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THRESHOLDS FOR DETECTING AN ANOMALOUS PATH
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City University of New York, City College∗, Weizmann Institute of Science† and
New York University‡

We consider the “searching for a trail in a maze” composite hypothesis
testing problem, in which one attempts to detect an anomalous directed path
in a lattice 2D box of side n based on observations on the nodes of the box.
Under the signal hypothesis, one observes independent Gaussian variables of
unit variance at all nodes, with zero mean off the anomalous path and mean
μn on it. Under the null hypothesis, one observes i.i.d. standard Gaussians on
all nodes. Arias-Castro et al. [Ann. Statist. 36 (2008) 1726–1757] showed that
if the unknown directed path under the signal hypothesis has known initial lo-
cation, then detection is possible (in the minimax sense) if μn � 1/

√
logn,

while it is not possible if μn � 1/ logn
√

log logn. In this paper, we show
that this result continues to hold even when the initial location of the un-
known path is not known. As is the case with Arias-Castro et al. [Ann. Statist.
36 (2008) 1726–1757], the upper bound here also applies when the path is
undirected. The improvement is achieved by replacing the linear detection
statistic used in Arias-Castro et al. [Ann. Statist. 36 (2008) 1726–1757] with
a polynomial statistic, which is obtained by employing a multiscale analysis
on a quadratic statistic to bootstrap its performance. Our analysis is moti-
vated by ideas developed in the context of the analysis of random polymers
in Lacoin [Comm. Math. Phys. 294 (2010) 471–503].

1. Introduction.

1.1. General problem. In this paper, we will address the problem of detecting
anomalous paths within a finite two-dimensional lattice, with an unknown start-
ing point. We begin with describing the context for our results. Our presentation
and motivation are strongly influenced by [1], to which we refer for additional
background.

Suppose we are given a graph G with node set V and a random variable Xv

attached to each node v ∈ V . We observe a realization of this process and wish to
know whether all the variables at the nodes have the same behavior in the sense
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that they are all sampled independently from a common distribution F0 (the null
hypothesis, which in this paper will always be the standard Gaussian distribution),
or whether there is a path in the network, that is, a chain of consecutive nodes
connected by edges, along which the variables at the nodes, still independent of
each other and of the variables off the path, have a different distribution F1 (the
signal hypothesis, which in this paper will always be the Gaussian distribution
with nonzero mean and unit variance). This is thus a composite-hypothesis testing
problem.

In this paper, as in [1], we focus on the case where G is a box Vn of side n in
the two- dimensional Euclidean lattice, and the path under the signal hypothesis is
a directed path. What distinguishes our analysis from the case treated in [1] is that
we allow for an unknown starting point. Our main result (see Theorem 1.1 below)
is that, similar to the case treated in [1], where the starting point is unknown,
if the mean μn along the unknown path satisfies μn ≥ C/

√
logn for some large

constant C, then detection is possible in the sense that a sequence of tests which
are asymptotically powerful exists. (It follows from the main result in [1] that if
μn � 1/ logn

√
log logn, all tests are asymptotically powerless.) It is not hard to

verify that our results concerning asymptotically powerful tests apply verbatim to
the case of undirected box crossing paths, whose starting and ending points lie on
two opposite sides of Vn, and to the case of undirected annulus crossing paths,
whose starting point lies within a macroscopic sub-box of Vn.

The main difference between the analysis here and in [1] is in the test which
is used for the hypothesis testing. In [1], one uses a test that is based on a linear
statistics of the observations, where the weights are proportional to the inverse of
the distance from the (known) initial point of the path. These tests clearly can-
not be used in the case where the initial point is not known. Instead, in this paper
we use tests that are based on quadratic and higher order polynomials of the ob-
servations, with nonhomogeneous weights. These are motivated by the success
that certain quadratic forms had in the evaluation of the free energy of directed
polymers in dimension 1 + 1; see [5]. We note that a naive application of these
quadratic test statistics leads to a detection threshold of order 1/(logn)1/4 (see
Section 2.1.2). The test we eventually use is based on a bootstrapped version of
the simple quadratic form of the observations, whose analysis requires us to per-
form a multiscale analysis of somewhat modified detection problems.3

1.2. Mathematical formulation of the detection problem. In this section, we
will formalize the detection problem. We consider the two-dimensional lattice
L

2 = (V 2,E 2) with

node set V 2 := {x ∈ Z
2 : x1 − x2 is even

}
and

edge set E 2 := {〈x,y〉 : x,y ∈ V 2 and x ∼ y
}
,

(1.1)

3As pointed out by H. Lacoin, a similar in spirit analysis was used earlier in the random polymers
context; see [2].
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where x ∼ y if x1 �= y1, x2 �= y2 and ‖x − y‖1 = 2. We will use Hi := {x ∈
V 2 : x1 = i} to denote the ith hyperplane. We will consider a set of finite two-
dimensional graphs Gn, which consists of certain subgraphs of L

2 induced by
nodes in the hyperplanes

⋃
0≤i<n Hi . For a ≥ 0, let V (a)

n denote the node set

V (a)
n :=

n−1⋃
i=0

(
Hi × [−i − an, i + an]) and G (a)

n := (V (a)
n ,E 2∣∣

V
(a)

n

)
be the subgraph of L2 induced by nodes in V (a)

n . We also introduce the notation

Z (a)
n := {z ∈ Z

2 : 0 ≤ z1 < n, |z2| ≤ an + z1
}
,

[n] := {1,2, . . . , n}, [n]0 := {0,1, . . . , n − 1}
and

Gn := {G (a)
n : a ≥ 0

}
.

Having defined the family of two-dimensional finite graphs, we define the col-
lection of semi- directed nearest-neighbor paths (left to right crossing) on these
graphs, with a starting point on the hyperplane H0 and endpoint on Hn−1. For a
graph Gn = (Vn,En) ∈ Gn, let

P(Gn) := {π = 〈π0, . . . ,πn−1〉 : π i ∈ Hi

for all i ∈ [n]0 and π i ∼ π i−1 for all i ∈ [n − 1]};(1.2)

see Figures 1 and 2 for an instance of such a path on graphs in G (a)
n , a = 0 and

a > 0. In particular, the starting point of the collection of paths P(Gn) is known
if Gn = G (0)

n and unknown if Gn = G (a)
n with a > 0.

FIG. 1. This is a picture of a graph in G (a)
n , a > 0. The bold line represents a path in the two-di-

mensional finite lattice with unknown initial location.
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FIG. 2. This is a picture of a graph in G (0)
n . The bold line represents a path in the two-dimensional

finite lattice with known initial location.

We next introduce the statistical hypothesis problem on (Gn,P(Gn)). To each
node v of the graph Gn, one attaches a random variable Xv. We assume that all
random variables are independent and consider the following hypothesis testing
problem:

• Null hypothesis H0: The random variables {Xv : v ∈ Vn} are i.i.d. with common
distribution N(0,1).

• Alternate (signal) hypothesis H1,n: it is a composite hypothesis
⋃

π∈P(Gn) H1,π ,
where, under H1,π , the random variables {Xv : v ∈ Vn} are independent with

Xv
d=
{
N(μn,1) if v ∈ π,

N(0,1) otherwise,
for some μn > 0.

In other words, the null hypothesis is that the random variables {Xv} represent
a random scenery, whereas the alternative hypothesis suggests that there is an
anomalous path along which the mean of the random variables are nontrivial. We
refer to the above hypothesis testing problem as the “(P(Gn),μn,�) detection
problem on Gn.” � represents the cdf of N(0,1).

The detection threshold is the minimum value of μ = μn for which one can
reliably decide whether or not there is an anomalous path which does not follow
the null distribution. The threshold depends on the criterion used for judging the
performance of the decision rule. There are mainly two paradigms in statistical
decision theory, namely the Bayesian and the minimax approach. We will consider
the second approach. Recall that a nonrandomized test Tn is a measurable function
of the collection of random variables (Xv,v ∈ Vn) taking values in {0,1}. The
minimax risk of such a test Tn is defined as

γ (Tn) := P0(Type I error) + sup
π∈P(Gn)

P1,π (Type II error),
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where

P0(Type I error) = P0(Tn = 1) and P1,π (Type II error) = P1,π (Tn = 0).

Here and later, P0 denotes the probability distribution under the null hypothesis
and P1,π denotes the probability distribution under the alternative hypothesis when
π ∈ P(Gn) is the anomalous path. A sequence of tests {Tn}n≥1 for the hypothesis
testing problem (P(Gn),μn) will be called asymptotically powerful if

lim
n→∞γ (Tn) = 0,

and it will be called asymptotically powerless if

lim
n→∞γ (Tn) ≥ 1.

