let
e1 = (1,0, . . . ,0) be teh first unit vecgtor. Let pt(x|y) be the probability that walks
starting from x and y do not collide by time t , and let p(x|y) = limt→∞ pt(x|y).

LEMMA 2.7. Suppose that the initial distribution is product measure with
u(0) > 1/λ and

∫ t
0 (λu(s) − 1) ds ≤ 1. If δ0 = [u(0) − u(0)2]e−2p(0|e1) then

sup
x �=y

P
(
ξt (x) = 0, ξt (y) = 0

) − P
(
ξt (x) = 0

) ≤ −δ0.
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PROOF. Let ζ
A,t
t be the dual coalescing branching random walk starting from

A occupied at time t . Let Nx = |ζ x,t
t | and Nx,y = |ζ {x,y},t

t |. We have

P
(
ξt (x) = 0

) = Eu(0)Nx and P
(
ξt (x) = 0, ξt (y) = 0

) = Eu(0)Nx,y .

Notice that Nx,y ≥ Ny so u(0)Nx,y − u(0)Nx ≤ 0. Let G be the event that the duals
starting from x and y do not branch and the random walks starting from x and y

do not hit. Since the integral of branching rate
∫ t

0 (λu(s) − 1) ds ≤ 1

P(G) ≥ e−2pt(x|y) ≥ e−2p(0|e1),

where e−2 is a lower bound on the probability of no branching. Combining our
estimates

P
(
ξt (x) = 0, ξt (y) = 0

) − P
(
ξt (x) = 0

) ≤ E
[
u(0)Nx,y − u(0)Nx ;G]

≤ [
u(0)2 − u(0)

]
e−2p(0|e1) = −δ0,

which completes the proof. �

We will now combine the last two lemmas to prove exponential convergence.
Let Tm = inf{t : u(t) ≤ 1/λ + 2−m}. By Lemma 2.6, Tm < ∞.

LEMMA 2.8. Let t0 = 2/[λp(0|e1)δ0]. If
∫ Tm+t0

0 (λu(s) − 1) ds ≤ 1 then
Tm+1 − Tm ≤ t0.

PROOF. Suppose Tm+1 − Tm ≥ t0. Since u(s) ≥ 1/λ + 2−(m+1) on [Tm,Tm +
t0] the probability that the dual has a branching event and the two particles do not
coalesce is ≥ (1 − e−λ2−(m+1)

)p(0|e1) so using Lemma 2.7

u(Tm + t0) − u(Tm) ≤ (
1 − e−λ2−(m+1)t )p(0|e1)(−δ0)

≤ −λ2−(m+2)p(0|e1)δ0t0 = −2−(m+1),

so we have Tm+1 ≤ Tm + t0 and the proof is complete. �

PROOF OF THEOREM 1 WHEN u(0) > 1/λ. Lemma 2.8 implies that∫ Tm+1

Tm

(
λu(s) − 1

)
ds ≤ λ2−mt0 = 21−m/

[
p(0|e1)δ0

]
.

From this we see that if u(0) = 1/λ + 2−M and M is large enough then∫ t

0

(
λu(s) − 1

)
ds ≤ 1 for all t ,

and we have TM+k ≤ kt0 for all k which proves exponential convergence. �

When u(0) < 1/λ the branching rate is different and we need to look at 1 −
λu(t), but otherwise the proofs go through as before. This completes the proof of
Theorem 1.
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3. Proof of Theorem 2. The first step is to show that the the empirical fi-
nite dimensional distributions converge to those of a translation invariant measure
μt . The convergence of their means follows from the proof of Lemma 2.5. Their
variance can be shown to go to 0 using the proof of Lemma 2.4.

In this section we will show that if t is large, then the finite dimensional dis-
tribution of μt are close to those of the voter model stationary distribution ν1/λ.
To begin we assume u(0) > 1/λ. The next lemma bounds the covariance of well
separated sites.

