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Randomly evolving systems composed by elements which interact
among each other have always been of great interest in several scientific
fields. This work deals with the synchronization phenomenon that could be
roughly defined as the tendency of different components to adopt a com-
mon behavior. We continue the study of a model of interacting stochastic
processes with reinforcement that recently has been introduced in [Crimaldi
et al. (2016)]. Generally speaking, by reinforcement we mean any mechanism
for which the probability that a given event occurs has an increasing depen-
dence on the number of times that events of the same type occurred in the
past. The particularity of systems of such interacting stochastic processes is
that synchronization is induced along time by the reinforcement mechanism
itself and does not require a large-scale limit. We focus on the relationship
between the topology of the network of the interactions and the long-time
synchronization phenomenon. After proving the almost sure synchroniza-
tion, we provide some CLTs in the sense of stable convergence that establish
the convergence rates and the asymptotic distributions for both convergence
to the common limit and synchronization. The obtained results lead to the
construction of asymptotic confidence intervals for the limit random variable
and of statistical tests to make inference on the topology of the network.
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1. Introduction. The stochastic evolution of systems composed by elements
which interact among each other has always been of great interest in several scien-
tific fields: in neuroscience the brain is an active network where billions of neurons
interact in various ways in the cellular circuits; many studies in biology focus on
the interactions between different subsystems; social sciences and economics deal
with individuals that take decisions under the influence of other individuals, and
also in engineering and computer science some research questions regard dynamic
agents that form a complex pattern of interactions (e.g., [8, 38, 44]). In all these
frameworks, an usual phenomenon is the synchronization that could be roughly
defined as the tendency of different components to adopt a common behavior (we
refer to [7] for a detailed and well structured survey on this topic, rich of exam-
ples and references). Synchronization has been shown to be of special relevance
in neural systems: the study of synchronization in neuronal networks of various
level, especially dealing with the role played by the network topology, is crucial
for the understanding of the brain functional activities. In social life, preferences
and beliefs are partly transmitted by means of various forms of social interaction
and opinions are driven by the tendency of individuals to become more similar
when they interact. Hence, a collective phenomenon reflects the result of the inter-
actions among different individuals. The underlying idea is that individuals have
opinions that change according to the influence of other individuals giving rise to
a sort of collective behavior, sometimes grouping together a part of the whole pop-
ulation with similar social attributes. Moreover, in economics, simple rules lead
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to interesting collective behaviors and synchronization is one of them, since some
of the activities done by individual agents can become correlated in time due to
their interaction pattern. For example, the analysis of the International Trade Net-
work (ITN), also known as the World Trade Web (WTW), which is the network
related to the trade volume between countries, has revealed a tight relationship be-
tween the topology of the ITN and the dynamics of the Gross Domestic Products
(GDPs) of the countries. Due to globalization effects, all economies are strongly
correlated and they will tend to follow a common trend (what are usually called
economic cycle). We can say that economies are synchronized in terms of the
GDP. Finally, consensus problems, understood as the ability of a set of interact-
ing dynamic agents to reach a unique and common value in an asymptotic stable
state, play a crucial role also in engineering and computer science, particularly
in automata theory. Therefore, it is clear that the main goals of different research
areas are twofold: (i) to figure out whether and when a (complete or partial) syn-
chronization in a dynamical system of agents can emerge out of initially different
statuses and (ii) to understand the interplay between the network topology of the
interactions among the agents and the dynamics followed by the agents.

In this paper, we continue the study of synchronization for a model of interact-
ing stochastic processes with reinforcement that recently has been introduced in
[21]. Generally speaking, by reinforcement in a stochastic dynamic we mean any
mechanism for which the probability that a given event occurs has an increasing
dependence on the number of times that events of the same type occurred in the
past. The main reason of the attention devoted to reinforced stochastic processes
is concerned with their dynamics, which is suitable to describe random phenom-
ena in different scientific areas and can be easily implemented in several fields of
application (see, e.g., [41] for a general survey). Our study is motivated by the
attempt of understanding the role of the reinforcement mechanism in synchroniza-
tion phenomena.

More precisely, a Reinforced Stochastic Process (RSP) can be defined as a
stochastic process in which, along the time-steps, different events occur in such
a way that for each event the greater the probability of occurrence at a cer-
tain time, the greater the probability of occurrence at the next time. Formally,
given a finite set S, for any x in S, we have an S-dimensional stochastic process
X = [X(x) : x ∈ S] such that each component X(x) = (Xn(x))n≥1 is a stochastic
process with values in {0,1} and, for each n ≥ 0,

∑
x∈S Xn(x) = 1 and

(1.1) P
(
Xn+1(x) = 1|Z0(x),X1(x), . . . ,Xn(x)

)= Zn(x),

where

(1.2) Zn(x) = (1 − rn−1)Zn−1(x) + rn−1Xn(x)

with 0 ≤ rn−1 < 1 and Z0(x) possibly random. Indeed, the process X(x) describes
the sequence of occurrences of the “event” x ∈ S and, if at time n, the “event” x has



3790 G. ALETTI, I. CRIMALDI AND A. GHIGLIETTI

taken place, then the probability of its occurrence at time (n+ 1) increases. There-
fore, the larger Zn−1(x), the higher the probability of having Zn(x) greater than
Zn−1(x). This “self-reinforcing property”, also known as “preferential attach-
ment rule”, is a key feature governing the dynamics of many biological, economic
and social systems (e.g., [41]). The best known example of reinforced stochastic
process is the standard Eggenberger–Pòlya urn [26, 36], which has been widely
studied and generalized (some recent variants can be found in [3, 4, 6, 11, 12, 14,
16, 19, 27, 28, 31]). In the standard setting, an urn contains a red and b white balls
and, at each discrete time, a ball is drawn out from the urn and then it is put again
inside the urn together with one additional ball (or, more generally, with an addi-
tional constant number of balls) of the same color. In this case, we have S = {0,1}
with 1 representing the color red and 0 the color white and for Zn = Zn(1) and
Xn = Xn(1), we have

Zn = a +∑n
m=1 Xm

a + b + n
.

It is immediate to verify that

Z0 = a

a + b
and Zn+1 = (1 − rn)Zn + rnXn+1

with rn = (a + b + n + 1)−1. As shown in [21] and as we will see in this paper,
the asymptotic behavior of rn is essential to determine the results presented in
this paper. To this purpose, here we highlight that for the Eggenberger–Pólya urn
we have limn nrn = 1. We refer to [21], Example 1.2, for a meaningful case of
reinforced stochastic process of the type (1.1)–(1.2) where limn nγ rn = c with γ <

1 and c ∈ (0,+∞). This example concerns an opinion dynamics in an evolving
population, modeled by a graph evolving according to preferential attachment [1,
38, 44].

Whenever S has only two elements, say S = {0,1}, there are only two rele-
vant variables, that is, Xn = Xn(1) and Zn = Zn(1), since Xn(0) = 1 − Xn(1)

and Zn(0) = 1 − Zn(1). On the other hand, if S has more than two elements, for
each x ∈ S, we can consider an equivalent two-dimensional reinforced stochas-
tic processes X′ = [X′(0),X′(1)], with X′(1) = X(x), Z′(1) = Z(x), X′(0) =∑

y∈S,y �=x X(y) and Z′(0) =∑y∈S,y �=x Z(y). Therefore, from now on we assume
S = {0,1}.

This paper deals with a system of N reinforced stochastic processes that in-
teract according to a given set of relationships among them. More precisely, sup-
pose to have a directed graph G = (V ,E) with V = {1, . . . ,N} as the set of ver-
tices and E ⊆ V × V as the set of edges. Each edge (h, j) ∈ E represents the
fact that the vertex h has a direct influence on the vertex j . We also associate a
weight wh,j ≥ 0 to each pair (h, j) ∈ V × V in order to quantify how much h

can influence j . A weight equal to zero means that the edge is not present. We
set W = [wh,j ]h,j∈V ×V (weighted adjacency matrix) and we assume the weights
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to be normalized so that
∑N

h=1 wh,j = 1 for each j ∈ V . Hence, wj,j represents
how much the vertex j is influenced by itself and

∑N
h=1,h�=j wh,j ∈ [0,1] quanti-

fies how much the vertex j is influenced by the other vertices of the graph. Finally,
we suppose to have at each vertex j a reinforced stochastic process described by
Xj = (Xn,j )n≥1 such that, for each n ≥ 0, the random variables {Xn+1,j : j ∈ V }
take values in {0,1} and are conditionally independent given Fn with

(1.3) P(Xn+1,j = 1|Fn) =
N∑

h=1

wh,jZn,h,

where, for each h ∈ V ,

(1.4) Zn,h = (1 − rn−1)Zn−1,h + rn−1Xn,h

with 0 ≤ rn < 1, Z0,h random variables with values in [0,1] and Fn = σ(Z0,h :
h ∈ V ) ∨ σ(Xk,j : 1 ≤ k ≤ n, j ∈ V ).

As an example, we can imagine that G = (V ,E) represents a network of N

individuals that at each time-step have to make a choice between two possible al-
ternatives {0,1}. We can formalize this setting, assuming to have at each vertex j

an urn with red and white balls. The color red represents the choice 1, the propor-
tion Zn,j of red balls at time n in the urn at vertex j represents the inclination of
the individual j to adopt the choice 1 at time n and the random variable Xn,j rep-
resents the choice of j at time n. It is natural to assume a self-reinforcing property
for the own inclination of each individual as in (1.4) and, moreover, it is natural
to assume that the probability that the individual j will make the choice 1 at time
(n + 1) is given by a convex combination of j ’s own inclination and the inclina-
tion of the vertices that have an influence on j according to their weights wk,j

as in (1.3). Another example is given by the interacting version of [21], Example
1.2, which could be interpreted as a network of different interacting populations or
groups within a given population in the same spirit as in [17].

As already said at the beginning, our study deals with the synchronization
phenomenon. More specifically, we prove the almost sure synchronization of the
stochastic processes {(Zn,j )n : 1 ≤ j ≤ N} positioned at the vertices. The particu-
larity of systems of interacting reinforced stochastic processes is that synchroniza-
tion is induced along time by the reinforcement mechanism itself (independently
of the fixed size N of the network), and so it does not require a large-scale limit
(i.e., the limit for N → +∞), which is usual in statistical mechanics for the study
of interacting particle systems. In particular, we focus on the relationship between
the topology of the interactions and the long-time synchronization phenomenon:
indeed, we show that the eigenvalues and eigenvectors of the weighted adjacency
matrix W impact on the synchronization phenomenon. Our theoretical results pro-
vide the rates of synchronization and the second-order asymptotic distributions, in
which the asymptotic variances have been expressed as functions of the param-
eters governing the reinforced dynamics and the eigenstructure of the weighted
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adjacency matrix. These results lead to the construction of asymptotic confidence
intervals for the common limit random variable of the processes (Zn,j )n and to
the design of statistical tests to make inference on the topology of the interaction
network given the observation of the processes (Zn,j )n.

