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LOCAL INHOMOGENEOUS CIRCULAR LAW1

BY JOHANNES ALT, LÁSZLÓ ERDŐS AND TORBEN KRÜGER

Institute of Science and Technology Austria

We consider large random matrices X with centered, independent en-
tries, which have comparable but not necessarily identical variances. Girko’s
circular law asserts that the spectrum is supported in a disk and in case of
identical variances, the limiting density is uniform. In this special case, the
local circular law by Bourgade et al. [Probab. Theory Related Fields 159
(2014) 545–595; Probab. Theory Related Fields 159 (2014) 619–660] shows
that the empirical density converges even locally on scales slightly above the
typical eigenvalue spacing. In the general case, the limiting density is typi-
cally inhomogeneous and it is obtained via solving a system of determinis-
tic equations. Our main result is the local inhomogeneous circular law in the
bulk spectrum on the optimal scale for a general variance profile of the entries
of X.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.1. Short outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3. Dyson equation for the inhomogeneous circular law . . . . . . . . . . . . . . . . . . . . . . 160
3.1. Analysis of the Dyson equation (2.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4. Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5. Local law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.1. Local law for H z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.2. Local inhomogeneous circular law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Appendix A: Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Appendix B: Contraction-inversion lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

1. Introduction. The density of eigenvalues of large random matrices typi-
cally converges to a deterministic limit as the dimension n of the matrix tends to
infinity. In the Hermitian case, the best known examples are the Wigner semicircle
law for Wigner ensembles and the Marchenko–Pastur law for sample covariance
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matrices. In both cases, the spectrum is real, and these laws state that the empirical
eigenvalue distribution converges to an explicit density on the real line.

The spectra of non-Hermitian random matrices concentrate on a domain of the
complex plane. The most prominent case is the circular law, asserting that for
an n × n matrix X with independent, identically distributed entries, satisfying
Exij = 0, E|xij |2 = n−1, the empirical density converges to the uniform distribu-
tion on the unit disk {z : |z| < 1} ⊂ C. Despite the apparent similarity in the state-
ments, it is considerably harder to analyze non-Hermitian random matrices than
their Hermitian counterparts since eigenvalues of non-Hermitian matrices may re-
spond very drastically to small perturbations. This instability is one reason why
the universality of local eigenvalue statistics in the bulk spectrum, exactly on the
scale of the eigenvalue spacing, is not yet established for X with independent (even
for i.i.d.) entries, while the corresponding statement for Hermitian Wigner matri-
ces, known as the Wigner–Dyson–Mehta universality conjecture, has been proven
recently; see [16] for an overview.

The circular law for i.i.d. entries has a long history; we refer to the extensive re-
view [11]. The complex Gaussian case (Ginibre ensemble) has been settled in the
1960s by Mehta using explicit computations. Girko in [20] found a key formula
to relate linear statistics of eigenvalues of X to eigenvalues of the family of Her-
mitian matrices (X − z)∗(X − z) where z ∈ C is a complex parameter. Technical
difficulties still remained until Bai [9] presented a complete proof under two addi-
tional assumptions requiring higher moments and bounded density for the single
entry distribution. After a series of further partial results [22, 26, 29], the circular
law for i.i.d. entries under the optimal condition, assuming only the existence of
the second moment, was established by Tao and Vu [30].

Another line of research focused on the local version of the circular law with
constant variances, E|xij |2 = n−1, which asserts that the local density of eigenval-
ues is still uniform on scales n−1/2+ε , that is, slightly above the typical spacing
between neighboring eigenvalues. The optimal result was achieved in Bourgade,
Yau and Yin [12, 13] and Yin [33] both inside the unit disk (“bulk regime”) and
at the edge |z| = 1. If the first three moments match those of a standard complex
Gaussian, then a similar result has also been obtained by Tao and Vu in [31]. In
[31], this result was used to prove the universality of local eigenvalue statistics un-
der the assumption that the first four moments match those of a complex Gaussian.
While there is no proof of universality for general distributions without moment
matching conditions yet, similar to the development in the Hermitian case, the
local law is expected to be one of the key ingredients of such a proof in the future.

In this paper, we study non-Hermitian matrices X with a general matrix of
variances S = (sij ), that is, we assume that xij are centered, independent, but
sij := E|xij |2 may depend nontrivially on the indices i, j . We show that the eigen-
value density is close to a deterministic density σ on the smallest possible scale.
As a direct application, our local law implies that the spectral radius ρ(X) of X is
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arbitrarily close to
√

ρ(S), where ρ(S) is the spectral radius of S. More precisely,
we prove that for every ε > 0√

ρ(S) − ε ≤ ρ(X) ≤√ρ(S) + ε

with a very high probability as n tends to infinity. The fact that the spectral radius
of X becomes essentially deterministic is the key mathematical mechanism behind
the sharp “transition to chaos” in a commonly studied mean field model of dynam-
ical neural networks [28]. This transition is described by the stability/instability of
the system of ordinary differential equations

q̇i (t) = qi(t) − λ

n∑
j=1

xij qj (t)

for i = 1, . . . , n as λ varies. Moreover, the number of unstable modes close to the
critical value of the parameter λ is determined by the behaviour of σ at the spec-
tral edge which we also analyze. Such systems have originally been studied under
the assumption that the coefficients xij are independent and identically distributed
[25]. More recently, however, it was argued [5, 6] that for more realistic applica-
tions in neuroscience one should allow xij to have varying distributions with an
arbitrary variance profile S.

After Girko’s Hermitization, understanding the spectrum of X reduces to ana-
lyzing the spectrum of the family of Hermitian matrices

(1.1) H z :=
(

0 X − z1
X∗ − z̄1 0

)
of double dimension, where z ∈ C. The Stieltjes transform of the spectral density
of H z at any spectral parameter w in the upper half plane H := {w ∈ C : Imw > 0}
is approximated via the solution of a system of 2n nonlinear equations, written
concisely as

− 1

m1
= w + Sm2 − |z|2

w + Stm1
,

− 1

m2
= w + Stm1 − |z|2

w + Sm2
,

(1.2)

where ma = mz
a(w) ∈ H

n, a = 1,2 are n-vectors with each component in the upper
half plane. The normalized trace of the resolvent, 1

2n
trace(H z − w)−1, is approxi-

mately equal to 1
n

∑
j [mz

1(w)]j = 1
n

∑
j [mz

2(w)]j in the n → ∞ limit. The spectral
density of H z at any E ∈ R is then given by setting w = E+ iη and taking the limit
η → 0+ for the imaginary part of these averages. In fact, for Girko’s formula it is
sufficient to study the resolvent only along the positive imaginary axis w ∈ iR+.
Heuristically, equations (1.2) arise from second-order perturbation theory and in
physics they are commonly called Dyson equations. Their analogues for general
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Hermitian ensembles with independent or weakly dependent entries play an essen-
tial role in random matrix theory. They have been systematically studied by Girko,
for example, equation (1.2) in the current random matrix context appears as the
canonical equation of type K25 in Theorem 25.1 in [21]. In particular, under the
condition that all sij variances are comparable, that is, c/n ≤ sij ≤ C/n with some
positive constants c, C, Girko identifies the limiting density. From his formulas it
is clear that this density is rotationally symmetric. He also presents a proof for the
weak convergence of the empirical eigenvalue distribution but the argument was
considered incomplete. This deficiency can be resolved in a similar manner as for
the circular law assuming a bounded density of the single entry distribution using
the argument from Section 4.4 of [11]. In a recent preprint [14], Cook et al. sub-
stantially relax the condition on the uniform bound sij ≥ c/n by replacing it with
a concept of robust irreducibility. Moreover, relying on the bound by Cook [15]
on the smallest singular value of X, they also remove any condition on the reg-
ularity of the single entry distribution and prove weak convergence on the global
scale.

The matrix H z may be viewed as the sum of a Wigner-type matrix [1] with
centered, independent (up to Hermitian symmetry) entries and a deterministic
matrix whose two off-diagonal blocks are −z1 and −z̄1, respectively. Disre-
garding these z terms for the moment, (1.2) has the structure of the quadratic
vector equations that were extensively studied in [2, 4]. Including the z-terms,
H z at first sight seems to be a special case of the random matrix ensembles
with nonzero expectations analyzed in [3] and (1.2) is the diagonal part of
the corresponding Matrix Dyson Equation (MDE). In [3], an optimal local law
was proved for such ensembles. However, the large zero blocks in the diago-
nal prevent us from applying these results to H z or even to H z=0. In fact, the
flatness condition A1 in [3] [see (3.1) later] prohibit such large zero diagonal
blocks. These conditions are essential for the proofs in [3] since they ensure
the stability of the corresponding Dyson equation against any small perturba-
tion. In this case, there is only one potentially unstable direction that is associ-
ated to a certain Perron–Frobenius eigenvector, and this direction is regularized
by the positivity of the density of states at least in the bulk regime of the spec-
trum.

If the flatness condition A1 is not satisfied, then the MDE can possess further
unstable directions. In particular, in our setup, the MDE is not stable in the pre-
viously described strong sense; there is at least one additional unstable direction
which cannot be regularized by the positivity of the density of states. Owing to
the specific structure of H z, the matrix Dyson equation decouples and its diago-
nal parts satisfy a closed system of vector equations (1.2). Compared to the MDE,
the reduced vector equations (1.2) are rather cubic than quadratic in nature. For
this reduced system, however, we can show that there is only one further unstable
direction, at least when S is entrywise bounded from below by some c/n. The sys-
tem is not stable against an arbitrary perturbation, but for the perturbation arising
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in the random matrix problem we reveal a key cancellation in the leading contri-
bution to the unstable direction. Armed with this new insight, we will perform a
detailed stability analysis of (1.2).

This delicate stability analysis is the key ingredient for the proof of our main re-
sult, the optimal local law for X with an optimal speed of convergence as n → ∞.
In this paper, we consider the bulk regime, that is, spectral parameter z inside the
disk with boundary |z|2 = ρ(S), where ρ(S) is the spectral radius of S. We defer
the analysis of the edge of the spectrum of X to later works.

In the special case z = 0, we thoroughly studied the system of equations (1.2)
even for the case when S is a rectangular matrix in [7]; the main motivation was to
prove the local law for random Gram matrices, that is, matrices of the form XX∗.
Note that in [7] we needed to tackle a much simpler quadratic system since taking
z = 0 in (1.2) removes the most complicated nonlinearity.

Finally, we list two related recent results. Local circular law on the optimal scale
in the bulk has been proven in [32] for ensembles of the form T X, where T is a
deterministic N × M matrix and X is a random M × N matrix with independent,
centered entries whose variances are constant and have vanishing third moments.
The structure of the product matrix T X is very different from our matrices that
could be viewed as the Hadamard (entrywise) product of the matrix (s

1/2
ij ) and a

random matrix with identical variances. The approach of [32] is also very different
from ours: it relies on first assuming that X is Gaussian and using its invariance
to reduce the problem to the case when T ∗T is diagonal. Then the corresponding
Dyson equations are much simpler, in fact, they consist of only two scalar equa-
tions and they are characterized by a vector of parameters (of the singular values of
T ) instead of an entire matrix of parameters S. The vanishing third moment con-
dition in [32] is necessary to compare the general distribution with the Gaussian
case via a moment matching argument. We also mention the recent proof of the
local single ring theorem on optimal scale in the bulk [10]. This concerns another
prominent non-Hermitian random matrix ensemble that consists of matrices of the
form U�V , where U , V are two independent Haar distributed unitaries and � is
deterministic (may be assumed to be diagonal). The spectrum lies in a ring about
the origin and the limiting density can be computed via free convolution [23].

Notation. For vectors v,w ∈ C
l , we write their componentwise product as

vw = (viwi)
l
i=1. If f : U → C is a function on U ⊂ C, then we define f (v) ∈ C

l

for v ∈ Ul to be the vector with components f (v)i = f (vi) for i = 1, . . . , l. We
will in particular apply this notation with f (z) = 1/z for z ∈ C \ {0}. We say
that a vector v ∈ C

l is positive, v > 0, if vi > 0 for all i = 1, . . . , l. Similarly,
the notation v ≤ w means vi ≤ wi for all i = 1, . . . , l. For vectors v,w ∈ C

l , we
define 〈w〉 = l−1∑l

i=1 wi , 〈v,w〉 = l−1∑l
i=1 viwi , ‖w‖2

2 = l−1∑l
i=1 |wi |2 and

‖w‖∞ = maxi=1,...,l |wi |, ‖v‖1 := 〈|v|〉. Note that 〈w〉 = 〈1,w〉, where we used
the convention that 1 also denotes the vector (1, . . . ,1) ∈ C

l . In general, we use
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the notation that if a scalar α appears in a vector-valued relation, then it denotes
the constant vector (α, . . . , α). In most cases, we will work in n or 2n dimen-
sional spaces. Vectors in C

2n will usually be denoted by boldface symbols like v,
u or y. Correspondingly, capitalized boldface symbols denote matrices in C

2n×2n,
for example, R. We use the symbol 1 for the identity matrix in C

l×l , where the
dimension l = n or l = 2n is understood from the context. For a matrix A ∈ C

l×l ,
we use the short notation ‖A‖∞ := ‖A‖∞→∞ and ‖A‖2 := ‖A‖2→2 if the domain
and the target are equipped with the same norm whereas we use ‖A‖2→∞ to denote
the matrix norm of A when it is understood as a map (Cl ,‖ · ‖2) → (Cl ,‖ · ‖∞).
We define the normalized trace of an l × l matrix B = (bij )

l
i,j=1 ∈C

l×l as

(1.3) TrB := 1

l

l∑
j=1

bjj .

For a vector y ∈ C
l , we write diagy or diag(y) for the diagonal l × l matrix with

y on its diagonal, that is, this matrix acts on any vector x ∈ C
l as

(1.4) diag(y)x = yx.

We write d2z for indicating integration with respect to the Lebesgue measure on C.
For a ∈ C and ε > 0, the open disk in the complex plane centered at a with ra-
dius ε is denoted by D(a, ε) := {b ∈ C||a − b| < ε}. Furthermore, we denote the
characteristic function of some event A by χ(A), the positive real numbers by
R+ := (0,∞) and the nonnegative real numbers by R

+
0 := [0,∞).

2. Main results. Let X be a random n × n matrix with centered entries,
Exij = 0, and sij := E|xij |2 the corresponding variances. We introduce its vari-
ance matrix S := (sij )

n
i,j=1.

ASSUMPTIONS.

(A) The variance matrix S is flat, that is, there are 0 < s∗ < s∗ such that

(2.1)
s∗
n

≤ sij ≤ s∗

n

for all i, j = 1, . . . , n.
(B) All entries of X have bounded moments in the sense that there are μm > 0

for m ∈N such that

(2.2) E|xij |m ≤ μmn−m/2

for all i, j = 1, . . . , n.
(C) Each entry of

√
nX has a density, that is, there are probability densities

fij : C→ [0,∞) such that

P(
√

nxij ∈ B) =
∫
B

fij (z)d2z
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for all i, j = 1, . . . , n and B ⊂ C a Borel set. There are α,β > 0 such that fij ∈
L1+α(C) and

(2.3) ‖fij‖1+α ≤ nβ

for all i, j = 1, . . . , n.

In the following, we will assume that s∗, s∗, α, β and the sequence (μm)m
are fixed constants which we will call model parameters. The constants in all our
estimates will depend on the model parameters without further notice.

REMARK 2.1. The Assumption (C) is used in our proof solely for controlling
the smallest singular value of X − z1 with very high probability uniformly for
z ∈ D(0, τ ∗) with some fixed τ ∗ > 0 in Proposition 5.7. All our other results do not
make use of Assumption (C). Provided a version of Proposition 5.7 that tracks the
z-dependence can effectively be obtained without (C), our main result, the local
inhomogeneous circular law in Theorem 2.5, will hold true solely assuming (A)
and (B). For example, a very high probability estimate uniform in z in a statement
similar to Corollary 1.22 of [15] would be sufficient.

The density of states of X will be expressed in terms of vτ
1 and vτ

2 , which are
the positive solutions of the following two coupled vector equations:

1

vτ
1

= η + Svτ
2 + τ

η + Stvτ
1
,(2.4a)

1

vτ
2

= η + Stvτ
1 + τ

η + Svτ
2
,(2.4b)

for all η ∈ R+ and τ ∈ R
+
0 . Here, vτ

1 , vτ
2 ∈ R

n+ and recall that the algebraic opera-
tions are understood componentwise, for example, (1/v)i = 1/vi for the ith com-
ponent of the vector 1/v. The system (2.4) is a special case of (1.2) with w = iη,
τ = |z|2 and va = Imma for a = 1,2. The existence and uniqueness of solutions
to equations of the type (2.4) are considered standard knowledge in the literature
[21]. The equations can be viewed as a special case of the matrix Dyson equation
for which existence and uniqueness was proven in [24]. We explain this connec-
tion in more detail in the Appendix where we give the proof of Lemma 2.2 for the
convenience of the reader.