1.3. Main result. The main result of this paper is the following theorem.

THEOREM 1.1. Fix a ≥ 0. There is a finite constant C large enough such that
for any sequence of means {μn}n≥1 satisfying μn

√
logn ≥ C, there exists a se-

quence of tests {Tn}n≥1 for the hypothesis testing problem (P(G (a)
n ),μn,�) which

is asymptotically powerful. On the other hand, for any sequence of means {μn}n≥1
satisfying μn logn

√
log logn → 0 as n → ∞, all sequence of tests {Tn}n≥1 for the

hypothesis testing problem (P(G (a)
n ),μn,�) will be asymptotically powerless.

REMARK 1.2. The case a = 0 of Theorem 1.1 is contained in [1].

REMARK 1.3. The asymptotically powerful part of the assertion of Theo-
rem 1.1 holds for the detection problem (P̃(G (a)

n ),μn,�), where P̃(G (a)
n ) con-

sists of undirected paths on G (a)
n having their one endpoint in H0 and the other

endpoint in Hn−1.

REMARK 1.4. For 0 < b < a, the assertion of Theorem 1.1 holds for the de-
tection problem (P(a, b),μn,�), where P(a, b) consists of directed paths in
the subgraph of L

2 induced by [−an, an]2 ∩ V 2 having their one endpoint in
[−bn, bn]2 ∩ V 2 and the other endpoint on the boundary of [−an, an]2 ∩ V 2.

1.4. Notation. Throughout the paper, we will use the following notation:

• For n ∈ N, we will use [n] to denote the set {1,2, . . . , n}.
• For M ∈R

m×n, we will use ‖M‖F to denote the Frobenius norm

‖M‖F :=
√

Trace
(
MT M

)=√ ∑
i∈[m],j∈[n]

M2
i,j .

Finally, for sequences a = (an) and b = (bn) we write a � b to mean that there
exists a finite universal constant c > 0 so that 1/c ≤ an/bn ≤ c for all n large.
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2. Proof of Theorem 1.1.

2.1. Upper bound for the detection threshold. In this section, we will eventu-
ally show that a sequence of asymptotically powerful tests exists for the hypothesis
testing problem H0 versus H1 if μn

√
logn > C for some large enough constant C.

We present the proof of a weaker version of this assertion in Proposition 2.2, which
is then bootstrapped in conjunction with a renormalization argument to complete
the proof (see Section 2.1.5). First, we need to introduce certain quadratic forms,
which play a crucial role in the proof.

2.1.1. Quadratic forms associated with the detection problem. We next intro-
duce some useful notation. In order to arrange the vertices of Vn and associated
random variables in an order, we define the following partial order:

For x,y ∈ V 2,define x � y if either x1 < y1 or x1 = y1 and x2 < y2.

Using this partial order, we order the random variables {Xv : v ∈ Vn} accordingly
to have the |Vn| × 1 column vector Xn. For A ⊂ Vn, we use 1A to denote the
|Vn| × 1 column vectors defined by

1A(v) =
{

1 if v ∈ A,

0 otherwise,
for v ∈ Vn.

In order to describe the test Tn that will separate H0 and H1, we also need the
following equivalence relation:

For x,y ∈ V 2,define x � y if x1 �= y1 and |x2 − y2| ≤ |x1 − y1|.
It is easy to see that the above is an equivalence relation. For this equivalence
relation and partial order described above, we write

�x� := {y ∈ Vn : x � y} and x � y if x � y and x � y.

Using the above partial order and equivalence relation, we define the |Vn| × |Vn|
matrix [A(Vn)] associated with the full vertex set Vn by[

A(Vn)
]= ([A(Vn)

]
x,y
)
x,y∈Vn

where
[
A(Vn)

]
x,y = 1

|x1 − y1|1{x�y},[
Ā(Vn)

] := (√2
∥∥[A(Vn)

]∥∥
F

)−1[A(Vn)
]
.

(2.1)

The matrix A(Vn) will play a special role in our argument. The following lemma,
whose proof is postponed to Section 3.1, collects some of its elementary properties.
In the lemma and its proof, we write Pn = P(Gn).

LEMMA 2.1. For any graph Gn = (Vn,En) ∈ Gn and for the matrix [A(·)] as
defined in (2.1):
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(1) ‖[A(Vn)]‖F � n
√

logn,
(2) ‖[A(Vn)]‖ = O(n), so ‖[Ā(Vn)]‖ = O(1/

√
logn),

(3) 1T
π [A(Vn)]1π � n logn for any π ∈ Pn,

(4) 1T
π [A(Vn)]21π � n2 for any π ∈ Pn,

(5) 1T
π [A(Vn)]Diag(1π )[A(Vn)]1π � n(logn)2 for any π ∈ Pn,

(6) ‖[A(Vn)]2‖F � n4 logn, so ‖[Ā(Vn)]2‖F � (logn)−1/2.

Note that Lemma 2.1 describes properties of the matrix [A(Vn)].

2.1.2. A weaker version of Theorem 1.1.

PROPOSITION 2.2. In the set up of Theorem 1.1, if μn(logn)1/4 → ∞ as
n → ∞, there is a sequence of asymptotically powerful tests for the hypothesis
testing problem H0 versus H1.

PROOF. Let Zn be a |Vn| × 1 column vector consisting of i.i.d. N(0,1) ran-
dom variables. Consider the quadratic form ZT

n [A(Vn)]Zn, where [A(Vn)] is the
matrix defined in (2.1). Since [A(Vn)] has zero diagonal entries, each summand
of ZT

n [A(Vn)]Zn and Zi(ZT
n [A(Vn)]Zn), i ∈ [|Vn|], has mean 0, as all of them are

product of independent random variables having mean 0. So

(2.2) EZT
n

[
A(Vn)

]
Zn = 0 and E

[(
ZT

n

[
A(Vn)

]
Zn

)
Zn

]= 0.

Also, noting that the summands ZT
n [A(Vn)]Zn are uncorrelated, and using (1) of

Lemma 2.1,

(2.3)

E
[(

ZT
n

[
A(Vn)

]
Zn

)2]= 4
∑

(i,u)∈Vn

∑
(j,v)∈Vn:(i,u)�(j,v)

(j − i)−2

= 2
∥∥[A(Vn)

]∥∥2
F � n2 logn.

Now, using the partial order �, we order the random variables {Xv : v ∈ Vn} at-
tached to the nodes to have the |Vn| × 1 column vector Xn. Define the quadratic
form Qn := XT

n [A(Vn)]Xn and the test Tn := 1{Qn>μ2
nn logn/2}. In order to compute

γ (Tn) note that

Xn
d=
{

Zn under H0,

Zn + μn1π under H1,π ,

so using (2.2), (2.3) and Lemma 2.1 we get

E0Qn = EZT
n

[
A(Vn)

]
Zn = 0,

E1,πQn = EZT
n

[
A(Vn)

]
Zn + 2μnE1T

π

[
A(Vn)

]
Zn + μ2

n1
T
π

[
A(Vn)

]
1π

= μ2
n1

T
π

[
A(Vn)

]
1π � μ2

nn logn,
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Var0 Qn = E
[(

ZT
n

[
A(Vn)

]
Zn

)2]� n2 logn,

Var1,π Qn = Var
(
ZT

n

[
A(Vn)

]
Zn + 2μn1

T
π

[
A(Vn)

]
Zn

)= Var
(
ZT

n

[
A(Vn)

]
Zn

)
+Var

(
2μn1

T
π

[
A(Vn)

]
Zn

)
+ 2Cov

(
ZT

n

[
A(Vn)

]
Zn,2μn1

T
π

[
A(Vn)

]
Zn

)
= E
[(

ZT
n

[
A(Vn)

]
Zn

)2]+ 4μ2
n1

T
π

[
A(Vn)

]
E
(
ZnZT

n

)[
A(Vn)

]
1π

+ 4μn1
T
π

[
A(Vn)

]
E
(
ZnZT

n

[
A(Vn)

]
Zn

)
= E
[(

ZT
n

[
A(Vn)

]
Zn

)2]+ 4μ2
n1

T
π

[
A(Vn)

]21π

� n2 logn + μ2
nn

2.