Regarding the literature review, we recall that interacting two-colors urns have
been considered in [32, 33]. Their main results are proven when the probability
of drawing a ball of a certain color is proportional to ρk , where ρ > 1 and k is
the number of balls of this color. The interaction is of the mean-field type. More
precisely, the interacting reinforcement mechanism is the following: at each step
and for each urn draw a ball from either all the urns combined with probability p,
or from the urn alone with probability 1 − p, and add a new ball of the same color
to the urn. The higher the interacting parameter p, the more memory is shared be-
tween the urns. The main results can be informally stated as follows: if p ≥ 1/2,
then all the urns fixate on the same color after a finite time, and if p < 1/2, then
some urns fixate on a unique color and others keep drawing both colors. In [22, 25,
43], the authors consider interacting urns (precisely, [22] and [25] deal with Pólya
urns and [43] regards Friedman’s urns) in which the interaction can be defined
again as of the mean-field type, but the reinforcement scheme is different from the
previous one: indeed, the urns interact among each other through the average com-
position in the entire system, tuned by the interaction parameter α, and the proba-
bility of drawing a ball of a certain color is proportional to the number of balls of
that color, rather than to its exponential, leading to quite different results. Synchro-
nization and central limit theorems for the urn proportions have been proven for
different values of the tuning parameter α, providing different convergence rates
and asymptotic variances. In [21], the same mean-field interaction is adopted, but
the analysis has been extended to the general class of reinforced stochastic pro-
cesses, providing central limit theorems also in functional form. Differently from
these works, the model proposed in [2] concerns with a system of generalized
Friedman’s urns with irreducible mean replacement matrices based on a general
interaction structure, which includes the mean-field interaction as a special case.
In particular, this interaction acts as follows: the probability to sample a certain
color in each urn is a convex combination of the urn proportions of the entire sys-
tem, and the weights of such combinations are gathered in the interacting matrix.
Combining the information provided by the mean replacement matrices and by the
interacting matrix, first- and second-order asymptotic results of the urn proportions
have been established, from which synchronization phenomenon has not been ob-
served. Moreover, the structure of the interacting matrix allows a decomposition
in subsystems of urns evolving with different behaviors.

The present work have some issues in common with [21, 22] and [2], but at the
same time some significant differences can be pointed out. In particular, we share
with [2] a general interacting framework driven by the interacting matrix (here
called weighted adjacency matrix). However, here we mainly consider irreducible
interacting matrices, and hence the decomposition of the system in subgroups is
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only sketched. Moreover, with respect to [2], we mainly study a class of stochas-
tic processes for which we obtain synchronization toward a random variable. This
class does not include the generalized Friedman’s urns studied in [2]; while it in-
cludes urn models with not-irreducible mean replacement matrices, as Pólya urns.
With [21], we share the main class of reinforced stochastic processes considered,
which contains Pólya’s urns also studied in [22]. However, with respect to [21, 22],
we generalize the form of interaction since here we deal with a general weighted
adjacency matrix instead of just the mean-field interaction. Indeed, the intent of
this work is different from the one of the above papers: after proving synchroniza-
tion and central limit theorems for some interesting cases, we focus on analyzing
the interplay between the topology of the interaction network and the reinforced
dynamics of the stochastic processes positioned at the vertices of the network,
providing some statistical tools. On the other hand, we do not provide central limit
theorems in functional form as in [21] (although it is possible to do it combining
the results given here and the methods illustrated in [21]) and we do not cover some
cases considered in [21, 22]. Also these cases are interesting for synchronization
phenomena, but we decided to not include them in this paper since, as we will
explain more deeply in the sequel, they lead to quite different asymptotic results
and so we think that it is more appropriate to possibly deal with them separately.

Finally, we mention that in literature we can find other works concerning mod-
els of interacting urns that consider interacting mechanisms different from ours
and are generally not focused on synchronization. For instance, the model studied
in [37] describes a system of interacting units, modeled by Pólya urns, subject to
perturbations and which occasionally break down. The authors consider a system
of interacting Pólya urns arranged on a d-dimensional lattice. Each urn contains
initially b black balls and 1 white ball. At each time step, an urn is selected and a
ball is drawn from it: if the ball is white, a new white ball is added to the urn; if
it is black a “fatal accident” occurs and the urn becomes unstable and it “topples”
coming back to the initial configuration. The toppling mechanism involves also
the nearby urns. In [40], a class of discrete time stochastic processes generated by
interacting systems of reinforced urns is introduced and its asymptotic properties
analyzed. Given a countable set of urns, at each time a ball is independently sam-
pled from every urn in the system and in each urn a random number of balls of
the same color of the extracted ball is added. The interaction arises since the num-
ber of added balls depends also on the colors generated by the other urns as well
as on a common random factor. In [15], the authors consider a network of inter-
acting urns displaced over a lattice. Every urn is Pólya-like and its reinforcement
matrix is not only a function of time (time contagion) but also of the behavior of
the neighboring urns (spatial contagion), and of a random component, which can
represent either simple fate or the impact of exogenous factors. In this way, a non-
trivial dependence structure among the urns is built, and the given construction
is used to model different phenomena characterized by cascading failures such as
power grids and financial networks. In [9, 13, 34], a graph-based model, with urns
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at each vertex and pair-wise interactions, is considered. Given a finite connected
graph, place a bin at each vertex. Two bins are called a pair if they share an edge.
At discrete times, a ball is added to each pair of bins. In a pair of bins, one of the
bins gets the ball with probability proportional to its current number of balls raised
by some fixed power α > 0. The authors characterize the limiting behavior of the
proportion of balls in the bins for different values of the parameter α.

The rest of the paper is organized as follows. In Section 2, we introduce the no-
tation, we describe the model and the leading assumptions. Section 3 is concerned
with the main results established in the paper, while the relative proofs are gath-
ered in Section 4. Some meaningful examples of reinforced stochastic processes
with a network-based interaction are described in Section 5, in order to apply the
theoretical results provided in the paper to some practical cases and to establish
the corresponding asymptotic behaviors. In Section 6, we illustrate some statisti-
cal tools coming from the obtained theoretical results. In particular, we propose
an inferential procedure to test the structure of the network which the interaction
between the reinforced stochastic processes is based on. Finally, Section 7 is con-
cerned with some possible variants of the model here presented. For the reader’s
convenience, the paper is also enriched by an exhaustive Appendix containing nec-
essary definitions and technical results.

2. The model. Throughout the paper, we will adopt the following notation:

(a) Given a complex number z, Re(z) and Im(z) denote its real and imaginary
parts, respectively, z denotes its conjugate and |z| its modulus.

(b) If A is a matrix with complex entries, then A denotes its conjugate, that is,
the matrix whose entries are the conjugates of the entries of A, and A� indicates
its transpose. Moreover, we denote by |A| the sum of the modulus of its entries
so that, if A is equal to the row-column product of two matrices B,C, we have
|A| ≤ |B||C|. Finally, Sp(A) indicates its spectrum, that is, the set of all its eigen-
values repeated with multiplicity, and λmax(A) indicates the subset of Sp(A) con-
taining the eigenvalues with maximum real part, that is, λ∗ ∈ λmax(A) whenever
Re(λ∗) = max{Re(λ) : λ ∈ Sp(A)}. Moreover, we will denote by I the identity
matrix, whose dimension depends on the context.

(c) A vector v is considered as a matrix with a single column, and hence all the
notation stated in (b) apply to v. Moreover, ‖v‖ indicates the norm of the vector v,
that is, ‖v‖2 = v�v. Finally, we will denote by 1 and by 0 the vectors whose entries
are all ones and all zeros, respectively.

We now present the model. Suppose to have a directed graph G = (V ,E) with
V = {1, . . . ,N} as the set of vertices and E ⊆ V ×V as the set of edges. Each edge
(h, j) ∈ E represents the fact that the vertex h has a direct influence on the ver-
tex j . We assume also to associate a weight wh,j ≥ 0 to each pair (h, j) ∈ V × V

in order to quantify how much h can influence j . A weight equal to zero means
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that the edge is not present. We set W = [wh,j ]h,j∈V ×V (weighted adjacency ma-
trix) and we assume the weights to be normalized so that

∑N
h=1 wh,j = 1 for each

j ∈ V . Finally, we suppose to have at each vertex j a reinforced stochastic pro-
cess described by Xj = (Xn,j )n≥1 such that, for each n ≥ 0, the random variables
{Xn+1,j : j ∈ V } take values in {0,1} and are conditionally independent given Fn

with

P(Xn+1,j = 1|Fn) =
N∑

h=1

wh,jZn,h,

where, for each h ∈ V ,

Zn,h = (1 − rn−1)Zn−1,h + rn−1Xn,h

with 0 ≤ rn−1 < 1 constants, Z0,h random variables with values in [0,1] and Fn =
σ(Z0,h : h ∈ V ) ∨ σ(Xk,j : 1 ≤ k ≤ n, j ∈ V ).

To express the above dynamics in a compact form, let us define the vectors
Xn = (Xn,1, . . . ,Xn,N)� and Zn = (Zn,1, . . . ,Zn,N)�. Hence, the dynamics can
be expressed as follows:

E[Xn+1|Fn] = W�Zn,

where

(2.1) Zn = (1 − rn−1)Zn−1 + rn−1Xn.

Moreover, the assumption about the normalization of the matrix W can be written
as W�1 = 1.

Throughout all the paper, we assume that the following condition holds.

ASSUMPTION 2.1. There exist two constants c > 0 and 1/2 < γ ≤ 1 such
that

(2.2) lim
n→∞nγ rn = c.

When γ = 1, for a particular case covered by our analysis, we will require a
slightly stricter condition than (2.2), that is,

(2.3) nrn − c = O
(
n−1).

We will explicitly mention this assumption in the statement of the theorems when
it is required.

This paper is concerned with the case 1/2 < γ ≤ 1, while the case γ ≤ 1/2 is
not considered. Indeed, in [21] it was established that, under soft assumptions on
the initial distribution, if the mean-field interaction is present and

∑
n r2

n = +∞,
then all the stochastic processes {(Zn,j )n : 1 ≤ j ≤ N} converge almost surely to
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the same random variable Z∞ ∈ {0,1} a.s. Hence, although this case is interest-
ing for synchronization, we decided to focus here on the case 1/2 < γ ≤ 1, for
which soft assumptions on the initial distribution lead to a limit random variable
not concentrated only on {0,1}.

In addition, thoughout the paper, we assume that the following condition holds.

ASSUMPTION 2.2. The weighted adjacency matrix W is irreducible and di-
agonalizable.

The irreducibility of W reflects a situation in which all the vertices are con-
nected among each others, and hence there are no subsystems with independent
dynamics (see [2] and Section 7.2 for further details). The diagonalizability of
W guarantees the existence of a nonsingular matrix Ũ such that Ũ�W(Ũ�)−1 is
diagonal with elements λj ∈ Sp(W). Notice that each column uj of Ũ is a left
eigenvector of W associated to λj . Without loss of generality, we set ‖uj‖ = 1.
Moreover, when the multiplicity of some λj is bigger than one, we set the corre-
sponding eigenvectors to be orthogonal. Then, if we define Ṽ = (Ũ�)−1, we have
that each column vj of Ṽ is a right eigenvector of W associated to λj such that

(2.4) u�
j vj = 1, and u�

h vj = 0, ∀h �= j.

These constraints combined with the above assumptions on W (precisely,
wh,j ≥ 0, W�1 = 1 and the irreducibility) imply, by the Frobenius–Perron the-
orem, the following proposition.

PROPOSITION 2.1. The eigenvalue λ1 := 1 of W has multiplicity one,
λmax(W) = {1} and

u1 = N−1/21, N−1/21�v1 = 1 and
(2.5)

[v1]j := v1,j ∈ (0,+∞) ∀j = 1, . . . ,N.

Finally, throughout all the paper, we will use U and V to indicate the subma-
trices of Ũ and Ṽ , respectively, whose columns are the left and the right eigen-
vectors of W associated to Sp(W) \ {1}, that is, {u2, . . . ,uN } and {v2, . . . ,vN },
respectively, and we will denote by λ∗ an eigenvalue belonging to Sp(W) \ {1}
such that

Re
(
λ∗)= max

{
Re(λj ) : λj ∈ Sp(W) \ {1}}.

We will see throughout the paper that the vector v1, defined and characterized
above, will play a key role in order to establish the synchronization result.



SYNCHRONIZATION OF RSP WITH A NETWORK-BASED INTERACTION 3797

3. Main results. In this section we present our main results, which regard the
asymptotic behavior of the process Zn. We refer to the Appendix for a brief review
of the notion of stable convergence.

Let us recall the assumptions stated in Section 2. We start by providing a first-
order asymptotic result concerning the almost sure convergence of Zn.

THEOREM 3.1 (Synchronization). There exists a random variable Z∞ with
values in [0,1] such that

Zn
a.s.−→ Z∞1.