LEMMA 2.2 (Existence and uniqueness). For every τ ∈ R
+
0 , there exist two

uniquely determined functions vτ
1 : R+ →R

n+, vτ
2 : R+ →R

n+, which satisfy (2.4).

We denote the spectral radius of S by ρ(S), that is,

ρ(S) := max
∣∣Spec(S)

∣∣.
Now, we define the density of states of X through the solution to (2.4).
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DEFINITION 2.3 (Density of states of X). Let vτ
1 and vτ

2 be the unique positive
solutions of (2.4). The density of states σ : C →R of X is defined through

(2.5) σ(z) := − 1

2π

∫ ∞
0

�z

〈
vτ

1 (η)|τ=|z|2
〉
dη

for |z|2 < ρ(S) and σ(z) := 0 for |z|2 ≥ ρ(S). The right-hand side of (2.5) is well
defined by part (i) of the following proposition.

In the following proposition, we present some key properties of the density
of states σ of X. Some of them have previously been known [14, 21]. For an
alternative representation of σ , see (4.8) later.

PROPOSITION 2.4 (Properties of σ ). Let vτ
1 and vτ

2 be the unique positive
solutions of (2.4). Then:

(i) The function R+ × C → R
2n+ , (η, z) → (vτ

1 (η), vτ
2 (η))|τ=|z|2 is infinitely

often differentiable and η → �z〈vτ
1 (η)|τ=|z|2〉 is integrable on R+ for each z ∈

D(0,
√

ρ(S)).
(ii) The function σ , defined in (2.5), is a rotationally symmetric probability

density on C.
(iii) The restriction σ |D(0,

√
ρ(S)) is infinitely often differentiable such that for

every ε > 0 each derivative is bounded on D(0,
√

ρ(S) − ε) uniformly in n. More-
over, there exist constants c1 > c2 > 0, which depend only on s∗ and s∗, such that

(2.6) c1 ≥ σ(z) ≥ c2

for all z ∈ D(0,
√

ρ(S)). In particular, the support of σ is the closed disk of ra-
dius

√
ρ(S) around zero. In fact, the jump height limσ(z) as |z| ↑ √

ρ(S) can be
computed explicitly (see Remark 4.2).

The next theorem, the main result of the present article, states that the eigen-
value distribution of X, with a very high probability, can be approximated by σ

on the mesoscopic scales n−a for any a ∈ (0,1/2). Note that n−1/2 is the typical
eigenvalue spacing so our result holds down to the optimal local scale. To study
the local scale, we shift and rescale the test functions as follows. Let f ∈ C2

0(C).
For z0 ∈ C and a > 0, we define

fz0,a : C →C, fz0,a(z) := n2af
(
na(z − z0)

)
.

We denote the eigenvalues of X by σ1, . . . , σn.

THEOREM 2.5 (Local inhomogeneous circular law). Let X be a random ma-
trix which has independent centered entries and satisfies (A), (B) and (C). Fur-
thermore, let a ∈ (0,1/2], ϕ > 0, τ∗ > 0 and σ defined as in (2.5):
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(i) (Bulk spectrum.) For every ε > 0, D > 0, there is a positive constant Cε,D

such that

(2.7) P

(∣∣∣∣∣1n
n∑

i=1

fz0,a(σi) −
∫
C

fz0,a(z)σ (z)d2z

∣∣∣∣∣≥ ‖�f ‖L1

n1−2a−ε

)
≤ Cε,D

nD

holds true for all n ∈ N, for every z0 ∈ C satisfying |z0|2 ≤ ρ(S) − τ∗ and for
every f ∈ C2

0(C) satisfying suppf ⊂ D(0, ϕ). The point z0 and the function f

may depend on n.
(ii) (Away from the spectrum.) For every D > 0, there exists a positive constant

CD such that

(2.8) P
(∃i ∈ {1, . . . , n}||σi |2 ≥ ρ(S) + τ∗

)≤ CD

nD

holds true for all n ∈ N.

In addition to the model parameters, the constant Cε,D in (2.7) depends only on
a, ϕ and τ∗ (apart from ε and D) and the constant CD in (2.8) only on τ∗ (apart
from D).

The key technical input for the proof of Theorem 2.5 is the local law for H z (see
Theorem 5.2). In Figure 1 below, we illustrate how the empirical spectral measure
of X converges to σ for an example with a nontrivial variance profile S. We now
state a simple corollary of the local law for H z on the complete delocalization of
the bulk eigenvectors of X.

COROLLARY 2.6 (Eigenvector delocalization). Let τ∗ > 0. For all ε > 0 and
D > 0, there is a positive constant Cε,D such that

(2.9) P
(‖y‖∞ ≥ n−1/2+ε)≤ Cε,D

nD

holds true for all n ∈ N and for all eigenvectors y ∈ C
n of X, normalized as∑n

i=1 |yi |2 = 1, corresponding to an eigenvalue σ ∈ SpecX with |σ |2 ≤ ρ(S)−τ∗.
The constant Cε,D in (2.9) depends only on τ∗ and the model parameters (in addi-
tion to ε and D).

The proof of Corollary 2.6 will be given after the statement of Theorem 5.2.
We remark that eigenvector delocalization for random matrices with independent
entries was first proved by Rudelson and Vershynin in [27].

2.1. Short outline of the proof. We start with the Hermitization trick due
to Girko, which expresses

∑n
i=1 fz0,a(σi) in terms of an integral of the log-

determinant of X − z1 for any z ∈ C. Furthermore, the log-determinant of X − z1
can be rewritten as the log-determinant of a Hermitian matrix H z.
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FIG. 1. These figures were obtained by sampling 100 matrices of size 1000 × 1000 with centered
complex Gaussian entries and the variance profile S. Figure (a) shows the eigenvalue density for the
variance profile S given in Figure (b) (we rescaled S such that ρ(S) = 1). The eigenvalue density is
rotationally invariant and almost all eigenvalues are contained in the disk of radius 1 around zero.
Moreover, the eigenvalue density is considerably higher around 0. Figure (c) compares the histogram
of the eigenvalue with the density of states σ obtained from (2.4) and (2.5).

Using the log-transform of the empirical spectral measure of X, we obtain

(2.10)
1

n

n∑
i=1

fz0,a(σi) = 1

2πn

∫
C

�fz0,a(z) log
∣∣det(X − z1)

∣∣d2z.
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To express the log-determinant of X − z1 in terms of a Hermitian matrix, we
introduce the 2n × 2n matrix

(2.11) H z :=
(

0 X − z1
X∗ − z̄1 0

)
for all z ∈ C. Note that the eigenvalues of H z come in opposite pairs and we
denote them by λ2n ≤ · · · ≤ λn+1 ≤ 0 ≤ λn ≤ · · · ≤ λ1 with λi = −λ2n+1−i for i =
1, . . . ,2n. We remark that the moduli of these real numbers are the singular values
of X − z1. The Stieltjes transform of its empirical spectral measure is denoted by
mz, that is,

(2.12) mz(w) = 1

2n

2n∑
i=1

1

λi(z) − w

for w ∈ C satisfying Imw > 0. It will turn out that on the imaginary axis Immz(iη)

is very well approximated by 〈vτ
1 (η)〉 = 〈vτ

2 (η)〉, where τ = |z|2 and (vτ
1 , vτ

2 ) is
the solution of (2.4). This fact is commonly called a local law for H z. With this
notation, we have the following relation between the determinant of X − z1 and
the determinant of H z:

(2.13) log
∣∣det(X − z1)

∣∣= 1

2
log
∣∣detH z

∣∣.
We write the log-determinant in terms of the Stieltjes transform (this formula was
used by Tao and Vu [31] in a similar context)

(2.14) log
∣∣detH z

∣∣= log
∣∣det

(
H z − iT 1

)∣∣− 2n

∫ T

0
Immz(iη)dη,

for any T > 0. Combining (2.5), (2.10), (2.13) and (2.14) as well as subtracting
1/(1 + η) freely and using integration by parts, we obtain

1

n

n∑
i=1

fz0,a(σi) −
∫
C

fz0,a(z)σ (z)d2z

= 1

4πn

∫
C

�fz0,a(z) log
∣∣det

(
H z − iT 1

)∣∣d2z

(2.15)

− 1

2π

∫
C

�fz0,a(z)

∫ T

0

[
Immz(iη) − 〈vτ

1 (η)|τ=|z|2
〉]

dη d2z

+ 1

2π

∫
C

�fz0,a(z)

∫ ∞
T

(〈
vτ

1 (η)|τ=|z|2
〉− 1

η + 1

)
dη d2z.

The task is then to prove that each of the terms on the right-hand side of (2.15)
is dominated by n−1+2a‖�f ‖1 with very high probability. The parameter T will
be chosen to be a large power of n, so that the first and the third term will easily
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satisfy this bound. Estimating the second term on the right-hand side of (2.15) is
much more involved and we focus only on this term in this outline.

We split its dη-integral into two parts. For η ≤ n−1+ε , ε ∈ (0,1/2), the integral
is controlled by an estimate on the smallest singular value of X − z1. This is the
only step in our proof which uses assumption (C), that is, the entries of X have
bounded densities (2.3).

For η ≥ n−1+ε , we use a local law for H z, that is, an optimal pointwise estimate
(up to negligible nε-factors) on

(2.16) Immz(iη) − 〈vτ
1 (η)|τ=|z|2

〉
,

uniformly in η and z (see Theorem 5.2 for the precise formulation). Note that a
local law for H z is needed only at spectral parameters on the imaginary axis. This
will simplify the proof of the local law we need in this paper.

The proof of the local law is based on a stability estimate of (2.4). To write these
equations in a more concise form, we introduce the 2n × 2n matrices:

(2.17) So =
(

0 S

St 0

)
, Sd =

(
St 0
0 S

)
.

With this notation, the system of equations (2.4) can be written as

(2.18) iv +
(

iη + Soiv − τ

iη + Sd iv

)−1
= 0,

where we introduced v := (v1, v2) ∈ R
2n.

Let Gz(η) := (H z − iη1)−1, η > 0, be the resolvent of H z at spectral parame-
ter iη. We will prove that its diagonal g(η) = (〈ei ,G

z(η)ei〉)2n
i=1, where ei denotes

the ith standard basis vector in C
2n, satisfies a perturbed version of (2.18),

(2.19) g +
(

iη + Sog − τ

iη + Sdg

)−1
= d,

with τ = |z|2 and a small random error term d . As mz(iη) = 〈g(η)〉 [cf. (2.12)]
obtaining a local law, that is, an optimal pointwise estimate on (2.16), reduces to a
stability problem for the Dyson equation (2.18).

Computing the difference of (2.19) and (2.18), we obtain

(2.20) L(g − iv) = r

for some error vector r = O(‖d‖) [for the precise definition we refer to (3.24)
below] and with the matrix L defined through its action on y ∈ C

2n via

(2.21) Ly := y + v2(Soy) − τ
v2

(η + Sdv)2 (Sdy).

Therefore, a bound on g − iv uniformly for η ≥ n−1+ε requires a uniform bound
on the inverse of L down to this local spectral scale.
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In fact, the mere invertibility of L even for η bounded away from zero is a
nontrivial fact that is not easily seen from (2.21). In Section 3, we will factorize L

into the form

L = V −1(1 − T F )V

for some invertible matrix V and self-adjoint matrices T and F with the properties
‖T ‖2 = 1 and ‖F‖2 ≤ 1 − cη for some c > 0. In particular, this representation
shows the a priori bound ‖L−1‖2 ≤ Cη−1 for some C > 0. The blow-up in the
norm of L−1 is potentially caused by the two extremal eigendirections f + and
f − of F , which satisfy

Ff ± = ±‖F‖2f ±.

However, it turns out that the positivity of the solutions v1, v2 of (2.4) implies that
‖T f +‖2 is strictly smaller than 1, so that ‖(1 − T F )f +‖2 ≥ c‖f +‖2 for some
constant c > 0. In this sense, the solution of the Dyson equation regularizes the
potentially unstable direction f +.

In contrast, the other instability caused by f − persists since we will find that
(1 − T F )f − = O(η). This problem can only be resolved by exploiting an extra
cancellation that originates from the special structure of the random matrix H z.
The leading contribution of the random error r = O(‖d‖) from (2.20) pointing in
the unstable direction happens to vanish with a remaining subleading term of order
η‖d‖. The extra η-factor cancels the η−1-divergence of ‖L−1‖2 and allows us to
invert the stability operator L in (2.20).

From this analysis, we conclude ‖g − iv‖ ≤ C‖d‖. This result allows us to
follow the general arguments developed in [3] for verifying the optimal local law
for H z. These steps are presented only briefly in Section 5.

3. Dyson equation for the inhomogeneous circular law. As explained in
Section 2.1 a main ingredient in the proof of Theorem 2.5 is the local law for
the self-adjoint random matrix H z with noncentered independent entries above
the diagonal. In [3], such a local law was proven for a large class of self-adjoint
random matrices with noncentered entries and general short range correlations.
For any fixed z ∈ C, the matrix H z satisfies the assumptions made for the class
of random matrices covered in [3] with one crucial exception: H z is not flat (cf.
(2.28) in [3]), that is, for any constant c > 0, the inequality

1

n
E
∣∣〈a, (H −EH )b

〉∣∣2 ≥ c‖a‖2
2‖b‖2

2,(3.1)

is not satisfied for H = H z and vectors a, b that both have support either in
{1, . . . , n} or {n + 1, . . . ,2n}. Nevertheless, we will show that the conclusion of
Theorem 2.9 of [3] remains true for spectral parameters iη on the imaginary axis,
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namely that the resolvent Gz(η) := (H z − iη1)−1 approaches the solution Mz(η)

of the MDE

−Mz(η)−1 = iη1 − Az + S
[
Mz(η)

]
, η > 0,(3.2)

as n → ∞. In fact, the solution of (3.2) is unique under the constraint that the
imaginary part ImM := (M − M∗)/(2i) is positive definite [24]. The data Az ∈
C

2n×2n and S : C2n×2n →C
2n×2n determining (3.2) are given in terms of the first

and second moments of the entries of H z,

Az := EH z =
(

0 −z

−z 0

)
, S[W ] :=

(
diag(Sw2) 0

0 diag
(
Stw1

)) ,(3.3)

for an arbitrary 2n × 2n matrix W = (wij )
2n
i,j=1 with

(3.4) W =
(
W11 W12
W21 W22

)
, w1 := (wii)

n
i=1, w2 := (wii)

2n
i=n+1.

In the following, we will not keep the z-dependence in our notation and just
write M , A and G instead of Mz, Az and Gz. A simple calculation (cf. the proof
of Lemma 2.2 in the Appendix) shows that M : R+ →C

2n×2n is given by

(3.5) Mz(η) :=
(

i diag
(
vτ

1 (η)
) −z diag

(
uτ (η)

)
−z̄ diag

(
uτ (η)

)
i diag

(
vτ

2 (η)
) ) ,

where z ∈ C, τ = |z|2, (vτ
1 , vτ

2 ) is the solution of (2.4) and uτ := vτ
1/(η + Stvτ

1 ).
In this section, we will therefore analyze the solution and the stability of (2.4).

3.1. Analysis of the Dyson equation (2.4). Combining the equations in (2.4),
recalling v = (v1, v2) and the definitions of So and Sd in (2.17), we obtain

(3.6)
1

v
= η + Sov + τ

η + Sdv

for η > 0 and τ ∈ R
+
0 , where v : R+ → R

2n+ . This equation is equivalent to (2.18).
The τ -dependence of v, v1 and v2 will mostly be suppressed but sometimes we
view v = vτ (η) as a function of both parameters.

Equation (3.6) has an obvious scaling invariance when S is rescaled to λS for
λ > 0. If vτ (η) is the positive solution of (3.6), then vτ

λ(η) := λ−1/2vτλ−1
(ηλ−1/2)

is the positive solution of

(3.7)
1

vλ

= η + λSovλ + τ

η + λSdvλ

.

Therefore, without loss of generality, we may assume that the spectral radius of S

is one,

ρ(S) = 1,

in the remainder of the paper.
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The following proposition, the first main result of this section, collects some
basic estimates on the solution v of (3.6). For the whole section, we fix τ∗ > 0
and τ ∗ > τ∗ + 1 and except for Proposition 3.2, we exclude the small interval
[1 − τ∗,1 + τ∗] from our analysis of vτ . Because of the definition of σ in (2.5)—
recall τ = |z|2 in the definition—we will talk about inside and outside regimes for
τ ∈ [0,1 − τ∗] and τ ∈ [1 + τ∗, τ ∗], respectively.

Recalling s∗ and s∗ from (2.1) we make the following convention in order to
suppress irrelevant constants from the notation.

CONVENTION 3.1. For nonnegative scalars or vectors f and g, we will use
the notation f � g if there is a constant c > 0, depending only on τ∗, τ ∗, s∗ and s∗
such that f ≤ cg and f ∼ g if f � g and f � g both hold true. If f , g and h are
scalars or vectors and h ≥ 0 such that |f − g| � h, then we write f = g + O(h).
Moreover, we define

P := {
τ∗, τ ∗, s∗, s∗}

because many constants in the following will depend only on P .