LEMMA 3.1. Fix T , δ > 0. There is an R2 > 0, so that when |x − y| > R2,∣∣P (
ξT (x) = 0, ξT (y) = 0

) − u(T )2∣∣ ≤ δ.

PROOF. In the dual process, the branching rate is bounded by λ−1. Let Zt(x)

be the number of particles at x at time t in a branching random walk that starts with
one particle at 0, jumps at rate 1 and branches at rate λ − 1. Let mt(x) = EZt(x).
By considering the rates at which things happen we see that mt(x) satisfies

(4)
dmt(x)

dt
= −mt(x) + λ

∑
y

mt (y)p(y, x).

Note the the second term accounts for jumps at rate 1 and branching at rate λ − 1.
Let St be a continuous-time random walk starting from the origin with jumps at
rate 1. We will show

(5) mt(x) = e(λ−1)tP (Sλt = x).

Both sides agree at time 0. Thus it suffices to show the RHS satisfies (4).

d

dt
e(λ−1)tP (Sλt = x) = (λ − 1)e(λ−1)tP (Sλt = x) + e(λ−1)t d

dt
P (Sλt = x)

= (λ − 1)e(λ−1)tP (Sλt = x)

+ e(λ−1)t

(
−λP (Sλt = x) + λ

∑
y∼x

P (Sλt = y)p(y, x)

)

= −e(λ−1)tP (Sλt = x) + λ
∑
y∼x

e(λ−1)tP (Sλt = y)p(y, x).

Thus we have shown (5) satisfies (4).
We can bound the decay of mt(x) by using the argument in Lemma 2.3. Again

it suffices to consider d = 1.

exP (Sλt = x) ≤ EeSλt =
∞∑

k=0

e−λt (λt)k

k! ϕ(1)k = eλt (ϕ(1)−1),

which implies mt(x) ≤ et(λϕ(1)−1)−x , i.e., mt(x) decays exponentially in x. Note
that branching in the actual dual always has a lower rate and the branching random
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walk ignores coalescence, so mt(x) gives an upper bound of the probability that
the dual has a particle at x at time t .

Using the reflection principle

P
(
ζ

0,T
t ∩ [x,∞) ×Z

d−1 �= ∅ for some t ≤ T
)

≤ 2P
(
ζ

0,T
T ∈ [x,∞) ×Z

d−1)

≤ 2
∞∑

y=x

eT (λϕ(1)−1)−y ≤ CT e−x.

Considering all of the coordinates, we see that if R2 is large and D = {x : ‖x‖∞ ≤
R2/2}

P
(
ζ

0,T
t ∩ Dc for some t ≤ T

) ≤ δ/4.

This implies that if |x − y| ≥ R2 then

P
(
ζ

x,T
t ∩ ζ

y,T
t = ∅ for all t ≤ T

) ≥ 1 − δ/2.

When this occurs we say that the duals starting from x and y do not collide. We
denote the event by B .

Let A = {ξT (x) = 0, ξT (y) = 0}.∣∣P(A) − u(T )2∣∣ = ∣∣P(A ∩ B) + P
(
A ∩ Bc) − u(T )2∣∣

= ∣∣P(B)u(T )2 + P
(
A ∩ Bc) − u(T )2∣∣

≤ u(T )2P
(
Bc) + P

(
Bc) ≤ 2P

(
Bc) ≤ δ,

which proves the desired result. �

Our next step is to generalize Lemma 3.1 to m sites.

LEMMA 3.2. Fix T , δ > 0. Suppose we have sites xk , 1 ≤ k ≤ m with m ≥ 3.
There is an Rm > 0, so that if |xi − xj | > Rm, for 1 ≤ i < j ≤ m, we have∣∣P (

ξT (xk) = 0 for 1 ≤ k ≤ m
) − u(T )m

∣∣ ≤ δ.