This result states that the stochastic processes {(Zn,j )n : 1 ≤ j ≤ N} located
at the different vertices synchronize, that is, all of them converge almost surely
toward the same random variable Z∞. It is interesting to note that this result holds
true without any assumption on the initial configuration Z0 and for any choice of
the weighted adjacency matrix W with the required assumptions.

We now focus on the second-order asymptotic results concerning the process
(Zn)n. First, we present a central limit theorem in the sense of stable convergence
that establishes the rate of convergence to the limit Z∞1 determined in Theo-
rem 3.1 and the relative asymptotic random variance.

THEOREM 3.2 (CLT for convergence). The following hold:

(a) For 1/2 < γ < 1, then

nγ− 1
2 (Zn − Z∞1) −→ N

(
0,Z∞(1 − Z∞)�̃γ

)
stably,

where

(3.1) �̃γ := σ̃ 2
γ 11� and σ̃ 2

γ := c2‖v1‖2

N(2γ − 1)
> 0.

(b) For γ = 1, if Re(λ∗) < 1 − (2c)−1, then
√

n(Zn − Z∞1) −→ N
(
0,Z∞(1 − Z∞)(�̃1 + �̂1)

)
stably,

where �̃1 is defined as in (3.1) with γ = 1,

�̂1 := UŜ1U
� and

(3.2)

[Ŝ1]h,j := c2

2c − c(λh + λj ) − 1

(
v�
h vj

)
with 2 ≤ h, j ≤ N.

(c) For γ = 1, if Re(λ∗) = 1 − (2c)−1 and (2.3) holds, then
√

n√
ln(n)

(Zn − Z∞1) −→ N
(
0,Z∞(1 − Z∞)�̂∗

1
)

stably,
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where

�̂∗
1 := UŜ∗

1U� and
(3.3)[

Ŝ∗
1
]
h,j :=

{
c2(v�

h vj

)
if λh + λj = 2 − c−1,

0 if λh + λj �= 2 − c−1,
with 2 ≤ h, j ≤ N.

Notice that the matrix Ŝ∗
1 defined in (3.3) can never be null, as stated more ahead

in Theorem 3.4.

REMARK 3.1. Notice that σ̃ 2
γ is decreasing with the size N of the network

and so, for cases (a) and (b), the larger the size of the network, the lower the
asymptotic variance. Moreover, fixed N and γ , since by (2.4) and (2.5) we have
‖v1‖2 = ‖u1 + (v1 − u1)‖2 = 1 + ‖v1 − u1‖2 ≥ 1 and ‖v1‖2 ≤ N , we can obtain
the following lower and upper bounds for σ̃ 2

γ (not depending on W ):

c2

N(2γ − 1)
≤ σ̃ 2

γ ≤ c2

(2γ − 1)
,

where the lower bound is achieved when v1 = u1, that is, when W is doubly
stochastic.

Given the long-run synchronization stated in Theorem 3.1, it is interesting to
establish the rate of synchronization, that is, the convergence rate of the differ-
ence (Zn,h − Zn,j )n to zero for h �= j and to characterize the relative asymptotic
distribution. The following result achieves this goal.

THEOREM 3.3 (CLT for synchronization). For any h, j ∈ {1, . . . ,N}, h �= j ,
we have:

(a) For 1/2 < γ < 1, then

n
γ
2 (Zn,h − Zn,j ) −→ N

(
0,Z∞(1 − Z∞)�γ,h,j

)
stably,

where �γ,h,j := [�̂γ ]h,h + [�̂γ ]j,j − 2[�̂γ ]h,j ,

�̂γ := UŜγ U� and
(3.4)

[Ŝγ ]h,j := c

2 − (λh + λj )

(
v�
h vj

)
with 2 ≤ h, j ≤ N.

(b) For γ = 1, if Re(λ∗) < 1 − (2c)−1, then
√

n(Zn,h − Zn,j ) −→ N
(
0,Z∞(1 − Z∞)�1,h,j

)
stably,

where �1,h,j := [�̂1]h,h + [�̂1]j,j − 2[�̂1]h,j and �̂1 is defined in (3.2).
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(c) For γ = 1, if Re(λ∗) = 1 − (2c)−1 and (2.3) holds, then
√

n√
ln(n)

(Zn,h − Zn,j ) −→ N
(
0,Z∞(1 − Z∞)�∗

1,h,j

)
stably,

where �∗
1,h,j := [�̂∗

1 ]h,h + [�̂∗
1 ]j,j − 2[�̂∗

1 ]h,j and �̂∗
1 is defined in (3.3).

REMARK 3.2. In the particular case when W is symmetric, the eigenvectors
of W are real, U = V and V �V = I . As a consequence, the matrices Ŝγ , Ŝ1

and Ŝ∗
1 are diagonal, with elements c[2(1 − λj )]−1, c[2(1 − λj ) − c−1]−1 and

c21{λj=1−(2c)−1}, respectively, where λj ∈ Sp(W) \ {1}. Moreover, in this case, we

have u1 = v1 = N−1/21 and UU� = UV � = (I − N−111�) (see Section 4.1 for
details). Notice that, for instance, this is the case of undirected graphs.

In order to ensure that Theorem 3.2 and 3.3 provide the right convergence
rates of (Zn,j )n to Z∞ and of (Zn,h − Zn,j )n to zero, respectively, we prove that
[�̂1]j,j ≥ 0, [�̂∗

1 ]j,j > 0, �γ,h,j > 0, �1,h,j > 0, �∗
1,h,j > 0 and

(3.5) P(Z∞ = 0) + P(Z∞ = 1) < 1.

The result below deals with the first set of conditions.

THEOREM 3.4. We have:

(a) For 1/2 < γ < 1, �̂γ is a positive semidefinite real matrix of rank (N − 1)

and v�
1 �̂γ v1 = 0; in addition, �γ,h,j > 0 for any 1 ≤ h �= j ≤ N .

(b) For γ = 1, if Re(λ∗) < 1 − (2c)−1, then �̂1 is a positive semidefinite real
matrix of rank (N − 1) and v�

1 �̂1v1 = 0; in addition, �1,h,j > 0 for any 1 ≤ h �=
j ≤ N .

(c) For γ = 1, if Re(λ∗) = 1 − (2c)−1 and (2.3) holds, define

(3.6) A∗ := {λj ∈ Sp(W),Re(λj ) = 1 − (2c)−1}
and let m∗ be the cardinality of A∗; then �̂∗

1 is a positive semidefinite real matrix
of rank m∗ and v�

j �̂∗
1 vj = 0 for any j such that λj /∈ A∗; moreover, [�̂∗

1 ]jj > 0
when uh,j �= 0 for some h such that λh ∈ A∗ and �∗

1,h,j > 0 when uk,h �= uk,j for
some k such that λk ∈ A∗.

Finally, we give two results concerning the distribution of Z∞, of which the last
one deals with condition (3.5).

THEOREM 3.5. We have P(Z∞ = z) = 0 for any z ∈ (0,1).
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THEOREM 3.6. If we have

(3.7) P

(
N⋂

j=1

{Z0,j = 0}
)

+ P

(
N⋂

j=1

{Z0,j = 1}
)

< 1,

then condition (3.5) is verified.

REMARK 3.3. In case (a), that is, 1/2 < γ < 1, since γ /2 > γ − 1/2 we have
that the rate at which two stochastic processes (Zn,h)n, (Zn,j )n positioned in any
pair of different vertices (h, j) of the network synchronize is greater than the rate
at which they converge to Z∞, that is, synchronization of the stochastic processes
at the vertices is faster then their convergence to the limit random variable.

REMARK 3.4. The main goal of this work is to provide results for a system
of N interacting reinforced stochastic processes. Therefore, we take N ≥ 2 every-
where. However, it is worth to note that Theorems 3.1, 3.5 and 3.6 hold true for
N = 1 without any changes; while, when N = 1, Theorem 3.2(a) holds true in both
cases 1/2 < γ < 1 and γ = 1. The proofs are analogous to the ones given in the
sequel (with some simplifications due to the fact that N = 1).

4. Proofs. This section contains all the proofs of the results presented in the
previous Section 3.

4.1. Preliminary relations and basic idea. We start by recalling that, given the
eigenstructure of W described in Section 2, the matrix u1v�

1 has real entries and
the following relations hold:

(4.1) V �u1 = U�v1 = 0, V �U = U�V = I and I = u1v�
1 + UV �,

which implies that the matrix UV � has real entries [notice that in (4.1) the iden-
tity matrices have different dimensions]. Moreover, denoting by D the diagonal
matrix whose elements are λj ∈ Sp(W) \ {1}, we can decompose the matrix W�
as follows:

(4.2) W� = u1v�
1 + UDV �.

Now, in order to understand the asymptotic behavior of the stochastic process
(Zn)n, let us express the dynamics (2.1) as follows:

(4.3) Zn+1 − Zn = −rn
(
I − W�)Zn + rn�Mn+1,

where �Mn+1 = (Xn+1 − W�Zn) is a martingale increment with respect to the
filtration F := (Fn)n. It follows that:

(a) since v�
1 W� = (Wv1)

� = v�
1 , we have v�

1 (I −W�) = 0 and so, from (4.3),
we deduce that the stochastic process (v�

1 Zn)n is a bounded real martingale;
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(b) by (4.1), we have Zn − u1(v�
1 Zn) = UV �Zn and so the dynamics of this

multi-dimensional real stochastic process can be easily obtained from (4.3).

Hence, the basic idea is to decompose Zn into two terms, establish the correspond-
ing asymptotic results for each term separately and then combine them together to
characterize the asymptotic behavior of Zn. More precisely, the process Zn can be
decomposed as follows:

Zn = Z̃n1 + Ẑn = u1
√

NZ̃n + Ẑn,
(4.4)

where

{
Z̃n = N−1/2v�

1 Zn,

Ẑn = Zn − 1Z̃n = (I − u1v�
1
)
Zn = UV �Zn.

Then the asymptotic behavior of the stochastic process (Zn)n is obtained by estab-
lishing the asymptotic behavior of (Z̃n)n and (Ẑn)n.

REMARK 4.1. In the particular case of W doubly stochastic, we have v1 =
u1 = N−1/21. As a consequence, we have

Z̃n = N−11�Zn = N−1
N∑

j=1

Zn,j ,

which represents the average of the stochastic processes in the network, and Ẑn =
(I − N−111�)Zn. Notice that the assumed normalization W�1 = 1 implies that
symmetric matrices W are also doubly stochastic. Therefore, the above equalities
hold for any undirected graph for which W is obviously symmetric by definition.

4.2. Proof of Theorem 3.1 (synchronization). By decomposition (4.4), that is,

Zn = Z̃n1 + Ẑn,

the proof of Theorem 3.1 follows by establishing the following two results:

(i) Z̃n
a.s.−→ Z∞,

(ii) Ẑn
a.s.−→ 0.

Concerning part (i), let us consider the real-valued stochastic process (Z̃n)n
defined for any n ≥ 0 as Z̃n = N−1/2v�

1 Zn. Since all the elements of v1 are positive
and since (2.5) holds, the elements of N−1/2v1 can be seen as the weights of a
convex combination, and hence minj {Zn,j } ≤ Z̃n ≤ maxj {Zn,j } for any n, which
implies 0 ≤ Z̃n ≤ 1. Moreover, it is easy to see that (Z̃n)n is an F -martingale,
since from (4.3) its dynamics can be expressed as follows:

(4.5) Z̃n+1 − Z̃n = N−1/2rn
(
v�

1 �Mn+1
)
.

Hence, we immediately get

(4.6) Z̃n
a.s.−→ Z∞,
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where Z∞ is a random variable with values in [0,1]. This concludes the proof of
part (i).