PROPOSITION 3.2. The solution vτ of (3.6) satisfies

(3.8)
〈
vτ

1 (η)
〉= 〈

vτ
2 (η)

〉
for all η > 0 and τ ∈ R

+
0 as well as the following estimates:

(i) (Large η) Uniformly, for η ≥ 1 and τ ∈ [0, τ ∗], we have

(3.9) vτ (η) ∼ η−1.

(ii) (Inside regime) Uniformly, for η ≤ 1 and τ ∈ [0,1], we have

(3.10) vτ (η) ∼ η1/3 + (1 − τ)1/2.

(iii) (Outside regime) Uniformly, for η ≤ 1 and τ ∈ [1, τ ∗], we have

(3.11) vτ (η) ∼ η

τ − 1 + η2/3 .

PROOF. We start with proving (3.8). By multiplying (2.4a) by (η + Stv1) and
(2.4b) by (η + Sv2) and realizing that both right-hand sides agree, we obtain

(3.12)
v1

η + Stv1
= v2

η + Sv2
.

From (3.12), we also get

0 = η(v1 − v2) + v1Sv2 − v2S
tv1.

We take the average on both sides, use 〈v1Sv2〉 = 〈v1, Sv2〉 = 〈v2S
tv1〉 and divide

by η > 0 to infer (3.8).
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From (2.1), we immediately deduce the following auxiliary bounds:

(3.13) 〈v1〉 � Stv1 � 〈v1〉, 〈v2〉� Sv2 � 〈v2〉.
We start with establishing v ∼ 〈v〉. Since the entries of S are strictly positive and
ρ(S) = 1 there is a unique vector p ∈ R

n+, which has strictly positive entries such
that

(3.14) Sp = p, 〈p〉 = 1, p ∼ 1

by the Perron–Frobenius theorem and (2.1). We multiply (2.4a) by v1 as well as
η + Stv1 and obtain η + Stv1 = v1(η + Sv2)(η + Stv1) + τv1. Taking the scalar
product with p and using 〈p〉 = 1 and ρ(S) = 1 yield

(3.15) η + 〈pv1〉 = 〈
pv1

(
η + Stv1

)
(η + Sv2)

〉+ τ 〈pv1〉.
Therefore, (3.13), 〈v1〉 = 〈v2〉 = 〈v〉 by (3.8) and (3.14) imply

(3.16) η + 〈v〉 ∼ [(
η + 〈v〉)2 + τ

]〈v〉.
We use (3.13) in (2.4a) and (2.4b) to conclude

(3.17) v ∼ 1

η + 〈v〉 + τ
η+〈v〉

= η + 〈v〉
(η + 〈v〉)2 + τ

∼ 〈v〉,

where we applied (3.16) in the last step. Hence, it suffices to prove all estimates
(3.9), (3.10) and (3.11) for v replaced by 〈v〉 only.

We start with an auxiliary upper bound on 〈v〉. By multiplying (3.6) with v, we
get 1 = ηv + vSov + τv/(η + Sdv) ≥ vSov. Hence, 1 ≥ 〈v1Sv2〉 � 〈v1〉〈v2〉 =
〈v〉2, where we used (3.13) in the second step and (3.8) in the last step.

Next, we show (3.9). Clearly, (3.6) implies v ≤ η−1. Moreover, as τ ≤ τ ∗ and
η ≥ 1 � 〈v〉 we find η � η2〈v〉 from (3.16). This gives the lower bound on v in
(3.9) when combined with (3.17).

We note that (3.16) immediately implies 〈v〉 � η for η ≤ 1. Now, we show
(3.10). For τ ∈ [0,1], we bring the term τ 〈pv1〉 to the left-hand side in (3.15) and
use v1 ∼ v2 ∼ 〈v〉 and (3.13) as well as 〈v〉� η to obtain

(3.18) η + (1 − τ)〈v〉 ∼ 〈v〉3.

From (3.18), it is an elementary exercise to conclude (3.10) for η ≤ 1.
Similarly, for 1 ≤ τ ≤ τ ∗, we bring 〈pv1〉 to the right-hand side of (3.15), use

〈v〉 � η for η ≤ 1 and conclude

(3.19) η ∼ 〈v〉3 + (τ − 1)〈v〉.
As before, it is easy to conclude (3.11) from (3.19). We leave this to the reader.
This completes the proof of Proposition 3.2. �

Our next goal is a stability result for (3.6) in the regime τ ∈ [0,1 − τ∗] ∪ [1 +
τ∗, τ ∗]. In the following proposition, the second main result of this section, we
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prove that iv(η) well approximates g(η) for all η > 0 if g satisfies (2.19) and
as long as d is small. However, we will need an additional assumption on g =
(g1, g2), namely that 〈g1〉 = 〈g2〉 [see (3.20) below]. Note that this is imposed on
the solution g of (2.19) and not directly on the perturbation d . Nevertheless, in
our applications, the constraint (3.20) will be automatically satisfied owing to the
specific block structure of the matrix H z from (2.11).

PROPOSITION 3.3 (Stability). Suppose that some functions d : R+ → C
2n

and g = (g1, g2) : R+ →H
2n satisfy (2.19) and

(3.20)
〈
g1(η)

〉= 〈
g2(η)

〉
for all η > 0. There is a number λ∗ � 1, depending only on P , such that

(3.21)
∥∥g(η) − iv(η)

∥∥∞ · χ(∥∥g(η) − iv(η)
∥∥∞ ≤ λ∗

)
�
∥∥d(w)

∥∥∞
uniformly for η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗].

Moreover, there is a matrix-valued function R : R+ → C
2n×2n, depending only

on τ and S and satisfying ‖R(η)‖∞ � 1, such that∣∣〈y,g(η) − iv(η)
〉∣∣ · χ(∥∥g(η) − iv(η)

∥∥∞ ≤ λ∗
)

� ‖y‖∞
∥∥d(η)

∥∥2
∞ + ∣∣〈R(η)y,d(η)

〉∣∣(3.22)

uniformly for all y ∈ C
2n, η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗].

The proof of this result is based on deriving a quadratic equation for the dif-
ference h := g − iv and establishing a quantitative estimate on h in terms of the
perturbation d . Computing the difference of (2.19) and (2.18), we obtain an equa-
tion for g − iv. A straightforward calculation yields

(3.23) Lh = r, for h = g − iv,

where we used L defined in (2.21) and introduced the vector r through

(3.24) r := d + iv(h − d)Soh − τu

[
d − g

iη + Sdg
+ u

]
Sdh.

The vector u in (3.24) is defined through

(3.25) u := v1

η + Stv1
= v2

η + Sv2
, u := (u,u) = v

η + Sdv

which is consistent by (3.12).
Notice that all terms on the right-hand side of (3.24) are either second order in

h or they are of order d , so (3.23) is the linearization of (2.19) around (2.18).
In the following estimates, we need a bound on u as well. Indeed, Proposi-

tion 3.2 yields

(3.26) u = v

η + Sdv
∼ 1

1 + η2

uniformly for η > 0 and τ ∈ [0, τ ∗].
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To shorten the upcoming relations, we introduce the vector

ṽ := (v2, v1)

and the matrices T , F and V defined by their action on a vector y = (y1, y2),
y1, y2 ∈ C

n as follows:

T y := 1

u

(
−v1v2y1 + τu2y2

τu2y1 − v1v2y2

)
,(3.27a)

Fy :=
√

vu

ṽ
So

(√
vu

ṽ
y

)
,(3.27b)

V y :=
√

ṽ

uv
y.(3.27c)

All these matrices are functions of η and τ . They provide a crucial factorization of
the stability operator L; indeed, a simple calculation shows that

(3.28) L = V −1(1 − T F )V .

This factorization reveals many properties of L which are difficult to observe di-
rectly. Owing to (3.23), the stability analysis of (3.6) requires a control on the
invertibility of the matrix L. The matrices V and V −1 are harmless. A good un-
derstanding of the spectral decompositions of the simpler matrices F and T will
then yield that L has only one direction, in which its inverse is not bounded. We re-
mark that the factorization (3.28) is the diagonal part of the one used in the stability
analysis of the matrix Dyson equation in [3].

Because of (3.28), we can study the stability of

(3.29) (1 − T F )(V h) = V r

instead of (3.23). From Proposition 3.2 and (3.26), we conclude that

(3.30) ‖V ‖∞
∥∥V −1∥∥∞ � 1

uniformly for all η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗]. Hence, it suffices to
control the invertibility of 1 − T F .

For later usage, we derive two relations for u. From (3.25), recalling ṽ =
(v2, v1), we immediately get

(3.31)
ṽ

u
= η + Sov.

We multiply (3.6) by vu and use (3.31) to obtain

(3.32) u = vṽ + τu2, 1 = vṽ

u
+ τu.

The next lemma collects some properties of F . For this formulation, we intro-
duce

e− := (1,−1) ∈ C
2n.
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LEMMA 3.4 (Spectral properties of F ). The eigenspace of F corresponding to
its largest eigenvalue ‖F‖2 is one dimensional. It is spanned by a unique positive
normalized eigenvector f +, that is, Ff + = ‖F‖2f + and ‖f +‖2 = 1. For every
η > 0, the norm of F is given by

(3.33) ‖F‖2 = 1 − η
〈f +

√
v/(η + Sov)〉

〈f +
√

v(η + Sov)〉 .

Defining f − := f +e−, we have

(3.34) Ff − = −‖F‖2f −.

(i) (Inside regime) The following estimates hold true uniformly for τ ∈ [0,1 −
τ∗]. We have

(3.35) 1 − ‖F‖2 ∼ η

uniformly for η ∈ (0,1]. Furthermore, uniformly for η ≥ 1, we have

(3.36) 1 − ‖F‖2 ∼ 1.

Moreover, uniformly for η ∈ (0,1], f + satisfies

(3.37) f + ∼ 1

and there is ε ∼ 1 such that

(3.38) ‖Fx‖2 ≤ (1 − ε)‖x‖2

for all x ∈ C
2n satisfying x ⊥ f + and x ⊥ f −.

(ii) (Outside regime) Uniformly for all η > 0 and τ ∈ [1 + τ∗, τ ∗], we have

(3.39) 1 − ‖F‖2 ∼ 1.

PROOF. The statements about the eigenspace corresponding to ‖F‖2 and f +
follow from Lemma 3.3 in [7].

For the proof of (3.33), we multiply (3.6) by v and take the scalar product of
the resulting relation with f +

√
u/(vṽ). Using So = St

o and the definition of F in
(3.27b), we get〈

f +
√

u

vṽ
,vSov

〉
=
〈
So

(
f +
√

vu

ṽ

)
,v

〉
= ‖F‖2

〈
f +,

√
vṽ

u

〉
.

This yields

‖F‖2

〈
f +,

√
vṽ

u

〉
=
〈
f +
√

u

vṽ
,1 − τu

〉
− η

〈
f +
√

u

vṽ
,v

〉
.

We conclude (3.33) from applying (3.32) and (3.31) to the last relation.
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Since F from (3.27b) has the form

F =
(

0 F

F t 0

)
,

for some F ∈ C
n×n we have F (e−y) = −e−(Fy) for all y ∈ C

2n. Thus, we get
(3.34) from Ff + = ‖F‖2f +.

In the regime τ ∈ [0,1 − τ∗] and η ∈ (0,1], we have uniform lower and upper
bounds on v from Proposition 3.2. Therefore, the estimates in (3.37) and (3.38)
follow from Lemma 3.3 in [7]. Combining (3.37), (3.33) and Proposition 3.2 yields
(3.35). In the large η regime, that is, for η ≥ 1, since v ∼ η−1 by Proposition 3.2
we obtain

(3.40)
v

η + Sov
∼ η−2, v(η + Sov) ∼ 1.

Hence, as f + > 0 we conclude

(3.41)
〈f +

√
v/(η + Sov)〉

〈f +
√

v(η + Sov)〉 ∼ 〈f +〉
〈f +〉

1

η
= 1

η
,

uniformly for all η ≥ 1. This shows that (3.36) holds true for all η ≥ 1 and τ ∈
[0,1 − τ∗].

We now turn to the proof of (ii). If τ ∈ [1 + τ∗, τ ∗], then v ∼ η by (3.11) for
η ≤ 1 and, therefore,

v

η + Sov
∼ 1, v(η + Sov) ∼ η2.

As f + > 0, we thus have

(3.42) η
〈f +

√
v/(η + Sov)〉

〈f +
√

v(η + Sov)〉 ∼ 〈f +〉
〈f +〉 = 1.

For η ≥ 1, we argue as in (3.40) and (3.41) and arrive at the same conclusion
(3.42). Thus, because of (3.33) the estimate (3.39) holds true for all η > 0 and
τ ∈ [1 + τ∗, τ ∗]. �

Next, we give an approximation for the eigenvector f − belonging to the isolated
single eigenvalue −‖F‖2 of F by constructing an approximate eigenvector. For
η ≤ 1 and τ ∈ [0,1 − τ∗], we define

(3.43) a := e−(V v)

‖V v‖2

which is normalized as ‖e−(V v)‖2 = ‖V v‖2. We compute

(3.44) F (V v) =
√

u

vṽ
v(Sov) =

√
vṽ

u
− ηv

√
u

vṽ
= ‖F‖2V v + O(η).
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Here, we used vSov = −ηv + vṽ/u by (3.31). For estimating the O(η) term we
applied (3.10), (3.26) and (3.35) since τ ∈ [0,1 − τ∗] and η ≤ 1. Using the block
structure of F as in the proof of (3.34), we obtain

(3.45) F
(
e−(V v)

)= −‖F‖2e−(V v) + O(η).

The following lemma states that a approximates the nondegenerate eigenvec-
tor f −.

LEMMA 3.5. The eigenvector f − can be approximated by a in the �∞-norm,
that is,

(3.46) ‖f − − a‖∞ = O(η)

uniformly for η ≤ 1 and τ ∈ [0,1 − τ∗].
This lemma is proved in Appendix B. In the following lemma, we show some

properties of T .

LEMMA 3.6 (Spectral properties of T ). The symmetric operator T , defined in
(3.27a), satisfies:

(i) ‖T ‖2 = 1, ‖T ‖∞ = 1.
(ii) The spectrum of T is given by

Spec(T ) = {−1} ∪
{
τui − (vṽ)i

ui

∣∣∣i = 1, . . . , n

}
.

(iii) For all η > 0, we have T (τ = 0) = −1 and if τ > 0, then the eigenspace
of T corresponding to the eigenvalue −1 is n-fold degenerate and given by

(3.47) Eig(−1,T ) = {
(y,−y)|y ∈ C

n}.
(iv) The spectrum of T is strictly away from one, that is, there is ε > 0, depend-

ing only on P , such that

(3.48) Spec(T ) ⊂ [−1,1 − ε]
uniformly for τ ∈ [0,1 − τ∗] and η ∈ (0,1].

PROOF. The second relation in (3.32) implies ‖T ‖∞ = 1 and T (τ = 0) = −1.
Moreover, it yields that all vectors of the form (y,−y) for y ∈ C

n are contained
in Eig(−1,T ). We define the vector y(j) ∈ C

2n by y(j) := (δi,j + δi,j+n)
2n
i=1 and

observe that

T y(j) =
(
τuj − (vṽ)j

uj

)
y(j)

for j = 1, . . . , n. Counting dimensions implies that we have found all eigenvalues,
hence (ii) follows. For τ > 0, we have τuj − (vṽ)j /uj = 2τuj −1 > −1 by (3.32)
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and uj > 0 for all j = 1, . . . , n. This yields the missing inclusion in (3.47). Since
T is a symmetric operator, ‖T ‖2 = 1 follows from (ii) and |τu − vṽ/u| ≤ 1 by
(3.32).

For the proof of (iv), we remark that there is ε > 0, depending only on P , such
that 2vṽ/u ≥ ε for all η ∈ (0,1] and τ ∈ [0,1 − τ∗] by (3.10) and (3.26). Thus,

τu − vṽ

u
= 1 − 2

vṽ

u
≤ 1 − ε

by (3.32). This concludes the proof of the lemma. �

Now we are ready to give a proof of Proposition 3.3 based on inverting 1−T F .

PROOF OF PROPOSITION 3.3. We recall that h = g − iv. Throughout the
proof, we will omit arguments, but we keep in mind that g, d , h and v depend
on η and τ . The proof will be given in three steps.

The first step is to control ‖r‖∞ from (3.24) in terms of ‖h‖2∞ and ‖d‖∞, that
is, to show

(3.49) ‖r‖∞χ
(‖h‖∞ ≤ 1

)
� ‖h‖2∞ + ‖d‖∞.

Inverting V −1(1−T F )V in (3.29), controlling the norm of the inverse and choos-
ing λ∗ ≤ 1 small enough, we will conclude Proposition 3.3 from (3.49). For any
η∗ ∈ (0,1], depending only on P , this argument will be done in the second step
for τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] and η ≥ η∗ as well as for τ ∈ [1 + τ∗, τ ∗] and
η ∈ (0, η∗]. In the third step, we consider the most interesting regime τ ∈ [0,1−τ∗]
and η ≤ η∗ for a sufficiently small η∗, depending on P only. In this regime, we will
use an extra cancellation for the contribution of r in the unstable direction of L.