PROOF. Let Am = {ξT (xk) = 0 for 1 ≤ k ≤ m}, and Bm be the event that the
duals starting from x1, . . . , xm do not collide. By Lemma 3.1, there is an Rm so that
if |x − y| > Rm, P(Bc

2) ≤ δ/m2. From this it follows that P(Bc
m) ≤ δ/2. Comput-

ing as in the previous lemma gives∣∣P(Am) − u(T )m
∣∣ = ∣∣P(Am ∩ B) + P

(
Am ∩ Bc) − u(T )m

∣∣
= ∣∣P(B)u(T )m + P

(
Am ∩ Bc) − u(T )m

∣∣
≤ u(T )mP

(
Bc) + P

(
Bc) ≤ 2P

(
Bc) ≤ δ.
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For the next proof it is convenient to note that if we take Rm to be as small as
possible m → Rm is increasing. �

To show the convergence of finite dimensional distributions, it is enough to
consider probabilities that a set of sites are all in state 0, because all the finite
dimensional distributions can be computed from these values.

LEMMA 3.3. Let ε > 0. Suppose we have sites xk , 1 ≤ k ≤ m. If ε > 0, then
there is a t1 > 0, for all time t ≥ t1,∣∣P (

ξt (xk) = 0 for 1 ≤ k ≤ m
) − ν1/λ

(
η(xk) = 0 for 1 ≤ k ≤ m

)∣∣ < ε.

PROOF. Since we have proved exponential convergence of u(t) → 1/λ, we
can choose T , so that∣∣u(T )k − (1/λ)k

∣∣ ≤ ε

10
for all 1 ≤ k ≤ m, and(6)

exp
(
−

∫ ∞
T

λu(t) − 1dt

)
> 1 − ε

10
.(7)

Let ηT
t be a voter model starting at time T from a product measure with proba-

bility 1/λ for a site to be in state 0. Since ηT
t ⇒ ν1/λ as t → ∞ it suffices to show

that if t ≥ t2 then∣∣P (
ξt (xk) = 0 for 1 ≤ k ≤ m

) − P
(
ηT

t (xk) = 0 for 1 ≤ k ≤ m
)∣∣ < ε/2.

Let η̃ be the dual of η starting at time t > T with particles at x1, . . . , xm. Let
ξ̃ be the dual of ξ starting at time t with particles at x1, . . . , xm. Let Rm be the
value from Lemma 3.2 for δ = ε/8m. Let Sx

t and S
y
t be independent random walks

starting at x and y. By the local central limit theorem,

lim
s→∞ sup

x,y
P

(∣∣Sx
s − Sy

s

∣∣ ≤ Rm

) = 0.

We pick t1 so large that for t ≥ t1,

sup
x,y

P
(∣∣Sx

t−T − S
y
T −t

∣∣ ≤ R
) ≤ ε/

(
5m2)

.

It follows that the probability that there is a non-coalesced pair in ξ̃t within distance
Rm of each other at time T is < ε/10.

Let A be the event that there is no branching in the dual from t to T , and any
pair that has not coalesced is at least Rm away from each other. Combining the
computations above, P(Ac) ≤ 2ε/10. Let

B = {
ξt (xk) = 0 for 1 ≤ k ≤ m

}
,

C = {
ηT

t (xk) = 0 for 1 ≤ k ≤ m
}
,

Dk = A ∩ {ξ̃ has k particles time T },
Ek = {η̃ has k particles time T }.
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On the no branching event, the random walks in the two duals can be coupled, so
(7) implies

(8)
m∑

k=1

∣∣P(Dk) − P(Ek)
∣∣ ≤ ε

10
.

Breaking thing down according to the number of particles in the dual at T

∣∣P(B) − P(C)
∣∣ =

∣∣∣∣∣
m∑

k=1

P(B ∩ Dk) + P
(
B ∩ Ac) −

m∑
�=k

P (C ∩ Ek)

∣∣∣∣∣

≤ 2ε

10
+

m∑
k=1

∣∣P(B ∩ Dk) − P(C ∩ Ek)
∣∣.