Concerning part (ii), let us consider the multi-dimensional stochastic process
(Ẑn)n, with real entries, defined in (4.4). In order to find the dynamics of this
process, we first observe that, by decomposition (4.4) and the fact that W�u1 =
(u�

1 W)� = u1, we have(
I − W�)Zn = (I − W�)(u1

√
NZ̃n + Ẑn) = (I − W�)Ẑn

and so the dynamics (4.3) of Zn can be rewritten as

(4.7) Zn+1 − Zn = −rn
(
I − W�)Ẑn + rn�Mn+1.

Then, if we multiply the dynamics (4.7) by UV � and use decomposition (4.2) and
the relations (4.1), we obtain

Ẑn+1 − Ẑn = −rn
[
UV � − UV �(u1v�

1 + UDV �)]Ẑn + rnUV ��Mn+1

= −rn
(
UV � − UDV �)Ẑn + rnUV ��Mn+1

= −rnU(I − D)V �Ẑn + rnUV ��Mn+1,

(4.8)

where I in (4.8) is a (N − 1) × (N − 1)-identity matrix. We are now ready for
proving that this multi-dimensional stochastic process converges a.s. to 0.

THEOREM 4.1. We have

Ẑn
a.s.−→ 0.

PROOF. Let us consider the (N − 1)-dimensional complex random vector de-
fined as ZV,n = V �Ẑn. Since we have Ẑn = UZV,n by (4.1), it is enough to prove
that ZV,n converges almost surely to 0. To this purpose, we observe that the dy-
namics of ZV,n can be obtained from (4.8) multiplying by V �:

ZV,n+1 = (I − rn(I − D)
)
ZV,n + rnV

��Mn+1,

where I here indicates a (N − 1) × (N − 1)-identity matrix. Hence, recalling that
E[�Mn+1|Fn] = 0, we obtain

E
[‖ZV,n+1‖2|Fn

]= E
[
Z

�
V,n+1ZV,n+1|Fn

]
= Z

�
V,n

(
I − rn(I − D)

)(
I − rn(I − D)

)
ZV,n

+ r2
nE
[
�M�

n+1V V ��Mn+1|Fn

]
= Z

�
V,nZV,n − rnZ

�
V,n(2I − D − D)ZV,n + r2

nξn,

where (ξn)n is a suitable bounded sequence of Fn-measurable random variables.
Since Re(λj ) < 1 for any λj ∈ Sp(W) \ {1}, the matrix 2I − (D + D) is positive
definite, and hence we can write

E
[‖ZV,n+1‖2|Fn

]≤ ‖ZV,n‖2 + O
(
r2
n

)
.
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Since
∑

n r2
n < +∞ for 1/2 < γ ≤ 1, we can conclude that the real stochastic pro-

cess (‖ZV,n‖2)n is a positive almost supermartingale and so (see [42]) it converges
almost surely (and in mean since it is also bounded). In order to prove that the limit
is zero, it is enough to prove that E[‖ZV,n‖2] converges to zero. To this end, we
observe that, from the above computations, we obtain

E
[‖ZV,n+1‖2]= E

[
Z

�
V,n

(
I − rn(I − D)

)(
I − rn(I − D)

)
ZV,n

]
+ r2

nE
[
�M�

n+1V V ��Mn+1
]

≤ E
[
Z

�
V,n

(
I − rn(I − D)

)(
I − rn(I − D)

)
ZV,n

]+ C1r
2
n

for a suitable constant C1 ≥ 0. Then we note that the elements of the diagonal
matrix above can be written as follows:[(

I − rn(I − D)
)(

I − rn(I − D)
)]

jj = 1 − 2rn
(
1 −Re(λj )

)+ r2
n |1 − λj |2.

Hence, setting aj = 1 −Re(λj ) and a∗ = minj {aj } = 1 −Re(λ∗) [we recall that
λ∗ indicates an eigenvalue belonging to λmax(D)], we have that

E
[
Z

�
V,n

(
I − rn(I − D)

)(
I − rn(I − D)

)
ZV,n

]
≤

N∑
j=2

(1 − 2aj rn)E
[
Z

j

V,nZ
j
V,n

]+ C2r
2
n

≤ (1 − 2a∗rn
)
E
[‖ZV,n‖2]+ C2r

2
n

for a suitable constant C2 ≥ 0. Then, setting xn := E[‖ZV,n‖2], we can write

xn+1 ≤ (1 − 2a∗rn
)
xn + (C1 + C2)r

2
n.

Since Re(λ∗) < 1, we have a∗ > 0, which implies limn xn = 0 (see [21]). The
proof is thus concluded. �

Note that, by the synchronization result given in Theorem 3.1, we can state that

E
[
(�Mn+1)(�Mn+1)

�|Fn

] a.s.−→ Z∞(1 − Z∞)I.

Indeed, since {Xn+1,j : j = 1, . . . ,N} are conditionally independent given Fn, we
have

(4.9) E[�Mn+1,h�Mn+1,j |Fn] = 0 for h �= j ;
while, for each j , we have

(4.10) E
[
(�Mn+1,j )

2|Fn

]= ( N∑
h=1

wh,jZn,h

)(
1 −

N∑
h=1

wh,jZn,h

)
.

From this last equality, using synchronization and the normalization W�1 = 1, we
immediately obtain

(4.11) E
[
(�Mn+1,j )

2|Fn

] a.s.−→ Z∞(1 − Z∞).
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4.3. A CLT for Z̃n. The following result gives a central limit theorem for the
real-valued stochastic process (Z̃n)n.

THEOREM 4.2. For 1/2 < γ ≤ 1, we have

(4.12) nγ− 1
2 (Z̃n − Z∞) −→ N

(
0, σ̃ 2

γ Z∞(1 − Z∞)
)

stably,

where σ̃ 2
γ is defined as in (3.1) (also for γ = 1). The above convergence is also in

the sense of the almost sure conditional convergence w.r.t. F = (Fn)n.

PROOF. We want to apply Theorem B.3. Let us consider, for each n ≥ 1 the
filtration (Fn,h)h and the process (Ln,h)h defined by

Fn,0 = Fn,1 = Fn, Ln,0 = Ln,1 = 0

and, for h ≥ 2,

Fn,h = Fn+h−1, Ln,h = nγ− 1
2 (Z̃n − Z̃n+h−1).

By (4.5) and (4.6), the process (Ln,h)h is a martingale w.r.t. (Fn,h)h which con-

verges (for h → +∞) a.s. and in L1 to the random variable Ln,∞ = nγ− 1
2 (Zn −

Z∞). In addition, the increment Yn,j = Ln,j − Ln,j−1 is equal to zero for j = 1

and, for j ≥ 2, it coincides with a random variable of the form nγ− 1
2 (Z̃k − Z̃k+1)

with k ≥ n. Therefore, again by (4.5), we have∑
j≥1

Y 2
n,j = n2γ−1

∑
k≥n

(Z̃k − Z̃k+1)
2 = N−1n2γ−1

∑
k≥n

r2
k

(
v�

1 �Mk+1
)2

a.s.−→ c2

N

‖v1‖2

(2γ − 1)
Z∞(1 − Z∞),

where the a.s. convergence follows by applying [22], Lemma 4.1, and by noticing
that (4.11) implies

E
[(

v�
1 �Mn+1

)2|Fn

] =
N∑

j=1

v2
1,jE

[
(�Mn+1,j )

2|Fn

]
a.s.−→

N∑
j=1

v2
1,jZ∞(1 − Z∞) = ‖v1‖2Z∞(1 − Z∞).

Finally, again by (4.5), we have

Y ∗
n = sup

j≥1
|Yn,j | = nγ− 1

2 sup
k≥n

|Z̃k − Z̃k+1| ≤ sup
k≥n

kγ− 1
2 rk −→ 0.

Hence, if in Theorem B.3 we take kn = 1 for each n and U =∨nFn, then the proof
is concluded. �
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4.4. Proofs of Theorem 3.5 and Theorem 3.6 (results on the distribution of Z∞).
The proof of Theorem 3.5 is a consequence of the almost sure conditional conver-
gence in Theorem 4.2, exactly as shown in [21].

To the proof of Theorem 3.6, we premise the following lemma.

LEMMA 4.1. If condition (3.7) holds, then we have

E
[
Z̃n(1 − Z̃n)

]
> 0 ∀n ≥ 0.

PROOF. For convenience, set xn := E[Z̃n(1 − Z̃n)]. We recall that Z̃n =
N−1/2v�

1 Zn, where v1 is such that

v1,j > 0 ∀j and N−1/2
N∑

j=1

v1,j = 1.

Hence, under assumption (3.7), we immediately get x0 > 0.
Now, we recall that (Z̃n)n is a bounded martingale which satisfies (4.5), that is,

Z̃n = (1 − rn−1)Z̃n−1 + rn−1N
−1/2v�

1 Xn

with E[N−1/2v�
1 Xn|Fn−1] = Z̃n−1. Therefore, we have xn = (E[Z̃0] − E[Z̃2

n])
for each n and

Z̃2
n = (1 − rn−1)

2Z̃2
n−1 + 2(1 − rn−1)rn−1Z̃n−1N

−1/2v�
1 Xn

+ r2
n−1
(
N−1/2v�

1 Xn

)2
≤ (1 − rn−1)

2Z̃2
n−1 + 2(1 − rn−1)rn−1Z̃n−1N

−1/2v�
1 Xn

+ r2
n−1
(
N−1/2v�

1 Xn

)
.

Taking the conditional expectation given Fn−1, we get

E
[
Z̃2

n|Fn−1
]≤ (1 − r2

n−1
)
Z̃2

n−1 + r2
n−1Z̃n−1,

which implies

E
[
Z̃2

n

] ≤ (1 − r2
n−1
)
E
[
Z̃2

n−1
]+ r2

n−1E[Z̃n−1]
= (1 − r2

n−1
)
E
[
Z̃2

n−1
]+ r2

n−1E[Z̃0].
Therefore, we can conclude by an induction argument on n. Indeed, if xn−1 > 0,
that is, E[Z̃2

n−1] < E[Z̃0], then from the above inequality, since (1 − r2
n−1) > 0 by

assumption, we obtain E[Z̃2
n] < E[Z̃0], that is, xn > 0. �

We are now ready to prove Theorem 3.6.
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PROOF OF THEOREM 3.6. We recall that Z∞ takes values in [0,1] and (Z̃n)n
is a bounded martingale which converges a.s. to Z∞. Therefore, in particular, set-
ting z̃0 := E[Z̃0], we have

E[Z∞] = E[Z̃n] = z̃0 ∀n and Var[Z∞] = lim
n→∞ Var[Z̃n].

Now, as in the proof of the previous lemma, we set

(4.13) xn := E
[
Z̃n(1 − Z̃n)

]= z̃0 − z̃2
0 − Var[Z̃n]

and we can state that

P
(
Z∞ ∈ {0,1})= 1 if and only if E

[
Z∞(1 − Z∞)

]= lim
n

xn = 0.

Thus, it is enough to prove that assumption (3.7) implies limn xn > 0. To this pur-
pose, we observe that, by (4.5), we have

xn+1 = z̃0 − z̃2
0 − Var[Z̃n+1]

= z̃0 − z̃2
0 − E

[
Var[Z̃n+1|Fn]]− Var

[
E[Z̃n+1|Fn]]

= z̃0 − z̃2
0 − r2

n

N
E
[
E
[(

v�
1 �Mn+1

)2|Fn

]]− Var[Z̃n]

= xn − r2
n

N
E
[
E
[(

v�
1 �Mn+1

)2|Fn

]]
.

(4.14)

Setting Yn = E[Xn|Fn−1] = W�Zn (whose components obviously belong to
[0,1]) and recalling (4.9) and (4.10), we obtain

(4.15) E
[(

v�
1 �Mn+1

)2|Fn

]= N∑
j=1

v2
1,j Yn,j (1 − Yn,j ).

Now, notice that

N−1/2v�
1 Yn = N−1/2v�

1 W�Zn = N−1/2(Wv1)
�Zn = N−1/2v�

1 Zn = Z̃n,

and so, for any j = 1, . . . ,N ,

(4.16) N−1/2v1,j Yn,j = Z̃n − N−1/2
∑
h �=j

v1,hYn,h ≤ Z̃n.