Step 1: For all η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗], (3.49) holds true.

From (2.19), we obtain

τ
g − d

iη + Sdg
= 1 + (iη + Sog)(g − d).

We start from (3.24), use the previous relation, τu = 1 + iv(iη + Soiv) by (3.6)
and ṽ = (v2, v1) = u(η + Sov) by (3.32) and get

r = d + iv(h − d)Soh − u
[
iv(iη + Soiv) − (g − d)(iη + Sog)

]
Sdh

= d + iv(h − d)Soh + u
[
h(iη + Soiv) + gSoh

]
Sdh

− du(iη + Sog)Sdh(3.50)

= ivhSoh + ĩvhSdh + ugSohSdh

+ d − ivdSoh − du(iη + Sog)Sdh.



170 J. ALT, L. ERDŐS AND T. KRÜGER

Notice that the first three terms are quadratic in h (the linear terms dropped out),
while the last three terms are controlled by d . Now, we show that all other fac-
tors are bounded, and hence irrelevant whenever ‖g − iv‖∞ ≤ λ∗ for η > 0 and
τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗]. In this case, we conclude ‖g‖∞ � 1 uniformly for
all η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] by (3.9) and (3.10) from Proposi-
tion 3.2. Therefore, starting from (3.50) and using ‖v‖∞ � 1 by (3.9) and (3.10),
and ‖u‖∞ � 1 by (3.26), we obtain (3.49).

Step 2: For any η∗ ∈ (0,1], there exists λ∗ � 1, depending only on P and η∗, such
that (3.21) holds true for η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] as well as for
η ∈ (0, η∗] and τ ∈ [1 + τ∗, τ ∗]. Moreover, with this choice of λ∗, (3.22) holds
true in these (η, τ ) parameter regimes as well.

Within Step 2, we redefine the comparison relation to depend both on P and η∗.
Later in Step 3 we will choose an appropriate η∗ depending only on P , so eventu-
ally the comparison relations for our choice will depend only on P .

We are now working in the regime, where η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 +
τ∗, τ ∗] or η ∈ (0, η∗] and τ ∈ [1 + τ∗, τ ∗]. In this case, to prove (3.21), we invert
L = V −1(1−T F )V [cf. (2.21)] in Lh = r , bound ‖L−1‖∞ � 1, which is proved
below, and conclude

‖h‖∞χ
(‖h‖∞ ≤ 1

)
� ‖h‖2∞ + ‖d‖∞

from (3.49) for η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] as well as for η ∈ (0, η∗]
and τ ∈ [0,1 − τ∗]. This means that there are �1,�2 ∼ 1 such that

‖h‖∞χ
(‖h‖∞ ≤ 1

)≤ �1‖h‖2∞ + �2‖d‖∞.

Choosing λ∗ := min{1, (2�1)
−1} this yields

‖h‖∞χ
(‖h‖∞ ≤ λ∗

)≤ 2�2‖d‖∞.

Thus, we are left with controlling ‖L−1‖∞, that is, proving ‖L−1‖∞ � 1.
In the regime η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗], we have v ∼ 1/η by

Proposition 3.2 and u ∼ 1/η2 by (3.26). Hence, V ∼ η and V −1 ∼ 1/η. There-
fore, ‖V ‖∞‖V −1‖∞ � 1 and due to ‖L−1‖∞ � ‖V −1‖∞‖(1−T F )−1‖∞‖V ‖∞,
it suffices to show ‖(1 − T F )−1‖∞ � 1. Basic facts on the operator 1 − T F
are collected in Lemma B.1 in the Appendix. In particular, because of (B.9), the
�∞ bound follows from ‖(1 − T F )−1‖2 � 1. Using (3.35), (3.36) and (3.39), we
get that 1 − ‖F‖2 ∼ 1 for all η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗]. Hence,
1 − ‖T F‖2 ∼ 1 by Lemma 3.6(i), so the bound ‖(1 − T F )−1‖2 � 1 immediately
follows. This proves (3.21) for η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗].

For η ≤ η∗ and τ ∈ [1+τ∗, τ ∗], we have v ∼ η by (3.11), u ∼ 1 by (3.26). Thus,
V ∼ 1, V −1 ∼ 1 as well as ‖V ‖∞‖V −1‖∞ � 1. As above it is enough to show
‖(1 − T F )−1‖2 � 1. By Lemma 3.6(i) and (3.39), 1 − ‖T F‖2 ∼ 1 which again
leads to ‖(1 − T F )−1‖2 � 1. We conclude (3.21) for η ≤ η∗ and τ ∈ [1 + τ∗, τ ∗].
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Next, we verify (3.22) in these two regimes. Using h · χ(‖h‖∞ ≤ λ∗) =
O(‖d‖∞) by (3.21), v � 1 and u � 1, we see that with the exception of d , all
terms in (3.50) are second order in d . Therefore,

(3.51) r · χ(‖h‖∞ ≤ λ∗
)= d · χ(‖h‖∞ ≤ λ∗

)+ O
(‖d‖2∞

)
uniformly for η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] as well as for η ∈ (0, η∗]
and τ ∈ [1 + τ∗, τ ∗].

We start from Lh = r and compute

(3.52) 〈y,h〉 = 〈(
L−1)∗y, r

〉= 〈Ry,d〉 + 〈(L−1)∗y, r − d
〉
.

Here, we defined the operator R = R(η) on C
2n in the last step through its action

on any x ∈C
2n via

(3.53) Rx := (
L−1)∗x = V −1(1 − FT )−1V x.

Now, we establish that ‖(L−1)∗‖∞ � 1 in the two regimes considered in Step 2.
From this, we conclude that ‖R‖∞ � 1 and that the last term in (3.52) when
multiplied by χ(‖h‖∞ ≤ λ∗) is bounded by � ‖y‖∞‖d‖2∞ because of (3.51).
By Lemma 3.6(i), (3.35), (3.36) and (3.39), we have 1 − ‖FT ‖2 ∼ 1. Thus,
‖(1 − FT )−1‖2 � 1 and hence ‖(1 − FT )−1‖∞ � 1 by Lemma B.1(ii). As
‖V ‖∞‖V −1‖∞ � 1 we get ‖(L−1)∗‖∞ � 1. Therefore, we conclude that (3.22)
holds true uniformly for η ≥ η∗ and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗] as well as for
η ∈ (0, η∗] and τ ∈ [1 + τ∗, τ ∗]. Thus, we have proved the proposition for these
combinations of η and τ .

Finally, we prove the proposition in the most interesting regime, τ ∈ [0,1 − τ∗]
and for small η:

Step 3: There exists η∗ > 0, depending only on P , and λ∗ � 1 such that (3.21)
holds true for η ∈ (0, η∗] and τ ∈ [0,1 − τ∗]. Moreover, with this choice of λ∗,
(3.22) holds true for η ∈ (0, η∗] and τ ∈ [0,1 − τ∗].
The crucial step for proving (3.21) and (3.22) was the order one bound on ‖(1−

T F )−1‖2. However, in the regime τ ∈ [0,1 − τ∗] and small η such bound is not
available since (1 − T F )f − = O(η) which can be deduced from (3.62) below.
The simple bound

(3.54)
∥∥(1 − T F )−1∥∥

2 � η−1

which is a consequence of (3.35) and ‖T ‖2 = 1 is not strong enough. In order to
control ‖(1−T F )−1V r‖2 we will need to use a special property of the vector V r ,
namely that it is almost orthogonal to f −. This mechanism is formulated in the fol-
lowing contraction-inversion lemma, which is proved in Appendix B. It is closely
related to the rotation-inversion lemmas—Lemma 5.8 in [4] and Lemma 3.6 in
[7]—which control the invertibility of 1 − UF , where U is a unitary operator and
F is symmetric.
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LEMMA 3.7 (Contraction–inversion lemma). Let ε, η, c1, c2, c3 > 0 satisfying
η ≤ εc1/(2c2

2) and A,B ∈ C
2n×2n be two Hermitian matrices such that

(3.55) ‖A‖2 ≤ 1, ‖B‖2 ≤ 1 − c1η.

Suppose that there are �2-normalized vectors b± ∈ C
2n satisfying

(3.56) Bb+ = ‖B‖2b+, Bb− = −‖B‖2b−, ‖Bx‖2 ≤ (1 − ε)‖x‖2

for all x ∈ C
2n such that x ⊥ span{b+,b−}.

Furthermore, assume that

(3.57) 〈b+,Ab+〉 ≤ 1 − ε,
∥∥(1 + A)b−

∥∥
2 ≤ c2η.

Then there is a constant C > 0, depending only on c1, c2, c3 and ε, such that for
each p ∈ C

2n satisfying

(3.58)
∣∣〈b−,p〉∣∣≤ c3η‖p‖2,

it holds true that

(3.59)
∥∥(1 − AB)−1p

∥∥
2 ≤ C‖p‖2.

We will apply this lemma with the choices A = T , B = F , b± = f ± and
p = V r . The resulting bound on ‖(1 − T F )−1V r‖2 will be lifted to a bound
on ‖(1 − T F )−1V r‖∞ by (B.9). All estimates in the remainder of this proof will
hold true uniformly for τ ∈ [0,1 − τ∗]. However, we will not stress this fact for
each estimate. Moreover, the estimates will be uniform for η ∈ (0, η∗]. The thresh-
old η∗ ≤ 1 will be chosen later such that it depends on P only and the assumptions
of Lemma 3.7 are fulfilled. We now start checking the assumptions of Lemma 3.7.

By Proposition 3.2, there is �1 ∼ 1 such that

(3.60) �−1
1 ≤ v ≤ �1

for all η ∈ (0,1]. We recall from (3.35) that there is a constant c1 ∼ 1 such that
‖F‖2 ≤ 1 − c1η for all η ∈ (0,1]. Recalling the definition of a from (3.43), we
conclude from (3.46) the existence of �2 ∼ 1 such that

(3.61) ‖f − − a‖2 ≤ ‖f − − a‖∞ ≤ �2η

for all η ∈ (0,1]. Here, we used that ‖y‖2 ≤ ‖y‖∞ for all y ∈ C
2n due to the

normalization of the �2 norm.
Since the first and the second n-component of the vector V v are the same we

have T a = −a by (3.43) and Lemma 3.6(iii). Hence,

(3.62) ‖f − + T f −‖2 ≤ ‖f − − a‖2 + ‖T ‖2‖f − − a‖2 ≤ 2�2η

by ‖T ‖2 = 1 and (3.61).
Due to (3.38), there exists ε ∼ 1 such that

‖Fx‖2 ≤ (1 − ε)‖x‖2
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for all x ∈ C
2n such that x ⊥ f + and x ⊥ f − and for all η ∈ (0,1]. As T is

Hermitian, we can also assume by (3.48) that

〈f +,T f +〉 ≤ 1 − ε

for all η ∈ (0,1] by possibly reducing ε but keeping ε � 1.
So far we checked the conditions (3.55)–(3.57), it remains to verify (3.58) with

the choice p = V r . Assuming that 〈a,V r〉 = 0, we deduce from (3.61) that

(3.63)
∣∣〈f −,V r〉∣∣≤ ∣∣〈a,V r〉∣∣+ ‖f − − a‖2‖V r‖2 ≤ �2η‖V r‖2.

This is the estimate required in (3.58). Hence, it suffices to show that V r is per-
pendicular to a, that is,

(3.64)
〈
e−(V v),V r

〉= 〈
e−
(
V 2v

)
,Lh

〉= 〈
L∗
(
e−

ṽ

u

)
,h

〉
= 0,

where we used the symmetry of V , that V is diagonal and (3.23) in the first equal-
ity, and the notation ṽ = (v2, v1).

Using (3.31) and the n-component relations of the second identity in (3.32), we
compute

L∗
(
e−

ṽ

u

)
=

⎛⎜⎜⎝ η + Sv2 − S

(
v2

(
v1v2

u
+ τu

))
−η − Stv1 + St

(
v1

(
v1v2

u
+ τu

))
⎞⎟⎟⎠= ηe−.(3.65)

Since 〈e−g〉 = 〈e−v〉 = 0 by (3.20) and (3.8), respectively, this proves (3.64) and,
therefore, (3.63) as well. Thus, we checked all conditions of Lemma 3.7.

By possibly reducing η∗ but keeping η∗ � 1, we can assume that η∗ ≤
εc1/(8�2

2). Now, we can apply Lemma 3.7 with ε, c1, c2 = 2�2, c3 = �2
for any η ∈ (0, η∗]. Thus, applying (3.59) in Lemma 3.7 to (3.29), we obtain
‖V h‖2 � ‖V r‖2, and hence ‖V h‖∞ � ‖V r‖∞ because of (B.9). Therefore, for
any λ∗ > 0, depending only on P , we have

‖h‖∞χ
(‖h‖∞ ≤ λ∗

)
�
∥∥V −1∥∥∞‖V r‖∞χ

(‖h‖∞ ≤ λ∗
)
� ‖h‖2∞ + ‖d‖∞

uniformly for η ∈ (0, η∗] and τ ∈ [0,1−τ∗]. Here, we used (3.30) and (3.49) in the
second step. Choosing λ∗ > 0 small enough as before, we conclude (3.21) for η ∈
(0, η∗] and τ ∈ [0,1−τ∗]. Since η∗ > 0 depends only on P , and η∗ was arbitrary in
the proof of Step 2 we proved (3.21) for all η > 0 and τ ∈ [0,1− τ∗]∪ [1+ τ∗, τ ∗].

In order to prove (3.22), we remark that because of (3.21) and (3.50) the estimate
(3.51) holds true for η ∈ (0, η∗] and τ ∈ [0,1 − τ∗] as well. Due to the instability
(3.54) of (1 − T F )−1 and, correspondingly, of its adjoint, the definition of R in
(3.53) will not yield an operator satisfying ‖R‖∞ � 1 in this regime. Therefore,
we again employ that the inverse of 1−T F is bounded on the subspace orthogonal
to f − and the blow-up in the direction of f − is compensated by the smallness of
〈f −,V r〉 following from 〈a,V r〉 = 0 and ‖f − − a‖∞ = O(η) by (3.46).
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Let Q be the orthogonal projection onto the subspace f ⊥−, that is, Qx := x −
〈f −,x〉f − for all x ∈ C

2n. Recalling the definition of a in (3.43), we now define
the operator R = R(η) on C

2n as follows:

(3.66) Rx := V
(
(1 − T F )−1Q

)∗
V −1x − 〈V −1(1 − T F )−1f −,x

〉
V (f − − a)

for every x ∈C
2n. Note that this R is different from the one given in (3.53) that is

used in the other parameter regimes. Now, we estimate ‖Rx‖∞. For the first term,
we use the bound (B.11) whose assumptions we check first. The first condition,
‖(1 − T F )−1Q‖2 � 1, in (B.10) follows from (3.59) as (3.58) with p = Qx is
trivially satisfied, and hence ‖(1 − T F )−1Qx‖2 � ‖Qx‖2 � ‖x‖2. The second
condition in (B.10) is met by (3.35) and the third condition is exactly (3.62). Using
‖f −‖∞ � 1 from (3.37), (B.11) and (3.30), we conclude that the first term in
(3.66) is � ‖x‖∞. In the second term, we use the trivial bound

(3.67)
∥∥(1 − T F )−1∥∥∞ � η−1

which is a consequence of the corresponding bound on ‖(1 − T F )−1‖2 in (3.54)
and (B.9). The potential blow-up in (3.67) for small η is compensated by the esti-
mate ‖f − − a‖∞ = O(η) from (3.46). Altogether this yields ‖R(η)‖∞ � 1 for all
η ∈ (0, η∗].

From the definition of R and h = V −1(1 − T F )−1V r , we obtain

〈y,h〉 = 〈
V −1y, (1 − T F )−1QV (r − d)

〉
+ 〈y,V −1(1 − T F )−1f −

〉〈
f − − a,V (r − d)

〉+ 〈Ry,d〉.(3.68)

Notice that we first inserted 1 = Q + |f −〉〈f −| before V r , then we inserted the
vector a in the second term for free by using 〈a,V r〉 = 0 from (3.64). This brought
in the factor f − − a ∼ O(η) that compensates the (1 − T F )−1 on the unstable
subspace parallel to f −. Finally, we subtracted the term d to r freely and we de-
fined the operator R exactly to compensate for it. The reason for this counter term
d is the formula (3.51) showing that r −d is one order better in d than r . Thus, the
first two terms in the right-hand side of (3.68) are bounded by ‖d‖2∞‖y‖∞. The
compensating term, 〈Ry,d〉 remains first order in d but only in weak sense, tested
against the vector Ry, and not in norm sense. This is the essential improvement of
(3.22) over (3.21). Recalling now h = g − iv, the identity (3.68) together with the
bounds we just explained concludes the proof of Proposition 3.3. �

4. Proof of Proposition 2.4. As in the previous section, we assume without
loss of generality that ρ(S) = 1. See the remark about (3.7).

