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BSDES WITH MEAN REFLECTION
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In this paper, we study a new type of BSDE, where the distribution of
the Y -component of the solution is required to satisfy an additional con-
straint, written in terms of the expectation of a loss function. This constraint
is imposed at any deterministic time t and is typically weaker than the clas-
sical pointwise one associated to reflected BSDEs. Focusing on solutions
(Y,Z,K) with deterministic K , we obtain the well-posedness of such equa-
tion, in the presence of a natural Skorokhod-type condition. Such condition
indeed ensures the minimality of the enhanced solution, under an additional
structural condition on the driver. Our results extend to the more general
framework where the constraint is written in terms of a static risk measure
on Y . In particular, we provide an application to the super-hedging of claims
under running risk management constraint.

1. Introduction. Since the seminar work of Pardoux and Peng [14], strong
connections between backward stochastic differential equations (BSDEs) and
stochastic control problems have been extensively documented. The solution of
a BSDE typically consists of an adapted pair of processes (Y,Z) with the follow-
ing dynamics:

Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds −

∫ T

t
Zs · dBs, 0 ≤ t ≤ T .

In [14], Pardoux and Peng provided the existence of a unique solution (Y,Z) to
above equation for a given square integrable terminal condition ξ and a Lipschitz
random driver f . Since then, many extensions have been derived in several direc-
tions. For example, the regularity of the driver has been weakened. The underlying
dynamics can contain jumps. These extensions allow to provide representation of
solutions to a large class of stochastic control problems, and to tackle many prob-
lems in mathematical finance.
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More interestingly, the consideration of additional conditions on the stochastic
control problems of interest naturally led to the consideration of constrained BS-
DEs. In such a case, the solution of a constrained BSDE contains an additional
adapted nondecreasing process K , such that (Y,Z,K) satisfies

(1) Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds −

∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,

together with a chosen constraint on the solution. The process K interprets as
the extra cost on the value process Y , due to the additional constraint. In such a
framework, this equation admits an infinite number of solutions, as the roles of
Y and K are too closely connected. The underlying stochastic control problem
of interest typically indicates that one should look for the minimal solution (in
terms of Y ) of such equation. Motivated by optimal stopping or related obstacle
problems, El Karoui et al. [10] introduced the notion of a reflected BSDE, where
the constraint is of the form

Yt ≥ Lt, 0 ≤ t ≤ T .

The obstacle process L provides a lower bound on the solution Y and is interpreted
as the reward payoff. It is worth noticing that the minimal solution (Y,Z,K) is
fully characterized by the following so-called Skorokhod condition:

∫ T

0
(Yt − Lt)

+ dKt = 0.

This condition intuitively indicates that the process K is only allowed to push the
value process Y whenever the constraint is binding.

The class of constrained BSDEs has been significantly enlarged in the recent
literature. Cvitanic and Karatzas [8] utilized a doubly reflected BSDE, where the
process Y lies in between two processes, to study zero sum Dynkin games. Con-
sidering super-hedging problems where the admissible portfolios are restricted to
a convex set C (e.g., C = R+ for no short sell constraints), Buckdahn and Hu [3,
4] and Cvitanic et al. [9] studied the well-posedness of BSDE (1) together with the
constraint: Zt ∈ C, for t ∈ [0, T ]. More generally, Peng and Xu [15] considered
pointwise constraints of the form ϕ(t, Yt ,Zt ) ≥ 0, where ϕ is nondecreasing in y.
Furthermore, the study of optimal switching problems [6, 11–13] led to multidi-
mensional systems of BSDEs with oblique reflections.

In contrast to the previously mentioned pointwise constraints on the solution,
Bouchard et al. [2] introduced a type of BSDE with weak terminal condition,
which emerges from quantile hedging or related controlled loss control problems.
In their framework, the terminal condition is replaced by a constraint on the distri-
bution of the random variable YT , more specifically, it is required that

E
[
�(YT − ξ)

] ≥ 0,

for some loss function �.
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The purpose of this paper is to determine the impact of a dynamic version of
such type of constraint, by studying the BSDE (1) together with a running con-
straint in expectation of the form

(2) E
[
�(t, Yt )

] ≥ 0, 0 ≤ t ≤ T ,

where (�(t, ·))0≤t≤T is a collection of nondecreasing (random) functions. It is
worth noticing that the previous running constraint is only imposed on determinis-
tic times t ∈ [0, T ]. In the spirit of the above mentioned Skorokhod condition for
reflected BSDEs, we look towards so-called flat solutions, that is, satisfying the
extra condition

(3)
∫ T

0
E

[
�(t, Yt )

]
dKt = 0.

In terms of applications, it is worth noticing that the constraint (2) can be re-
placed by a more general version of the form

(4) ρ(t, Yt ) ≤ qt , 0 ≤ t ≤ T ,

where (ρ(t, ·))t is a time indexed collection of static risk measures, and (qt )t are
associated benchmark levels. This framework is in fact the main motivation of
this paper, but we chose to present our main argumentation within the constraint
(2) for sake of clarity and simplicity. We present in the last section of the paper
an application to the super-replication of claims, when the investment portfolio Y

satisfies a risk management constraint of the form (4).

Example and main result. In order to introduce the definition of solution that
we use in the paper, let us start with the following example. We consider the fol-
lowing BSDE with mean reflexion:

Yt = ξ −
∫ T

t
γ ds −

∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,

E[Yt ] ≥ u, 0 ≤ t ≤ T ,

∫ T

0

(
E[Yt ] − u

)
dKt = 0,

(5)

with γ > 0, and the terminal condition ξ such that u < E[ξ ] < u + γ T . Let t∗ ∈
(0, T ) be given by E[ξ ] − γ (T − t∗) = u. It is straightforward to check that the
triple (Y,Z,K) defined by

Yt = E[ξ | Ft ] − γ (T − t) + (
E[ξ ] − γ (T − t) − u

)−
,

Kt = γ
(
t ∧ t∗

)
, ξ = E[ξ ] +

∫ T

0
Zs dBs,

is a flat solution to the BSDE with mean reflexion (5).
For any real α, we set

Mα
t := exp

(
αBt − α2t/2

)
and Kα

t :=
∫ t

0
Mα

s dKs, 0 ≤ t ≤ T .
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Given Kα , let (Y α,Zα) be the solution to the classical BSDE

Yα
t = ξ −

∫ T

t
γ ds −

∫ T

t
Zα

s dBs + Kα
T − Kα

t , 0 ≤ t ≤ T .

For all 0 ≤ t ≤ T , since E[Mα
t ] = 1 and K is deterministic, E[Kα

t ] = Kt and
E[Yα

t ] = E[Yt ] ≥ u. Moreover, since E[Yt ] = u for t ≤ t∗, E[Yt ] − u = 0 dK-a.e.
and we have ∫ T

0

(
E

[
Yα

t

] − ut

)
dKα

t =
∫ T

0

(
E

[
Y 0

t

] − ut

)
Mα

t dKt = 0.

Hence, for any real α, (Y α,Zα,Kα) is also a flat solution to (5). This example em-
phasizes that BSDEs with mean reflexion may have an infinite number of solutions
if one allows K to be random.

A possible way to overcome this difficulty is to work with minimal solutions.
Let us assume that our BSDE (5) as a minimal flat solution (Ȳ , Z̄, K̄). We have,
for any real α, for 0 < t ≤ T ,

Ȳt ≤ Yα
t = E[ξ | Ft ] − γ (T − t) +E

[∫ T

t
Mα

s dKs

∣∣∣ Ft

]

= E[ξ | Ft ] − γ (T − t) + Mα
t (KT − Kt).

As a byproduct, sending α to +∞, we deduce Ȳt ≤ E[ξ | Ft ]−γ (T − t) for t > 0,
and in particular

E[Ȳt ] ≤ E[ξ ] − γ (T − t) ∀0 < t ≤ T .

Since E[ξ ] − γ T < u, for t > 0 small enough, E[Ȳt ] < u. The constraint is not
satisfied and we get a contradiction: BSDE (5) has no minimal solution.