Using the above estimates and Chebychev’s inequality,

P0(Tn = 1) ≤ P0

(
|Qn −E0Qn| > 1

2
μ2

nn logn

)

≤ 4
Var0(Qn)

(μ2
nn logn)2 ≤ c

n2 logn

(μ2
nn logn)2 = c

μ4
n logn

and

P1,π (Tn = 0) ≤ P1,π

(
|Qn −E1,πQn| ≥ 1

2
μ2

nn logn

)

≤ 4
Var1,π (Qn)

(μ2
nn logn)2 ≤ c

n2 logn + μ2
nn

2

(μ2
nn logn)2

= c

μ4
n logn

+ c

μ2
n log2 n

for some constant c. Since the upper bounds in the above display are o(1), we see
that limn→∞ γ (Tn) = 0. This competes the proof. �

Proposition 2.2 gives a weak upper bound for the detectability threshold. In
order to improve this bound, we will use a renormalization argument. In order to
employ our renormalization argument, we need to generalize the detection problem
described in the Introduction. We define the necessary generalization step by step
in the following section.

2.1.3. Generalized detection problem. Recall from Section 1.2 that Hi = i +
2Z denotes the ith hyperplane of L

2. We extend the notion of a hyperplane by
including unordered pairs of consecutive nodes from the same hyperplane. For a
graph Gn = (Vn,En), define the associated generalized hyperplanes as follows:

H̃i (Gn) := {{v} : v ∈ Vn and v1 = i
}

∪{{u,v} : u,v ∈ Vn, v1 = u1 = i and |v2 − u2| = 2
}
,

i ∈ [n]0.



DETECTION THRESHOLD FOR ANOMALOUS PATH 2643

FIG. 3. This is a picture of a graph in Gunknown
n . The shaded region represents a generalized path

in the two-dimensional finite lattice with unknown initial location.

So each H̃i (Gn) consists of singletons and doubletons. We extend the defini-
tion of neighboring relationship ∼ defined in (1.1) to a new relation ∼ on⋃

i∈[n]0
H̃i (Gn). We say that A ∈ H̃i (Gn) and B ∈ H̃j (Gn) are neighbors, that

is,

A ∼ B if a ∼ b for some a ∈ A and b ∈ B.

In the same spirit, a generalized path � on Gn will be union of finite sequences of
successive neighbors from

⋃
i∈[n]0

H̃i (Gn). A generalized path may be incomplete
in the sense that it may not intersect all hyperplanes. Define

P̃(Gn) := {� = 〈�0, . . . ,�n−1〉 : for all i ∈ [n]0 either �i = ∅ or �i ∈ H̃i (Gn),

and �i ∼�i−1 whenever �i ,�i−1 �=∅
}
.

See Figure 3 for a picture of such a generalized path for a graph in Gn. In the
generalized detection problem, we also assume that each node v of the graph Gn

has a (observable) random variable Xv associated with it, and the random variables
{Xv} are independent. We will refer to the collection of random variables (Xv,v ∈
Vn) as observables. Suppose (νv,� ∈ R+,v ∈ Vn,� ∈ P̃(Gn)) is a collection of
signals and (Zv,v ∈ Vn) and (Yv,�,v ∈ Vn,� ∈ P̃(Gn)), which we will refer to
as basic noise and additional noise, respectively, are two collections of (possibly
unobservable) random variables satisfying the following properties.

PROPERTY 2.3. The noise variables satisfy the following:

1. The random variables ((Zv, Yv,�),v ∈ Vn) are independent.
2. Yv,� has mean zero and variance at most 1.
3. For each v ∈ Vn, the random variables Zv and Yv,� are uncorrelated, al-

though they can be dependent.

Based on the signals, basic noise and additional noise variables as described
above, we consider the following two hypotheses:
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• Null hypothesis H0: Xv = Zv for all v ∈ Vn.
• Alternate (signal) hypothesis H1,n: it is a composite hypothesis

⋃
�∈P̃(Gn) H1,�,

where, under H1,�,

(2.4) Xv =

⎧⎪⎪⎨⎪⎪⎩
Zv + Yv,� + νv,� if v ∈

n−1⋃
i=0

�i ,

Zv otherwise.

We refer to this hypothesis testing problem as “generalized detection problem.”
The following proposition summarizes the relevant properties of a certain

quadratic statistic under the hypotheses of a generalized detection problem. Propo-
sition 2.4 will play an important role in proving the upper bound in Theorem 1.1.

PROPOSITION 2.4. Fix a ≥ 0. Let G (a)
n = (Vn,En) be any graph in Gn,

{Fv}v∈Vn be any collection of distributions on R having mean 0, variance 1 and
finite third moment. Consider the generalized hypothesis testing problem with
observables (Xv,v ∈ Vn), where the basic noise variables (Zv,v ∈ Vn), the ad-
ditional noise variables (Yv,�,v ∈ Vn,� ∈ P̃(Gn)) and the signals (νv,�,v ∈
Vn,� ∈ P̃(Gn)) satisfy Property 2.3 and Zv has distribution Fv. Let Qn :=
Qn[[Ā(Vn)], (Xv,v ∈ Vn)] and Wn := Wn[[Ā(Vn)], (Zv,v ∈ Vn)] be the quadratic
forms based on the observables and basic noise variables, respectively, where
[Ā(·)] is as in (2.1):

1. Let β3 := maxv∈Vn E(|Zv|3). Then there exists a constant C = C(a) so that

(2.5) sup
x∈R
∣∣P(Wn ≤ x) − �(x)

∣∣≤ C

[
(logn)−1/2 +

(
β3

n
+ β2

3

n log3/2 n

)1/4]
.

2. Let ν̄ := maxv∈� νv,�. There is a random variable Un, satisfying EUn =
EUnWn = 0 and EU2

n ≤ Cν̄2/ logn, such that

Qn
d=
{
Wn under H0,

Wn + Un + ν(Gn) under H1,�,

where ν(Gn) := ∑
v,v′∈Vn

νv,�νv′,�
[
Ā(Vn)

]
v,v′ .

3. For I ⊂ [n], let νI := mini∈I maxv∈�i
νv,�. There is a constant c = c(a) ∈

(0,1) such that

(2.6)
cν2

I ≤ ν(Gn)√
logn

≤ c−1ν̄2 for any I ⊂ {i ∈ [n]0 : �i �= ∅
}

satisfying |I | ≥ n/2.



DETECTION THRESHOLD FOR ANOMALOUS PATH 2645

In the above setup, we will interpret Wn, Un and ν(Gn) as the basic noise vari-
able, additional noise variable and signal, for the graph Gn, respectively.

The proof of Proposition 2.4 uses the properties of the matrix A(Vn) contained
in Lemma 2.1. The proof is postponed to Section 3.3. The last ingredients that
we need for proving Theorem 1.1 are some distributional properties of quadratic
forms, which we present in the following section.

2.1.4. Moment bounds and Gaussian approximation for quadratic forms. Let
(Xj , j ∈ [n]) denote independent random variables such that EXj = 0 and EX2

j =
1 for all j ≥ 1. Let A = {aj,k}nj,k=1 ∈ R

n×n be such that

(2.7)
A is a symmetric matrix, aj,j = 0 for all j ∈ [n] and

Trace
(
A2)= 1

2
.

Consider the quadratic forms

(2.8) Qn

[
A,
(
Xj, j ∈ [n])] := n∑

j,k=1

aj,kXjXk and Gn(A) :=
n∑

j,k=1

aj,kYjYk,

where (Yj , j ∈ [n]) are i.i.d. with common distribution N(0,1). Keeping in mind
that we will need upper bounds for the third moment of certain quadratic forms,
we state the following moment estimate.

THEOREM 2.5 (Theorem 2 of [8]). If A ∈ R
n×n satisfies (2.7) and (Xj , j ∈

[n]) are independent random variables having zero mean, then

E
(∣∣Qn

[
A,
(
Xj, j ∈ [n])]∣∣s)≤ 25s/2�(s/2 + 1/2)

(
�(s + 1/2)

)1/2 max
j∈[n]E

(
X2s

j

)
.

Other than moments, we will also need error bounds for Gaussian approx-
imation of quadratic forms. In this context, Rotar’ [6] proved that under suf-
ficiently weak conditions on the matrix A and for large n, the distribution of
Qn[A, (Xj , j ∈ [n])] is close to that of Gn(A). Gamkrelidze and Rotar’ [3] ob-
tained bounds for the error of this approximation, which were improved by Rotar’
and Shervashidze [7]. Here is their result:

Let Fj (x) = P(Xj ≤ x), �(x) =
∫ x

−∞
1√
2π

e−y2/2 dy,

νj := 3
∫ ∞
−∞

x2∣∣Fj (x) − �(x)
∣∣dx,

s2
j :=

n∑
k=1

a2
n,j,k, L :=

n∑
j=1

νj s
3
j +

n∑
j,k=1

νjνk|an,j,k|3,

� := Trace
(
A4).