For τ∗ > 0 and τ ∗ > τ∗ + 1, we define

(4.1) D< := {
z ∈ C||z|2 ≤ 1 − τ∗

}
, D> := {

z ∈C|1 + τ∗ ≤ |z|2 ≤ τ ∗}.
Via τ = |z|2 these sets correspond to the regimes [0,1 − τ∗] and [1 + τ∗, τ ∗] in the
previous section.
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PROOF OF PROPOSITION 2.4. Since the defining equations in (2.4) are
smooth functions of η, τ and (vi )i=1,...,2n and the operator L is invertible for
η > 0 the implicit function theorem implies that the function v : R+ ×R

+
0 → R

2n+
is smooth. Therefore, the function R+ × C → R

2n+ , (η, z) → vτ (η)|τ=|z|2 is also
smooth.

For α = (α1, α2) ∈ N
2, we define

∂αv := ∂α1
η ∂α2

τ v.

For fixed τ∗ > 0 and τ ∗ > τ∗ + 1, we first prove that for all α ∈ N
2, we have

(4.2)
∥∥∂αv

∥∥∞ � 1

uniformly for all η > 0 and τ ∈ [0,1 − τ∗] ∪ [1 + τ∗, τ ∗].
Differentiating (2.4) with respect to η and τ , respectively, yields

(4.3) L(∂ηv) = −v2 + τu2, L(∂τv) = −uv.

By further differentiating with respect to η and τ , we iteratively obtain that for any
multi-index α ∈ N

2

(4.4) L∂αv = rα,

where rα only depends on η, τ and ∂βv for β ∈ N
2, |β| = β1 + β2 < |α|. In fact,

for all α ∈ N
2, we have

L
(
∂α+e1v

)= ∂α(−v2 + τu2)− ∑
ν≤α,ν �=(0,0)

(
α

ν

)(
∂νL

)(
∂α−ν+e1v

)
,(4.5a)

L
(
∂α+e2v

)= ∂α(−vu) − ∑
ν≤α,ν �=(0,0)

(
α

ν

)(
∂νL

)(
∂α−ν+e2v

)
.(4.5b)

As an example, we compute L(∂2
τ v). Thus, the second relation in (4.3) yields

L∂2
τ v = 2

v
(∂τv)2 + 2u2Sd∂τv − 2τu3

v
(Sd∂τv)2.(4.6)

By induction on |α| = α1 + α2, we prove ‖rα‖∞ � 1 and ‖∂αv‖∞ � 1 simul-
taneously. From (4.5), we conclude that rα+e1 and rα+e2 are bounded in �∞-norm
if ‖∂νv‖∞ � 1 for all ν ≤ α as the first term on the right-hand side of (4.5a) and
(4.5b), respectively, and ∂νL for all ν ≤ α are bounded. In order to conclude that
∂α+e1v and ∂α+e2v are bounded, it suffices to prove that ‖∂αv‖∞ � ‖rα‖∞ by
controlling L−1 in (4.4).

As in the proof of Proposition 3.3 the norm of L−1 is bounded, ‖L−1‖∞ � 1,
for τ ∈ [1+τ∗, τ ∗] or τ ∈ [0,1−τ∗] and large η as well as τ ∈ [0,1−τ∗] and small
η separately. We thus focus on the most interesting regime where τ ∈ [0,1 − τ∗]
and small η. As for the proof of Proposition 3.3, we apply Lemma 3.7 in this
regime. We only check the condition (3.58) here since the others are established
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in the same way as in the proof of Proposition 3.3. Recall the definition of a in
(3.43). Using 〈e−∂αv〉 = 0 from (3.8) for all α ∈ N

2, we obtain

〈a,V rα〉 = 〈
L∗(e−V 2v

)
, ∂αv

〉= 〈
ηe−, ∂αv

〉= 0

for all α ∈ N
2. Here, we used L∗(e−V 2v) = ηe− which is shown in (3.65) in the

proof of Proposition 3.3. This concludes the proof of (4.2).
Next, we show the integrability of �z〈vτ

1 |τ=|z|2〉 as a function of η for z ∈ D<

for fixed τ∗ > 0. Note that 〈vτ
1 〉 = 〈vτ 〉 by (3.8). Using

�z

(
vτ |τ=|z|2

)= 4
(
τ∂2

τ vτ + ∂τv
τ )|τ=|z|2

together with (4.3) and (4.6), we obtain

(4.7) L�z

(
vτ |τ=|z|2

)= 4
(

2τ

v
(∂τv)2 + 2τu2Sd∂τv − 2τ 2u3

v
(Sd∂τv)2 − uv

)
.

From (3.9), (3.10) and (3.26), we conclude that uv ∼ (1 + η3)−1, and hence
|∂τv| � (1 + η3)−1 uniformly for z ∈ D< since ‖∂αv‖∞ � ‖rα‖∞. Therefore, the
right-hand side of (4.7) is of order (1+η3)−1 for z ∈ D<, and hence using the con-
trol on L−1 as before, we conclude that |�z(v

τ |τ=|z|2)|� (1+η3)−1 uniformly for
η > 0. Thus, �z〈vτ

1 |τ=|z|2〉 = �z〈vτ |τ=|z|2〉 as a function of η is integrable on R+
and the integral is a continuous function of z ∈ D<. As τ∗ > 0 was arbitrary, this
concludes the proof of part (i) of Proposition 2.4 and shows that σ is a rotationally
invariant function on C, which is continuous on D(0,1).

Now, we establish that for τ < 1, the derivative of the average of u with respect
to τ gives an alternative representation of the density of states as follows:

(4.8) σ(z) = 1

π
∂τ

(
τ 〈u0〉)∣∣∣∣

τ=|z|2
= − 2

π
〈Sov0, ∂τv0〉

∣∣∣∣
τ=|z|2

,

where u0 := limη↓0 u(η) and v0 := limη↓0 v(η). The first relation in (4.8) will be
proved below and the second one follows immediately using τu0 = 1−v0Sov0 by
(3.6) and (3.25) for η ↓ 0, as well as St

o = So.
We first give a heuristic derivation of the first equality in (4.8) (see, e.g., Sec-

tion 4.6 of [11]). Writing the resolvent Gz of H z as

Gz =
(
G11 G12
G21 G22

)
,

we obtain

TrG12 = −∂z̄ Tr log
(
(X − z)

(
X∗ − z̄

)+ η2)= −2

n
∂z̄ log

∣∣det
(
H z − iη

)∣∣
for the normalized trace of G12 [see (1.3)]. Since �z = 4∂z∂z̄, taking the ∂z-
derivative of the previous identity, we obtain

(4.9)
1

2n
�z log

∣∣det
(
H z − iη

)∣∣= −∂z TrG12.
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Using (2.5), (2.14) and Immz ≈ 〈vτ
1 |τ=|z|2〉, the left-hand side of (4.9) is ap-

proximately πσ(z) after taking the η ↓ 0 limit. On the other hand, Gz converges
to Mz for n → ∞. Thus, by (3.5) the right-hand side of (4.9) can be approximated
by ∂z(z〈uτ |τ=|z|2(η)〉). Therefore, taking η ↓ 0, we conclude

πσ(z) ≈ ∂zz
〈
uτ

0|τ=|z|2
〉= (

∂τ τ
〈
uτ

0
〉)|τ=|z|2 .

In fact, this approximation holds not only in the n → ∞ limit but it is an identity
for any fixed n. This completes the heuristic argument for (4.8).

We now turn to the rigorous proof of the first relation in (4.8). In fact, for τ < 1,
we prove the following integrated version:

(4.10)
∫
|z′|2≤τ

σ
(
z′)d2z′ = τ

〈
uτ

0
〉
.

Since σ is a continuous function on D(0,1) differentiating (4.10) with respect to
τ immediately yields (4.8).

In order to justify the existence of the limits of v and u for η ↓ 0 and the com-
putations in the proof of (4.10), we remark that by (4.2), (η, z) → vτ (η)|τ=|z|2 can
be uniquely extended to a positive C∞ function on [0,∞) × D(0,1). In the fol-
lowing, v and vτ

0 := vτ |η=0 denote this function and its restriction to {0} × [0,1),
respectively. In particular, the restriction vτ

0 |τ=|z|2 is a smooth function on D(0,1)

which satisfies

(4.11)
1

vτ
0

= Sov
τ
0 + τ

Sdvτ
0

with τ = |z|2. Moreover, derivatives of v in η and τ and limits in η and τ for τ < 1
can be freely interchanged.

For the proof of (4.10), we use integration by parts to obtain

(4.12)
∫
|z′|2≤τ

σ
(
z′)d2z′ = −2τ

∫ ∞
0

∂τ 〈v〉dη = −τ

∫ ∞
0

∂τ

(〈v〉 + 〈̃v〉)dη.

We recall ṽ = (v2, v1) and get

v = η + Sdv

(η + Sdv)(η + Sov) + τ
, ṽ = η + Sov

(η + Sdv)(η + Sov) + τ

from (3.6). This implies the identity

∂η log
(
(η + Sdv)(η + Sov) + τ

)= v + ṽ + ṽSd∂ηv + vSo∂ηv.

Using

〈̃vSd∂ηv〉 + 〈vSo∂ηv〉 = 〈vSo∂ηv〉 + 〈vSo∂ηv〉 = ∂η〈vSov〉
and recalling v0 := limη↓0 v(η), we find for (4.12) the expression

(4.13)
∫ ∞

0
∂τ

(〈v〉 + 〈̃v〉)dη = −〈∂τ log
(
(Sdv0)(Sov0) + τ

)〉+ ∂τ 〈v0Sov0〉.
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Hence, using 〈̃v0Sd∂τv0〉 = 〈vSo∂τv0〉, we obtain〈
∂τ log

(
(Sdv0)(Sov0) + τ

)〉= 〈u〉 + ∂τ 〈v0Sov0〉
and conclude (4.10) from (4.13). The formula (4.10) was also obtained in [14] with
a different method.

We prove (iii) before (ii). As v0 is infinitely often differentiable in τ and
τ = |z|2, we conclude from (4.8) that σ is infinitely often differentiable in z. The
following lemma shows (2.6) which completes the proof of part (iii).

LEMMA 4.1 (Positivity and boundedness of σ ). Uniformly for z ∈ D(0,1),
we have

(4.14) σ(z) ∼ 1,

where ∼ only depends on s∗ and s∗.

PROOF. We will compute the derivative in (4.8) and prove the estimate (4.14)
first for z ∈ D< and arbitrary τ∗ > 0 depending only on s∗ and s∗. Then we show
that there is τ∗ > 0 depending only on s∗ and s∗ such that (4.14) holds true for
z ∈ D(0,1) \D<.

In this proof, we write D(y) := diag(y) for y ∈C
l for brevity. Furthermore, we

introduce the 2n × 2n matrix

E :=
(
1 1
1 1

)
.

In the following, v and all related quantities will be evaluated at τ = |z|2. We start
the proof from (4.8), recall L = V −1(1 − T F )V and use the second relation in
(4.3) as well as (3.31) to obtain

σ(z) = − 2

π
〈Sov0, ∂τv0〉

= lim
η↓0

2

π

〈
V −1 ṽ

u
, (1 − T F )−1V (vu)

〉
(4.15)

= lim
η↓0

2

π

〈√
vṽ,

1√
u

(1 − T F )−1√u
√

vṽ

〉

= lim
η↓0

2

π

〈√
vṽ,

(
1 − D

(
u−1/2)T FD

(
u1/2))−1√

vṽ
〉
.

Note that the inverses of 1 − T F and 1 − τD(u−1/2)T FD(u1/2) exist by
Lemma 3.6 and Lemma 3.4 as η > 0 and τ < 1.



LOCAL INHOMOGENEOUS CIRCULAR LAW 179

Due to (3.27a) and (3.32), we have T = −1 + τuE, which implies

1 − D
(
u−1/2)T FD

(
u1/2)

= 1 + D
(
u−1/2)FD

(
u1/2)− τD

(
u1/2)EFD

(
u1/2)

(4.16)
= (

1 − τD
(
u1/2)EF (1 + F )−1D

(
u1/2))

× (1 + D
(
u−1/2)FD

(
u1/2)).

From (3.33) and (3.44), we deduce
√

uF
√

vṽ/u = √
vṽ + O(η). Hence, due to

(4.16), (4.15) yields

(4.17) σ(z) = lim
η↓0

1

π

〈√
vṽ,

(
1 − τD

(
u1/2)EF (1 + F )−1D

(
u1/2))−1√

vṽ
〉
.

Defining the matrix F ∈ C
n×n through Fy = √

v1u/v2S
√

v2u/v1y for y ∈ C
n, we

obtain

F =
(

0 F

F t 0

)
,

(1 + F )−1 =
( (

1 − FF t )−1 −(1 − FF t )−1
F

−F t (1 − FF t )−1 (
1 − F tF

)−1

)
.

(4.18)

Furthermore, we introduce the n × n matrix A by

A := 2 · 1 + (F t − 1
)(

1 − FF t )−1 + (F − 1)
(
1 − F tF

)−1
.

From the computation,

EF (1 + F )−1 =
(
1 + (F t − 1

)(
1 − FF t )−1 1 + (F − 1)

(
1 − F tF

)−1

1 + (F t − 1
)(

1 − FF t )−1 1 + (F − 1)
(
1 − F tF

)−1

)
,

we conclude that (
1 − τD

(
u1/2)EF (1 + F )−1D

(
u1/2))−1

(
x

x

)

=
((

1 − τD
(
u1/2)AD

(
u1/2))−1

x(
1 − τD

(
u1/2)AD

(
u1/2))−1

x

)(4.19)

for all x ∈ C
n. Before applying this relation to (4.17), we show that 1 −

τD(u1/2)AD(u1/2) is invertible for τ < 1. The relations in (4.18) yield

(4.20) 〈x,Ax〉 = 2‖x‖2
2 − 2

〈(
x

x

)
, (1 + F )−1

(
x

x

)〉
for all x ∈ C

n and η > 0. In particular, since ‖F‖2 ≤ 1 by (3.33) we con-
clude A ≤ 1. Hence, τu = 1 − v1v2/u < 1 for τ < 1 by (3.32) implies that
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1 − τD(u1/2)AD(u1/2) is invertible for τ < 1. Thus, we apply (4.19) to (4.17)
and obtain for z ∈ D(0,1)

(4.21) σ(z) = 2

π
lim
η↓0

〈√
v1v2,

(
1 − τD

(
u1/2)AD

(
u1/2))−1√

v1v2
〉
.

Let τ∗ > 0 depend only on s∗ and s∗. From (3.10) and (4.2), we conclude that
|σ | � 1 uniformly for z ∈ D< because of (4.8). This proves the upper bound in
(4.14) for z ∈ D<.

For the proof of the lower bound, we infer some further properties of A and
1 − τD(u1/2)AD(u1/2), respectively, from information about F via (4.20). In the
following, we use versions of Proposition 3.2, (3.26) and Lemma 3.4 extended
to the limiting case η = 0+. Recalling v0 = limη↓0 v, these results are a simple
consequence of the uniform convergence ∂αv → ∂αv0 for η ↓ 0 and all α ∈ N

2

by (4.2).
Since f − = (

√
v1v2/u,−√

v1v2/u) + O(η) by (3.45) there are η∗, ε ∼ 1 by
Lemma 3.4 such that Spec(F |W) ⊂ [−1 + ε,1] on the subspace W := {(x, x)|x ∈
C

n} ⊂ C
2n as f − ⊥ W uniformly for all η ∈ [0, η∗]. Therefore, for ‖x‖2 = 1, the

right-hand side of (4.20) is contained in [2(ε−1)/ε,1]. Since (F t (1−FF t)−1)t =
F(1 − F tF )−1, the matrix A is real symmetric, and hence the spectrum of A is
contained in [2(ε − 1)/ε,1] for all η ∈ [0, η∗] as well.

The real symmetric matrix A has a positive and a negative part, that is, there are
positive matrices A+ and A− such that A = A+ − A−. Hence, we have

1 − τD
(
u1/2)AD

(
u1/2)

= 1 − τD
(
u1/2)A+D

(
u1/2)+ τD

(
u1/2)A−D

(
u1/2).(4.22)

The above statements about (4.20) yield SpecA+ ⊂ [0,1] and SpecA− ⊂
[0,2(1 − ε)/ε]. As 0 ≤ uτ we conclude from (4.22) that the spectrum of
1 − τD(u1/2)AD(u1/2) is contained in (0,2/ε] for all η ∈ [0, η∗]. Therefore,
using (4.21), we obtain

σ(z) = 2

π
lim
η↓0

〈√
v1v2,

(
1 − τD

(
u1/2)AD

(
u1/2))−1√

v1v2
〉≥ ε

π
〈v0ṽ0〉� 1

uniformly for all z ∈ D<. Here, we used (3.10) in the last step. This shows (4.14)
for z ∈ D< for any τ∗ > 0 depending only on s∗ and s∗.