Analogously, notice that

N−1/2v�
1 (1 − Yn) = (N−1/2v�

1 1
)− (N−1/2v�

1 Yn

)= 1 − Z̃n

and so, for any j = 1, . . . ,N ,

(4.17) N−1/2v1,j (1 − Yn,j ) = (1 − Z̃n) − N−1/2
∑
h �=j

v1,h(1 − Yn,h) ≤ 1 − Z̃n.
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Then, combining (4.16) and (4.17), we get for any j = 1, . . . ,N

v2
1,j Yn,j (1 − Yn,j ) ≤ NZ̃n(1 − Z̃n),

and hence, recalling (4.13), (4.14) and (4.15), we obtain

xn+1 ≥ xn − Nr2
nE
[
Z̃n(1 − Z̃n)

]= (1 − Nr2
n

)
xn.

Finally, taking n̄ such that Nr2
n < 1 for any n ≥ n̄, we find

xn+1 ≥ xn̄

n∏
m=n̄

(
1 − Nr2

m

)
.

Hence, since xn̄ > 0 by the previous lemma and
∑

n r2
n < +∞ for 1/2 < γ ≤ 1,

we can conclude that limn xn > 0. �

4.5. A CLT for Ẑn. The following result provides a central limit theorem for
the multi-dimensional real stochastic process (Ẑn)n.

THEOREM 4.3. We have:

(a) If 1/2 < γ < 1, then

(4.18) n
γ
2 Ẑn −→ N

(
0,Z∞(1 − Z∞)�̂γ

)
stably,

where �̂γ is defined in (3.4).
(b) If γ = 1 and Re(λ∗) < 1 − (2c)−1, then

(4.19)
√

nẐn −→ N
(
0,Z∞(1 − Z∞)�̂1

)
stably,

where �̂1 is defined in (3.2).
(c) If γ = 1, Re(λ∗) = 1 − (2c)−1 and (2.3) holds, then

(4.20)

√
n

ln(n)
Ẑn −→ N

(
0,Z∞(1 − Z∞)�̂∗

1
)

stably,

where �̂∗
1 is defined in (3.3).

PROOF. Set αj = 1 − λj = aj + ibj with λj ∈ Sp(W) \ {1}. Remember that
aj > 0 for each j since Re(λj ) < 1 for each j . Moreover, recall the definition of
the matrices U,V and D given in Section 2 and in Section 4.1.

From dynamics (4.8), we get

Ẑn+1 = [I − rnU(I − D)V �]Ẑn + rnUV ��Mn+1

= U
[
I − rn(I − D)

]
V �Ẑn + rnUV ��Mn+1,
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where the identity matrices used above have different dimensions and the last
equality holds because relations (4.1) imply UV �Ẑn = UV �Zn = Ẑn. Therefore,
if we take m0 large enough such that aj rn < 1 for n ≥ m0 and all j , we can write

(4.21) Ẑn+1 = Cm0,nẐm0 +
n∑

k=m0

Ck+1,nrkUV ��Mk+1,

with

Ck+1,n =
n∏

m=k+1

{
U
[
I − rm(I − D)

]
V �}.

For the sequel, it is important to note that Ck+1,n is a real matrix since, by (4.1)
and (4.2) it is equivalent to a product of real matrices, that is, (UV �)− rm(UV � +
u1v�

1 − W�) = (UV �) − rm(I − W�). Moreover, using relations (4.1) again, we
get

(4.22) Ck+1,n = UAk+1,nV
�,

where Ak+1,n is the diagonal matrix given by

[Ak+1,n]j,j =

⎧⎪⎪⎨⎪⎪⎩
n∏

m=k+1

(1 − αj rm) for m0 − 1 ≤ k ≤ n − 1,

1 for k = n.

Observe that we have

[Ak+1,n]j,j = pn,j

pk,j

= 
k,j


n,j

for m0 − 1 ≤ k ≤ n,

with

pm0−1,n = 
m0−1,n = 1,

pk,j =
k∏

m=m0

(1 − αj rm), 
k,j = p−1
k,j for m0 ≤ k ≤ n.

Finally, notice that, since Ck+1,nUV � = Ck+1,n by relations (4.1) and (4.22), we
can rewrite (4.21) as

Ẑn+1 = Cm0,nẐm0 +
n∑

k=m0

Tn,k where Tn,k = rkCk+1,n�Mk+1.

We will establish the asymptotic behavior of Ẑn by studying separately the terms
Cm0,nẐm0 and

∑n
k=m0

Tn,k .
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Concerning the first term, note that by (A.5) in Lemma A.4, we have that, for
any ε ∈ (0,1),

|Cm0,nẐm0 | = O
(∣∣p∗

n

∣∣)=
⎧⎪⎨⎪⎩O

(
exp
[
−(1 − ε)

ca∗

1 − γ
n1−γ

])
if 1/2 < γ < 1,

O
(
n−(1−ε)ca∗)

if γ = 1,

where the symbol ∗ refers to quantities aj and pn,j corresponding to λj = λ∗ ∈
λmax(D). Therefore, for the case (a) (i.e., 1/2 < γ < 1) and (b) [i.e., γ = 1 and
Re(λ∗) < 1 − (2c)−1], we have

|Cm0,nẐm0 | = o
(
n−γ /2).

Indeed, this fact follows immediately for 1/2 < γ < 1 and, for γ = 1 one has to
note that, since we assume Re(λ∗) < 1− (2c)−1, that is ca∗ > 1/2, we can choose
ε small enough so that (1 − ε)ca∗ > 1/2. Moreover, for the case (c) [i.e., γ = 1
and Re(λ∗) = 1 − (2c)−1, i.e., ca∗ = 1/2], since we assume condition (2.3), by
(A.8) in Lemma A.4, we have

|Cm0,nẐm0 | = O
(∣∣p∗

n

∣∣)= O
(
n−ca∗)= O

(
n− 1

2
)
.

Therefore, if we set

tn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

γ
2 for case (a),

n
1
2 for case (b),(
n/ ln(n)

) 1
2 for case (c),

then we obtain tn|Cm0,nẐm0 | → 0 almost surely.
We now focus on the asymptotic behavior of the second term. Specifically, we

aim at proving that tn
∑n

k=m0
Tn,k converges stably to a suitable Gaussian kernel.

For this purpose, we set Gn,k = Fk+1, and consider Theorem B.1 (recall that Tn,k

are real random vectors). Given the fact that condition (c1) of Theorem B.1 is
obviously satisfied, we will check conditions (c2) and (c3).

Regarding condition (c2), we observe that

n∑
k=m0

(tnTn,k)(tnTn,k)
�

= t2
n

n∑
k=m0

r2
k Ck+1,n(�Mk+1)(�Mk+1)

�C�
k+1,n

= U

(
t2
n

n∑
k=m0

r2
k Ak+1,nV

�(�Mk+1)(�Mk+1)
�V Ak+1,n

)
U�.
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Therefore, it is enough to study the convergence of

t2
n

n∑
k=m0

r2
k Ak+1,nV

�(�Mk+1)(�Mk+1)
�V Ak+1,n.

To this purpose, we set Bk+1,h,j = [V �(�Mk+1)(�Mk+1)
�V ]h,j and observe

that an element of the above matrix is of the form

t2
n

n∑
k=m0

r2
k [Ak+1,n]h,hBk+1,h,j [Ak+1,n]j,j

= t2
npn,hpn,j

n−1∑
k=m0

r2
k 
k,h
k,jBk+1,h,j + t2

nr2
nBn+1,h,j ,

where t2
nr2

nBn+1,h,j = O(t2
nr2

n) → 0. We now fix h and j and apply Lemma A.3
to the first addend in the above equality. Indeed, this quantity can be written as
vn

∑n−1
k=m0

Yk/ckvk , where

Yn = Bn+1,h,j , cn = 1

t2
nr2

n

> 0 and vn = t2
npn,hpn,j ∈ C \ {0}

satisfy the assumptions of Lemma A.3. More precisely, setting Hn = Fn+1,
by (4.11), we have

E[Yn|Hn−1] = E[Bn+1,h,j |Fn] = [V �E
[
(�Mn+1)(�Mn+1)

�|Fn

]
V
]
h,j

a.s−→ (
v�
h vj

)
Z∞(1 − Z∞)

and, moreover, we have∑
n

E[|Yn|2]
c2
n

=∑
n

E
[|Yn|2]r4

nt4
n =∑

n

r4
nO
(
n2γ )=∑

n

O
(
1/n2γ )< +∞.

In addition, as we have observed above, |vn| = t2
n |pn,hpn,j | = t2

nO(|p∗
n|2) → 0

and, by (A.11) in Lemma A.5 and (A.18) in Lemma A.6, we have

lim
n

vn

n−1∑
k=m0

1

ckvk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

αh + αj

if 1/2 < γ < 1,

c2

c(αh + αj ) − 1
if γ = 1, c(ah + aj ) > 1,

0 if γ = 1, c(ah + aj ) = 1, c(αh + αj ) �= 1

and (2.3) holds,

c2 if γ = 1, c(αh + αj ) = 1 and (2.3) holds.
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Finally, we have |vn|∑n−1
k=m0

1
ck |vk | = O(1) by (A.12) in Lemma A.5 and (A.19)

in Lemma A.6 (with u = 1), and, using (A.16) and (A.22) in the Appendix, we get

cn|vn|
∣∣∣∣ 1

vn

− 1

vn−1

∣∣∣∣= 1

r2
n |
n,h
n,j |

∣∣∣∣
n,h
n,j

t2
n

− 
n−1,h
n−1,j

t2
n−1

∣∣∣∣= O(1).

Hence, recalling Remark A.2, also the last condition required in Lemma A.3 is
verified.

Regarding condition (c3), we observe that, using the inequalities

|Tn,k| = rk|Ck+1,n�Mk+1| ≤ rk|U ||Ak+1,n|
∣∣V �∣∣|�Mk+1| ≤ Krk|Ak+1,n|,

with a suitable constant K , we find for any u > 1(
sup

m0≤k≤n

|tnTn,k|
)2u ≤ t2u

n

n−1∑
k=m0

|Tn,k|2u + t2u
n |Tn,n|2u

= t2u
n O

(∣∣p∗
n

∣∣2u
n−1∑

k=m0

r2u
k

∣∣
∗
k

∣∣2u

)
+ t2u

n O
(
r2u
n

)
,

where, for the last equality, we have used (A.8) and (A.9) in Lemma A.4. Now, by
(A.12) in Lemma A.5 and (A.19) in Lemma A.6 (with α1 = α2 = α∗ = 1 − λ∗ and
u > 1), we have

O

(∣∣p∗
n

∣∣2u
n−1∑

k=m0

r2u
k

∣∣
∗
k

∣∣2u

)

=

⎧⎪⎪⎨⎪⎪⎩
O
(
n−γ (2u−1)) if 1/2 < γ < 1,

O
(
n−(2u−1)) if γ = 1,2uca∗ > 2u − 1,

O
(
n−u) if γ = 1,2ca∗ = 1 and (2.3) holds.

Therefore, for cases (a) and (c), it is immediate to obtain

t2u
n O

(∣∣p∗
n

∣∣2u
n−1∑

k=m0

r2u
k

∣∣
∗
k

∣∣2u

)
+ t2u

n O
(
r2u
n

)−→ 0

for any u > 1; while in case (b) in order to have the above convergence to zero, we
have to choose u > 1 such that 2uca∗ > 2u − 1, that is, 2u(ca∗ − 1) + 1 > 0. This
choice is always possible: indeed, or ca∗ − 1 ≥ 0 and so we can take any u > 1, or
ca∗ −1 < 0 and we have to take u ∈ (1, (2−2ca∗)−1) [note that (2−2ca∗)−1 > 1
since 2ca∗ > 1 by assumption]. As a consequence of the above convergence to
zero, we obtain condition (c3) of Theorem B.1.