(2.9)
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THEOREM 2.6 (See [7]). Assume that (2.7) holds and L,� are as in (2.9). If
� < 1/2, then there is an absolute constant C such that

sup
x∈R
∣∣P(Qn

[
A,
(
Xj, j ∈ [n])]≤ x

)− P
(
Gn(A) ≤ x

)∣∣
≤ C
(
1 − log(1 − 2�)

)3/4
L1/4.

Later, Götze and Tikhomirov [4] obtained an improved bound for the Kol-
mogorov distance between normalized quadratic forms of i.i.d. Gaussian random
variables and the Gaussian distribution.

THEOREM 2.7 (Theorem 1 of [4]). Assume that (2.7) holds and let Gn(·) be
as in (2.8). Then

sup
x∈R
∣∣P(Gn(A) ≤ x

)− �(x)
∣∣≤ C‖A‖ for some absolute constant C.

We will apply Theorems 2.6 and 2.7 to bound the Kolmogorov distance between
the quadratic form Qn[[Ā(Vn)], (Uv,v ∈ Vn)], where [Ā(·)] is defined in (2.1), and
the Gaussian distribution.

PROPOSITION 2.8. Fix a ≥ 0. For any graph Gn := G (a)
n = (Vn,En) ∈ Gn

and any collection of random variables (Uv,v ∈ Vn) having zero mean, unit
variance and finite third moment, if [Ā(Vn)] is the matrix as defined in (2.1),
Qn = Qn[[Ā(Vn)], (Uv,v ∈ Vn)] is the quadratic form as defined in (2.8) and
β3 := maxv∈Vn E(|Uv|3), then

sup
x∈R
∣∣P(Qn ≤ x) − �(x)

∣∣≤ C

[
(logn)−1/2 +

(
β3

n
+ β2

3

n log3/2 n

)1/4]
,

where C = C(a) is an absolute constant.

The proof of Proposition 2.8 uses properties of the matrix A(Vn) contained in
Lemma 2.1. The proof is postponed to Section 3.2.

2.1.5. Proof of the upper bound for the detectability threshold. Proposition 2.4
will play a crucial role in the proof of Theorem 1.1. It will be used in conjunction
with a renormalization argument.

PROOF OF THEOREM 1.1, UPPER BOUND. Throughout the proof, we fix
a ≥ 0 and write Gn = G (a)

n . Let n0 := n, nk := n
εk

k−1 for k ∈ [K + 1], where
K ∈ N and ε1, . . . , εK ∈ (0,1) will be specified later [see (2.13) and (2.16)], and
set εK+1 := 0.

We construct a sequence of hierarchical partition {Bk}0≤k≤K of Gn. Bk will
consist of vertex-disjoint subgraphs of Gn, where each subgraph is induced by
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certain vertices of Gn which reside within either a square or a right angled isosceles
triangle having side length nk . The index sets for these partitions are {Vk}Kk=0,

where V0 = ∅ and Vk ⊂ Z (a)
n0/n1

× · · ·×Z (a)
nk−1/nk

for k ∈ [K]. For k = 0, B0 is the

singleton trivial partition {B(0)
∅ := V (a)

n }. For k = 1, let V1 := {u ∈ Z (a)
n0/n1

: V (1)
u �=

∅}, where

V (1)
u := V (a)

n0
∩ [u1n1, u1n1 + n1) × [u2n1, u2n1 + n1).

For u ∈ V1, define B
(1)
u to be the subgraph of Gn induced by V

(1)
u and define B1 :=

{B(1)
u : u ∈ V1}. It is clear that for each u ∈ V1, the vertices belonging to V

(1)
u reside

within either a complete square or a diagonally halved square (right-angled isosce-
les triangle) having side length n1. Also, the vertex sets {V (1)

u : u ∈ V1} are disjoint.
Having defined Bk for some k ∈ [K]0, we obtain Bk+1 as follows. Note that B

(k)
v ∈

Bk is the subgraph of Gn induced by the vertex set V
(k)
v , and the vertices belonging

to V
(k)
v reside within either a complete square or an isosceles triangle having side

length nk . So, V
(k)
v can be divided into disjoint subsets V

(k+1)
v,u ,u ∈ Z (a)

nk/nk+1
as

follows. V
(k)
v is a spatial translate (say τ ) of either Vn ∩ {(x, y) : 0 ≤ x, y < nk} or

Vn ∩ {(x, y) : 0 ≤ y ≤ x < nk}. We take V
(k+1)
v,u to be the intersection of V

(k)
v and

the image under τ of [u1nk+1, u1nk+1 +nk+1)×[u2nk+1, u2nk+1 +nk+1). Having
defined V

(k+1)
v,u , we define Vk+1 := {(v,u) : v ∈ Vk,V

(k+1)
v,u �= ∅}. For v ∈ Vk+1,

B
(k+1)
v denotes the subgraph of Gn induced by vertex subset V

(k+1)
v and define

Bk+1 := {B(k+1)
w : w ∈ Vk+1}. See Figure 4 for a sketch of these partitions.

After defining the sequence of partitions {Bk}Kk=0 as above, we will assign a

random variable Q
(k)
v to the subgraph B

(k)
v for all v ∈ Vk and 0 ≤ k ≤ K . These

random variables will be defined using backward induction in k. For v ∈ VK , we

FIG. 4. The left figure gives a sketch of the partitions Bk , k = 0,1,2. The whole graph is B
(0)
∅

.
The larger squares correspond to subgraphs in B1 and the small squares correspond to subgraphs

corresponding to B2. The right figure shows the corresponding generalized path on G
(0)
∅

.
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FIG. 5. This is a sketch of the coarse grained graph. Here, the vertex set consists of the squares
and the edges are represented by the links.

order the random variables {Xu : u ∈ V
(K)
v } using the partial order � to obtain the

column vector X(K)
v consisting of O(n2

K) many entries. Then Q
(K)
v is taken to be

the quadratic form

Q(K)
v := (X(K)

v
)T [Ā(V (K)

v
)]

X(K)
v ,

where [Ā(·)] is as defined in (2.1). Having defined the random variables {Q(l)
v :

v ∈ Vl} for all l ∈ [K] \ [k]0 we obtain the random variables {Q(k−1)
u : u ∈ Vk−1}

as follows. If u ∈ Vk−1, then B
(k−1)
u can be thought of as a (coarse-grained)

graph B̄
(k−1)
u (see Figure 5) having the vertex set V̄

(k−1)
u := {B(k)

u,w : (u,w) ∈
Vk} and edge set corresponding to the neighboring relation: B

(k)
u,w ∼ B

(k)
u,w′ if

‖w − w′‖∞ = 1. For completeness, we define B̄(K) and V̄ (K) to be same as B(K)

and V (K), respectively. We order the random variables {Q(k)
u,w : (u,w) ∈ Vk} us-

ing the partial order � and obtain the vector X(k−1)
u consisting of O((nk−1/nk)

2)

entries. Then we define

Q(k−1)
u := (X(k−1)

u
)T [Ā(V̄ (k−1)

u
)]

X(k−1)
u ,

where [Ā(·)] is as defined in (2.1). We proceed in this way until Q
(0)
∅ is defined.

Thus, Q
(0)
∅ is a quadratic form in terms of the random variables {Q(1)

v : v ∈ V1},
where each Q

(1)
v is again a quadratic form in terms of the random variables {Q(2)

v,u :
(v,u) ∈ V2}, and so on.
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Our next goal is to study the distribution of Q
(0)
∅ under P0 and P1,π . Choose and

fix any path π ∈ P(Gn). Note that for each 0 ≤ k ≤ K and v ∈ Vk , π induces gen-
eralized paths �

(k)
v ∈ P̃(B̄

(k)
v ) for the (possibly coarse-grained) graph B̄

(k)
v ; see

Figure 4 for a sketch of an anomalous path π and corresponding (coarse-grained)
generalized paths �

(0)
∅ and �

(1)
v for some v ∈ V1. Using this fact and Proposi-

tion 2.4, we next construct the basic noise variables (W
(k)
v ,v ∈ Vk), additional

noise variables (U
(k)
v ,v ∈ Vk) and signals (ν

(k)
v ,v ∈ Vk) for 0 ≤ k ≤ K induc-

tively as follows. (Since π is fixed, we eliminate it from the notation, writing, e.g.,
U

(K)
v for U

(K)
v,π .)

First, we define the attributes at level K . For v ∈ VK , we apply Proposition 2.4,
with n replaced by nK , basic noise variables (Xu,u ∈ V

(K)
v ), which are the basic

noise variables for the vertices of Gn, additional noise variables given by zeros and
signals (μ1{u∈π},u ∈ V

(K)
v ) and obtain the basic noise variable, additional noise

variable and signal, which we will denote by W
(K)
v , U

(K)
v and ν

(K)
v , respectively.