Taking into account the outputs of this very simple example, in order to get ex-
istence and uniqueness of solutions to mean reflected BSDEs, we consider only
deterministic flat solutions meaning that the process K is required to be a deter-
ministic function. More precisely, we will show that mean reflected BSDEs of type
(1)–(2)–(3) have a unique deterministic flat solution as soon as the driver is Lip-
schitz continuous and the function � is bi-Lipschitz: there exist 0 < c ≤ C such
that

c|x − y| ≤ ∣∣�(t, x) − �(t, y)
∣∣ ≤ C|x − y|.

The rest of the paper is organized as follows: Section 2 presents the problem
setting, clarifies the assumptions and discusses the main results of the paper. In
Section 3, we construct the unique solution to the system (1)–(2)–(3) whenever
� is linear and deterministic. The general case is treated in Section 4, where we
derive the well-posedness of the system (1)–(2)–(3). In Section 5, we obtain, in a
special case, the minimality of the enhanced solution, whereas the mathematical
finance application is provided in Section 6.
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Notation. Throughout this paper, we are given a finite horizon T and a com-
plete probability space (�,F,P) endowed with a d-dimensional standard Brow-
nian motion B = (Bt )0≥t≤T . We will work with the usual augmented filtration of
B , {Ft }0≤t≤T . Any element x ∈ Rd will be identified to a column vector with ith
component xi and Euclidian norm |x|. CT denotes the set C([0, T ],R) of continu-
ous functions from [0, T ] to R. For a given set of parameters α, C(α) will denote
a constant only depending on these parameters, and which may change from line
to line. Finally, we classically denote by:

• L2(Ft ) the set of real valued Ft -measurable square integrable random vari-
ables, for any t ∈ [0, T ];

• S2 the set of real valued F -adapted continuous processes Y on [0, T ] such

that ‖Y‖S2 := E[sup0≤r≤T |Yr |2] 1
2 < ∞;

• H2 the set of predictable Rd -valued processes Z s.t. ‖Z‖H2 :=
E[∫ T

0 | Zr |2 dr] 1
2 < ∞;

• A2 is the closed subset of S2 consisting of nondecreasing processes K =
(Kt)0≤t≤T with K0 = 0;

• A2
D the subset of deterministic elements of A2.

2. Problem setup.

2.1. BSDEs with mean reflexion. The main purpose of this paper is to con-
struct solutions (Y,Z,K) to the following BSDE:

Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds −

∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,(6)

E
[
�(t, Yt )

] ≥ 0, 0 ≤ t ≤ T ,(7)

where the second equation is a running constraint in expectation on the compo-
nent Y of the solution. In opposition to classical reflected BSDE where (7) would
typically be a pointwise constraint, the constraint considered here depends on the
distribution of Y . We call this new type of constrained equations as BSDEs with
mean reflexion.

The nondecreasing function � can be interpreted as a loss function and typical
examples of interest are:

• �(t, x) = x − ut where u is a deterministic continuous benchmark, that the
process Y is required to beat in expectation;

• �(t, x) = 1x≥ut − vt (or any smoothed equivalent), so that the process Y is
now required to beat deterministic continuous benchmark u with a probability
greater than vt , for any time t ;

• �(t, x) = U(x, ξt ) − ut where U is a concave utility function, (ξt )t is a run-
ning random benchmark of interest and (ut )t a given deterministic confidence
level.
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Whenever � is a strictly increasing function, the corresponding classical re-
flected BSDE is characterized by the dynamics (6) together with the stronger point-
wise constraint

�(t, Yt ) ≥ 0, 0 ≤ t ≤ T .

In such a case, the Y -component of the solution to the BSDE is reflected on the
boundary process ([�(t, ·)]−1(0)). Observe that our constrained BSDE of interest
weakens the condition imposed on Y , from pointwise constraint to a constraint on
expectation.

REMARK 1. Observe that condition (7) is required for deterministic time in
[0, T ], rather than all the possible stopping times smaller than T . In our frame-
work, considering a constraint on all stopping times would strongly strengthen the
constraint of interest. On the contrary, both type of pointwise conditions are by
construction equivalent for classical reflected BSDEs.

2.2. Assumptions on coefficients. The parameters of BSDE with mean reflec-
tion are the terminal condition ξ , the driver f as well as the loss function �. These
parameters are supposed to satisfy the following assumptions:

(Hf ) The driver f : �×[0, T ]×R×Rd −→ R is a measurable map with respect
to P × B(R) × B(Rd) and B(R), P being the sigma algebra of progressive
sets of � × [0, T ], and there exists λ ≥ 0 such that, P-a.s., for all t ∈ [0, T ],

∀y,p, z, q,
∣∣f (t, y, z) − f (t,p, q)

∣∣ ≤ λ
(|y − p| + |z − q|)

and

E

[∫ T

0

∣∣f (t,0,0)
∣∣2 dt

]
< +∞.

(Hξ ) The terminal condition ξ is a square-integrable FT -measurable random vari-
able such that

E
[
�(T , ξ)

] ≥ 0.

(H�) The loss function � : �×[0, T ]×R −→ R is a measurable map with respect
to FT ×B([0, T ]) ×B(R) and there exists C ≥ 0 such that, P-a.s.:

1. (t, y) �−→ �(t, y) is continuous,
2. ∀t ∈ [0, T ], y �−→ �(t, y) is strictly increasing,
3. ∀t ∈ [0, T ], E[�(t,∞)] > 0,
4. ∀t ∈ [0, T ], ∀y ∈ R, |�(t, y)| ≤ C(1 + |y|).

REMARK 2. We choose to work with Lipschitz and square integrability as-
sumptions on the driver and terminal condition. We restrict to this simple frame-
work, in order to decrease the amount of technical details and emphasize the nov-
elty induced by the additional constraint (7).
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REMARK 3. Observe that Condition (Hξ ) ensures that the constraint is au-
tomatically satisfied at maturity. This condition implies that no a priori facelift
procedure is required on the terminal payoff ξ .

2.3. Definition of solution, main results and discussion. We now turn to the
definition of a solution to the BSDE (6) with mean reflexion (7).

DEFINITION. A square integrable solution to the BSDE (6) with mean reflec-
tion (7) is a triple of processes (Y,Z,K) ∈ S2 × H2 × A2 satisfying (6) together
with the constraint (7). A solution is said to be flat if moreover K increases only
when necessary, that is, when we have

(8)
∫ T

0
E

[
�(t, Yt )

]
dKt = 0.

When K is deterministic, that is, K ∈A2
D , we call the solution deterministic.

As discussed in the Introduction, we observe that allowing K to be random leads
to the existence of multiple flat solutions. We have also seen that it may induce
nonexistence of minimal solution for the BSDE (6) with mean reflection (7). This
is why we chose here to restrict to the consideration of so-called deterministic
solutions, that is, solutions (Y,Z,K) with deterministic compensator K .

In particular, focusing on deterministic solutions, we verify, in some special
cases, that the flatness condition (8) can directly imply the minimality property
of the solution beyond all the deterministic ones. This is in particular the case for
drivers with deterministic linear dependence in y; see Condition (24).

The main result of this paper is the existence and uniqueness of deterministic
flat solution to the BSDE (6) with mean reflection (7). This is first achieved for
the particular case of linear loss function �; see Proposition 4 and Theorem 5
in Section 3. The proof follows a constructive approach when the driver does
not depend on Y and Z, together with a contraction property in order to tackle
any Lipschitz driver function. An alternative approach via penalization is also
provided in a particular case. When the driver is not linear, the well-posedness
of the system (6)–(7)–(8) is also established, under an additional assumption on
the loss function, denoted (HL) below; see Proposition 7 and Theorem 9 in Sec-
tion 4.

In a similar fashion, we explain in Section 6 below how the constraint in expec-
tation (7) can be replaced by a constraint of the form ρ(·, Y·) ≤ q·, where (ρ(t, ·))t
is a collection of static risk measures computed at time 0, and q is a collection of
time-indexed benchmarks. In particular, solving this equation allows, for example,
to represent the super-hedging price of a claim ξ , whenever any admissible port-
folios require to satisfy at any date t a running risk management constraint written
in terms of risk measures.
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REMARK 4. Since the constraint (7) concerns the distribution of the solution
to the BSDE, it is tempting to understand the possible connection between such
type of BSDE and corresponding constrained McKean Vlasov BSDEs. This topic
seems promising in particular for the mean field game literature and is left for
further research.