Lemma 3.2 and the choice of Rm implies

(9)
∣∣P(B ∩ Dk) − u(T )kP (Dk)

∣∣ ≤ ε

10
· P(Dk).

Since ηT starts from product measure with density 1/λ at time T

(10) P(C ∩ Ek) = (1/λ)kP (Ek).

Using the triangle inequality and (10)
∣∣P(B ∩ Dk) − P(C ∩ Ek)

∣∣ ≤ ∣∣P(B ∩ Dk) − u(T )�P (Dk)
∣∣

+ P(Dk)
∣∣u(T )k − (1/λ)k

∣∣
+ ∣∣P(Dk) − P(Ek)

∣∣(1/λ)k.

Summing k = 1 to m and using (9), (6), and (8) we have

m∑
k=1

∣∣P(B ∩ Dk) − P(C ∩ Ek)
∣∣ ≤ ε

10
+ ε

10
+ 2ε

10
< ε/2,

completing the proof. �

As in the previous section, only minor changes are needed to treat the case
u(0) < 1/λ. The formula for mt(x) changes but the rest of the proof of Lemma 3.1
stays the same. The proofs of Lemmas 3.2 and Lemma 3.3 only use the exponential
convergence and the estimate in Lemma 3.1, so they go through as before and the
proof of Theorem 2 is complete.

4. Two dimensions. We begin by describing the construction of the process
and duality on Z

d for general Nc and Nd . The details are different from Section 2.
There we used a percolation style dual which only works for “additive processes.”
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Here, we use the approach taken in [9] and [4] which works for any process. Recall
that we are considering birth-death dynamics for the evolutionary game

Ḡ =
1 2

1 1 1 + λε2

2 1 + ε2 1 + ε2

Construction. Our process has voter events at rate 1 per site. If ξt (y) = 2 then at
rate ε2, the 2 gives birth onto a randomly chosen x ∈ y +Nc. If ξt (y) = 1 then at
rate λε2 y chooses a neighbor z from y +Nd at random. If ξt (z) = 2 then y gives
birth onto a randomly chosen x ∈ y +Nc. Here we have replaced the computation
of the fitness by averaging over the neighborhood (as was done in [4] and [7])
by the equivalent act of making a random choice from x + Nd to simplify the
perturbation. In two dimensions this drastically reduces the size of the dual.

To construct the process we use a large number of Poisson processes. For each
ordered pair (x, y) with x ∈ y +Nc we have a Poisson process {T x,y

n , n ≥ 1} with
rate 1/|Nc| and {Sx,y

n , n ≥ 1} with rate ε2/|Nc| At times T
x,y
n , x imitates the opin-

ion at y, so we draw an arrow from x to y. At times S
x,y
n , x imitates the opinion at

y if it is a 2, so we draw an arrow from x to y and write a 2 above it. Finally, for
each triple with x ∈ y + Nc, z ∈ y + Nd we have Poisson processes R

x,y,z
n with

rate ε2/|Nc||Nd |. A times R
x,y,z
n y will give birth onto x if y is in state 1 and z is

in state 2, so we draw an arrow from y to x and write a 1 above it. We then draw
an unnumbered line segment with no arrows from y to z.

Duality. We have used an explicit construction so that we can define a set valued
dual process ζ x,t

s by working backwards starting with ζ
x,t
0 = {x}. Here we are

working on the original time scale. If a particle is at x and t − s = T
x,y
n then it

jumps to y at time s. If a particle is at x and t − s = S
x,y
n then it gives birth to a

particle at y at time s. If a particle is at x and t − s = R
x,y,z
n , then it gives birth

to particles at y and z at time s. If the jumps or births cause two particle to be on
the same site they coalesce to 1. ζ x,t

s is called the influence set because if we know
the states of all the sites in ζ x,t

s at time t − s then we can compute the state of x at
time t .