We now show that there is τ∗ > 0 depending only on s∗ and s∗ such that (4.14)
holds true for z ∈ D(0,1) \ D<. This is proved by tracking the blowup of (1 −
τD(u1/2)AD(u1/2))−1 in 1−τ for τ ↑ 1 in (4.21) and establishing a compensation
through v1 ∼ v2 ∼ (1 − τ)1/2 due to (3.10). This yields the upper and lower bound
in (4.14). Since 1 − τD(u1/2)AD(u1/2) in (4.21) is also invertible for η = 0 we
may directly set η = 0 in the following argument.

We multiply the first component of the first relation in (3.32) by τ and solve for
τu to obtain

τu = 1

2
(1 +√1 − 4τv1v2) = 1 − τv1v2 + O

(
(1 − τ)2).
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Therefore, using v1 ∼ v2 ∼ (1 − τ)1/2, we have

τD
(
u1/2)AD

(
u1/2)= A − τ

2

(
D(v1v2)A + AD(v1v2)

)+ O
(
(1 − τ)2).

Moreover, from (4.20) we conclude that Aa = a for a := √
v1v2/u/‖√v1v2/u‖2.

Here, we also used (3.44) and (3.33) with η = 0.
Thus, the smallest eigenvalue of the positive operator 1 − τD(u1/2)AD(u1/2)

satisfies

λmin
(
1 − τD

(
u1/2)AD

(
u1/2))= λmin(1 − A) + τ

〈
a2v1v2

〉+ O
(
(1 − τ)2)

= τ
〈
a2v1v2

〉+ O
(
(1 − τ)2).

Here, we used multiple times that Aa = a. Therefore, as A is symmetric we con-
clude from (4.21) that

σ(z) = 2

π

〈√
v1v2,

(
1 − τD

(
u1/2)AD

(
u1/2))−1√

v1v2
〉

≥ 〈a,
√

v1v2〉2

τ 〈a2v1v2〉 + O(1 − τ).

Since a ∼ 1 and v1 ∼ v2 ∼ (1 − τ)1/2, there is τ∗ ∼ 1 such that the lower bound in
(4.14) holds true for z ∈ D(0,1) \D<. Starting from (4.21), we similarly obtain

σ(z) ≤ 〈v1v2〉
τ 〈a2v1v2〉 + O(1 − τ).

Using the positivity of a, v1 ∼ v2 ∼ (1 − τ)1/2 and possibly shrinking τ∗ ∼ 1 the
upper bound in (4.14) for z ∈ D(0,1) \ D< follows. This concludes the proof of
Lemma 4.1. �

As σ(z) = 0 for |z| ≥ 1, we conclude from (2.6) that σ is nonnegative on C. We
use (4.10) to compute the total mass of the measure on C defined by σ . Clearly,
u0 = v0/Sdv0 and using (4.11) and (4.10), we obtain

lim
τ↑1

∫
|z′|2≤τ

σ
(
z′)d2z′ = 1 − lim

τ↑1
〈v0Sov0〉 = 1.

Here, we used that limτ↑1 v0 = 0 by (3.10). Hence, as σ(z) = 0 for |z| ≥ 1 it
defines a probability density on C, which concludes the proof of Proposition 2.4.

�

REMARK 4.2 (Jump height). In fact, it is possible to compute the jump height
of the density of states σ at the edge τ = |z|2 = 1. Let s1 and s2 be two eigenvectors
of St and S, respectively, associated to the eigenvalue 1, that is, Sts1 = s1 and
Ss2 = s2. Note that s1 and s2 are unique up to multiplication by a scalar.
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With this notation, expanding vτ for τ ≤ 1 around τ = 1 yields

v1 = √
1 − τ

( 〈s1s2〉〈s2〉
〈s2

1s2
2〉〈s1〉

)1/2
s1 + O

(
(1 − τ)3/2),

v2 = √
1 − τ

( 〈s1s2〉〈s1〉
〈s2

1s2
2〉〈s2〉

)1/2
s2 + O

(
(1 − τ)3/2).

Therefore, solving (3.32) for τu and expanding in 1 − τ , we obtain that σ has a
jump of height

lim
|z|2↑1

σ(z) = 1

π
lim
τ↑1

∂τ

(
τ 〈u0〉)= 1

π

〈s1s2〉2

〈s2
1s2

2〉 .

5. Local law. We begin this section with a notion for high probability esti-
mates.

DEFINITION 5.1 (Stochastic domination). Let C : R2+ →R+ be a given func-
tion which depends only on a, ϕ, τ∗, τ ∗ and the model parameters. If � = (�(n))n
and � = (�(n))n are two sequences of nonnegative random variables, then we will
say that � is stochastically dominated by � , � ≺ � , if for all ε > 0 and D > 0
we have

P
(
�(n) ≥ nε�(n))≤ C(ε,D)

nD

for all n ∈ N.

As a trivial consequence of Exij = 0, (2.1) and (2.2) we remark that

(5.1) |xij | ≺ n−1/2.

5.1. Local law for H z. Let (vτ
1 , vτ

2 ) be the positive solution of (2.4) and uτ

defined as in (3.25). In the whole section, we will always evaluate vτ
1 , vτ

2 and uτ

at τ = |z|2 and mostly suppress the dependence on τ and |z|2, respectively, in
our notation. Recall that Mz is defined in (3.5). Note that although v1, v2 and u

are rotationally invariant in z ∈ C, the dependence of Mz on z is not rotationally
symmetric.

For the following theorem, we remark that the sets D< and D> were introduced
in (4.1).

THEOREM 5.2 (Local law for H z). Let X satisfy (A) and (B) and let G = Gz

be the resolvent of H z as defined in (2.11). For fixed ε ∈ (0,1/2), the entrywise
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local law

(5.2)
∥∥Gz(η) − Mz(η)

∥∥
max ≺

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
nη

for z ∈ D<,η ∈ [n−1+ε,1
]
,

1√
n

+ 1

nη
for z ∈ D>,η ∈ [n−1+ε,1

]
,

1√
nη2 for z ∈ D< ∪D>,η ∈ [1,∞),

holds true. In particular,

(5.3)
∥∥g(η) − iv(η)

∥∥∞ ≺

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
nη

for z ∈D<,η ∈ [n−1+ε,1
]
,

1√
n

+ 1

nη
for z ∈D>,η ∈ [n−1+ε,1

]
,

1√
nη2 for z ∈D< ∪D>,η ∈ [1,∞),

where g = (〈ei ,Gei〉)2n
i=1 denotes the vector of diagonal entries of the resol-

vent Gz.
For a nonrandom vector y ∈ C

2n with ‖y‖∞ ≤ 1, we have

(5.4)
∣∣〈y,g(η) − iv(η)

〉∣∣≺
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

nη
for z ∈ D<,η ∈ [n−1+ε,1

]
,

1

n
+ 1

(nη)2 for z ∈ D>,η ∈ [n−1+ε,1
]
,

1

nη2 for z ∈ D< ∪D>,η ∈ [1,∞).

As an easy consequence, we can now prove Corollary 2.6.

PROOF OF COROLLARY 2.6. Let y ∈ C
n be an eigenvector of X correspond-

ing to the eigenvalue σ ∈ SpecX with |σ |2 ≤ ρ(S)− τ∗. Then the 2n-vector (0, y)

is contained in the kernel of H σ . Therefore, (2.9) is an easy consequence of (5.3)
(Compare with the proof of Corollary 1.14 in [1]). �

We recall our normalization of the trace, Tr1 = 1, from (1.3).

PROOF OF THEOREM 5.2. Recall from the beginning of Section 3 how our
problem can be cast into the setup of [3]. In the regime z ∈ D<, we follow the
structure of the proof of Theorem 2.9 in [3] and in the regime z ∈ D> the proof
of Proposition 7.1 in [3] until the end of Step 1. In fact, the arguments from these
proofs can be taken over directly with three important adjustments. The flatness
assumption (3.1) is used heavily in [3] in order to establish bounds (Theorem 2.5
in [3]) on the deterministic limit of the resolvent and for establishing the stability
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of the matrix Dyson equation, cf. (5.5) below (Theorem 2.6 in [3]). Since this
assumption is violated in our setup we present appropriately adjusted versions of
these theorems (Proposition 3.2 and Proposition 3.3 in [3]). We will also take over
the proof of the fluctuation averaging result (Proposition 5.5 below) for H z from
[3] since the flatness did not play a role in that proof at all. Note that the η−2-
decay in the spectral parameter regime η ≥ 1 was not covered in [3]. But this
decay simply follows by using the bounds ‖Mz(η)‖max +‖Gz(η)‖max ≤ 2

η
instead

of just ‖Mz(η)‖max + ‖Gz(η)‖max ≤ C along the proof.
As in [3], we choose a pseudo-metric d on {1, . . . ,2n}. Here, this pseudo-metric

is particularly simple,

d(i, j) :=
{

0 if i = j or i = j + n or j = i + n,

∞ otherwise,
i, j = 1, . . . ,2n.

With this choice of d , the matrix H z satisfies all assumptions in [3] apart from the
flatness.

We will now show that as in [3] the resolvent Gz satisfies the perturbed matrix
Dyson equation:

−1 = (
iη1 − Az + S̃

[
Gz(η)

])
Gz(η) + Dz(η).(5.5)

Here, Az is given by (3.3),

D(η) := Dz(η) := −(S̃[Gz(η)
]+ H z − Az)Gz(η),(5.6)

is a random error matrix and S̃ is a slight modification of the operator S defined
in (3.3),

S̃[W ] := E
(
H z − Az)W (

H z − Az)= (
diag(Sw2) T � Wt

21
T ∗ � Wt

12 diag
(
Stw1

)) .(5.7)

Here, � denotes the Hadamard product, that is, for matrices A = (aij )
l
i,j=1 and

B = (bij )
l
i,j=1, we define their Hadamard product through (A � B)ij := aij bij for

i, j = 1, . . . , l. Moreover, we used the conventions from (3.4) for W and intro-
duced the matrix T ∈C

n×n with entries

tij := Ex2
ij .

Note that in contrast to [3] the matrix M solves (3.2), which is given in terms of
the operator S and not S̃ (we remark that S̃ was denoted by S in [3]). As we will
see below, this will not affect the proof, since the entries of the matrix T are of
order N−1, and thus the off-diagonal terms in (5.7) of S̃ are negligible.

We will see that D = Dz is small in the entrywise maximum norm

‖W‖max := 2n
max
i,j=1

|wij |,
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W = (wij )
2n
i,j=1, and use the stability of (5.5) to show that G(η) = Gz(η) ap-

proaches M(η) = Mz(η) defined in (3.5) as n → ∞, that is, we will show that

�(η) := ∥∥G(η) − M(η)
∥∥

max,(5.8)

converges to zero. For simplicity, we will only consider the most difficult regime
z ∈ D< and η ≤ 1 inside the spectrum. The cases z ∈ D> and η ≥ 1 are similar
but simpler and left to the reader. In a more general setup, they have recently been
addressed in [8]. We simply follow the proof in Section 3 of [3] line by line until
the flatness assumption is used. This happens for the first time inside the proof of
Lemma 3.3. We therefore replace this lemma by the following modification.

LEMMA 5.3. Let z ∈ D<. Then∥∥D(η)
∥∥

max ≺ 1√
n
, η ≥ 1.

Furthermore, we have∥∥D(η)
∥∥

maxχ
(
�(η) ≤ n−ε)≺ 1√

nη
, η ∈ [n−1+ε,1

]
.(5.9)

To show Lemma 5.3, we follow the proof of its analog, Lemma 3.3 in [3], where
the flatness assumption as well as the assumptions that the spectral parameter is in
the bulk of the spectrum (formulated as ρ(ζ ) ≥ δ in [3]) are used only implicitly
through the upper bound on M (Theorem 2.5 in [3]). However, the conclusion
of this theorem clearly still holds in our setup because M has the 2 × 2-diagonal
structure (3.5) and the vectors v1, v2 and u are bounded by Proposition 3.2 and
(3.26).

We continue following the arguments of Section 3 of [3] using our Lemma 5.3
above instead of Lemma 3.3 there. The next step that uses the flatness assumption
is the stability of the MDE (Theorem 2.6 in [3]) which shows that the bound (5.9)
also implies

�(η)χ
(
�(η) ≤ n−ε)≺ 1√

nη
.

In our setup, this stability result is replaced by the following lemma whose proof
is postponed until the end of the proof of Theorem 5.2.

LEMMA 5.4 (MDE stability). Suppose that some functions Dab,Gab : R+ →
C

n×n for a, b = 1,2 satisfy (5.5) with

D :=
(
D11 D12
D21 D22

)
, G :=

(
G11 G12
G21 G22

)
,(5.10)
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and the additional constraints

TrG11 = TrG22, ImG = 1

2i

(
G − G∗) is positive definite.(5.11)

There is a constant λ∗ � 1, depending only on P , such that

‖G − M‖maxχ � ‖D‖max + 1

n
, χ := χ

(‖G − M‖max ≤ λ∗
)
,(5.12)

uniformly for all z ∈ D< ∪D>, where M(η) = Mz(η) is defined in (3.5).
Furthermore, there exist eight matrix valued functions R

(k)
ab : R+ → C

n×n with

a, b, k = 1,2, depending only on z and S, and satisfying ‖R(k)
ab ‖∞ � 1, such that∣∣Tr

[
diag(y)(G − M)

]∣∣χ � max
a,b,k=1,2

∣∣Tr
[
diag

(
R

(k)
ab yk

)
Dab

]∣∣
+ ‖y‖∞

(
1

n
+ ‖D‖2

max

)
,

(5.13)

uniformly for all z ∈ D< ∪D> and y = (y1, y2) ∈ C
2n.

The important difference between Theorem 2.6 in [3] and Lemma 5.4 above is
the additional assumption (5.11) imposed on the solution of the perturbed MDE.
This assumption is satisfied for the resolvent of the matrix H z because of the 2×2-
block structure (2.11). In fact, with the block decomposition for G as in (5.10), we
have

G11(η) = iη1

(X − z1)(X − z1)∗ + η21
,

G22(w) = iη1

(X − z1)∗(X − z1) + η21
.

Using Lemma 5.4 in the remainder of the proof of the entrywise local law in Sec-
tion 3 of [3] completes the proof of (5.2).

To see (5.4), we use the fluctuation averaging mechanism, which was first es-
tablished for generalized Wigner matrices with Bernoulli entries in [17]. The fol-
lowing proposition is stated and proven as Proposition 3.4 in [3]. Since the flatness
condition was not used in its proof at all, we simply take it over.

PROPOSITION 5.5 (Fluctuation averaging). Let z ∈ D< ∪ D>, ε ∈ (0,1/2),
η ≥ n−1 and � a nonrandom control parameter such that n−1/2 ≤ � ≤ n−ε . Sup-
pose the local law holds true in the form∥∥G(η) − M(η)

∥∥
max ≺ �.

Then for any nonrandom vector y ∈ C
n with ‖y‖∞ ≤ 1 we have

max
a,b=1,2

∣∣Tr
[
diag(y)Dab

]∣∣≺ �2,
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where Dab ∈C
n×n, a, b = 1,2, are the blocks of the error matrix

D(η) =
(
D11 D12
D21 D22

)
,

which was defined in (5.6).

Using this proposition, the averaged local law (5.4) follows from (5.2) and
(5.13). This completes the proof of Theorem 5.2. �

PROOF OF LEMMA 5.4. We write (5.5) in the 2 × 2-block structure(
diag(iη + Sg2) z1

z1 diag
(
iη + Stg1

))(G11 G12
G21 G22

)

= −
(
1 0
0 1

)

−
(

D11 + (T � Gt
21
)
G21 D12 + (T � Gt

21
)
G22

D21 + (T ∗ � Gt
12
)
G11 D22 + (T ∗ � Gt

12
)
G22

)
,

(5.14)

where we introduced g = (g1, g2) ∈C
2n, the vector of the diagonal elements of G.

We restrict the following calculation to the regime where ‖G(η)−M(η)‖max ≤
λ∗ for some sufficiently small λ∗ in accordance with the characteristic function on
the left-hand side of (5.12). In particular,∥∥g(η) − iv(η)

∥∥∞ ≤ λ∗.(5.15)

Since by (2.4) and (3.5) the identity(
i diag

(
η + Sv2(η)

)
z1

z1 i diag
(
η + Stv1(η)

))−1

= −M(η),

holds we infer from the smallness of ‖g − iv‖max that the inverse of the first matrix
factor on the left-hand side of (5.14) is bounded and satisfies∥∥∥∥∥

(
diag(iη + Sg2) z1

z1 diag
(
iη + Stg1

))−1

+ M

∥∥∥∥∥
max

� ‖g − iv‖max.(5.16)

Using this in (5.14) yields

G +
(

diag(iη + Sg2) z1
z1 diag

(
iη + Stg1

))−1

= MD + O

(
‖g − v‖max‖D‖max + ‖G − M‖2

max + 1

n

)
,

(5.17)



188 J. ALT, L. ERDŐS AND T. KRÜGER

where we applied the simple estimate∥∥(T � Gt
ab

)
Gcd

∥∥
max

� ‖G − M‖2
max + 1

n
‖G − M‖max‖M‖max + 1

n
‖M‖2

max(5.18)

� ‖G − M‖2
max + 1

n
,

which follows from

‖T ‖max �
1

n
.