Having obtained ((W
(k)
v ,U

(k)
v , ν

(k)
v ),v ∈ Vk) for k ∈ [K], we obtain the at-

tributes (W
(k−1)
v ,U

(k−1)
v , ν

(k−1)
v ) by applying Proposition 2.4 with basic noise

variables (W
(k)
(v,u), (v,u) ∈ V̄

(k−1)
v ), additional noise variables (U

(k)
(v,u), (v,u) ∈

V̄
(k−1)
v ) and signals (ν

(k)
(v,u), (v,u) ∈ V̄

(k−1)
v ). We proceed in this way until W

(0)
∅ ,

U
(0)
∅ and ν

(0)
∅ are defined.

We next estimate the signals (ν
(k)
v , k ∈ [K],v ∈ Vk). To do so, we first define

certain vertical segments (S
(k)
i , i ∈ Ik :=⊗k

1[ni−1/ni]0, k ∈ [K + 1]) of Gn, which
we call slabs. Define

S
(0)
∅ := Vn and

S
(k)
i :=

{
v ∈ Vn :

k∑
j=1

ijnj ≤ v1 <

k∑
j=1

ij nj + nk

}

for i ∈ Ik and k ∈ [K + 1].

Note that the slabs are line segments if k = K + 1. We also define the projection
map:

p : ⋃
k∈[K]

Vk �→ ⋃
k∈[K]

Ik

by assigning p(v) := i, if vj has first component ij for all j ∈ [k].

We call a subgraph B
(k)
v touched if π intersects it. We call a subgraph B

(K)
v good

if π intersects it in at least 1
2nK slabs (= line segments) among S

(K+1)
(p(v),iK+1)

, iK+1 ∈
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[nK ]0, that is,

B(K)
v is “good”

if

∣∣∣∣∣
{
iK+1 ∈ [nK ]0 : πi ∈ B(K)

v for i =
K∑

j=1

vj,1nj + iK+1

}∣∣∣∣∣≥ 1

2
nK.

We extend the definition of good subgraphs to other levels inductively as follows.
For k ∈ [K − 1], we call a subgraph B

(k)
v good if there are at least 1

2(nk/nk+1)

many slabs among S
(k+1)
(p(v),ik+1)

, ik+1 ∈ [nk/nk+1]0 where B
(k)
v contains at least one

good subgraph B
(k+1)
(v,u) , that is,

B(k)
v is “good”

if
∣∣{ik+1 ∈ [nk/nk+1]0 : ∃ good B

(k+1)
(v,u) satisfying p(u) = ik+1

}∣∣≥ nk

2nk+1
.

The following lemma contains the required control on the signal variables ν
(k)
v .

LEMMA 2.9. There is a constant c ∈ (0,1) such that the following holds for
all k ∈ [K + 1]0:

(A) ν(k)
v ≥ ν(k) := 1

c
exp
[
2K−k+1 log(cμ)

] K∏
l=k

[
log(nl/nl+1)

]2l−k−1

if B(k)
v is good,

(B) ν(k)
v ≤ ν̄(k) := c exp

[
2K−k+1 log(μ/c)

] K∏
l=k

[
log(nl/nl+1)

]2l−k−1

if π intersects B(k)
v .

(2.10)

REMARK 2.10. Note that the condition that π intersects B
(k)
v in (B) is made

only for aesthetic reasons: the claim is obvious otherwise, for then ν
(k)
v = 0.

PROOF OF LEMMA 2.9. We begin with the following facts:

(I) Each of the slabs S
(k)
i , i ∈ Ik , has at least one good B

(k)
v satisfying p(v) = i.

(II) Each of the slabs S
(k)
i , i ∈ Ik , has at most two touched B

(k)
v satisfying

p(v) = i.

To see (II), note that since the slabs S
(k)
i , i ∈ Ik , have width nk , the subgraphs

{B(k)
v : p(v) = i} constitute a partition of S

(k)
i , and each B

(k)
v resides within a square

(or isosceles triangle at the boundary of S
(k)
i ) having side length nk , it follows that
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for each k ∈ [K], the path π intersects each S
(k)
i in either one subgraph B

(k)
v ∈ Bk

satisfying p(v) = i or in two (consecutive and disjoint) subgraphs B
(k)
v ,B

(k)
u ∈ Bk

satisfying p(v) = p(u) = i. This proves (II).
To see (I), we use induction on k. We first show the induction basis. Since

each slab S
(K)
i has nK hyperplanes and π crosses each hyperplane, for each slab

S
(K)
i , there is at least one good subgraph B

(K)
v satisfying p(v) = i, showing (I) for

k = K .
Now suppose (I) hold for k = l + 1. So each slab S

(l+1)
i has at least one good

subgraph B
(l+1)
v satisfying p(v) = i, at most two touched subgraphs B

(l+1)
v , B

(l+1)
u

satisfying p(v) = p(u) = i, ν
(l+1)
v ≥ ν(l+1) if B

(l+1)
v is good, and ν

(l+1)
v ≤ ν̄(l+1) if

B
(l+1)
v is touched.
Now fix i ∈ Il . S

(l)
i consists of nl/nl+1 many slabs of level l + 1, namely S

(l+1)
i,il+1

,
il+1 ∈ [nl/nl+1]0. Each such slab has at least one good subgraph by Assumption
(I) for k = l + 1. Also, as mentioned in the beginning of the proof, the portion
of π within slab S

(l)
i resides in either one subgraph B

(l)
v ∈ Bl satisfying p(v) = i

or in two (consecutive and disjoint) subgraphs B
(l)
v ,B

(l)
u ∈ Bl satisfying p(v) =

p(u) = i. In the first case, it is obvious that B
(l)
v is good. In the second case, if

both B
(l)
v and B

(l)
u are not good, then there will be at least one slab among S

(l+1)
i,il+1

,
il+1 ∈ [nl/nl+1]0, having no good subgraph of level l + 1 within it. This leads to
a contradiction to the induction hypothesis concerning (I). We conclude that (I)
holds for all k ∈ [K + 1]0.

We now turn to the proof of (A), (B). Again, the proof is by backward induction
on k. We begin with proving the basis of the induction. Suppose that B

(K)
v is good.

Then, using Proposition 2.4, particularly the lower bound in (2.6), we get that
ν

(K)
v ≥ cμ2√log(nK), thus showing (A) in the case k = K . On the other hand,

the upper bound in (2.6) implies ν
(K)
v ≤ c−1μ2√log(nK) whenever π intersects

B
(K)
v , showing (B) in the case k = K . This completes the proof of the base of the

induction.
Now suppose (A), (B) hold for k = l + 1. Suppose B

(l)
v is good. Then, using

Proposition 2.4, particularly the lower bound in (2.6), and noting that B̄
(l)
v re-

sides within either a square or an isosceles triangle having side length nl/nl+1,
ν

(l)
v ≥ c(ν(l+1))2√log(nl/nl+1). On the other hand, the upper bound in (2.6)

implies ν
(l)
v ≤ 1

c
(ν̄(l+1))2√log(nl/nl+1) whenever π intersects B

(l)
v . Combining

these with the expressions of ν(l+1) and ν̄(l+1) [obtained from (2.10)] we see that
(A) and (B) of (2.10) hold for k = l. Thus, all assertions of (2.10) are true for k = l,
and the induction argument is complete. �

We return to the proof of the upper bound of Theorem 1.1. Note first that the
choice of constants K and εk made in (2.13) and (2.16) below, together with
Lemma 2.9(B), ensure that maxu∈Vk

ν
(k)
u ≤ 1. By construction it follows, using
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Proposition 2.4, that for all 0 ≤ k ≤ K ,

Q(k)
v

d=
{
W(k)

v under H0,

W(k)
v + U(k)

v + ν(k)
v under H1,π ,

EU(k)
v = 0, E

[
U(k)

v
]2 ≤ C

1

log(nk/nk+1)
max

u:(v,u)∈Vk+1

(
ν

(k+1)
(v,u)

)2
.