Two dimensions. Let N = ε−2 and take Nc = Nd = QN where

QN = [−c
√

logN,c
√

logN ]2 ∩Z
2,

and c is a fixed constant. To carry out our proofs we will need a local central
limit theorem that is uniform in N . Let X1,X2, . . . be uniform on QN and let
Sn = X1 +· · ·+Xn. This and the next few things we define should have superscript
N ’s but we suppress this to avoid clutter. The uniform distribution on QN has
variance ∼ (c2/3) logN . Let σ 2 = c2/3 and let

pn(x) = P(Sn/
√

n logN = x) for x ∈ Ln = {z/
√

n logN : z ∈ Z},
n(x) = (

2πσ 2)−1/2 exp
(−x2/2σ 2)

for x ∈ (−∞,∞).
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THEOREM 5. If n → ∞, N → ∞, and h = 1/
√

logN then

sup
x∈Ln

∣∣∣∣n
1/2

h
pn(x) − n(x)

∣∣∣∣ → 0.

The proof is a small modification of the proof of Theorem 3.5.2 in [6]. To en-
courage the reader to skip it, we put the proof in Section 5.

Convergence of the dual to branching Brownian motion. Our next goal is to
show that when space is scaled by dividing by (N logN)1/2 and time is run at rate
N the dual converges to a branching Brownian motion. To make this possible we
do not add newly born particles to the dual until time

tN = N/
(
log1/3 N

)
has elapsed since the branching occurred. In the next lemma and in what follows
“with high probability” means that the probability tends to 1 as N → ∞. To make
it easier to say things we call the parent and its children a family.

LEMMA 4.1. With high probability, at time tN after a birth event, all noncoa-
lesced family members are separated by LN = N1/2 log1/4 N .

PROOF. Pick two family members, assign to them independent random walks
and let Sx

t be the difference in their x coordinates t units of time after the birth
event.

var
(
Sx

tN

) ∼ tN
(
c2/3

)
logN = (

c2/3
)
N log2/3 N,

which corresponds to a standard deviation of O(N1/2 log1/3 N) so by the local
central limit theorem, P(|Sx

tN
| > LN) → 1 as N → ∞. The last conclusion also

holds for the y coordinate, which gives the result. �

LEMMA 4.2. Suppose at time 0, two particles are separated by LN . The prob-
ability that they hit by time N logN goes to 0 as N → ∞.

PROOF. From the previous proof we see that var(Sx
t ) ≤ Ct logN . When

t = N/ log2/3 N this is CN log1/3 N , which corresponds to a standard deviation
of CN1/2 log1/6 N . so using the L2 maximal inequality on the martingale Sx

t

we see that with high probability that the two particles do not hit before time
N/ log2/3 N . Let St ∈ R

2 be the difference in the two particles locations when
they use independent random walks and VN be the amount of time that St = (0,0)

in [N/ log2/3 N,N logN ]. By the local central limit theorem, if N is large

EVN ≤ C

∫ N logN

N/ log2/3 N

1

t logN
dt

= C

logN
(log(N logN) − log

(
N log−2/3 N

) = (5C/3)
log logN

logN
,
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which converges to 0 as N → ∞. Since the random walks jump at rate 1, if they
hit they will spend an exponential amount of time with mean 1/2 together which
gives the result. �

Combining Lemmas 4.1 and 4.2 we see that if all particles in the dual are sepa-
rated by LN just before at time of the kth branching event (i.e., at Tk−) then all of
the noncoalesced family members will be separated by LN at time Tk + tN . There
will be no more coalescence within the family before time Tk+1, and there will be
no coalescences between the family and other particles during [Tk, Tk+1]. Since
the time of the next birth has an exponential distribution and is O(N), another use
of the local central limit theorem shows that at time Tk+1− all of the existing par-
ticles are separated by distance LN . Convergence of the rescaled dual to branching
Brownian motion follows easily from this. More details than you want to read can
be found in Chapter 2 of [4]. A more succinct proof with a structure that parallels
the one used here can be found in Section 10 of [3].