Thus the diagonal elements g of G satisfy (2.19) with an error term d that is
given by

d = (
(MD)ii

)2n
i=1 + O

(
‖G − M‖2

max + 1

n

)
.(5.19)

Here, we used ‖D‖max � ‖G − M‖max, which follows directly from (5.5) and
(3.2). With (3.21) and (3.22) in Proposition 3.3, the stability result on (2.19), we
conclude that

‖g − iv‖∞ � ‖D‖max + ‖G − M‖2
max + 1

n
,(5.20)

and that ∣∣〈y,g − iv〉∣∣� ∣∣Tr
[
diag(Ry)MD

]∣∣+ ‖D‖2
max + ‖G − M‖2

max + 1

n
,(5.21)

for some bounded R ∈ C
2n×2n and any y ∈ C

2n with ‖y‖∞ ≤ 1, respectively.
Combining (5.16) with (5.17) and (5.20) yields

‖G − M‖max � ‖D‖max + ‖G − M‖2
max + 1

n
.

By choosing λ∗ sufficiently small, we may absorb the quadratic term of the dif-
ference G − M on the right-hand side into the left-hand side and (5.12) follows.
Using (5.12) in (5.21) to estimate the term ‖G − M‖2

max proves (5.13). �

We use a standard argument to conclude from (5.4) the following statement
about the number of eigenvalues λi(z) of H z in a small interval centered at zero.

LEMMA 5.6. Let ε > 0. Then

(5.22) #
{
i : ∣∣λi(z)

∣∣≤ η
}≺ nη,

uniformly for all η ≥ n−1+ε and z ∈ D<.
Furthermore, we have

(5.23) sup
z∈D>

1

|λi(z)| ≺ n1/2.
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PROOF. For the proof of (5.22), we realize that (5.2) implies a uniform bound
on the resolvent elements up to the spectral scale η ≥ n−1+ε . Thus we have

#�η

2η
≤ ∑

i∈�η

η

η2 + λi(z)2 ≤ 2n Im TrGz(η) ≺ n,

where �η := {i : |λi(z)| ≤ η}. Here, we used the normalization of the trace (1.3).
Before proving (5.23), we first establish that

(5.24)
1

|λi(z)| ≺ n1/2,

uniformly for z ∈ D>. We use (5.4) and 〈v(η)〉 ∼ η to estimate

(5.25)
η

η2 + λi(z)2 ≤ 2n Im TrGz(η) ≺ nη + 1

nη2 ,

with the choice η := n−1/2−ε for any ε > 0. This immediately implies |λi(z)|−1 ≺
n1/2+ε , hence (5.24). For the stronger bound (5.23), we use that z → Im TrGz(η)

is a Lipschitz continuous function (with a Lipschitz constant Cη−2 uniformly in z)
and that D> is compact, so the second bound in (5.25) holds even after taking the
supremum over z ∈ D>. Thus

sup
z∈D>

η

η2 + λi(z)2 ≤ 2n sup
z∈D>

Im TrGz(η) ≺ nη + 1

nη2

holds for η := n−1/2−ε . From the last inequality, we easily conclude (5.23). �

5.2. Local inhomogeneous circular law. We start with an estimate on the
smallest singular value of X − z1, which will be used to control the dη-integral in
the second term on the right-hand side of (2.15) for η ≤ n−1+ε . Notice that Propo-
sition 5.7 is the only result in our proof of Theorem 2.5, which requires the entries
of X to have a bounded density.

Adapting the proof of [11], Lemma 4.12, with the bounded density assumption
to our setting, we obtain the following proposition.

PROPOSITION 5.7 (Smallest singular value of X−z1). Under condition (2.3),
there is a constant C, depending only on α, such that

(5.26) P

( 2n

min
i=1

∣∣λi(z)
∣∣≤ u

n

)
≤ Cu2α/(1+α)nβ+1

for all u > 0 and z ∈C.

PROOF. We follow the proof in [11] and explain the differences. Let R1, . . . ,

Rn denote the rows of
√

nX − z1. Proceeding as in [11] but using our normaliza-
tion conventions, we are left with estimating

P

(
n
∣∣〈Ri, y〉∣∣≤ u√

n

)
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uniformly for u and for arbitrary y ∈ C
n satisfying ‖y‖2 = 1/

√
n. We choose j ∈

{1, . . . , n} such that |yj | ≥ 1/
√

n and compute the conditional probability

Pij := P

(
n
∣∣〈Ri, y〉∣∣≤ u√

n

∣∣∣xi1, . . . , x̂ij , . . . , xin

)

=
∫
C

χ

(∣∣∣∣ a

yj

+ w

∣∣∣∣≤ u

yj

√
n

)
fij (w)d2w,

where a is independent of xij . Using (2.3) and |yj | ≥ 1/
√

n, we get

|Pij | ≤
∣∣∣∣π u

yj

√
n

∣∣∣∣2α/(1+α)

‖fij‖1+α ≤ (πu)2α/(1+α)nβ.

Thus, P(n|〈Ri, y〉| ≤ u/
√

n) ≤ (πu)2α/(1+α)nβ , which concludes the proof of
(5.26) as in [11]. �

For the following proof of Theorem 2.5, we recall that, without loss of general-
ity, we are assuming that ρ(S) = 1 which can be obtained by a simple rescaling of
X. Moreover, from (4.1), for τ∗ > 0 and τ ∗ > 1 + τ∗, we recall the notation

D< := {
z ∈ C||z|2 ≤ 1 − τ∗

}
, D> := {

z ∈ C|1 + τ∗ ≤ |z|2 ≤ τ ∗}.
PROOF OF THEOREM 2.5. We start with the proof of part (i) of Theorem 2.5.

We will estimate each term on the right-hand side of (2.15). Let z0 ∈ D<. We
suppress the τ dependence of v1 in this proof but it will always be evaluated at
τ = |z|2.

As suppf ⊂ Dϕ(0), a > 0 and z0 ∈ D< we can assume that the integration
domains of the d2z integrals in (2.15) are D< instead of C. Hence, it suffices to
prove every bound along the proof of (i) uniformly for z ∈D<.

To begin, we estimate the first term in (2.15). Since

log
∣∣det

(
H z − iT 1

)∣∣= 2n logT +
n∑

j=1

log
(

1 + λ2
j

T 2

)

and the integral of �fz0,a over C vanishes as f ∈ C2
0(C), we obtain∣∣∣∣ 1

4πn

∫
C

�fz0,a(z) log
∣∣det

(
H z − iT 1

)∣∣d2z

∣∣∣∣
≤ 1

2π

∫
C

∣∣�fz0,a(z)
∣∣Tr((H z)2)

T 2 d2z.

(5.27)

Here, we used log(1 + x) ≤ x for x ≥ 0. Furthermore, if |z| ≤ 1, then we have

(5.28) Tr
((

H z)2)= 1

n

n∑
i,j=1

(xij − zδij )(xij − z̄δij ) ≤ 2

n

n∑
i,j=1

|xij |2 + 2|z|2 ≺ 1,
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where we applied (1.3) in the first and (5.1) in the last step. Therefore, choos-
ing T := n100, we conclude from (5.27) and (5.28) that the first term in (2.15) is
stochastically dominated by n−1+2a‖�f ‖1.

To control the second term on right-hand side of (2.15), we define

(5.29) I (z) :=
∫ T

0

∣∣Immz(iη) − 〈v1(η)
〉∣∣dη

for z ∈ D<. We will conclude below the following lemma.

LEMMA 5.8. For every δ > 0 and p ∈ N, there is a positive constant C, de-
pending only on δ and p in addition to the model parameters and τ∗, such that

(5.30) sup
z∈D<

EI (z)p ≤ C
nδp

np
.

We now show that this moment bound on I (z) will yield that the second term
in (2.15) is ≺n−1+2a‖�f ‖1. Indeed, for every p ∈ N and δ > 0, using Hölder’s
inequality, we estimate

E

∣∣∣∣∫
C

�fz0,a(z)

∫ T

0

[
Immz(iη) − 〈v1(η)

〉]
dη d2z

∣∣∣∣p
≤
∫
C

· · ·
∫
C

p∏
i=1

∣∣�fz0,a(zi)
∣∣ p∏
i=1

(
EI (zi)

p)1/p d2z1 · · · d2zp(5.31)

≤ C‖�f ‖p
1
nδp+2ap

np
.

Applying Chebyshev’s inequality to (5.31) and using that δ > 0 and p were arbi-
trary, we get∣∣∣∣∫

C

�fz0,a(z)

∫ T

0
Immz(iη) − 〈v1(η)

〉
dη d2z

∣∣∣∣≺ n−1+2a‖�f ‖1.

Hence, the bound on the second term on the right-hand side of (2.15) follows once
we have proven (5.30).

For the third term in (2.15), notice that the integrand is bounded by Cη−2 so it
is bounded by n2aT −1‖�f ‖1. This concludes the proof of (i) of Theorem 2.5 up
to the proof of Lemma 5.8, which is given below.

We now turn to the proof of (ii). We will use an interpolation between the ran-
dom matrix X and an independent Ginibre matrix X̂ together with the well-known
result that a Ginibre matrix does not have any eigenvalues |λ| ≥ 1 + τ∗ with very
high probability. With the help of (5.23), we will control the number of eigenvalues
outside of the disk of radius 1 + τ ∗ along the flow. We fix τ ∗ > 1 + τ∗.
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Let (x̂ij )
n
i,j=1 be independent centered complex Gaussians of variance n−1, that

is, Ex̂ij = 0 and E|x̂ij |2 = n−1. We set X̂ := (x̂ij )
n
i,j=1, that is, X̂ is a Ginibre

matrix. We denote the eigenvalues of X̂ by σ̂1, . . . , σ̂n.
For t ∈ [0,1], we denote the spectral radius of the matrix tS + (1 − t)E by

ρt := ρ(tS + (1 − t)E), where E is the n × n matrix with entries eij := 1/n,
E = (eij )

n
i,j=1. Furthermore, we define

Xt := ρ
−1/2
t

(
tX + (1 − t)X̂

)
, H z,t :=

(
0 Xt − z1(

Xt − z1
)∗ 0

)
for t ∈ [0,1]. The eigenvalues of Xt and H z,t are denoted by σ t

i and λt
k(z), re-

spectively, for i = 1, . . . , n and k = 1, . . . ,2n. The one parameter family t → Xt

interpolates between X and X̂ by keeping the spectral radius of the variance matrix
at constant one.

Note that ‖(Xt − z)−1‖2 = max2n
k=1 |λt

k(z)|−1. We can apply Lemma 5.6 to the
matrices Xt for any t to get

sup
z∈D>

∥∥(Xt − z
)−1∥∥

2 ≺ n1/2

uniformly in t from (5.23). In fact, the estimate can be strengthened to

(5.32) sup
t∈[0,1]

sup
z∈D>

∥∥(Xt − z
)−1∥∥

2 ≺ n1/2

exactly in the same way as (5.24) was strengthened to (5.23), we only need to ob-
serve that the two parameter family (z, t) → Im TrGz,t (η) is Lipschitz continuous
in both variables, where Gz,t denotes the resolvent of H z,t .

Let γ be the circle in C centered at zero with radius 1 + τ∗. For t ∈ [0,1], we
have

N(t) := #
{
i|∣∣σ t

i

∣∣≤ 1 + τ∗
}= n

2π i

∫
γ

Tr
((

Xt − z
)−1)dz,

where Tr : Cn×n →C denotes the normalized trace, that is, Tr1 = 1. Due to (5.32)
N(t) is a continuous function of t . Thus, N(t) is constant as a continuous integer
valued function.

Using Corollary 2.3 of [19], we obtain that #{k||σ̂k| ≥ τ ∗} = 0 with very high
probability. Furthermore, #{k|σ̂k ∈ D>} = 0 with very high probability by (5.32).
Thus,

N(1) = N(0) = n − #{k|σ̂k ∈ D>} − #
{
k||σ̂k| ≥ τ ∗}= n

with very high probability which concludes the proof of (ii), and hence of Theo-
rem 2.5. �
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REMARK 5.9. In the above proof, we showed that ‖H z‖ ≤ C with very high
probability via an interpolation argument using the norm-boundedness of a Gini-
bre matrix and the local law for the entire interpolating family. Robust upper
bounds on the norm of random matrices are typically proven by a simple moment
method. Such approach also applies here. For example, one may follow the proof
of Lemma 7.2 in [18], and estimate every moment E|xij |k by its maximum over
all i, j . The final constant estimating ‖H z‖ will not be optimal due to these crude
bounds, but it will still only depend on s∗ and μm from (2.1), (2.2). This argument
is very robust, in particular it does not use hermiticity.

PROOF OF LEMMA 5.8. To show (5.30), we use the following estimate, which
converts a bound in ≺ into a moment bound. For every nonnegative random vari-
able satisfying Y ≺ 1/n and Y ≤ nc for some c > 0, the pth moment is bounded
by

(5.33) EYp ≤ EYpχ
(
Y ≤ nδ−1)+ (EY 2p)1/2(

P
(
Y > nδ−1))1/2 ≤ C

npδ

np
,

for all p ∈ N, δ > 0 and for some C > 0, depending on c, p and δ.
As a first step in the proof of (5.30), we choose ε ∈ (0,1/2), split the dη integral

in the definition of I (z), (5.29), and consider the regimes η ≤ n−1+ε and η ≥
n−1+ε , separately. For η ≤ n−1+ε , we compute∫ n−1+ε

0
Immz(iη)dη = 1

2n

n∑
i=1

log
(

1 + n−2+2ε

λ2
i

)
.

We recall that λ1, . . . , λ2n are the eigenvalues of H z. Therefore, (5.29) yields∫ T

0

[
Immz(iη) − 〈v1(η)

〉]
dη = 1

n

∑
|λi |<n−l

log
(

1 + n−2+2ε

λ2
i

)

+ 1

n

∑
|λi |≥n−l

log
(

1 + n−2+2ε

λ2
i

)

−
∫ n−1+ε

0

〈
v1(η)

〉
dη(5.34)

+
∫ 1

n−1+ε

[
Immz(iη) − 〈v1(η)

〉]
dη

+
∫ T

1

[
Immz(iη) − 〈v1(η)

〉]
dη.

Here, l ∈ N is a large fixed integer to be chosen later.
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We will estimate each of the terms on the right-hand side of (5.34) individually.
For the first term in (5.34), we compute

E

(
1

n

∑
|λi |≤n−l

log
(

1 + n−2+2ε

λ2
i

))p

≤ E

[
logp

(
1 + n−2+2ε

λ2
n

)
χ
(
λn ≤ n−l)]

≤ CE
[| logλn|pχ

(
λn ≤ n−l)]

for some constant C > 0 independent of n. We compute the expectation directly

E
[| logλn|pχ

(
λn ≤ n−l)]= p

∫ ∞
l logn

P
(
λn ≤ e−t )tp−1 dt

≤ Cnβ+1+2α/(1+α)
∫ ∞
l logn

tp−1e−2αt/(1+α) dt.

Here, we applied (5.26) in Proposition 5.7 with u = e−t n. Choosing l large enough,
depending on α, β and p, we obtain that the right-hand side is smaller than n−p .
This shows the bound (5.30) for the first term in (5.34).

To estimate the second term on the right-hand side of (5.34), we decompose the
sum into three regimes, n−l ≤ |λi | < n−1+ε , n−1+ε ≤ |λi | < n−1/2 and n−1/2 ≤
|λi |.

For the first regime, we use (5.22) with η = n−1+ε and log(1 + n−2+2ε+l) ≤
C logn to get

(5.35)
1

n

∑
|λi |∈[n−l ,n−1+ε]

log
(

1 + n−2+2ε

λ2
i

)
≤ C logn

n
#
{
i : |λi | ≤ n−1+ε}≺ nε

n
.

As this sum is clearly polynomially bounded in n, we can apply (5.33) to conclude
that the first regime of the second term in (5.34) fulfills the moment bound in
(5.30).

For the intermediate regime, due to the symmetry Spec(H z) = −Spec(H z), we
only consider the positive eigenvalues. We decompose the interval [n−1+ε, n−1/2]
into dyadic intervals of the form [ηk, ηk+1], where ηk := 2kn−1+ε . Thus, we obtain

1

n

∑
|λi |∈[n−1+ε,n−1/2]

log
(

1 + n−2+2ε

λ2
i

)

≤ 2

n

N∑
k=0

∑
λi∈[ηk,ηk+1]

log
(

1 + n−2+2ε

λ2
i

)
≺ nε

n
,

(5.36)

where we introduced N = O(logn) in the first step. Moreover, we used the mono-
tonicity of the logarithm, log(1 + x) ≤ x in the last step and the following conse-
quence of (5.22):

#
{
i : λi ∈ [ηk, ηk+1]}≤ #

{
i : |λi | ≤ ηk+1

}≺ nε2k+1.
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The left-hand side of (5.36) is trivially bounded by log 2. Therefore, applying
(5.33) to the left-hand side of (5.36), we conclude that it satisfies the moment
estimate in (5.30).