In particular, P0(Q
(0)
∅ ≤ ·) = P(W

(0)
∅ ≤ ·), so using (2.5) with n replaced by |V1| �

(n0/n1)
2 = n2−2ε1 ,

sup
x∈R
∣∣P0
(
Q

(0)
∅ ≤ x

)− �(x)
∣∣

≤ C

[(
logn2−2ε1

)−1/2 +
(

β
(1)
3

n2−2ε1
+ (β

(1)
3 )2

n2−2ε1 log3/2 n2−2ε1

)1/4]
,

where β
(1)
3 := maxv∈V1 E(|W(1)

v |3). In order to bound β
(1)
3 , we will use Theo-

rem 2.5. If we define β
(k)
s := maxv∈Vk

E(|W(k)
v |s), then Theorem 2.5 gives β

(k)
s ≤

Csβ
(k+1)
2s for all k ∈ [K − 1], where Cs = 25s/2�((s + 1)/2)�(s + 1/2)1/2. Also

β
(K)
s � ∫

R
|x|s d�(x) � �((s + 1)/2). Combining the last two observations,

β
(1)
3 ≤ exp

[
5

2
log 2

K−1∑
l=0

3 · 2l +
K∑

l=0

log�

(
1

2
+ 3

2
2l

)
+ 1

2

K−1∑
l=0

log�

(
1

2
+ 3 · 2l

)]

≤ exp
(
CK22K)

for some C > 0. The last inequality holds because �(k) � kk . Combining the last
two displays, we get

(2.11)

sup
x∈R
∣∣P0
(
Q

(0)
∅ ≤ x

)− �(x)
∣∣

≤ C

[(
logn2−2ε1

)−1/2 + exp
(
CK22K − 1

2
(1 − ε1) logn

)]
for some constant C > 0.

Next, we simplify the formula for ν(0), ν̄(0), which are defined in Lemma 2.9,
and then specify the constants (εk, k ∈ [K]). Clearly,

ν(0) = 1

c
exp
[
2K+1 log(cμ)

] K∏
l=0

[
log(nl/nl+1)

]2l−1
and

ν̄(0) = c exp
[
2K+1 log(μ/c)

] K∏
l=0

[
log(nl/nl+1)

]2l−1
.
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Recalling that n0 = n, εK+1 = 0 and nk = n
εk

k−1, k ∈ [K], it is easy to see that

ν(0) = 1

c
√

logn
exp
[
2K+1 log(cμ

√
logn)

]
×

K∏
l=0

[
ε1ε2 · · · εl(1 − εl+1)

]2l−1
and

ν̄(0) = c√
logn

exp
[
2K+1 log(μ

√
logn/c)

]
×

K∏
l=0

[
ε1ε2 · · · εl(1 − εl+1)

]2l−1
.

(2.12)

Rearranging the terms, the product in the above display equals
K∏

s=1

(1 − εs)
2s−2

ε2K−2s−1

s =
K∏

s=1

[
(1 − εs)ε

2K−s+2−2
s

]2s−2
.

It is not difficult to see that the above product will be maximized if 1 − εs =
(2K−s+2 − 1)−1, s ∈ [K].
(2.13) We take εs = 1 − 2−(K−s+2) for all s ∈ [K].
With this choice of (εk, k ∈ [K]), and using the fact that 1 −x ≤ e−x for any x, we
see that

log
K∏

s=1

[
(1 − εs)ε

2K−s+2−2
s

]2s−2

≤ − log 2
K∑

s=1

(K − s + 2)2s−2 −
K∑

s=1

2s−2(1 − 2−(K−s+1))

≤ − log 2
K+1∑
s=2

s2K−s − 1

2

K∑
s=1

2s−2 ≤ −C2K+1

for some constant C > 0. For the same choice of (εk, k ∈ [K]), using the inequality
(1 − ε)k ≥ 1 − kε for any k > 0, we get

log
K∏

s=1

[
(1 − εs)ε

2K−s+2−2
s

]2s−2

≥ − log 2

[
K∑

s=1

(K − s + 2)2s−2 −
K∑

s=1

(
1 − (K − s + 2)

)
2s−2

]

= − log 2

[
K+1∑
s=2

s2K−s+1 −
K∑

s=1

2s−2

]
≥ −C̄2K+1
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for some constant C̄ > C. Combining the last two displays with (2.12),

ν
(0)
∅ ≥ ν(0) ≥ 1

c
√

logn
exp
[
2K+1(log(cμ

√
logn) − C̄

)]
and

ν
(0)
∅ ≤ ν̄(0) ≤ c√

logn
exp
[
2K+1(log(μ

√
logn/c) − C

)]
.

(2.14)

Applying (2) of Proposition 2.4, and using (a) the above bound for ν
(0)
∅ , (b) the

value of ε1 [as specified in (2.13)] and (c) the relation between ν̄(0) and ν̄(1) (as
defined in Lemma 2.9), we see that there is a constant C2 > 0 such that

E
[(

U
(0)
∅

)2]≤ C2
(ν̄(1))2

log(n/n1)
= C2c

ν̄(0)

log3/2(n/n1)

≤ C2c
2 2

3
2 (K+1)

log2 n
exp
[
2K+1

(
log
(

1

c
μ
√

logn

)
− C

)]
.

(2.15)

Finally, we specify the value of K . Since C̄ > C > 0 and c ∈ (0,1), one can choose
�0 > 0 large enough so that for any � ≥ �0, log(c�)− C̄ > 0 and log(1

c
�)−C ≤

5
4(log(c�) − C̄). For such a �0, if we assume that μ

√
logn ≥ �0, and choose K

so that

(2.16) 2K+1[log(cμ
√

logn) − C̄
]= log logn,

then 2K+1 ≤ (log logn)/(log(c�0) − C̄), which ensures E[(U(0)
∅ )2] ≤

C3(log logn)3/2(logn)−3/4 [using (2.15)] for some constant C3 and the upper
bound in (2.11) is o(1), and ν

(0)
∅ ≥ √

logn/c [using (2.14)]. So for this choice

of K , W
(0)
∅

d−→ N(0,1), U
(0)
∅

P−→ 0 and ν
(0)
∅ → ∞. So if one rejects the null

hypothesis when Q
(0)
∅ exceeds ν

(0)
∅ /2, then its minimax risk will be o(1). �

2.2. Proof of the lower bound of detection threshold.

PROOF OF THEOREM 1.1, LOWER BOUND. Since the hypothesis testing prob-
lem (P(G (a)

n ),μn,�) has a signal hypothesis which is strictly larger than that of
(P(G (0)

n ),μn,�), the asymptotically powerless part of Theorem 1.1 follows from
[1], Theorem 1.1. �

3. Proof of the supporting results.

3.1. Proof of Lemma 2.1.

PROOF OF LEMMA 2.1. (1) Note that∥∥[A(Vn)
]∥∥2

F = 2
∑

(i,u)∈Vn

∑
(j,v):(i,u)�(j,v)

(j − i)−2.
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In order to estimate the above sum, note that for fixed i, u, j the number of choices
of v satisfying (i, u) � (j, v) is � |j − i|. Combining this with the fact that∑

1≤k≤i k
−1 � log i implies that

(3.1)

∥∥[A(Vn)
]∥∥2

F � ∑
i,u,j :(i,u)∈Vn and j>i

(j − i)−1

� ∑
i,u:(i,u)∈Vn

log(n − i) � n2 logn.

(2) In order to bound the spectral norm of [A(Vn)], we will use the well-known
fact that for any matrix B ∈ R

k×l ,

max
{|λ| : λ is an eigenvelue of B

}≤ max
i∈[k]

∑
j∈[l]

|bi,j |.

In our case, since [A(Vn)] is symmetric, ‖[A(Vn)]‖ equals the largest abso-
lute eigenvalue of [A(Vn)], so ‖[A(Vn)]‖ ≤ max(i,u)∈Vn

∑
(j,v)∈Vn

[A(Vn)](i,u),(j,v).
Note that for each (i, u) ∈ Vn,

∑
(j,v)∈Vn

[
A(Vn)

]
(i,u),(j,v) = ∑

j∈[n],j �=i

∑
v:(j,v)∈�(i,u)�

1

|i − j | � ∑
j∈[n],j �=i

1 � n,

which gives the result.
(3) For any π ∈ Pn and i ∈ [n]0, let π i ∈ Z be such that (i,π i ) ∈ π . Then

1T
π

[
A(Vn)

]
1π = 2

∑
0≤i<j<n

[
A(Vn)

]
(i,π i ),(j,πj )

= 2
∑

0≤i<j<n

(j − i)−1 � ∑
i∈[m]0

log(n − i) � n logn.

(4) For π ∈ Pn, 1T
π [A(Vn)]21π equals∑

i,j∈[n]0

([
A(Vn)

]2)
(i,π i ),(j,πj ) = 2

∑
0≤i<j<n

∑
(k,v)∈�(i,π i )�∩�(j,πj )�

(|i − k| · |j − k|)−1

+ ∑
i∈[n]0

∑
(k,v)∈�(i,π i )�

(k − i)−2 =: I1 + I2.