Computation of the reaction term. Let vi be independent and uniform on QN .
Let pN,M(0|v1) be the probability that random walks starting from 0 and v1 do
not hit by time M . Let pN,M(0|v1|v1 + v2) be the probability that random walks
starting from 0, v1 and v1 + v2 do not hit by time M . Let pN,M(0|v1, v1 + v2) be
the probability that at time M the random walks starting from v1 and v1 + v2 have
coalesced but have not hit the one starting from 0. Ultimately we will show that
if N → ∞ and N/ logN ≤ M(N) ≤ N logN then the pN,M hitting probabilities
converge to limits p(0|v1), p(0|v1|v1 + v2) and p(0|v1, v1 + v2).

Once this is done we can use results in Section 12 of [7] to compute the reaction
term. To state the result we begin by recalling that the faction of individuals playing
strategy i in a homogeneously mixing system satisfies the replicator equation (2),
which can be written as:

dui

dt
= ∑

j �=i

∑
k

uiujuk(Gi,k − Gj,k) ≡ φi
R(u).

Here ≡ indicates we are defining φR
i (u). Formula (12.4) from [7] then implies that

the reaction term for our birth-death updating is

φi
B(u) = p

(
0|v1|v1 + v2

) · φi
R(u)

+ p(0|v1, v1 + v2) · ∑
j �=i

uiuj (Gi,i − Gj,i + Gi,j − Gj,j ).

Coalescence probabilities. We begin by computing EpN,M(0|v1). It is easier
to do the calculation for a discrete time random walk Sn with jumps uniform on
QN that starts at v1. In order for Sn to be at 0 at time n ≥ 1, Sn−1 has to be close
enough to 0, and the jump Xn has to be exactly the right size so

(11) P(Sn = 0) ≤ 1/|QN | ∼ 1/4c2 logN.
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This bound implies that as N → ∞
P(Sn = 0 for some n ≤ √

logN ) → 0.

For n ≥ √
logN we can use the local limit theorem to conclude

P(Sn = 0) ∼ 1

(2πc2/3)n logN
≡ b

n logN
,

where we have set b = 3/(2πc2). The number of jumps Sn makes by time M ,
JM ∼ 2M (i.e., JM/2M → 1 in probability) and

(12)
2M∑
n=0

P(Sn = 0) = b log(2M)

logN
.

Note that if M(N) = Ns this converges to bs.

LEMMA 4.3. Let RN(s) be the number of returns of Sn to 0 by time Ns . As
N → ∞, RN(s) ⇒ R(s) is a Poisson process with rate b. This implies that if
N/ logN ≤ M(N) ≤ N logN

EpN,M(0|v1) → e−b.

PROOF. It suffices to show

(i) If 0 ≤ a1 < b1 ≤ a2 < b2 · · ·an < bn then R(bi) − R(ai) are independent.
(ii) E[R(t) − R(s)] = b(t − s).

(iii) P(R(t + h) − R(t) > 1) = o(h).

To see this is sufficient note that if we subdivide [s, t] into n intervals and let
Xn,i be the number of arrivals in the ith interval then (i) implies the Xn,i are
independent, while (ii) and (iii) imply nP (Xn,i > 1) → 0 and nP (Xn,i = 1) → b

so using a standard Poisson convergence result, see e.g., Theorem 3.6.1 in [6] that
N(t) − N(s) is Poisson.

To check (i), it suffices to prove that this holds when bi < ai+1 for 1 ≤ i ≤
n − 1 for then a limiting argument gives the general case. To prove this weaker
result we use induction. Condition on the path of the random walk up to time
Nb(n−1). With high probability |S(Nb(n−1))| ≤ Nb(n−1)/2 logN . When this is true,
|S(Na(n))−S(Nb(n−1))| � |S(Nb(n−1))|, so the conditional probability of a return
to 0 in [Na(n),Nb(n)] is in the limit, independent of the value of S(Nb(n−1)).