For estimating the second term in (5.34) in the third regime, employing |λi | ≥
n−1/2 and log(1 + x) ≤ x, we obtain

(5.37)
1

n

∑
|λi |≥n−1/2

log
(

1 + n−2+2ε

λ2
i

)
≤ 1

n

∑
|λi |≥n−1/2

log
(
1 + n−1+2ε)≤ 2n2ε

n
.

Here, we used that H z has 2n eigenvalues (counted with multiplicities). This de-
terministic bound and (5.33) imply that the moments of this sum are bounded by
the right-hand side in (5.30).

Combining the estimates in these three regimes, (5.35), (5.36) and (5.37), we
conclude that the second term in (5.34) satisfies the moment bound in (5.30).

We now estimate the third term on the right-hand side of (5.34). Since v ∼ 1
for z ∈ D< and η ≤ 1 by (3.10), the pth power of the third term is immediately
bounded by the right-hand side of (5.30).

To bound the fourth and fifth term in (5.34), we note that Immz(iη) = 〈g(η)〉
for η > 0. Recalling the choice T = n100, we obtain∫ 1

n−1+ε

∣∣Immz(iη) − 〈v1(η)
〉∣∣dη ≺ nε

n
,

∫ T

1

∣∣Immz(iη) − 〈v1(η)
〉∣∣dη ≺ 1

n

from the first and third regime in (5.4) with y = 1. As the integrands are bounded
by n2 trivially (5.33) yields that the moments of the fourth and fifth term in (5.34)
are bounded by the right-hand side in (5.30).

Since ε ∈ (0,1/2) was arbitrary, this concludes the proof of (5.30). �

APPENDIX A: EXISTENCE AND UNIQUENESS

In this section, we prove Lemma 2.2.
The existence and uniqueness of the solution of (2.4) will be a consequence of

the existence and uniqueness of the matrix Dyson equation

(A.1) −M−1(η) = iη1 − A + S
[
M(η)

]
.

Note that A ∈ C
2n×2n and S : C2n×2n →C

2n×2n were defined in (3.3).
The matrix Dyson equation, (A.1), has a unique solution under the constraint

that the imaginary part

ImM := 1

2i

(
M − M∗)

is positive definite. This was established in [24]. In the context of random matrices,
(A.1) was studied in [3].
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In the following proof, for vectors a, b, c, d ∈ C
n, we will denote the 2n × 2n

matrix having diagonal matrices with diagonals a, b, c, d on its top-left, top-right,
lower-left and lower-right n × n blocks, respectively, by(

a b

c d

)
:=
(

diaga diagb

diag c diagd

)
∈ C

2n×2n.

PROOF OF LEMMA 2.2. We show that there is a bijection between the solu-
tions of (A.1) with positive definite imaginary part ImM and the positive solutions
of (3.6).

We remark that (A.1) implies that there are functions a, b, c, d : R+ →C
n such

that for all η > 0 we have

(A.2) M(η) =
(
a(η) b(η)

c(η) d(η)

)
.

First, we show that Im diagM is a positive solution of (3.6) if M satisfies (A.1)
and ImM is positive definite. Due to (A.2), multiplying (A.1) by M yields that
(A.1) is equivalent to

−1 = iηa + aSd + bz̄, 0 = iηb + za + bSta,

−1 = iηd + dSta + zc, 0 = iηc + z̄d + cSd.
(A.3)

Solving the second and fourth relations in (A.3) for b and c, we obtain

(A.4) b = − za

iη + Sta
, c = − z̄d

iη + Sd
.

Plugging the first relation in (A.4) into the first relation in (A.3) and the second
relation in (A.4) into the third relation in (A.3) and dividing the results by a and d ,
respectively, implies

−1

a
= iη + Sd − |z|2

iη + Sta
, − 1

d
= iη + Sta − |z|2

iη + Sd
.

Therefore, if a and d are purely imaginary then (Ima, Imd) = −i(a, d) will fulfill
(3.6).

In order to prove that a and d are purely imaginary, we define

M̃ :=
(
ã(η) b̃(η)

c̃(η) d̃(η)

)
:=
⎛⎜⎝−ā

z

z̄
b̄

z̄

z
c̄ −d̄

⎞⎟⎠ .

The goal is to conclude M = M̃ , and hence a = −ā and d = −d̄ , from the unique-
ness of the solution of (A.1) with positive definite imaginary part. Since the re-
lations (A.3) are fulfilled if a, b, c, d are replaced by ã, b̃, c̃, d̃ , respectively, M̃
satisfies (A.1). For j = 1, . . . , n, we define the 2 × 2 matrices

Mj :=
(
aj bj

cj dj

)
, M̃j :=

(
ãj b̃j

c̃j d̃j

)
.
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Note that ImM is positive definite if and only if ImMj is positive definite for
all j = 1, . . . , n. Similarly, the positive definiteness of ImM̃ is equivalent to the
positive definiteness of Im M̃j for all j = 1, . . . , n. We have

ImMj =
⎛⎜⎝ Imaj

1

2i
(bj − c̄j )

1

2i
(cj − b̄j ) Imdj

⎞⎟⎠ ,

Im M̃j :=
⎛⎜⎝ Imaj

z

2iz̄
(b̄j − cj )

z̄

2iz
(c̄j − bj ) Imdj

⎞⎟⎠ .

As Tr Im M̃j = Tr ImMj and det Im M̃j = det ImMj for all j = 1, . . . , n we get
that M̃ is a solution of (A.1) with positive definite imaginary part ImM̃ . Thus,
the uniqueness of the solution of (A.1) implies M = M̃ as well as a = −ā and
d = −d̄ .

Moreover, since

ImM =
(

Ima (b − c̄)/(2i)
(c − b̄)/(2i) Imd

)
is positive definite we have that Ima > 0 and Imd > 0. Hence, (Ima, Imd) is a
positive solution of (3.6).

Conversely, let v = (v1, v2) ∈ C
2n be a solution of (3.6) satisfying v > 0 and u

be defined as in (3.25). Because of (3.25), we obtain that M = Mz, defined as in
(3.5), is a solution of (A.1). To conclude that ImM is positive definite, it suffices
to show that det ImMj > 0 for all j = 1, . . . , n with

Mj :=
(

i(v1)j −zuj

−z̄uj i(v2)j

)
as Tr ImMj = (v1)j + (v2)j > 0. Since zuj − z̄uj = 0 for all j = 1, . . . , n by
(3.25) we obtain

det ImMj = (v1)j (v2)j − 1

4
|zuj − z̄uj |2 = (v1)j (v2)j > 0.

Therefore, there is a bijection between the solutions of (A.1) with positive def-
inite imaginary part and the positive solutions of (3.6). Appealing to the existence
and uniqueness of (A.1) proved in [24] concludes the proof of Lemma 2.2. �

APPENDIX B: CONTRACTION-INVERSION LEMMA

PROOF OF LEMMA 3.7. The bounds (3.55) imply that 1 − AB is invertible
and ∥∥(1 − AB)−1∥∥

2 ≤ 1

c1η
.
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The main point of this lemma is to show that (1 − AB)−1p can be bounded in-
dependently of η for p satisfying (3.58). We introduce h := (1 − AB)−1p. Thus,
(3.59) is equivalent to ‖h‖2 ≤ C‖p‖2 for some C > 0, which depends only on
c1, c2, c3 and ε. Without loss of generality, we may assume that ‖h‖2 = 1. We
decompose

(B.1) h = αb− + βb+ + γx,

where α = 〈b−,h〉, β = 〈b+,h〉 and x ⊥ b± satisfying ‖x‖2 = 1, thus |α|2 +
|β|2 +|γ |2 = 1. Since B = B∗, we have b+ ⊥ b− and Bx ⊥ b±. Hence, we obtain

‖ABh‖2
2 ≤ ‖Bh‖2

2 ≤ |α|2‖B‖2 +|β|2‖B‖2 +|γ |2‖Bx‖2
2 ≤ 1−ε+ε

(|α|2 +|β|2),
where we used ‖A‖2 ≤ 1, ‖B‖2 ≤ 1 and ‖Bx‖2 ≤ 1−ε in the last step. Therefore,
if |α|2 + |β|2 ≤ 1 − δ for some δ > 0 to be determined later, then ‖ABh‖2 ≤√

1 − εδ‖h‖2 ≤ (1 − εδ/2)‖h‖2, and thus

(B.2) 1 = ‖h‖2 ≤ 2

εδ
‖p‖2.

For the rest of the proof, we assume that |α|2 + |β|2 ≥ 1 − δ. In the regime,
where |α| is relatively large, we compute 〈b−, (1 − AB)h〉, capitalize on the pos-
itivity of 〈b−, (1 − AB)b−〉 and treat all other terms as errors. In the opposite
regime, where |β| is relatively large, we use the positivity of 〈b+, (1 − AB)b+〉.

Using (B.1), we compute

〈b−,p〉 = 〈
b−, (1 − AB)h

〉
= α

(
1 + ‖B‖2〈b−,Ab−〉)− β‖B‖2〈b−,Ab+〉 − γ 〈b−,ABx〉.

From ‖A‖2 ≤ 1, the hermiticity of A, 〈b−,Bx〉 = 0, (3.57) and (3.56), we deduce∣∣〈b−,Ab−〉∣∣≤ 1,
∣∣〈b−,Ab+〉∣∣= ∣∣〈b− + Ab−,b+〉∣∣≤ c2η,∣∣〈b−,ABx〉∣∣= ∣∣〈b− + Ab−,Bx〉∣∣≤ c2η(1 − ε).

Employing these estimates, ‖B‖2 ≤ 1− c1η and (3.58), together with |γ |2 ≤ δ, we
obtain

(B.3) c3‖p‖2 ≥ |α|c1 − |β|c2 − √
δc2(1 − ε)

after dividing through by η > 0. If |α|c1 ≥ c2|β| + √
δc2(1 − ε) + δεc3/2 then we

obtain (B.2).
Therefore, it suffices to show (B.2) in the regime

(B.4) |γ |2 ≤ δ, |α|c1 ≤ c2|β| + √
δc2(1 − ε) + δεc3/2.

For this regime, we use (B.1) and obtain

〈b+,p〉 = 〈
b+, (1 − AB)h

〉
= β

(
1 − ‖B‖2〈b+,Ab+〉)− α‖B‖2〈b+,Ab−〉

− γ 〈b+,ABx〉.
(B.5)
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We employ (3.56), (3.57), the hermiticity of A and 〈b−,b+〉 = 0 to obtain

〈b+,Ab+〉 ≤ 1 − ε,
∣∣〈b+,ABx〉∣∣≤ 1 − ε,∣∣〈b+,Ab−〉∣∣= ∣∣〈b+,b− + Ab−〉∣∣≤ c2η.

(B.6)

Applying (B.6) to (B.5) yields

‖p‖2 ≥ ∣∣〈b+,p〉∣∣
≥ |β|ε − |α|c2η − |γ |(1 − ε)

≥ |β|ε − |α|εc1

2c2
− √

δ(1 − ε),

(B.7)

where we used the assumption η ≤ εc1/2c2
2. Since |α|c1/c2 ≤ |β| + O(

√
δ) from

(B.4), we obtain that ‖p‖2 ≥ |β|ε/3 for any δ ≤ δ0(c1, c2, c3, ε) sufficiently small.
Furthermore, |α|2 +|β|2 ≥ 1 − δ and the fact that |β| is large compared with |α| in
the sense (B.4) guarantee that |β|2 ≥ 1

3 [1 + (c2/c1)
2]−1, if δ is sufficiently small.

In particular, ‖p‖2 ≥ εδ/2 can be achieved with a small δ, that is, (B.2) holds true
in the regime (B.4) as well. This concludes the proof of Lemma 3.7. �

LEMMA B.1. (i) Uniformly for z ∈ D< ∪D> and η > 0, we have

(B.8) ‖F‖2→∞ � 1, ‖T F‖2→∞ � 1, ‖FT ‖2→∞ � 1.

(ii) If w /∈ Spec(T F ) ∪ {0} and ‖(w1 − T F )−1y‖2 � ‖y‖2 for some y ∈ C
2n

then

(B.9)
∥∥(w1 − T F )−1y

∥∥∞ � 1

|w|‖y‖∞.

A similar statement holds true for (w̄1 − FT )−1 = [(w1 − T F )−1]∗.
(iii) For every η∗ > 0, depending only on τ∗ and the model parameters, such

that ∥∥(1 − T F )−1Q
∥∥

2 � 1,

1 − ‖F‖2 � η,

‖f − + T f −‖2 � η,

‖f −‖∞ � 1

(B.10)

uniformly for all η ∈ (0, η∗] and z ∈ D<, we have

(B.11)
∥∥((1 − T F )−1Q

)∗∥∥∞ � 1

uniformly for η ∈ (0, η∗] and z ∈ D<. Here, Q denotes the orthogonal projection
onto the subspace f ⊥−, that is, Qy := y − 〈f −,y〉f − for every y ∈ C

2n.
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The estimate (B.9) is proved similarly as (5.28) in [2].

PROOF OF LEMMA B.1. As ‖So‖2→∞ � 1 by (2.1), we obtain from Proposi-
tion 3.2, and (3.26)

‖F‖2→∞ ≤ ∥∥V −1∥∥∞‖So‖2→∞
∥∥V −1∥∥

2 =
∥∥∥∥uv

ṽ

∥∥∥∥∞‖So‖2→∞ � 1

uniformly for all η > 0 and z ∈ D< ∪ D>. This proves the first estimate in (B.8).
From Lemma 3.6(i), we conclude the second and the third estimate in (B.8).

We set x := (w1 − T F )−1y. By assumption there is C ∼ 1 such that

‖x‖2 ≤ C‖y‖2 ≤ C‖y‖∞.

Moreover, since wx = T Fx + y we obtain from the previous estimate

|w|‖x‖∞ ≤ ‖T Fx‖∞ + ‖y‖∞ ≤ (‖T F‖2→∞C + 1
)‖y‖∞.

Using the second estimate in (B.8), this concludes the proof of (B.9). The statement
about (w̄1 − FT )−1 follows in the same way using the third estimate in (B.8)
instead of the second.

For the proof of (B.11), we remark that the first condition in (B.10) implies that

(B.12)
∥∥((1 − T F )−1Q

)∗∥∥
2 = ∥∥(1 − T F )−1Q

∥∥
2 � 1.

The second assumption in (B.10) yields

(B.13)
∥∥(1 − T F )−1∥∥

2 � η−1.

Take y ∈C
2n arbitrary. We get

[T ,Q]y = 〈T f − + f −,y〉f − − 〈f −,y〉(T f − + f −),

where [T ,Q] = T Q − QT denotes the commutator of T and Q. Therefore,

(B.14)
∥∥[T ,Q]∥∥2 ≤ 2‖f − + T f −‖2 � η

by the third condition in (B.10). We set x := Q(1 − FT )−1y and compute

x = FT x + Qy − F [T ,Q](1 − FT )−1y,

where we commuted 1 − FT and Q and used that F and Q commute. Hence,
using ‖x‖2 � ‖y‖2 � ‖y‖∞ by (B.12), ‖Q‖∞ ≤ 1 + ‖f −‖∞, (B.14) and (B.13),
we obtain

‖x‖∞ �
(‖FT ‖2→∞ + 1 + ‖f −‖∞ + ‖F‖2→∞

)‖y‖∞ � ‖y‖∞.

Here, we used the fourth assumption in (B.10) and (B.8). Notice that the η−1 factor
from the trivial estimate (B.13) was compensated by the smallness of the commu-
tator [T ,Q] which was a consequence of the third assumption in (B.10). Since
x = ((1 − T F )−1Q)∗y this concludes the proof of (B.11). �
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PROOF OF LEMMA 3.5. We first prove that

(B.15) ‖f − − a‖2 = O(η)

uniformly for η ≤ 1 and τ ∈ [0,1 − τ∗]. To that end, we introduce the auxiliary
operator:

A := ‖F‖21 + F .

Therefore, we obtain from Ff − = −‖F‖2f − and (3.45)

Af − = 0, Aa = O(η).

Let Q be the orthogonal projection onto the subspace f ⊥− orthogonal to f −, that is,
Qy := y − 〈f −,y〉f − for y ∈ C

2n. We then obtain AQa = O(η) which implies
Qa = O(η) as A is invertible on f ⊥− and ‖(A|f ⊥−)−1‖2 ∼ 1 by (3.38). We infer
(B.15).

For the proof of (3.46), we follow the proof of (B.11), replace T by −1 and use
Lemma 3.4(i) instead of the second and fourth condition in (B.10). �
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