In order to estimate I2, note that for any i, k ∈ [n]0, |{v : (k, v) � (i,π i )}| �
|k − i|. So

(3.2) I2 � ∑
i∈[n]0

∑
k∈[n]0,k �=i

|k − i|−1 � n logn.
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In order to estimate I1, note that the (i, j)th inner sum of I1 equals[
i−1∑
k=0

∑
v:(k,v)�(i,π i ),(j,πj )

(i − k)−1(j − k)−1

+
n−1∑

k=j+1

∑
v:(k,v)�(i,π i ),(j,πj )

(k − i)−1(k − j)−1

+ ∑
k:i<k<j

∑
v:(k,v)�(i,π i ),(j,πj )

(k − i)−1(j − k)−1

]

=: I i,j
1,1 + I

i,j
1,2 + I

i,j
1,3.

(3.3)

For the sum I
i,j
1,1, we see that (k, v) � (i,π i ) implies (k, v) � (j,πj ). So the

number of summands in the kth inner sum is � (i − k). Hence,

(3.4) I
i,j
1,1 �

i−1∑
k=0

(j − k)−1 �
∫ j

j−i

1

x
dx = log

j

j − i
,

and so ∑
0≤i<j<n

I
i,j
1,1 � ∑

0≤i<j<n

log j − ∑
0≤i<j<n

log(j − i)

=
n−1∑
j=1

j log j −
n−2∑
i=0

n−1−i∑
k=1

log k

=
n−1∑
j=1

j log j −
n−1∑
k=1

(n − k) log k

=
n−1∑
j=1

2j log j − n

n−1∑
j=1

log j

�
∫ n

1
2x logx dx − n

∫ n

1
logx dx

= n2 logn − (n2 − 1
)
/2 − n2 logn + n(n − 1) � n2.

Using a similar argument, I
i,j
1,2 �∑n−1

k=j+1(k − i)−1 � log n−i−1
ji

, so

∑
0≤i<j<n

I
i,j
1,2 � n2.
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For the sum I
i,j
1,3, the number of summands in the inner sum is at most 2(k − i)

[resp. 2(j − k)] when k < (i + j)/2 [resp. k ≥ (i + j)/2]. Thus

(3.5)

I
i,j
1,3 ≤ ∑

k:i+1≤k≤(i+j)/2

(j − k)−1 + ∑
k:(i+j)/2<k<j

(k − i)−1

�
∫ j−i

(j−i)/2

1

x
dx � 1 so

∑
0≤i<j<n

I
i,j
1,3 ≤ Cn2

for some constant C. Combing the last three displays, I1 =∑3
k=1
∑

0≤i<j<n I
i,j
1,k �

n2. This together with (3.2) gives the result.
(5) For π ∈ Pn, 1T

π [A(Vn)]Diag(1π )[A(Vn)]1π equals∑
i,j∈[n]0

([
A(Vn)

]
Diag(1π )

[
A(Vn)

])
(i,π i ),(j,πj )

= 2
∑

0≤i<j<n

∑
k∈[n]0,k �=i,j

(|i − k| · |j − k|)−1

+ ∑
i∈[n]0

∑
k∈[n]0,k �=i

(k − i)−2 =: J1 + J2.

In order to estimate J2 note that for any i ∈ [n]0,
∑

k∈[n]0,k �=i (k − i)−2 � C, so
J2 � n. In order to estimate J1, note that the (i, j)th inner sum of J1 equals[

i−1∑
k=0

(i − k)−1(j − k)−1 +
n−1∑

k=j+1

(k − i)−1(k − j)−1

+ ∑
k:i<k<j

(k − i)−1(j − k)−1

]
=: J i,j

1,1 + J
i,j
1,2 + J

i,j
1,3.

For the sum J
i,j
1,1, we see that

J
i,j
1,1 =

i−1∑
k=0

1

j − i

[
(i − k)−1 − (j − k)−1]� 1

j − i

[∫ i

1

1

x
dx −

∫ j

j−i

1

x
dx

]

= 1

j − i
log

i(j − i)

j
,

and so∑
0≤i<j<n

J
i,j
1,1 � ∑

0≤i<n

log i
∑

j :i<j<n

1

j − i
− ∑

0<j<n

log j
∑

0≤i<j

1

j − i

+ ∑
0≤i<n

n−i∑
j−i=1

log(j − i)

j − i
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� ∑
0≤i<n

log i log(n − i) − ∑
0<j<n

(log j)2 + ∑
0≤i<n

1

2

(
log(n − i)

)2
≤ logn

∫ n

1
logx dx − 1

2

∫ n

1
(logx)2 dx = 1

2
n(logn)2.

Using a similar argument,

J
i,j
1,2 �

n−1∑
k=j+1

1

j − i

[
(k − j)−1 − (k − i)−1]� 1

j − i
log

(n − j)(j − i)

n − i − 1

and, therefore,
∑

0≤i<j<n J
i,j
1,2 � n(logn)2/2. For the sum J

i,j
1,3, we have that

J
i,j
1,3 ≤ ∑

k:i+1≤k≤j−1

1

j − i

[
(k − i)−1 + (j − k)−1]

� 1

j − i

∫ j−i

1

1

x
dx � log(j − i)

j − i
,

and, therefore,

∑
0≤i<j<n

J
i,j
1,3 = ∑

0≤i<n

n−1−i∑
j−i=1

log(j − i)

j − i
� ∑

0≤i<n

∫ n−i

1

logx

x
dx

� ∑
0≤i<n

(
log(n − i)

)2 � n(logn)2.

Combing the last estimates, we obtain that J1 =∑3
k=1
∑

0≤i<j<n J
i,j
1,k � n(logn)2.

This together with the bound on J2 gives the result.
(6) Note that ‖[A(Vn)]2‖2

F equals∑
u,v∈Vn

(([
A(Vn)

]2)
u,v
)2

� n2
[ ∑

0≤u1<v1<n

( ∑
w∈�u�∩�v�

(|u1 − w1| · |v1 − w1|)−1
)2

+ ∑
u1∈[n]0

( ∑
w∈�u�

(w1 − u1)
−2
)2]

=: K1 + K2.

In order to estimate K2, note that for any u1,w1 ∈ [n]0, |{w2 : w � u}| � |w1 −
u1|. So

K2 � n2
∑

u1∈[n]0

( ∑
w1∈[n]0,w1 �=u1

|w1 − u1|−1
)2

� n3 log2 n.
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Next, note that the (u1, v1)th inner sum of K1 equals n2 times(
I

u1,v1
1,1 + I

u1,v1
1,2 + I

u1,v1
1,3

)2 � [(Iu1,v1
1,1

)2 + (Iu1,v1
1,2

)2 + (Iu1,v1
1,3

)2]
,

where I
u1,v1
1,i , i = 1,2,3, are as in (3.3). We have that I

u1,v1
1,1 � log v1

v1−u1
[see (3.4)]

and, therefore,∑
0≤u1<v1<n

(
I

u1,v1
1,1

)2
� ∑

0≤u1<v1<n

log2 v1 − ∑
0≤u1<v1<n

log2(v1 − u1)

=
n−1∑
j=1

j log2 j −
n−2∑
i=0

n−1−i∑
k=1

log2 k =
n−1∑
j=1

j log2 j −
n−1∑
k=1

(n − k) log2 k

=
n−1∑
j=1

2j log2 j − n

n−1∑
j=1

log2 j �
∫ n

1
2x log2 x dx − n

∫ n

1
log2 x dx

= n2(log2 n − logn
)− n2 − 1

2
− n2(log2 n − 2 logn

)+ 2n(n − 1)

� n2 logn.

Using similar argument,
∑

0≤i<j<n(I
i,j
1,2)

2 � n2 logn. We also have that∑
0≤u1<v1<n

(
I

u1,v1
1,3

)2 ≤ Cn2;

see (3.5). Combing the last estimates, I1 and hence ‖[A(Vn)]2‖2
F is � n4 logn.

This together with Lemma 2.1(1) gives the result. �

3.2. Proof of Proposition 2.8.

PROOF OF PROPOSITION 2.8. Using Theorem 2.7 and Lemma 2.1(2),

(3.6) sup
x∈R
∣∣P(Gn

([
Ā(Vn)

])≤ x
)− �(x)

∣∣≤ C(logn)−1/2.

We obtain νv, s2
v , � and L [as defined in (2.9)] for [Ā(Vn)] and (Uv,v ∈ Vn). By

Lemma 2.1(6), we have � � (logn)−1/2, so we can apply Theorem 2.6. Suppose
Fv denotes the distribution function of Uv and let F̄v := 1 − Fv and �̄ := 1 − �.
Then

νv ≤
∫ ∞

0
3x2(F̄v(x) + �̄(x)

)
dx +

∫ 0

−∞
3x2(Fv(x) + �(x)

)
dx

=
∫ ∞

0

(
F̄v(x) + �̄(x) + Fv(−x) + �(−x)

)
d
(
x3)
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=
∫ ∞

0

(
P
(|XFv |3 > y

)+ P
(|X�|3 > y

))
dy

=
∫
R

|x|3 d(Fv + �)(x) ≤ β3 + 4/
√

2π.