Summing up, all the conditions required by Theorem B.1 are satisfied and so
we can apply this theorem and obtain the stable convergence of tn

∑n
k=m0

Tn,k to
the Gaussian kernel with zero mean and random variance defined in Theorem 4.3
for each of the three considered cases. �
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PROOF OF THEOREM 3.4. First, consider case (a), that is, 1/2 < γ < 1, and
recall the definition of Ŝγ in (3.4). Then, since lj := (1−λj ), for λj ∈ Sp(W)\{1},
have positive real parts by the assumptions on W , we have

[Ŝγ ]h,j = (v�
h vj

) c

lh + lj
= (v�

h vj

)
c

∫ ∞
0

exp
[−u(lh + lj )

]
du.

Then, setting L := (I − D) and M(u) := U exp(−uL)V � for u ∈ (0,+∞), we
can write

�̂γ = UŜγ U� = c

∫ ∞
0

M(u)M�(u) du.

Notice that, for any u ∈ (0,+∞), the matrix M(u) has real entries since, by (4.1)
and (4.2), we have

M(u) = U

+∞∑
k=0

(−uL)k

k! V � = UV � +
+∞∑
k=1

(−uULV �)k

k!
= exp

[−u
(
I − W�)]− u1v�

1 .

Moreover, for any u ∈ (0,+∞), the matrix M(u) has rank (N − 1) and
M�(u)v1 = 0 by (4.1). Therefore, for any u ∈ (0,+∞), the matrix M(u)M�(u)

is a positive semidefinite real matrix with rank (N − 1) and M(u)M�(u)v1 = 0
(see [30], Observation 7.1.8). These facts imply the first part of statement (a). For
the second part, denoting by ej the vector such that ej,j = 1 and ej,h = 0 for all
h �= j , we have for h �= j

�γ,h,j = (eh − ej )
��̂γ (eh − ej )

and so �γ,h,j = 0 if and only if M(u)�(eh − ej ) = 0 for almost every u ∈
(0,+∞). But this is not possible since Ker(M(u)�) is generated by v1, which has
all the entries strictly greater than zero as pointed out in Section 2. This concludes
the proof of case (a).

The proof of case (b) is analogous, by setting lj := (1 − λj − (2c)−1) for λj ∈
Sp(W) \ {1}, which have positive real parts by condition Re(λ∗) < 1 − (2c)−1,
and L := (I − D − I (2c)−1).

For the proof of case (c), that is, γ = 1 and Re(λ∗) = 1− (2c)−1, let q , with 1 ≤
q ≤ (N − 1), be the number of distinct eigenvalues λj = aj + ibj ∈ Sp(W) \ {1}
and, for any 1 ≤ h ≤ q , let Uh and Vh be the submatrices of U and V whose
columns are, respectively, the left and the right eigenvectors associated to λh. Then,
by the definition of Ŝ∗

1 in (3.3), we have

�̂∗
1 = UŜ∗

1U� = ∑
1≤h,j≤q

UhV
�
h VjU

�
j 1{λh+λj=2−c−1}.

Then, since{
λh + λj = 2 − c−1}= ({ah = 1 − (2c)−1}∩ {aj = 1 − (2c)−1}∩ {bh = −bj }),
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setting the N ×N -matrix Mh := UhV
�
h for any 1 ≤ h ≤ q and denoting by p, with

1 ≤ p ≤ q , the number of distinct eigenvalues λj ∈ A∗, we can write∑
1≤h,j≤q

MhM
�
j 1{λh+λj=2−c−1} = ∑

1≤h,j≤p

MhM
�
j 1{bh=−bj } = ∑

1≤h≤p

MhM
�
j (h),

where j (h) indicates the index j , with 1 ≤ j ≤ p, such that bj = −bh. Notice that,
since W has real entries, for any nonreal λh ∈ Sp(W), there exists λj ∈ Sp(W)

such that λj = λh; moreover, uh and vh are respectively left and right eigenvectors
associated to λj . Hence, denoting by T the nonsingular matrix such that Uj =
UhT and Vj = V h(T

�)−1, we have that

Mj = UjV
�
j = UhT T −1V

�
h = UhV

�
h = Mh.

Thus, we have ∑
1≤h≤p

MhM
�
j (h) = ∑

1≤h≤p

MhM
�
h ,

which is a positive semidefinite matrix of rank m∗ (see [30], Observation 7.1.8).
Concerning the second part of case (c), since

�∗
1,h,j = (eh − ej )

��̂∗
1(eh − ej ),

we have that �∗
1,h,j = 0 if and only if (eh − ej ) ∈ Ker(�̂∗

1). Now, notice that

Ker(�̂∗
1 ) =⋂1≤k≤p Ker(U�

k ), and hence Ker(�̂∗
1) is generated by {vj : λj /∈ A∗}.

Finally, since the following decomposition holds:

(eh − ej ) =
N∑

k=1

(
u�

k (eh − ej )
)
vk =

N∑
k=1

(uk,h − uk,j )vk,

it is enough to have uk,h �= uk,j for some k such that λk ∈ A∗ to prove that
�∗

1,h,j > 0. Analogously, we can prove that [�̂∗
1 ]jj > 0 when uh,j �= 0 for some h

such that λh ∈ A∗. This concludes the proof of case (c). �

4.6. Proofs of Theorem 3.2 and Theorem 3.3 (CLTs for Zn). Let us remind the
decomposition (4.4), that is,

Zn = Z̃n1 + Ẑn.

Hence, the asymptotic behavior of the process (Zn)n can be obtained by combin-
ing the asymptotic results concerning (Z̃n)n and (Ẑn)n established in the previous
subsections. As we have already seen, we have the almost sure synchronization,
that is,

Zn
a.s.−→ Z∞1.
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Moreover, from Theorem 4.2, we easily obtain for 1/2 < γ ≤ 1

nγ− 1
2 (Z̃n − Z∞)1 −→ N

(
0, σ̃ 2

γ Z∞(1 − Z∞)11�) stably in the strong sense,

and we recall the central limit theorem for the multi-dimensional process Ẑn pre-
sented in Theorem 4.3.

Hence, for Theorem 3.2(a), we observe that

nγ−1/2(Zn − Z∞1) = nγ−1/2(Z̃n − Z∞)1 + 1

n(1−γ )/2

(
nγ/2Ẑn

)
,

where the first term converges stably to a Gaussian kernel and the second one
converges in probability to zero.

For Theorem 3.2(b), we observe that
√

n(Zn − Z∞1) = √
n(Z̃n − Z∞)1 + √

nẐn,

where the first term converges to a Gaussian kernel stably in the strong sense and
the second one converges stably to a Gaussian kernel. Since Ẑn is Fn-measurable,
by applying Theorem B.2, we can conclude.

For Theorem 3.2(c), we observe that
√

n√
ln(n)

(Zn − Z∞1) =
(

1√
ln(n)

)√
n(Z̃n − Z∞)1 +

√
n√

ln(n)
Ẑn,

where the first term converges in probability to zero and the second one converges
stably to a Gaussian kernel. Thus, Theorem 3.2 is proven.

Finally, we observe that

Zn,h − Zn,j = Ẑn,h − Ẑn,j .

Therefore, Theorem 3.3 immediately follows from the central limit theorem for
the N -dimensional process (Ẑn)n.

5. Examples of weighted adjacency matrices. In this section, we analyze in
detail the results presented in Section 3 for some interesting examples of weighted
adjacency matrices.

5.1. “Mean-field” interaction. This kind of interaction can be expressed in
terms of a particular weighted adjacency matrix W as follows: for any 1 ≤ h,
j ≤ N ,

(5.1) wh,j = α

N
+ δh,j (1 − α) with α ∈ [0,1],

where δh,j is equal to 1 when h = j and to 0 otherwise. Note that W in (5.1) is
irreducible for α > 0. Since W is doubly stochastic, we have (see Remark 4.1)
v1 = u1 = N−1/21 and so (i) the random variable Z̃n coincides with the aver-
age of the processes Zn,j , that is, N−11�Zn, (ii) Ẑn = (I − N−111�)Zn and
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(iii) σ̃ 2
γ = c2

N(2γ−1)
for 1/2 < γ ≤ 1. Furthermore, we have λj = 1 − α for all

λj ∈ Sp(W) \ {1}, and consequently, the conditions Re(λ∗) < 1 − (2c)−1 or
Re(λ∗) = 1 − (2c)−1 required in the previous results when γ = 1 correspond to
the conditions 2cα > 1 or 2cα = 1. Finally, since W is also symmetric, we have
U = V and so U�U = V �V = I and UU� = V V � = I − N−111�. We thus
obtain:

(a) for 1/2 < γ < 1, Ŝγ = c
2α

I and �̂γ = c
2α

(I − N−111�);

(b) for γ = 1 and 2cα > 1, Ŝ1 = c2

2cα−1I and �̂1 = c2

2cα−1(I − N−111�);
(c) for γ = 1 and 2cα = 1, Ŝ∗

1 = c2I and �̂∗
1 = c2(I − N−111�).

Therefore, our theorems contain as particular cases part of the results proven in
[21, 22, 25]. However, differently from these papers, we do not deal with the cases
2cα < 1 or γ ≤ 1/2, which are still interesting for synchronization phenomena
but lead to quite different asymptotic results. We have already discussed the case
γ ≤ 1/2 in Section 2 and, regarding the case γ = 1 and 0 < 2cα < 1, we recall that
in [22] it has been determined the rate of synchronization, but not the asymptotic
distribution.

5.2. “Cycle” interaction. Another possible scenario consists in a graph in
which the vertices form a circle and each one influences only the vertex at his right
side. This interaction can be modeled by using the adjacency matrix W defined as
follows: for any 1 ≤ h ≤ (N − 1) and 1 ≤ j ≤ N we have

(5.2) wh,j =
{

1 if j = h + 1,

0 otherwise,

while we have wN,1 = 1 for h = N and wN,j = 0 for any 2 ≤ j ≤ N . Since W

is again doubly stochastic, we have u1 = v1 = N−1/21, which implies (i) Z̃n =
N−11�Zn, (ii) Ẑn = (I − N−111�)Zn and (iii) σ̃ 2

γ = c2

N(2γ−1)
for 1/2 < γ ≤ 1

as in Section 5.1. Moreover, it is easy to verify that in this case the eigenval-
ues of W are λ1 = 1 and λj = exp[i(j − 1)2π/N], for j = 2, . . . ,N . Hence,
since in this case Re(λ∗) = cos(2π/N), conditions Re(λ∗) < 1 − (2c)−1 or
Re(λ∗) = 1 − (2c)−1 required in the previous results when γ = 1 correspond
to the conditions 2c(1 − cos(2π/N)) > 1 or 2c(1 − cos(2π/N)) = 1. Moreover,
for each λh ∈ Sp(W) \ {1}, the j th element of the corresponding left and right
eigenvectors are, respectively, uh,j = N−1/2 exp[−i(h − 1)j2π/N] and vh,j =
N−1/2 exp[i(h − 1)j2π/N]. Therefore, since we have the analytic expressions of
U and V , it is possible to compute the asymptotic variance-covariance matrices
according to the size N of the network and their eigenvalues and eigenvectors. For
instance, for N = 4 we have:

(a) for 1/2 < γ < 1, the nonzero eigenvalues of �̂γ are c/2, c/2, c/4, with the
corresponding eigenvectors (−1,0,1,0), (0,−1,0,1), (−1,1,−1,1);



3816 G. ALETTI, I. CRIMALDI AND A. GHIGLIETTI

(b) for γ = 1 and c > 1/2, the nonzero eigenvalues of �̂1 are c2(2c − 1)−1,
c2(2c − 1)−1, c2(4c − 1)−1, with the corresponding eigenvectors (−1,0,1,0),
(0,−1,0,1), (−1,1,−1,1);

(c) for γ = 1 and c = 1/2, the nonzero eigenvalue of �̂∗
1 is 1/4 with multiplic-

ity two and the corresponding eigenvectors are (−1,0,1,0), (0,−1,0,1).