REMARK 5. We wish to point out that the constraint E[�(t, Yt )] ≥ 0 is im-
posed on each t ∈ [0, T ] but not on all stopping times smaller than T . As we will
see in the example below, there is no reason to have E[�(τ,Yτ )] ≥ 0 for all stop-
ping times. Indeed, let us choose ξ = 1. For any λ, the deterministic flat solution
to

Yt = ξ − λ

∫ T

t
Bs ds −

∫ T

t
Zs dBs + (KT − Kt), E[Yt ] ≥ 0, 0 ≤ t ≤ T ,

is given by

Yt = 1 − λ(T − t)Bt , Zt = −λ(T − t), Kt = 0,

since the unconstrained solution already satisfies E[Yt ] = 1 ≥ 0. However, choos-
ing the bounded stopping time τ = inf{s ≥ 0 : Bs ≥ 1} ∧ T , we have

Yτ = 1 − λ(T − τ)Bτ = 1 − λ(T − τ)1τ<T , E[Yτ ] = 1 − λE
[
(T − τ)1τ<T

]
.

Thus, if λ is large enough, E[Yτ ] < 0 and the constraint is not satisfied for some
bounded stopping time.

We leave the problem of mean reflected BSDEs with constraint on stopping
times for further research.

2.4. A priori estimate. Let us conclude this section by providing a useful a
priori estimate on any solution to the BSDE (6)–(7).

LEMMA 1. Let (Y,Z,K) be a square integrable solution to the BSDE (6) with
mean reflection (7). Then Y satisfies the following:

E
[

sup
0≤t≤T

|Yt |2
]
≤ C(λ,T )E

[
|Y0|2 + K2

T +
∫ T

0

∣∣f (s,0,0)
∣∣2 ds +

∫ T

0
|Zs |2 ds

]
.

PROOF. By construction, we have

Yt = Y0 −
∫ t

0
f (s, Ys,Zs) ds +

∫ t

0
Zs · dBs − Kt, 0 ≤ t ≤ T .

Because K is nondecreasing, Assumption (Hf ) leads to

|Yt | ≤ |Y0| + KT +
∫ T

0

∣∣f (s,0,0)
∣∣ds + λ

∫ T

0
|Zs |ds

+ sup
0≤t≤T

∣∣∣∣
∫ t

0
Zs · dBs

∣∣∣∣ + λ

∫ t

0
|Ys |ds,
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for t ∈ [0, T ]. Since Y has continuous paths, Gronwall’s lemma gives

sup
0≤t≤T

|Yt | ≤ eλT

(
|Y0| + KT +

∫ T

0

∣∣f (s,0,0)
∣∣ds + λ

∫ T

0
|Zs |ds

+ sup
0≤t≤T

∣∣∣∣
∫ t

0
Zs · dBs

∣∣∣∣
)
,

and the result follows from the Burkholder–Davis–Gundy inequality. �

REMARK 6. We deduce from the previous lemma that, when the generator
has linear growth, the process Y belongs to S2 as soon as Z and K are square
integrable.

3. The particular case of linear mean reflection. In this section, we con-
sider a special case where the mean reflection is linear. Namely, � : (t, y) �→ y −ut

so that the condition (7) is replaced by

(9) E[Yt ] ≥ ut , 0 ≤ t ≤ T ,

where u is a deterministic continuous map from [0, T ] to R. Hereby, we impose a
running deterministic lower bound u on the expected value of the Y -component of
the solution. Besides, we recall that Assumption (Hξ ) ensures that this constraint
is already satisfied at maturity so that we have

(10) E[ξ ] ≥ uT .

In this linear framework, we construct in Proposition 4 an explicit determin-
istic flat solution (Y,Z,K) to a BSDE with linear mean reflexion (9), when the
driver does not depend on Y nor Z. On the other hand, Proposition 3 indicates that
uniqueness holds within the class of deterministic flat solutions to (6)–(9).

Hereafter, we first derive an a priori estimate on the solution, and then tackle
respectively the uniqueness and existence issues. In order to handle general drivers,
the enhanced demonstration relies on a contraction argument, but an alternative
approach via penalization is also provided in a particular case.

3.1. A priori estimate. The main mathematical advantage of considering a lin-
ear loss function � is that it allows to use some of the computational tricks asso-
ciated to classical reflected BSDEs, when the compensator K is deterministic. As
detailed in the proof below, this enables us to derive the following a priori estimate
on the solution to the BSDE with linear mean reflexion.

LEMMA 2. Let (Y,Z,K) be a deterministic square integrable flat solution to
the BSDE (6) with linear mean reflexion (9). Then

E

[
sup

0≤t≤T

|Yt |2 +
∫ T

0
|Zs |2 ds

]
+ K2

T

≤ C(λ,T )

(
E

[
|ξ |2 +

∫ T

0

∣∣f (s,0,0)
∣∣2 ds

]
+ ‖u‖2∞

)
.
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PROOF. Let us recall that the Lipschitz property of f implies

2y ·f (t, y, z) ≤ ∣∣f (t,0,0)
∣∣2 + 1

2
|z|2 + (

1 + 2λ+ 2λ2)|y|2, ∀(y, z) ∈R×Rd .

Setting β := 1 + 2λ + 2λ2, Itô’s formula together with the previous inequality
provides

eβt |Yt |2 + 1

2

∫ T

t
eβs |Zs |2 ds ≤ eβT |ξ |2 +

∫ T

0
eβs

∣∣f (s,0,0)
∣∣2 ds

+ 2
∫ T

t
eβsYs dKs − 2

∫ T

t
eβsYsZs · dBs,

for all t ∈ [0, T ]. Since K is deterministic and � is linear, we compute

2E
[∫ T

t
eβsYs dKs

]
= 2

∫ T

t
eβsE[Ys]dKs

= 2
∫ T

t
eβs(E[Ys] − us

)
dKs + 2

∫ T

t
eβsus dKs.

Besides the solution is flat so that condition (8) directly implies

2E
[∫ T

t
eβsYs dKs

]
= 2

∫ T

t
eβsus dKs ≤ 2eβT ‖u‖∞KT .

We deduce that

sup
0≤t≤T

E
[
eβt |Yt |2] +E

[∫ T

0
eβs |Zs |2 ds

]

≤ 3
(
E

[
eβT |ξ |2 +

∫ T

0
eβs

∣∣f (s,0,0)
∣∣2 ds

]
+ 2eβT ‖u‖∞KT

)
,

from which we get, for any ε > 0,

sup
0≤t≤T

E
[|Yt |2] +E

[∫ T

0
|Zs |2 ds

]

≤ C(λ,T , ε)

(
E

[
|ξ |2 +

∫ T

0

∣∣f (s,0,0)
∣∣2 ds

]
+ ‖u‖2∞

)
+ εK2

T .

(11)

On the other hand, since K is deterministic, we have

KT = E[KT ] = Y0 −E[ξ ] −E

[∫ T

0
f (s, Ys,Zs) ds

]
,

from which we deduce the inequality

K2
T ≤ C(λ,T )

(
E

[∫ T

0

∣∣f (s,0,0)
∣∣2 ds

]

+ sup
0≤t≤T

E
[|Yt |2] +E

[∫ T

0
|Zs |2 ds

])
.

(12)
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Combining this estimate with (11) and ε small enough, we get

sup
0≤t≤T

E
[|Yt |2] +E

[∫ T

0
|Zs |2 ds

]
+ |KT |2

≤ C(λ,T )

(
E

[
|ξ |2 +

∫ T

0

∣∣f (s,0,0)
∣∣2 ds

]
+ ‖u‖2∞

)

and the result follows from Lemma 1. �

3.2. Uniqueness of the deterministic flat solution. The uniqueness of flat de-
terministic solution for a BSDE with linear mean reflection follows mainly from a
similar argumentation for a classical reflected BSDE.

PROPOSITION 3. The BSDE (6) with linear mean reflexion (9) has at most
one square integrable deterministic flat solution.

PROOF. Let us consider two such solutions (Y 1,Z1,K1) and (Y 2,Z2,K2)

and denote

δY := Y 1 − Y 2, δZ := Z1 − Z2 and δK := K1 − K2.