We have that
∑

u∈Vn
[A(Vn)]2

v,u � logn and
∑

u∈Vn
[A(Vn)]3

v,u � 1 for each v ∈ Vn,
by the argument leading to (3.1). This together with Lemma 2.1(1) gives s2

v �
n−2,

∑
u,v∈Vn

[Ā(Vn)]3
v,u � 1

n log 3/2n
. These estimates give L ≤ C

n
(1+β3 + β2

3
log3/2 n

).

Using that, Theorem 2.6 and (3.6) give the claimed bound. �

3.3. Proof of Proposition 2.4. We begin with the following observation.

LEMMA 3.1. minI⊂[n] maxS∈{I,[n]\I }
∑

i,j∈S,i �=j |j − i|−1 ≥ cn logn for some
constant c > 0.

PROOF. Let An := minI⊂[n] maxS∈{I,[n]\I }
∑

i,j∈S,i �=j |j − i|−1. We have that

An ≥ 1

2
min
I⊂[n]

( ∑
i,j∈I,i �=j

|j − i|−1 + ∑
i,j∈[n]\I,i �=j

|j − i|−1
)

≥ 1

2
min

I⊂[n],|I |≥n/2

∑
i,j∈I,i �=j

|j − i|−1

= 1

2
min

α∈[1/2,1] min
I⊂[n],|I |=�αn�

∑
i,j∈I,i �=j

|j − i|−1

=: 1

2
min

α∈[1/2,1]Bn(α).

(3.7)

Since α �→ Bn(α) is monotone, the lemma will follow from (3.7) if we show the
existence of a constant c > 0 so that, for all n integer,

(3.8) Bn(1/2) ≥ cn logn.

To prove (3.8), we begin by claiming that there exists α0 < 1 and a constant
c > 0 so that

(3.9) Bn(α0) > cn logn.

Indeed, with |I | = αn,∑
i,j∈I,i �=j

|j − i|−1 = ∑
i,j∈[n],i �=j

|j − i|−1 − ∑
i,j∈[n]\I,i �=j

|j − i|−1

− 2
∑

i∈[n]\I,j∈I

|j − i|−1
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≥ n logn
(
1 + o(1)

)− 2
∑

i∈[n]\I,j∈[n],j �=i

|j − i|−1

= (1 − 4(1 − α)
)
n logn

(
1 + o(1)

)
.

In particular, (3.9) holds with α0 = 4/5 and c = 1/5. Note that unfortunately, we
cannot yet take α0 = 1/2.

Continuing with the proof of (3.8), note that by rescaling, for any α ∈ (0,1),

(3.10) Bn/2(α) = 2Bn(α/2).

Thus, with β0 := α0/2 < 1/2,

Bn(β0) = 1

2
Bn/2(2β0) = 1

2
Bn/2(α0) ≥ c

4
n logn.

By the monotonicity of α �→ Bn(α), this proves (3.8), and hence the lemma. �

Combining Lemma 3.1 with Lemma 2.1, we prove Proposition 2.4.

PROOF OF PROPOSITION 2.4. To minimize notation, we set Gn = G (a)
n , and

let all constants depend implicitly on a:
(1) Using the partial order �, we order the random variables {Zv : v ∈ Vn} to

have the |Vn| × 1 column vector Zn. Set R� =∑v∈� Yv,�1{v}. Recalling the fact
that [A(Vn)] has zero diagonal entries,

EZT
n

[
A(Vn)

]
Zn = 0,

EZT
n

[
A(Vn)

]
R� = 0,

ERT
�

[
A(Vn)

]
R� = 0,

(3.11)

because each summand of all the above quadratic forms is product of independent
random variables having mean zero. Observing that the summands ZT

n [A(Vn)]Zn

are uncorrelated, and using (1) of Lemma 2.1,

E
[(

ZT
n

[
A(Vn)

]
Zn

)2]= 4
∑

(i,u)∈Vn

∑
(j,v)∈Vn:(i,u)�(j,v)

(j − i)−2

= 2
∥∥[A(Vn)

]∥∥2
F � n2 logn.

Since Wn is the normalized version of ZT
n [A(Vn)]Zn, Wn has mean 0 and vari-

ance 1. Invoking Proposition 2.8 we get the desired bound.
(2) Using the partial order �, define |Vn|× 1 column vector Xn = (Xv,v ∈ Vn).

Also define ϒ� :=∑v∈� νv,�1{v}. Clearly,

Xn
d=
{

Zn under P0,

Zn + R� + ϒ� under P1,�,
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so

Qn
d=
{
Wn under P0,

Wn + Un + ν(Gn) under P1,�,

where

Un := 2ϒT
�

[
Ā(Vn)

]
Zn + 2ϒT

�

[
Ā(Vn)

]
R� + 2RT

�

[
Ā(Vn)

]
Zn + nT

�

[
Ā(Vn)

]
R�

and

h(�, νn) := ϒT
�

[
Ā(Vn)

]
ϒ�.

It follows from (3.11) and the facts EZn = ER� = 0 that each summand of Un has
mean 0, so EUn = 0. Now we observe that:

(a) [Ā(·)] has zero diagonal entries.
(b) E[ZvWn] = E[Yv,�Wn] = 0 for all v ∈ Vn, as components of Zn are inde-

pendent with mean 0.
(c) E[ZvZv′Yu,�Yu′,�] = E[ZvZv′ZuYu′,�] = 0 for all v,v′,u,u′ ∈ Vn satisfy-

ing v �= v′, u �= u′, as {(Zv, Yv,�) : v ∈ Vn} are independent, and Zv and Yv,� are
uncorrelated for all v ∈ Vn.

(d) E[ZnZT
n ] = I|Vn| (the identity matrix), E[R�RT

�]� Diag(1�).

Using these observations, each of the summands of WnUn has mean zero, so
EWnUn = 0. Also

E
[(

RT
�

[
Ā(Vn)

]
Zn

)2]= 1

2

∥∥[A(Vn)
]∥∥−2

F

∑
v∈�

∑
v′∈�v�

EY 2
v,�EZ2

v′(Av,v′)2,

E
[(

RT
�

[
Ā(Vn)

]
R�
)2]= 1

2

∥∥[A(Vn)
]∥∥−2

F

∑
v∈�

∑
v′∈�v�∩�

EY 2
v,�EY 2

v′,�(Av,v′)2.

Using Lemma 2.1(1), both terms in the above display are

≤ ∥∥[A(Vn)
]∥∥−2

F

∑
0≤i<j<n

∑
v:(i,u)�(j,v) for some u∈�i

(j − i)−2

� 1

n2 logn

∑
0≤i<j<n

(j − i)−1 � 1

n2 logn

∑
0≤i<n−1

log(n − i) � n logn

n2 logn
= 1/n.

Combining these estimates with Lemma 2.1(4), (5) and using the Cauchy–Schwarz
inequality,

EU2
n ≤ 4

[
4E
(
ϒT

�

[
Ā(Vn)

]
Zn

)2 + 4E
(
ϒT

�

[
Ā(Vn)

]
R�
)2 + 5/n

]
= 16

[
ϒT

�

[
Ā(Vn)

]
E
(
ZnZT

n

)[
Ā(Vn)

]
ϒ�

+ ϒT
�

[
Ā(Vn)

]
E
(
Y�YT

�

)[
Ā(Vn)

]
ϒ�
]+ 20/n



DETECTION THRESHOLD FOR ANOMALOUS PATH 2663

≤ Cν̄2[1T
�

[
Ā(Vn)

]21� + 1T
�

[
Ā(Vn)

]
Diag(1�)

[
Ā(Vn)

]
1�
]+ 1/n

≤ Cν̄2
[

1

logn
+ logn

n

]
+ 1/n.

(3) For each i ∈ I , define vi := arg maxv∈� νv,�. If we let �(I ) := {vi : i ∈ I },
then it is easy to see that ν(Gn) ≥ ν21T

�(I )[Ā(Gn)]1�(I ). Since |�(I )| ≥ n/2, we
can use Lemma 3.1 and conclude that there is a constant c ∈ (0,1) such that
1T

�(I )[A(Gn)]1�(I ) ≥ cn logn. Combining this with Lemma 2.1(1), we get the de-
sired lower bound.

For the upper bound, note that ν(Gn) ≤ ν̄21T
�[Ā(Vn)]1�, and use Lemma 2.1(1),

(3). �
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