5.3. “Special vertex” case. In the previous two examples, the matrix W is
doubly stochastic (also symmetric in the first example). As a different situation, we
may consider the case in which there exists a “special vertex” whose influence on
the graph is different with respect to the one of all the other elements in the system.
This interactive structure can be expressed in terms of a particular adjacency matrix
defined as follows:

(5.3) W = ap1� with ap :=
(
p,

1 − p

N − 1
, . . . ,

1 − p

N − 1

)�
,

where 0 < p < 1 is a weight that represents how much any vertex of the system is
influenced by the “special vertex”. Notice that

∑N
j=1 ap,j = 1 for any 0 < p < 1.

Moreover, we have v1 = apN1/2 and hence UV � = I − u1v�
1 = I − 1a�

p and

σ̃ 2
γ = c2

N

‖v1‖2

(2γ − 1)
= c2

(2γ − 1)
‖ap‖2

= c2

(2γ − 1)

(
p2 + (1 − p)2

N − 1

)
for 1/2 < γ ≤ 1.

Furthermore, since Sp(W) \ {1} coincides with the eigenvalue 0 with multiplicity
(N − 1), conditions λ∗ < 1 − (2c)−1 or λ∗ = 1 − (2c)−1 required in the previous
results when γ = 1 correspond to the conditions c > 1/2 or c = 1/2 and, setting

Ap := UV �(UV �)� = (I − 1a�
p

)(
I − ap1�)= I + ‖ap‖211� − (1a�

p + ap1�),
we have:

(a) �̂γ = c
2Ap for 1/2 < γ < 1;

(b) �̂1 = c2

2c−1Ap , for γ = 1 and c > 1/2;

(c) �̂∗
1 = 1

4Ap , for γ = 1 and c = 1/2.

In order to highlight the role of the “special vertex” in the synchronization of
the system, let us set the initial state of the stochastic processes at the vertices as
follows: Z1

0 = z1 for the “special vertex” and Z2
0 = · · · = ZN

0 = z2 for the other
vertices of the graph, with z1 �= z2. This may represent a situation in which ini-
tially the “special agent” has an inclination z1 that is different from the rest of the
population which is settled on another inclination z2. Since (Z̃n)n is a martingale,
we have that E[Z∞] = E[Z̃0] = N−1/2v�

1 Z0, which in this case reduces to

E[Z∞] = z1p + z2(1 − p).
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Then the expected limiting inclination, that is, E[Z∞], is strongly related to the
influence that the “special vertex” exercises on the rest of the vertices (which is
ruled by the parameter p). For instance, consider the following cases:

(i) If p � 1, then we have E[Z∞] � z1 regardless the value of z2; this reflects
a situation in which the “special vertex” is very charismatic in the system and he
leads the other elements to synchronize on average towards his initial inclination.

(ii) If p = 1/N with N large, then we have E[Z∞] � z2 regardless the value
of z1; this reflects a situation in which the “diversity” of the “special vertex” is
dispersed because of the large number of individuals in the population, and so the
expected limiting inclination is close to the initial inclination of the majority of the
system.

6. Statistical inference. First of all, we observe that by means of the central
limit theorem for Z̃n = N−1/2v�

1 Zn presented in Theorem 4.2, it is possible to con-
struct, for each 1/2 < γ ≤ 1, asymptotic confidence intervals for Z∞, that is, the
limit random variable at which all the stochastic processes {(Zn,j )n : 1 ≤ j ≤ N}
converge. Specifically, an asymptotic confidence interval for Z∞ with approximate
level (1 − θ) is the following:

CI1−θ (Z∞) := (Z̃n − σ̃γ

√
Z̃n(1 − Z̃n)n

−(γ−1/2)zθ ;
Z̃n + σ̃γ

√
Z̃n(1 − Z̃n)n

−(γ−1/2)zθ

)
,

where zθ is such that N (0,1)(zθ ,+∞) = θ/2.
Note that, in order to compute the above confidence interval, we need to know

v1 (as well as N , c and γ ). Nevertheless, it is not required to know the whole
weighted adjacency matrix W . For example, for doubly stochastic matrices, the
vector v1 is known (see Remark 4.1).

We now focus on the inferential problem of testing the hypothesis that the net-
work is characterized by a given weighted adjacency matrix W0, that is, H0 : W =
W0, using the multi-dimensional stochastic process (Zn)n observed at the vertices.
Since the distribution of Z∞ is unknown, we propose a test statistics whose limit
does not involve Z∞. The parameters N , c and γ are again considered known.

First, we need to introduce some notation. Given a N × N positive semidefinite
matrix � of rank 1 ≤ r ≤ (N −1) and having spectral decomposition � = O�O�
(more precisely, � is the diagonal matrix containing the eigenvalues of � and the
columns of O form a corresponding orthonormal basis of right eigenvectors), we
denote by L the diagonal matrix such that

[L]h,j =
{
λ

−1/2
j if h = j and λj > 0,

0 otherwise,
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and by H the r × N -matrix such that

[H ]h,j =
{

1 if h = j and 1 ≤ h ≤ r,

0 otherwise.

Then:

(a) when 1/2 < γ < 1, take � = �̂γ with rank r = (N − 1) and set Oγ = O ,
Lγ = L, Hγ = H and Mγ = Hγ Lγ O�

γ ;
(b) when γ = 1 and λ∗ < 1 − (2c)−1, take � = �̂1 with rank r = (N − 1) and

set O1 = O , L1 = L, H1 = H and M1 = H1L1O
�
1 ;

(c) when γ = 1 and λ∗ = 1 − (2c)−1, take � = �̂∗
1 with rank r equal to the

cardinality m∗ of the set

A∗ = {λj ∈ Sp(W) : Re(λj ) = 1 − (2c)−1},
defined in (3.6) and set O∗

1 = O , L∗
1 = L, H ∗

1 = H and M∗
1 = H ∗

1 L∗
1(O

∗
1 )�.

Fixed the weighted adjacency matrix assumed under H0, that is, W0, we can
compute for it the vector v1 and the matrices U and V as defined in Section 2.
Hence, we can obtain under H0 the real process Z̃n = N−1/2(v�

1 Zn) and the
multi-dimensional process Ẑn = (I −N−1/21v�

1 )Zn = UV �Zn. Then, using (4.6),
(4.18), (4.19) and applying Lemma A.7, we have under H0 that:

(a) for 1/2 < γ < 1,

(6.1) Tγ,n := nγ/2[Z̃n(1 − Z̃n)
]−1/2

Mγ UV �Zn,

(b) for γ = 1 and λ∗ < 1 − (2c)−1,

(6.2) T1,n := n1/2[Z̃n(1 − Z̃n)
]−1/2

M1UV �Zn,

are asymptotically normal distributed with covariance matrix equal to the (N −
1) × (N − 1) identity matrix (in the above formulas the matrices Mγ and M1

are those related to �̂γ and �̂1, respectively, computed for W0). Hence, both the
test statistics ‖Tγ,n‖2 and ‖T1,n‖2 are asymptotically chi-squared distributed with
(N − 1) degrees of freedom. In the case (c), that is, γ = 1 and λ∗ = 1 − (2c)−1,
using (4.6), (4.20) and applying Lemma A.7, we have under H0 that

(6.3) T∗
1,n :=

√
n

ln(n)

[
Z̃n(1 − Z̃n)

]−1/2
M∗

1 UV �Zn

is asymptotically normal distributed with covariance matrix equal to the m∗ × m∗
identity matrix (in the above formula the matrix M∗

1 is the one related to �̂∗
1 com-

puted for W0), and hence the test statistics ‖T∗
1,n‖2 is asymptotically chi-squared

distributed with m∗ degrees of freedom. These results let us construct asymptotic
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critical regions for testing any W0. The performance in terms of power of these in-
ferential procedures is strongly related to the considered adjacency matrix W1 be-
longing to the alternative hypothesis H1. As an example, let us consider case (a),
since (b) and (c) are analogous. First, note that the vector v1, computed under
H0 : W = W0, may not be the eigenvector of W1 associated to λ1 = 1, and so we
may have under H1 that Z̃n �= N−1/2(v�

1 Zn). However, by (2.5) and Theorem 3.1,

we still have that N−1/2(v�
1 Zn)

a.s.−→ N−1/2(v�
1 1)Z∞ = Z∞, which implies that

in (6.1) [Z̃n(1 − Z̃n)]−1/2 a.s.−→ [Z∞(1 − Z∞)]−1/2 remains valid under H1. Anal-
ogously, note that the columns of U and V , computed under H0 : W = W0, may
not be the eigenvectors of W1 associated to Sp(W1) \ {1}. However, by (4.1), (4.2)
and (4.4), we still have that UV �Zn = UV �Ẑn holds under H1. As a conse-
quence, under H1 we have that Tγ,n is asymptotically normal distributed with
covariance matrix Mγ UV ��̂γ V U�M�

γ , where �̂γ is here computed using the
eigenstructure of W1, while Mγ is related to �̂γ computed for W0. Consequently,
the distance between the identity matrix I and the matrix Mγ UV ��̂γ V U�M�

γ

describes the relation between the asymptotic distribution of ‖Tγ,n‖2 under H0
and the one under H1, which determines the power of the test. For instance, note
that E[‖Tγ,n‖2] = (n − 1) under H0, while E[‖Tγ,n‖2] is equal to the trace of
Mγ UV ��̂γ V U�M�

γ under H1.
We now apply these testing procedures to the meaningful examples of weighted

adjacency matrices considered in Section 5.

6.1. “Mean-field” interaction. Consider the family of weighted adjacency
matrices {Wα;α ∈ (0,1]} defined in (5.1). It may be of interest to test whether the
unknown parameter α can be assumed to be equal to a specific value α0 ∈ (0,1],
that is,

H0 : W = Wα0 vs H1 : W = Wα for some α ∈ (0,1] \ {α0}.
In this case, assuming 2cα0 ≥ 1 when γ = 1, by the results presented in Sec-
tion 5.1, using v1 and U = V computed for Wα0 , we have:

(a) for 1/2 < γ < 1, Tγ,n = nγ/2[Z̃n(1 − Z̃n)]−1/2
√

2α0
c

U�Zn;

(b) for γ = 1 and 2cα0 > 1, T1,n = n1/2[Z̃n(1 − Z̃n)]−1/2
√

2cα0−1
c

U�Zn;

(c) for γ = 1 and 2cα0 = 1, T∗
1,n =

√
n

ln(n)
[Z̃n(1 − Z̃n)]−1/2 1

c
U�Zn,

where Z̃n = N−11�Zn. Under H0, we have ‖Tγ,n‖2,‖T1,n‖2,‖T∗
1,n‖2 d∼ χ2

N−1.
Concerning the distribution of the test statistics for α �= α0, notice that the eigen-
vectors of W do not depend on α and so U is the same for any α. Therefore, for
any fixed α ∈ (0,1] \ {α0}, under the hypothesis {W = Wα} ⊂ H1 we have:

(a) for 1/2 < γ < 1, ‖Tγ,n‖2 d∼ (
α0
α

)χ2
N−1;
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(b) for γ = 1 and 2cα0 > 1, ‖T1,n‖2 d∼ (
2cα0−1
2cα−1 )χ2

N−1 if 2cα > 1, and

‖T1,n‖2 P→ +∞ if 2cα = 1;

(c) for γ = 1 and 2cα0 = 1, ‖T∗
1,n‖2 P→ 0 for 2cα > 1.

6.2. “Cycle” interaction. We could test whether the weighted adjacency ma-
trix is the one, say W0, defined in (5.2). Then we consider the following hypothesis
test:

H0 : W = W0 vs H1 : W �= W0.