Setting a := 2λ + 2λ2 and arguing as in Lemma 2, Itô’s formula gives easily

eat |δYt |2 + 1

2

∫ T

t
eas |δZs |2 ds ≤ −2

∫ T

t
easδYsδZs · dBs + 2

∫ T

t
easδYs dδKs,

for t ∈ [0, T ]. Let us observe that since both solutions are flat and deterministic
and � is linear, we nicely have

E

[∫ T

t
easδYt dδKs

]
=

∫ T

t
eas[(E[

Y 1
s

] − us

) − (
E

[
Y 2

s

] − us

)]
dK1

s

−
∫ T

t
eas[(E[

Y 1
s

] − us

) − (
E

[
Y 2

s

] − us

)]
dK2

s

= −
∫ T

t
eas(E[

Y 2
s

] − us

)
dK1

s −
∫ T

t
eas(E[

Y 1
s

] − us

)
dK2

s

≤ 0,

for any t ∈ [0, T ]. Thus the result follows by taking expectations in the previous
inequality. �

As detailed in the Introduction, considering deterministic K processes is a key
for the obtention of a unique solution to the BSDE of interest. We now turn to the
existence property.
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3.3. Existence of a deterministic flat solution. We first focus on the particular
case where the driver f does not depend on Y nor Z. In this simple case, we
construct explicitly the unique solution to a BSDE with linear mean reflection.

PROPOSITION 4. Let C be a square integrable progressively measurable
stochastic process or more generally in the space L2(�;L1(0, T )). The BSDE with
linear mean reflection

Yt = ξ +
∫ T

t
Cs ds −

∫ T

t
Zs · dBs + KT − Kt,

E[Yt ] ≥ ut , 0 ≤ t ≤ T ,

(13)

has a unique square integrable deterministic flat solution.

PROOF. Let us set xt = E[ξ + ∫ T
t Cs ds]. By Skorokhod’s lemma, there ex-

ists a unique pair of deterministic functions (y,K) : [0, T ] → R such that K is
nondecreasing and K0 = 0 and we have

(14) yt = xt + KT − Kt, yt ≥ ut ,

∫ T

0
(yt − ut ) dKt = 0.

By construction, observe that K is continuous and Kt = sup0≤s≤T (xs − us)− −
supt≤s≤T (xs − us)−. Now, K being given, we know that the BSDE

Yt = ξ +
∫ T

t
Cs ds −

∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,

has a unique square integrable solution (Y,Z). Moreover, we have by construction
yt = E[Yt ]. It follows from (14) that (Y,Z,K) is a deterministic flat solution of
the BSDE (13). The uniqueness follows from Proposition 3. �

We now turn to the general driver case and we will derive the well-posedness of
the BSDE using a well-chosen contraction property.

THEOREM 5. The BSDE (6) with linear mean reflexion (9) has a unique de-
terministic square integrable flat solution.

PROOF. For given processes U ∈ S2 and V ∈ H2, let (Y,Z,K) be the deter-
ministic square integrable flat solution to the BSDE

Yt = ξ +
∫ T

t
f (s,Us,Vs) ds −

∫ T

t
Zs · dBs + KT − Kt,

E[Yt ] ≥ ut , 0 ≤ t ≤ T ,

as provided by Proposition 4. Let us show that the mapping � : (U,V ) �−→ (Y,Z),
from S2 ×H2 into itself, has a unique fixed point.
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For this purpose, let us denote (Y 1,Z1,K1) and (Y 2,Z2,K2) the two deter-
ministic square integrable flat solutions to the above BSDE with given (U1,V 1)

and (U2,V 2), respectively. Set

δY := Y 1 − Y 2, δZ := Z1 − Z2, δK := K1 − K2,

δU := U1 − U2, δV := V 1 − V 2.

For a = 4λ2 + 1, Itô’s formula leads to

|δY0|2 +
∫ T

0
eas(|δYs |2 + |δZs |2)

ds

≤ 1

2

∫ T

0
eas(|δUs |2 + |δVs |2)

ds − 2
∫ T

0
easδYsδZs · dBs

+ 2
∫ T

0
easδYs dδKs.

As observed in the proof of Proposition 4, we compute

E

[∫ T

0
easδYs dδKs

]
= −

∫ T

0
eas(E[

Y 2
s

] − us

)
dK1

s −
∫ T

0
eas(E[

Y 1
s

] − us

)
dK2

s

≤ 0.

It follows directly that

(15) E

[∫ T

0
eas(|δYs |2 + |δZs |2)

ds

]
≤ 1

2
E

[∫ T

0
eas(|δUs |2 + |δVs |2)

ds

]
.

Since we have

δYt = E

[∫ T

t

(
f

(
s,U1

s , V 1
s

) − f
(
s,U2

s , V 2
s

))
ds

∣∣∣ Ft

]

+ (
K1

T − K1
t

) − (
K2

T − K2
t

)
,

Ki
T − Ki

t = sup
t≤s≤T

(
E

[
ξ +

∫ T

s
f

(
r,Ui

r ,V
i
r

)
dr

]
− us

)
−
,

we get immediately

(16) E
[

sup
0≤t≤T

|δYt |2
]
≤ CE

[∫ T

0

(|δUs |2 + |δVs |2)
ds

]
.

As a by-product, � is continuous from S2 ×H2 into itself.
Moreover, starting from (Y 0,Z0) = (0,0) and setting for n ≥ 1, (Y n,Zn) =

�(Yn−1,Zn−1), we deduce from (15) that

E

[∫ T

0

∣∣Yn+1
t − Yn

t

∣∣2 +
∫ T

0

∣∣Zn+1
t − Zn

t

∣∣2 dt

]
≤ C2−n,
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and that the sequence {(Y n,Zn)}n≥0 converges in H2 × H2 to the unique fixed
point of �. Finally, from (16), {(Y n,Zn)}n≥0 is a Cauchy sequence in S2 × H2.
Hence � has a unique fixed point in S2 ×H2. �

In order to handle classical reflected BSDE, a very helpful feature is the char-
acterization of the solution as a limit of corresponding penalized classical BSDEs.
The idea simply relies on the addition of a strong penalization on the driver of a
classical BSDE, which is only active whenever the constraint is not satisfied. As
the penalization strength increases, the Y component of the penalized solution also
increases and converges at the limit to the minimal solution of the reflected BSDE.
In our framework, the constraint only integrates the distribution of Y , and not the
pointwise values of the process Y . For this reason, no comparison argument can
ensure that a sequence of penalized BSDEs will be nondecreasing and the classi-
cal line of proof falls down. Nevertheless, whenever the benchmark function u is
constant, we are able to identify the unique deterministic flat solution of a BSDE
with linear mean reflexion as the limit of corresponding penalized BSDEs of the
McKean–Vlasov type. This is the purpose of the next proposition proved in a par-
ticular case.

PROPOSITION 6. Suppose that the benchmark (ut )t is constant and also de-
noted u. For any positive integer n, let us consider (Y n,Zn) solution to the BSDE
of McKean–Vlasov type

Yn
t = ξ +

∫ T

t
f

(
s, Y n

s ,Zn
s

)
ds +

∫ T

t
n
(
u −E

[
Yn

s

])
+ ds

−
∫ T

t
Zn

s · dBs, 0 ≤ t ≤ T ,

and denote Kn := ∫ .
0 n(u − E[Yn

s ])+ ds. As n goes to infinity, (Y n,Zn,Kn) con-
verges to the unique flat deterministic solution of the BSDE (6) with linear mean
reflexion (9).

PROOF. The proof is postponed to the Appendix. �

4. BSDE with general mean reflection. We now turn to the general case
where x �−→ �(t,ω, x) is not necessarily linear. We recall that we still work under
Assumptions (Hξ )–(Hf )–(H�) presented in Section 2. In the same spirit as the
approach presented in the previous section, we first construct explicitly a solution
whenever the driver does not depend on Y nor Z, and then tackle the general case
via a Picard contraction argument. The construction of an explicit solution in the
nonlinear case is less natural and relies a lot on the use of the following operator:

(17) Lt : L2(FT ) → [0,∞), X �−→ inf
{
x ≥ 0 : E[

�(t, x + X)
] ≥ 0

}
,
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defined for any t ∈ [0, T ]. Since � is of linear growth at infinity and E[�(t,∞)] >

0, Lt is well defined. Namely, Lt(X) represents the minimal deterministic strength
with which the random variable X must be pushed upward in order to satisfy the
constraint of interest at time t . In the previous linear case where � : (t, x) �→ x −ut ,
we simply explicitly have Lt : X �→ (E[X] − ut )−.