Condition (ii) follows from the derivation of (12). To check (iii) we start with
the observation that (11) implies that after a return to 0 there will not be one for the
next

√
logN units of time. Using the proof of (12) again we see that the conditional

probability of another return to 0 by time Nt+h is ≤ Ch. �
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LEMMA 4.4. Let S0
t , S1

t , S2
t be independent continuous time random walks

that take jumps uniform on QN and start at 0, v1, and v1 + v2. Let R3
N(s) be the

number of collisions between these random walks up to time Ns . Then as N →
∞, R3

N(s) ⇒ R(s) a Poisson process with rate 3b. It follows that if N/ logN ≤
M(N) ≤ N logN then

EpN,M(0|v1|v1 + v2) → e−3b.

PROOF. The main difficulty is to control the correlation between hits of the
different pairs. Define a six dimensional random walk by Vt = (S1

t − S0
t , S2

t −
S1

t , S0
t − S2

t ). Since the sum of the three differences is 0 this walk lies in a four
dimensional subspace. The possible values of Vt are a four dimensional lattice,
so the random walk is “genuinely four dimensional” and hence transient. In 1951
Dvoretsky and Erdös [11] proved a rate of escape for simple random walk Wn.
Here we have used 2 instead of 1 in the integral test to avoid the fact that log(1) =
0. One can of course use any fixed value K .

LEMMA 4.5. Suppose that ψ : [2,∞) → (0,∞) satisfies t−1/2ψ(t) ↓ 0 then
ψ(n)Wn → ∞ if and only if∫ ∞

2
ψ(t)d−2t−d/2 dt = ∞.

Later Kesten [15] showed that this holds for any genuinely d-dimensional ran-
dom walk. If we let ψ(t) = t1/2 log−α(t) then the integral is∫ ∞

2
t−1 log(t)−(d−2)α dt,

which diverges if α(d − 2) < 1. If d = 4 this holds if α = 1/3. This implies that

LEMMA 4.6. If two random walks hit at time t then the other one is with high
probability at least a distance t1/2 log−1/3 t away.

To prove Lemma 4.4 now we have to check (i), (ii), and (iii) from the previous
proof. To check (i), it again suffices to prove that this holds when bi < ai+1 for
1 ≤ i ≤ n − 1. The argument is almost the same as before. We are considering
independent random walks so if t → ∞ then V (t)/

√
t logN has a limiting mul-

tivariate normal distribution. Condition on the path of the random walk Vt up to
time Nb(n−1). With high probability |V (Nb(n−1))| ≤ Nb(n−1)/2 logN . When this is
true, |V (Na(n))−V (Nb(n−1))| � |S(Nb(n−1))|, so the conditional probability of a
return to 0 in [Na(n),Nb(n)] is in the limit, independent of the value of S(Nb(n−1)).

Condition (ii) follows from the derivation of (12) since in this calculation we
are computing an expected value and don’t have to worry about the correlation
between the three differences. To check (iii) we start with the observation that (11)
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implies that after a return to 0 there will not be one for the next
√

logN units of
time. Using Lemma 4.6 we see that during these

√
logN steps there will be no

collision with the other random walk. Using the proof of (12) again we see that the
conditional probability of another return to 0 by time Nt+h is ≤ Ch. �

LEMMA 4.7.

EpN,M(0|v1, v1 + v2) → e−b − e−3b

2
.

PROOF. By Lemma 4.4 the time of the first collision is exponential with rate
3b. All three pairs has aysmptotically the same probability to coalesce. Using
Lemma 4.6 we see that the time to a collision between the coalesced pair and
the remaining particle is exponential with rate b so

EpN,M(0|v1, v1 + v2) → 1

3

∫ 1

0
3be−3bue−b(1−u) du

= e−b

2

∫ 1

0
2be−2bu du = e−b

2
· (

1 − e−2b)
,

which gives the desired result. �

Convergence to the limiting PDE. With the convergence of the dual to branching
Brownian motion, the convergence to the PDE is the same as in [9], [10], and in
Section 2.6–2.10 of [4].