We first focus on the constant driver case and we then are able to tackle the
general case. For this last framework, a Lipschitz property for the operator L will
be required.

4.1. The constant driver case. In this section, we demonstrate the well-
posedness of the BSDE of interest in the constant driver case. As explained above,
the operator L plays an important role in order to build a solution to such BSDE.

PROPOSITION 7. Let C be a square integrable progressively measurable
stochastic process or more generally in the space L2(�;L1(0, T )).

Then the BSDE with mean reflection

Yt = ξ +
∫ T

t
Cs ds −

∫ T

t
Zs · dBs + KT − Kt,

E
[
�(t, Yt )

] ≥ 0, 0 ≤ t ≤ T ,

(18)

has a unique square integrable deterministic flat solution.

PROOF. We derive the existence and uniqueness properties separately.
Step 1. Existence. In order to solve (18), let us define

�t := Lt(Xt) where Xt = E

[
ξ +

∫ T

t
Cs ds

∣∣∣ Ft

]
,0 ≤ t ≤ T .

Since � is continuous in space, observe that

(19) E
[
�(t,Xt + �t)

] ≥ 0, 0 ≤ t ≤ T .

Let us now show that � is moreover continuous. Observe first that the map x �−→
E[�(t, x + X)] is continuous and strictly increasing. If E[�(t,Xt)] ≤ 0, since � is
continuous and has linear growth, for any x < Lt(Xt) < y, one has

lim
s→t

E
[
�(s, x + Xs)

] = E
[
�(t, x + Xt)

]
< 0 = E

[
�
(
t,Lt (Xt ) + Xt

)]

< E
[
�(t, y + Xt)

] = lim
s→t

E
[
�(s, y + Xs)

]
.

Then, if |s − t | is small enough, E[�(s, x + Xs)] < 0, E[�(s, y + Xs)] > 0 and
x ≤ Ls(Xs) ≤ y.

If E[�(t,Xt)] > 0, Lt(Xt) = 0, and lims→t E[�(s,Xs)] = E[�(t,Xt)] > 0. If
|s − t | is small enough, E[�(s,Xs)] > 0 and Ls(Xs) = 0.
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We are now in position to define the continuous process K by

Kt := sup
0≤s≤T

�s − sup
t≤s≤T

�s so that KT − Kt = sup
t≤s≤T

�s, 0 ≤ t ≤ T .

Observe that K is deterministic, nondecreasing with K0 = 0. Given this process
K , let (Y,Z) be the unique solution to the classical BSDE with the dynamics of
(18). Then, since x �−→ �(t, x) is nondecreasing, we deduce from (19) that

E
[
�(t, Yt )

] = E
[
�(t,Xt + KT − Kt)

] = E
[
�
(
t,Xt + sup

t≤s≤T

�s

)]

≥ E
[
�(t,Xt + �t)

] ≥ 0.

(20)

Hence, (Y,Z,K) is a deterministic solution to the BSDE with weak reflexion (18).
Let us now verify that it is also flat. By definition of K , observe that

supt≤s≤T �s = �t dKt -a.e. and 1�t=0 = 0 dKt -a.e. Thus, by (20) we compute
∫ T

0
E

[
�(t, Yt )

]
dKt =

∫ T

0
E

[
�(t,Xt +�t)

]
dKt =

∫ T

0
E

[
�(t,Xt +�t)

]
1�t>0 dKt .

Besides, since � is continuous in space, we have E[�(t,Xt + �t)] = 0 as soon as
�t > 0, so that ∫ T

0
E

[
�(t,Xt + �t)

]
1�t>0 dKt = 0,

and (Y,Z,K) is a flat solution.
Step 2. Uniqueness. Let (Y 1,Z1,K1) and (Y 2,Z2,K2) be two deterministic flat

solutions to the BSDE with mean reflexion (18). We work towards a contradiction
and suppose that there exists t1 < T such that

K1
T − K1

t1
> K2

T − K2
t1
.

Setting t2 as the first time t after t1 such that K1
T − K1

t = K2
T − K2

t , we observe
that

K1
T − K1

t > K2
T − K2

t , t1 ≤ t < t2.

Since � is strictly increasing, this implies that

E
[
�
(
t,Xt + K1

T − K1
t

)]
> E

[
�
(
t,Xt + K2

T − K2
t

)] ≥ 0, t1 ≤ t < t2.

But (Y 1,Z1,K1) is a flat solution and hereby∫ t2

t1

E
[
�
(
t,Xt + K1

T − K1
t

)]
dK1

t = 0,

so that we must have dK1 = 0 on the interval [t1, t2]. We deduce that

K1
T − K1

t2
= K1

T − K1
t1

> K2
T − K2

t1
≥ K2

T − K2
t2
,

which contradicts the definition of t2. Hence K1 = K2 and the uniqueness of
solution to classical BSDEs directly implies that (Y 1,Z1,K1) coincides with
(Y 2,Z2,K2). �
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4.2. Existence and uniqueness for the general case. Now that the well-
posedness for constant driver is established, we can focus on the BSDE (6) with
mean reflexion (7) in full generality. In order for the solution to be well defined, we
will require a Lipschitz property of the operator L defined in (17), that we present
in the following an additional assumption:

(HL) The operator Lt is Lipschitz continuous for the L1-norm, uniformly in time:
namely there exists a constant C ≥ 0 such that∣∣Lt(X) − Lt(Y )

∣∣ ≤ CE
[|X − Y |], 0 ≤ t ≤ T ,X,Y ∈ L2(Ft ),

where the operator Lt is defined in (17).

It is worth noticing that the previous assumption (HL) is automatically satisfied
as soon as the loss function � is a bi-Lipschitz function in x. More precisely, we
consider the following alternative assumption on �:

(Hb�) The loss function � : �×[0, T ]×R −→ R is a measurable map with respect
to FT ×B([0, T ]) ×B(R) and there exists 0 < cl ≤ Cl such that, P-a.s.:

1. ∀y ∈ R, t �−→ �(t, y) is continuous,
2. ∀t ∈ [0, T ], y �−→ �(t, y) is strictly increasing,
3. ∀t ∈ [0, T ], ∀y ∈R, |�(t, y)| ≤ Cl(1 + |y|),
4. ∀t ∈ [0, T ],

(21) c�|x − y| ≤ ∣∣�(t, x) − �(t, y)
∣∣ ≤ C�|x − y|, x, y ∈ R.

LEMMA 8. Assume (Hb�). Then both Assumptions (H�) and (HL) hold.

PROOF. Observe first that (Hb�) implies directly that (H�) holds. Fix now
t ∈ [0, T ] and let X and Y be two random variables in L2(FT ).

Since � is nondecreasing, the lower bound of (21) gives

�

(
t,Lt (X) + C�

c�

E
[|X − Y |] + Y

)
≥ c�

C�

c�

E
[|X − Y |] + �

(
t,Lt (X) + Y

)
,

and using the upper bound we get

�
(
t,Lt (X) + Y

) ≥ �
(
t,Lt (X) + X

) − Cl|X − Y |,
from which it follows

�

(
t,Lt (X)+ C�

c�

E
[|X−Y |]+Y

)
≥ �

(
t,Lt (X)+X

)−Cl|X−Y |+ClE
[|X−Y |].

Since E[�(t,X +Lt(X))] ≥ 0, we obtain by taking the expectation of the previous
inequality

E

[
�

(
t,Lt (X) + C�

c�

E
[|X − Y |] + Y

)]
≥ 0.
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By definition of Lt(Y ), this directly implies that

Lt(Y ) ≤ Lt(X) + C�

c�

E
[|X − Y |].

By symmetry of X and Y , we conclude that
∣∣Lt(X) − Lt(Y )

∣∣ ≤ C�

c�

E
[|X − Y |]. �

We are now in position to state the main result of the paper, providing the well-
posedness of BSDEs with mean reflexion.

THEOREM 9. In addition to the running assumptions (Hξ )–(Hf )–(H�), let us
assume moreover that (HL) is satisfied. Then there exists a unique deterministic
flat solution (Y,Z,K) ∈ S2 ×H2 ×A2

D to the BSDE (6) with mean reflexion (7).

PROOF. Let us consider σ and τ in the time interval [0, T ] with σ ≤ τ . Given
Yτ ∈ L2(Fτ ), {Ut }σ≤t≤τ ∈ S2 and {Vt }σ≤t≤τ ∈ H2, Proposition 7 ensures the exis-
tence of a triple of processes {(Yt ,Zt ,Rt )}σ≤t≤τ solution to the BSDE with mean
reflexion

Yt = Yτ +
∫ τ

t
f (s,Us,Vs) ds −

∫ τ

t
Zs · dBs + Rt, σ ≤ t ≤ τ,

E
[
�(t, Yt )

] ≥ 0, σ ≤ t ≤ τ,

∫ τ

σ
E

[
�(t, Yt )

]
dRt = 0,

where we conveniently denoted R· = Kτ − K·. In this setting, R is nonincreasing
with Rτ = 0 and, for σ ≤ t ≤ τ ,

(22) Rt = sup
t≤s≤τ

Ls(Xs) with Xt = E

[
Yτ +

∫ τ

t
f (s,Us,Vs) ds

∣∣∣ Ft

]
.

Let (Y ′,Z′,R′) be the solution associated to (U ′,V ′) and the same Yτ .
We have, with usual notation,

δYt = E

[∫ τ

t

[
f (s,Us,Vs) − f

(
s,U ′

s, V
′
s

)]
ds

∣∣∣ Ft

]
+ δRt , σ ≤ t ≤ τ,

from which we deduce immediately, since f is assumed to be Lipschitz that

E
[

sup
σ≤t≤τ

|δYt |2
]
≤ C(λ)E

[(∫ τ

σ

(|δUs | + |δVs |)ds

)2]
+ sup

σ≤t≤τ
|δRt |2.

Besides, since (HL) holds, we deduce from the representation (22) together with
δYτ = 0 and the Lipschitz property of f that, for σ ≤ t ≤ τ ,

|δRt | ≤
∣∣∣ sup
t≤s≤τ

Ls(Xs) − sup
t≤s≤τ

Ls

(
X′

s

)∣∣∣ ≤ sup
t≤s≤τ

∣∣Ls(Xs) − Ls

(
X′

s

)∣∣

≤ sup
t≤s≤τ

E
[|δXs |] ≤ C(λ)E

[∫ τ

σ

(|δUs | + |δVs |)ds

]
.
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Combining the previous estimates together with the Cauchy–Schwarz inequality,
we deduce

E
[

sup
σ≤t≤τ

|δYt |2
]
≤ C(λ)E

[(∫ τ

σ

(|δUs | + |δVs |)ds

)2]
,

and writing∫ τ

σ
δZs · dBs = δYτ − δYσ + δRτ − δRσ +

∫ τ

σ

[
f (s,Us,Vs) − f

(
s,U ′

s, V
′
s

)]
ds

we finally have

E

[
sup

σ≤t≤τ
|δYt |2 +

∫ τ

σ
|δZs |2 ds

]

≤ C(λ)E

[(∫ τ

σ

(|δUs | + |δVs |)ds

)2]

≤ C(λ)(τ − σ)max(1, τ − σ)E

[
sup

σ≤t≤τ
|δUt |2 +

∫ τ

σ
|δVs |2 ds

]
.

(23)

Of course, this inequality shows that the BSDE (6) with mean reflexion (7) has a
unique solution whenever T is small enough.

To cover the general case, let us pick n ≥ 1 such that C(λ)min(T , T 2)/n2 < 1.
For i = 0, . . . , n, let us set Ti := iT /n. Starting from the interval [Tn−1, Tn] and
YTn = ξ , let for i = n, . . . ,1, (Y i,Zi,Ri) the unique solution to the BSDE with
mean reflexion

Y i
t = Y i+1

Ti
+

∫ Ti

t
f

(
s, Y i

s ,Z
i
s

)
ds −

∫ Ti

t
Zi

s · dBs + Ri
t ,

E
[
�
(
t, Y i

t

)] ≥ 0, Ti−1 ≤ t ≤ Ti,∫ Ti

Ti−1

E
[
�
(
t, Y i

t

)]
dRi

t = 0,

Ri continuous and nonincreasing on [Ti−1, Ti] with Ri
Ti

= 0.

Let us define (Y,Z,R) on [0, T ] by setting

Yt = Y 1
0 10(t) +

n∑
i=1

Y i
t 1]Ti−1,Ti ](t), Zt =

n∑
i=1

Zi
t 1]Ti−1,Ti [(t),

and Rt = Rn
t on [Tn−1, Tn] and, for i = n − 1, . . . ,1, Rt = Ri

t + RTi
on [Ti−1, Ti].

Since Ri
Ti

= 0, R is continuous and nonincreasing. Finally, let us define Kt =
R0 − Rt to get a nondecreasing continuous function with K0 = 0. Since RT = 0,
KT = R0 and Rt = KT − Kt .

It is straightforward to check that (Y,Z,K) is a solution to the BSDE (6) with
mean reflexion (7). Uniqueness follows from the uniqueness on each small inter-
val. �
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As a by-product, taking into account Lemma 8, we have the following result.

COROLLARY 10. Let (Hξ ), (Hf ) and (Hb�) hold.
Then there exists a unique deterministic flat solution (Y,Z,K) ∈ S2 ×H2 ×A2

D

to the BSDE (6) with mean reflexion (7).

5. Minimality of the deterministic flat solution. Let us recall that for clas-
sical reflected BSDE, the Skorokhod condition ensures the minimality of the en-
hanced solution in the class of all supersolutions to the reflected BSDE. By min-
imality, we refer to minimality in terms of the Y -component of the solution. The
Skorokhod condition indicates that the compensator K only pushes the solution
when the condition is binding, that is, only when it is really necessary. This moti-
vates us to consider BSDEs with mean reflection which satisfy the corresponding
flatness condition (8).

Now, that the existence of a unique deterministic flat solution to the BSDE (6)
with mean reflexion (7) has been established, it is natural to consider if this flatness
condition (8) also implies the minimality among all the deterministic solutions.
Since the constraint is given in expectation instead of pointwisely, it is not obvious
that only the condition at time t determines the minimal upward kick to apply on
the solution at time t . Under additional assumption on the structure of the driver
function f , we are able to verify that such minimality property is indeed satisfied.

THEOREM 11. Suppose that the driver function f is of the form

(24) f : (t, y, z) �→ aty + h(t, z),

where a is a deterministic and bounded measurable function. If � is strictly in-
creasing, a deterministic flat solution (Y,Z,K) is minimal among all the deter-
ministic solutions.

PROOF. Let (Y,Z,K) be a deterministic flat solution, and (Y ′,Z′,K ′) be any
deterministic solution. We want to prove that Y ≤ Y ′. We first focus on the partic-
ular case where the driver does not depend on y and then tackle the general case
where f is given by (24).

Step 1. Driver of the form f (t, z). Since the driver function f does not depend
on y, the processes (Y −(KT −K),Z) and (Y ′−(K ′

T −K ′),Z′) are both solutions
of the same classical BSDE, and we deduce that

(25) Yt − (KT − Kt) = Y ′
t − (

K ′
T − K ′

t

)
, 0 ≤ t ≤ T .

Hereby, proving that Y ≤ Y ′ boils down to showing that KT − K ≤ K ′
T − K ′. We

work towards a contradiction and suppose the existence of t1 < T such that

KT − Kt1 > K ′
T − K ′

t1
.
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Let t2 be the first time such that KT − K. ≥ K ′
T − K ′

. . Obviously, t2 is a deter-
ministic time smaller than T and by continuity of K and K ′, we get KT − Kt2 =
K ′

T − K ′
t2

and

(26) KT − Kt > K ′
T − K ′

t , t1 ≤ t < t2.

We deduce from (25) that Y > Y ′, on [t1, t2), and the strict monotonicity of �

implies

E
[
�(t, Yt )

]
> E

[
�
(
t, Y ′

t

)] ≥ 0, t1 ≤ t ≤ t2.