5. Proof of local CLT.

PROOF OF THEOREM 5. Let Y be a random variable with P(Y ∈ θZ) = 1 and
ψ(t) = E exp(itY ). It follows from part (iii) of Exercise 3.3.2 in [6] that

P(Y = x) = 1

2π/θ

∫ π/θ

−π/θ
e−itxψ(t) dt.

Using this formula with θ = 1/
√

n logN , ψ(t) = E exp(itSn/
√

n logN) =
ϕn(t/

√
n logN), and then multiplying each side by 1/θ gives

(
n1/2 log1/2 N

)
pn(x) = 1

2π

∫ π
√

n logN

−π
√

n logN
e−itxϕn(t/

√
n logN)dt.

Using the inversion formula for continuous densities, Theorem 3.3.5 in [6], on
n(x), which has ch.f. exp(−σ 2t2/2), gives

n(x) = 1

2π

∫
e−itx exp

(−σ 2t2/2
)
dt.
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Subtracting the last two equations gives (recall π > 1, |e−itx | ≤ 1)
∣∣(n1/2 log1/2 N

)
pn(x) − n(x)

∣∣

≤
∫ π

√
n logN/h

−π
√

n logN/h

∣∣ϕn(t/
√

n logN) − exp
(−σ 2t2/2

)∣∣dt

+
∫ ∞
π

√
n logN/h

exp
(−σ 2t2/2

)
dt.

The right-hand side is independent of x, so to prove the theorem it suffices to
show that it approaches 0. The second integral clearly → 0. To estimate the first
integral, we observe that applying the Lindeberg–Feller central limit theorem to
YN,i = Xi/

√
N , i ≤ n

ϕn(t/
√

n logN) → exp
(−σ 2t2/2

)
,

so the integrand goes to 0.
To prove that the integral converges to 0, we will divide the integral into three

pieces. The bounded convergence theorem implies that for any A < ∞ the integral
over (−A,A) approaches 0. To estimate the integral over (−A,A)c, we let ϕ̄(t) =
ϕ(t/

√
logN) be the characteristic function of YN,i and note that since EYN,i = 0

and EY 2
N,i = σ 2, formula (3.3.3) from [6] and the triangle inequality imply that

∣∣ϕ̄(u)
∣∣ ≤ ∣∣1 − σ 2u2/2

∣∣ + u2

2
E

(
min

(|u| · |YN,i |3,6|YN,i |2))
.

The last expected value → 0 as u → 0 uniformly in N . This means we can pick
δ > 0 so that if |u| < δ, it is ≤ σ 2/2 and hence

∣∣ϕ̄(u)
∣∣ ≤ 1 − σ 2u2/4 ≤ exp

(−σ 2u2/4
)
,

since 1 − x ≤ e−x . Applying the last result to u = t/
√

n we see that for t ≤ δ
√

n

(∗)
∣∣ϕ̄(t/

√
n)n

∣∣ ≤ exp
(−σ 2t2/4

)
.

So the integral over (−δ
√

n, δ
√

n) − (−A,A) is smaller than

2
∫ δ

√
n

A
exp

(−σ 2t2/4
)
dt,

which is small if A is large.
To estimate the rest of the integral we observe that if t ∈ −[−π,π ]

ϕ̄(u) ≈
∫ c

−c
cos(tx)

dx

2c
= sin(tc)

tc
,

where the error in ≈ comes from the difference between the uniform and the dis-
tribution of Yi , and hence is O(1/

√
logN). From this it follows that there is an
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η < 1 so that |ϕ̄(u)| ≤ η < 1 for |u| ∈ [δ,π], uniformly in N . Letting u = t/
√

n

again, we see that the integral over [−π
√

n,π
√

n]− (−δ
√

n, δ
√

n) is smaller than

2
∫ π

√
n/h

δ
√

n
ηn + exp

(−σ 2t2/2
)
dt,

which → 0 as n → ∞. This completes the proof. �
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