Since Y is a flat solution, we have
∫ T

0 E[�(Ys)]dKs = 0 and we deduce that dKt =
0, for t ∈ [t1, t2). Therefore,

K ′
T − K ′

t1
< KT − Kt1 = KT − Kt2 = K ′

T − K ′
t2
,

which is a contradiction since K ′ must be nondecreasing.
Step 2. Driver of the form (24). Let us denote At := ∫ t

0 as ds for 0 ≤ t ≤ T .
Making the following transformation,

Ỹt = eAt Yt , Z̃t = eAt Zt , K̃t = eAt Kt ,

we verify easily that (Ỹ , Z̃, K̃) is a flat deterministic solution to the BSDE with
mean reflection associated to the parameters

ξ̃ = eAT ξ, f̃ (t, z) = eAt f
(
t, e−At z

)
and �̃(t, y) = �

(
t, e−At y

)
.

According to the previous step Ỹ is minimal within the class of deterministic so-
lutions, and Y inherits this property by a straightforward argument. �

REMARK 7. As a by-product, this proof provides an alternative argument in
order to derive the uniqueness of the flat deterministic solution of BSDEs with
mean reflexion and driver of the form (24). It is in fact a generalization of the
proof presented in Proposition 7 for the constant driver case.

REMARK 8. For general drivers, the minimality of the solution under the Sko-
rokhod condition is a difficult question. In the previous example, which is really
particular (Y − Y ′ is deterministic), we obtain the minimality of Y in the usual
sense. We do not believe that this result is true in general even though we can not
exhibit any counterexample. An alternative viewpoint may be to look towards a
minimality “in mean”, but our attempts in that direction remained unfruitful, and
we leave this open point for further research.
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6. Extension and application. Interpreting Y as the value of a portfolio, the
constraint (7) imposes at any date t a constraint on the distribution of Yt , seen
from time 0. The form of constraint that we considered so far is the expectation
of a loss function. From a financial point of view, an investor may be required to
control the risk of any admissible portfolio. In order to measure the underlying risk
of a portfolio, the natural tools in the mathematical finance literature are the so-
called risk measures; see, for example, [1]. We emphasize in this section how our
framework of study allows to encompass such type of running static risk measure
constraint. Then we present an application for the problem of super-hedging a
claim under a given running risk measure constraint.

6.1. BSDE with risk measure reflection. For a fixed t , a static risk measure is
a map ρ(t, ·) : L2(Ft ) −→ R satisfying ρ(t,0) = 0 together with:

• Monotonicity: X ≤ Y =⇒ ρ(t,X) ≥ ρ(t, Y ), for X,Y ∈ L2(Ft ).
• Translation invariance: ρ(t,X + m) = ρ(t,X) − m, for X ∈ L2(Ft ) and

m ∈ R.

Hereby, for a given t ∈ [0, T ], ρ(t,X) is a real number which measures the risk
associated to the wealth random variable X. Risk measures can similarly be char-
acterized by their so-called acceptance set, which defines as

At
ρ = {

X ∈ L2(Ft ) : ρ(t,X) ≤ 0
}
.

Similarly, given a set At , one can define a static risk measure by setting

ρ(t,X) = inf
{
m ∈ R : m + X ∈At},

so that the acceptance set At and the risk measure ρ(t, ·) share a one to one corre-
spondence. For a given collection of static risk measures (ρ(t, ·))t , a wealth pro-
cess Y will be considered admissible in our framework as soon as it satisfies

(27) ρ(t, Yt ) ≤ qt , 0 ≤ t ≤ T ,

where q is a given time indexed deterministic benchmark. For example, the risk
measuring tool of ρ could simply not depend on time, but be compared to the de-
terministic benchmark q , which evolves with time, by either tightening or relaxing
the constraint. We now look towards solutions of BSDEs subject to the additional
constraint (27). In the same spirit as above, a flat solution to such type of BSDE
will be required to satisfy

(28)
∫ T

0

[
qt − ρ(t, Yt )

]
dKt = 0.

The next theorem indicates that we are able to consider BSDEs under risk mea-
sure constraint of the form (27), in a similar fashion as the one developed in the
previous sections.
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THEOREM 12. Let ρ(t, .) : [0, T ] × L2 −→ R be a collection of monotonic
and translation invariant risk measures, which are continuous with time and Lips-
chitz in space, that is,∣∣ρ(t,X) − ρ(t, Y )

∣∣ ≤ CE
[|X − Y |], 0 ≤ t ≤ T ,X,Y ∈ L2(Ft ).

If we are moreover given a continuous deterministic benchmark q and ξ satisfies
ρ(T , ξ) ≤ qT , then the “BSDE with risk measure reflection”

Yt = ξ +
∫ T

t
f (s, Ys,Zs) ds −

∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,

ρ(t, Yt ) ≤ qt , 0 ≤ t ≤ T ,

∫ T

0

[
qt − ρ(t, Yt )

]
dKt = 0,

admits a unique deterministic flat solution.
Besides, if f satisfies (24), the deterministic flat solution is minimal among all

deterministic solutions.

PROOF. The reasoning simply follows the arguments of Proposition 7, The-
orem 9 and Theorem 11. The main distinction is that the map Lt is replaced by
the risk measure ρ(t, ·) − qt , for any t ∈ [0, T ]. Besides, the translation invariance
property conveniently replaces the strict monotonicity of � in the proofs. �

Typical examples considered in the literature are coherent risk measures of the
form

ρ(t,X) = sup
{
EQ[−X] :Q ∈Qt

}
,

where Qt is a set of probabilities absolutely continuous w.r.t. P. As soon as the set
of probability change densities is bounded, ρ(t, ·) is Lipschitz. This is particular
the case for the classical expected shortfall risk measure, defined as

ρES
α (t,X) := 1

αt

∫ αt

0
VaRs(X)ds,

where αt ∈ (0,1) denotes a given precision level and VaRs is the Value at Risk of
level s. Indeed, the expected shortfall (or AVaR) rewrites also this way

ρES
α (t,X) = sup

{
EQ[−X] : dQ

dP
≤ 1

αt

}
.

6.2. Application to super-hedging under risk constraint. We now turn to an
application in mathematical finance and consider a stock market endowed with a
bond with deterministic interest rate r and a vector of d stocks with dynamics

dSt = St (μt dt + σt dBt ), 0 ≤ t ≤ T ,

where the drift μ and the volatility σ are square integrable predictable processes.
We assume that σtσ

′
t − εI � 0 for some ε > 0, in order to ensure the completeness

of the market. For a given initial capital x, we consider portfolios Xx,π,K driven
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by a consumption-investment strategy (π,K), and whose dynamics are given by

dX
x,π,K
t = X

x,π,K
t

(
rt dt + (μt − rt1)′πt

dSt

St

)
− dKt

= rtX
x,π,K
t dt + (μt − rt1)′πt dt + π ′

t σt dBt − dKt , 0 ≤ t ≤ T .

Using such portfolios, a financial engineer is willing to hedge a possibly non-
Markovian claim ξ ∈ L2(FT ). For regulatory purposes, the risk management de-
partment of his financial institution imposes his restrictions on the class of admissi-
ble investment strategies. Namely, a portfolio wealth process Xx,π,K is considered
admissible if and only if it satisfies the following constraint:

ρES
α

(
t,X

x,π,K
t

) ≤ qt , 0 ≤ t ≤ T ,

where (α, q) are a time indexed collection of deterministic quantile and level
benchmarks. These benchmarks can, for example, be chosen in such a way that
the constraint becomes either tighter or weaker, as we approach the maturity T . In
such a case, the careful investor is looking for the super-hedging price

Y0 = inf
{
x ∈ R,∃(π,K) ∈ A, s.t. X

x,π,K
T ≥ ξ and ρES

α (t,Xt) ≤ qt ,∀t ∈ [0, T ]},
and associated consumption-investment strategy. Applying the results of this pa-
per, we deduce that, if the investor restricts to deterministic consumption strategies,
Y0 is well defined as the starting point of the unique deterministic flat solution to
the following BSDE with risk measure reflection:

Yt = ξ +
∫ T

t

(−rsYs − (μs − rs1)′σ−1
s Zs

)
ds

−
∫ T

t
Zs · dBs + KT − Kt, 0 ≤ t ≤ T ,

ρES
α (t, Yt ) ≤ qt , 0 ≤ t ≤ T ,

∫ T

0

[
qt − ρES

α (t, Yt )
]
dKt = 0.

Indeed, the driver function satisfies (24), so that the flat solution is minimal among
all deterministic ones.

APPENDIX

Observe first that the solution (Y n,Zn) is well and uniquely defined, according
to the results of [5] up to slight modifications discussed for example in [7].

Step 1. Uniform a priori estimate on the sequence (Y n,Zn,Kn)n. Since Kn is
deterministic, we have

2E
[∫ T

t
easY n

s dKn
s

]
= 2

∫ T

t
easE

[
Yn

s

]
dKn

s

= 2
∫ T

t
eas(E[

Yn
s

] − u
)
dKn

s + 2
∫ T

t
easudKn

s
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= −2n

∫ T

t
eas(u −E

[
Yn

s

])2
+ ds + 2

∫ T

t
easudKn

s

≤ 2u

∫ T

t
eas dKn

s ,

for any constant a and t ∈ [0, T ]. Thus, arguing as in the proof of Lemma 2, we
get the following estimate on the solution (Y n,Zn):

sup
n≥1

(
E

[
sup

0≤t≤T

∣∣Yn
t

∣∣2 +
∫ T

0

∣∣Zn
s

∣∣2 ds

]
+ ∣∣Kn

T

∣∣2)

≤ C(λ,T )

(
E

[
|ξ |2 +

∫ T

0

∣∣f (s,0,0)
∣∣2 ds

]
+ u2

)
.

Step 2. Convergence of the sequence (Y n,Zn,Kn)n. Since the constraint is sat-
isfied at maturity, observe also that ((u −E[Yn

0 ])+)2 rewrites

∣∣(u −E
[
Yn

0
])

+
∣∣2 + 2n

∫ T

0

∣∣(u −E
[
Yn

s

])
+

∣∣2 ds

= −2
∫ T

0
E

[
f

(
s, Y n

s ,Zn
s

)](
u −E

[
Yn

s

])
+ ds

≤ n

∫ T

0

∣∣(u −E
[
Yn

s

])
+

∣∣2 ds + C(λ,T )

n
,

according to the previous estimate. Hence, we deduce for later use that

(29) n2
∫ T

0

∣∣(u −E
[
Yn

s

])
+

∣∣2 ds ≤ C(λ,T ).

We now look towards a contracting property of the sequence (Y n,Zn) and de-
note δX := Xn+1 − Xn for X = Y,Z or K . Setting a := 1

2 + 2λ + 2λ2, a standard
computation based on Itô’s formula provides

eat |δYt |2 + 1

2

∫ T

t
eas(|δYs |2 + |δZs |2)

ds

≤ 2
∫ T

t
easδYs dδKs − 2

∫ T

t
easδYsδZs · dBs, 0 ≤ t ≤ T ,

from which we deduce that

(30) sup
0≤t≤T

E

[
|δYt |2 +

∫ T

0

(|δYs |2 + |δZs |2)
ds

]
≤ 2 sup

0≤t≤T

E

[∫ T

t
easδYs dδKs

]
.
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For any s ∈ [0, T ], denoting vn
s := (u − yn

s )+ where yn
s stands for E[Yn

s ], we have
dKn

s = nvn
s ds and

E

[∫ T

t
easδYs dδKs

]

=
∫ T

t
eas[yn+1

s − yn
s

][
(n + 1)vn+1

s − nvn
s

]
ds, 0 ≤ t ≤ T .

Moreover, we compute
[
yn+1 − yn][

(n + 1)vn+1 − nvn]
= [(

u − yn) − (
u − yn+1)][

(n + 1)vn+1 − nvn]
≤ −n

∣∣vn
∣∣2 + (2n + 1)vnvn+1 − (n + 1)

∣∣vn+1∣∣2.
But we have

−nx2 + (2n + 1)xy − (n + 1)y2 = −n

(
x −

(
1 + 1

2n

)
y

)2
+ y2

4n
, x, y ∈ R,

so that combining the previous estimates with (29), we deduce

E

[∫ T

0
easδYs dδKs

]
≤ 1

4n

∫ T

0

∣∣vn+1
s

∣∣2 ds ≤ C(λ,T )

n3 .

Plugging this estimate in (30), it follows that

sup
0≤t≤T

E
[|δYt |2] +E

[∫ T

0

(|δYs |2 + |δZs |2)
ds

]
≤ C(λ,T )

n3 .

Setting �tK
n = Kn

T − Kn
t and reminding that Kn is deterministic, observe that

�tK
n+1 − �tK

n = E[δYt ] −E

[∫ T

t

(
f

(
s, Y n+1

s ,Zn+1
s

) − f
(
s, Y n

s ,Zn
s

))
ds

]
,

from which we deduce

sup
0≤t≤T

∣∣�tK
n+1 − �tK

n
∣∣ ≤ C(λ,T )

n3 .

Since we have

δYt = E

(∫ T

t

(
f

(
s, Y n+1

s ,Zn+1
s

) − f
(
s, Y n

s ,Zn
s

))
ds

∣∣∣ Ft

)
+ �tK

n+1 − �tK
n,

combining the above and Burkholder–Davis–Gundy inequality, we conclude that
(Y n,Zn,Kn)n converges strongly to a limit (Y,Z,K), namely

E

[
sup

0≤t≤T

∣∣Yn
t − Yt

∣∣2 +
∫ T

0

∣∣Zn − Zs

∣∣2 ds

]
+ sup

0≤t≤T

∣∣Kn
t − Kt

∣∣2 −→n→∞ 0.
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Step 3. Properties of the limit (Y,Z,K). Passing to the limit the dynamics of
(Y n,Zn,Kn)n, remark that (Y,Z,K) satisfies (6). Observe also that, by construc-
tion, K is deterministic, nondecreasing with K0 = 0. Besides, the estimate (29)
directly implies that

∫ T

0

∣∣(u −E[Yt ])+
∣∣2 dt = lim

n→∞

∫ T

0

∣∣(u −E
[
Yn

t

])
+

∣∣2 dt = 0,

so that E[Yt ] ≥ u, for any t ∈ [0, T ]. Finally, from Lemma 13 below, since
(E[Yn],Kn) converges to (E[Y ],K) in C([0, T ]), we have

lim
n→∞

∫ T

0

(
E

[
Yn

t

] − u
)
+ dKn

t =
∫ T

0

(
E[Yt ] − u

)
+ dKt

and, on the other hand,∫ T

0

(
E

[
Yn

t

] − u
)
+ dKn

t = n

∫ T

0

(
E

[
Yn

t

] − u
)
+

(
u −E

[
Yn

t

])
+ dt = 0.

It follows that (Y,Z,K) is the unique flat deterministic solution to the BSDE (6)
with linear mean reflection (9).

We now complete the argumentation by proving a rather elementary lemma,
that we just used in the previous proof.

LEMMA 13. Let (un)n≥1 and (Kn)n≥1 be two convergent sequences of
(CT , | · |∞). We assume that, for each n ≥ 1, Kn is nondecreasing and we denote
by u and K the corresponding limits of (un)n and (Kn)n. We have

lim
n→∞

∫ T

0
un

t dKn
t =

∫ T

0
ut dKt .

PROOF. For any piecewise constant function h, we have
∫ T

0
un

s dKn
s −

∫ T

0
us dKs =

∫ T

0

[
un

s − us

]
dKn

s +
∫ T

0
[us − hs]dKn

s

+
∫ T

0
hs dKn

s −
∫ T

0
hs dKs +

∫ T

0
[hs − us]dKs,

from which we deduce that∣∣∣∣
∫ T

0
un

s dKn
s −

∫ T

0
us dKs

∣∣∣∣ ≤ ∣∣un − u
∣∣∞

∣∣Kn
∣∣∞ + |u − h|∞(∣∣Kn

∣∣∞ + |K|∞)

+
∣∣∣∣
∫ T

0
hs dKn

s −
∫ T

0
hs dKs

∣∣∣∣.
Since h is piecewise constant, we have

lim
n→∞

∫ T

0
hs dKn

s =
∫ T

0
hs dKs
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and

lim sup
∣∣∣∣
∫ T

0
un

s dKn
s −

∫ T

0
us dKs

∣∣∣∣ ≤ 2 |u − h|∞ |K|∞,

from which we get the result since piecewise constant functions on [0, T ] are dense
in (CT , | · |∞). �
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