Once obtained the eigenstructure of �̂γ , �̂1 and �̂∗
1 , we can define Tγ,n, T1,n and

T∗
1,n as in (6.1), (6.2) and (6.3), respectively, and under H0 we have that:

(a) for 1/2 < γ < 1, ‖Tγ,n‖2 d∼ χ2
N−1;

(b) for γ = 1 and 2c(1 − cos(2π/N)) > 1, ‖T1,n‖2 d∼ χ2
N−1;

(c) for γ = 1 and 2c(1 − cos(2π/N)) = 1, ‖T∗
1,n‖2 d∼ χ2

2 .

6.3. “Special vertex” case. We could test whether there is a “special vertex”
in the network, that is, the weighted adjacency matrix is the one, say Wp , defined
in (5.3), and so in this case the considered hypothesis test is the following:

H0 : W = Wp vs H1 : W �= Wp.

From Section 5.3, we get that �̂γ = c
2Ap , �̂1 = c2

2c−1Ap and �̂∗
1 = 1

4Ap , where
Ap = (I − 1a�

p )(I − ap1�). Hence, since Ap has rank (N − 1), we have under
H0 that ‖Tγ,n‖2, ‖T1,n‖2 and ‖T∗

1,n‖2 defined as in (6.1), (6.2) and (6.3) are all
asymptotically chi-squared distributed with (N −1) degrees of freedom. Note that,
differently from the “mean-field” case, the eigenvectors of �̂γ , �̂1 and �̂∗

1 here
change with p. Hence, in this case the power of the test may be more efficiently
investigated through a numerical study on the distance between the matrices I and
Mγ UV ��̂γ V U�M�

γ , as discussed above in the general framework.

7. Variants. We can consider the following two variants.

7.1. The case of a “forcing input”. As in [21], we can consider the following
variant:

(7.1) Zn+1 = (1 − rn)Zn + rn
[
ρXn+1 + (1 − ρ)q1

]
,

where E[Xn|Fn−1] = W�Zn−1, ρ ∈ [0,1[ and q ∈ [0,1]. The assumptions on
W and (rn) are the same as in the previous sections. (Here, we exclude the case
ρ = 1 since it corresponds to the model studied in the previous sections.) Note
that this variant of the model contains the classical Friedman’s urn [indeed, if a is
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the number of added balls with the same color of the extracted one and b is the
number of added balls with opposite color, with a ≥ b, then it is enough to take
ρ = (a − b)/(a + b) and q = 1/2].

With the same notation as before, we consider the decomposition (4.4). In par-
ticular, setting Z̃n = N−1/2v�

1 Zn, we obtain the dynamics

Z̃n+1 − Z̃n = −(1 − ρ)rn(Z̃n − q) + ρrnN
−1/2(v�

1 �Mn+1
)
,

where �Mn+1 = Xn+1 − W�Zn. Therefore, we have

Z̃n+1 − q = (1 − (1 − ρ)rn
)
(Z̃n − q) + ρrnN

−1/2(v�
1 �Mn+1

)
and so

(Z̃n+1 − q)2 = (1 − 2rn(1 − ρ)
)
(Z̃n − q)2 + r2

n

[
(1 − ρ)2(Z̃n − q)2

+ ρ2N−1(v�
1 �Mn+1

)2]
.

It follows

E
[
(Z̃n+1 − q)2|Fn

]= (1 − 2rn(1 − ρ)
)
(Z̃n − q)2

+ r2
n

{
(1 − ρ)2(Z̃n − q)2 + ρ2

N
E
[(

v�
1 �Mn+1

)2|Fn

]}
≤ (Z̃n − q)2 + r2

nξn.

Since (ξn)n is a bounded sequence of Fn-measurable random variables and∑
n r2

n < +∞ for 1/2 < γ ≤ 1, we have that ((Z̃n − q)2)n is a positive almost
supermartingale and so it converges almost surely (and also in mean since it is
bounded). On the other hand, from the above computations, we also get

E
[
(Z̃n+1 − q)2]= (1 − 2rn(1 − ρ)

)
E
[
(Z̃n − q)2]+ r2

nE[ξn]
and so, since ρ < 1, by [21], Lemma A.1, we can conclude that limn E[(Z̃n −
q)2] = 0. Therefore, we obtain

Z̃n
a.s.−→ q.

Regarding Ẑn = Zn −1Z̃n = UV �Zn, we can prove again that it converges almost
surely to 0. Indeed, if we set ZV,n = V �Ẑn = V �Zn, that is Ẑn = UZV,n by (4.1),
we get from (7.1)

ZV,n+1 = (1 − rn)ZV,n + rn
[
ρV ��Mn+1 + ρV �W�Zn + (1 − ρ)qV �1

]
= (1 − rn)ZV,n

+ rn
[
ρV ��Mn+1 + ρV �(u1v�

1 + UDV �)Zn + (1 − ρ)qN1/2V �u1
]

= (1 − rn)ZV,n + rnρDZV,n + rnρV ��Mn+1

= [I − rn(I − ρD)
]
ZV,n + rnρV ��Mn+1,
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where I here denotes the (N − 1) × (N − 1) identity matrix. Arguing as in the
proof of Theorem 4.1, we can obtain that (‖ZV,n‖2)n is a positive almost super-
martingale, which satisfies

xn+1 ≤ (1 − 2a∗rn
)
xn + Cr2

n

with xn = E[‖ZV,n‖2], a∗ = 1 − ρRe(λ∗) and C a suitable constant. Since
ρRe(λ∗) < 1, we have a∗ > 0, which implies limn xn = 0 and so ‖ZV,n‖2 → 0
almost surely, that is, ZV,n → 0 almost surely.

Summing up, also for the considered variant, we have an almost sure synchro-
nization, that is all the stochastic processes {(Zn,j )n : j ∈ V } converge almost
surely to the same limit, but in this case the limit is the constant “forcing input” q .
It is interesting to observe that this occurs for any weighted adjacency matrix W

satisfying the required assumptions. It is also worthwhile to note that, in this case,
for the above computations, we do not need the condition Re(λ∗) < 1 since ρ < 1
automatically implies ρRe(λ∗) < 1 when Re(λ∗) ≤ 1.

We refer to [21] for some functional central limit theorems in the case of ρ < 1
and the mean-field interaction.

7.2. The case of a reducible weighted adjacency matrix. We now present an
extension of the theory presented in this paper to the case of a reducible weighted
adjacency matrix (see [2] for a similar approach to systems of interacting general-
ized Friedman’s urns).

We here consider a particular decomposition of W that individuates subgraphs
composed by processes (Zn,k)n that evolve with different behaviors. The same de-
composition has been applied to the interacting matrix in [2], and it is typically
applied to the transition matrices in the context of discrete time-homogeneous
Markov chains (see [39]) to characterize the state space. More precisely, denot-
ing by m, with 1 ≤ m ≤ N , the multiplicity of the eigenvalue 1 of W , that is,
λ1 = · · · = λm = 1, the reducible matrix W can be decomposed as follows (see
[39], Example 1.2.2):

(7.2) W =

⎡⎢⎢⎢⎢⎢⎣
W1 0 · · · 0 W1,f

0 W2 · · · 0 W2,f

: · · · · · · · · · · · ·
0 0 · · · Wm Wm,f

0 0 · · · 0 Wf

⎤⎥⎥⎥⎥⎥⎦ ,

where:

(i) {Wj ;1 ≤ j ≤ m} are irreducible Nj ×Nj -matrices with λmax(Wj ) = 1 that
identify the recurrent communicating classes in the state space;

(ii) (if
∑m

j=1 Nj ≤ N − 1) Wf is a Nf × Nf -matrix with λmax(Wf ) < 1 that
contains all the transient communicating classes in the state space;

(iii) (if
∑m

j=1 Nj ≤ N − 1) {Wj,f ;1 ≤ j ≤ m} are Nj × Nf -matrices.
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Obviously, when
∑m

j=1 Nj = N we have Nf = 0, and hence the elements in
{Wj,f ;1 ≤ j ≤ m} and Wf do not exist. This occurs when all the classes are closed
and recurrent, and hence the state space can be partitioned into irreducible and dis-
joint subspaces. In the particular case of W irreducible considered previously in
the paper, there is only one closed and recurrent class, and hence m = 1, N1 = N

and Nf = 0.
The structure of W given in (7.2) leads to a natural decomposition of the graph

in different subgraphs {Gj ;1 ≤ j ≤ m} associated to the submatrices {Wj ;1 ≤
j ≤ m} and Gf associated to Wf . Specifically, from (7.2) we can deduce that, for
each 1 ≤ j ≤ m, the vertices in Gj are not influenced by the vertices in the rest
of the network, and hence the dynamics of the processes in Gj can be fully es-
tablished by considering only the correspondent irreducible submatrix Wj (see [2]
for further details). Then, applying the results presented in this paper to each sub-
graph Gj , it is possible to show that all the processes positioned at the vertices in
the same Gj synchronize, that is they all converge almost surely to the same ran-
dom limit. Concerning the subgraph Gf , the weighted adjacency matrix in (7.2)
shows that its vertices are influenced by the vertices in {Gj ;1 ≤ j ≤ m}. There-
fore, applying similar arguments to the ones presented above, it is possible to es-
tablish that the processes positioned at the vertices in Gf converge almost surely
to convex combinations of the limits of the processes positioned at the vertices
in {Gj ;1 ≤ j ≤ m}, where the weights of such combinations are related to the
matrices {Wj,f ;1 ≤ j ≤ m} and Wf .

We now formalize the considerations illustrated above. To this end, let us first
define the following quantities:

(1) for any k ∈ {1, . . . ,N}, let jk be the index in {1, . . . ,m,f } such that k ∈
Gjk

, that is, jk denotes the index of the subgraph containing the vertex k;

(2) for any k ∈ {1, . . . ,N}, let ik := k −∑jk−1
m=1 Nm [with

∑0
m=1 Nm = 0 and

(f − 1) = m], that is, ik denotes the position of the vertex k within the subgraph
Gjk

it belongs to;

(3) for any j ∈ {1, . . . ,m}, let fj ∈ R
Nf

+ and aj ∈R
N+ be defined as follows:

fj := (I − W�
f

)−1
W�

j,f 1 and [aj ]k =

⎧⎪⎪⎨⎪⎪⎩
1 if k ∈ Gj,

[fj ]ik if k ∈ Gf ,

0 otherwise;
(4) for any j ∈ {1, . . . ,m}, let v(j) ∈ R

Nj

+ be the right eigenvector of Wj asso-

ciated to the eigenvalue 1 such that 1�v(j) = ‖aj‖ =
√

Nj + ‖fj‖2.

Hence, the m left and right eigenvectors of W associated to the eigenvalue 1 can
be taken as follows: uj = aj /‖aj‖ and

[vj ]k =
{[v(j)]ik if k ∈ Gj,

0 otherwise,
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so that ‖uj‖ = 1 and relations (2.4) hold, that is, u�
j vj = 1 and, for any 1 ≤ j �=

h ≤ m, u�
j vh = 0. Moreover, denoting by D the diagonal matrix with the (N −m)

eigenvalues λj ∈ Sp(W)\{1}, and by U and V the matrices whose columns are the
corresponding left and right eigenvectors, respectively, we have that relations (4.1)
hold and the decomposition of W� as in (4.2) is here obtained as follows:

W� =
m∑

j=1

uj v�
j + UDV � =

m∑
j=1

1

‖aj‖aj v�
j + UDV �.

Hence, the decomposition of the process Zn in (4.4) is here replaced by the fol-
lowing:

(7.3) Zn =
m∑

j=1

aj Z̃n,j + Ẑn =
m∑

j=1

uj‖aj‖Z̃n,j + Ẑn,

where ⎧⎪⎪⎨⎪⎪⎩
for any j ∈ {1, . . . ,m}, Z̃n,j := ‖aj‖−1v�

j Zn,

Ẑn = Zn −
m∑

j=1

aj Z̃n,j =
(
I −

m∑
j=1

uj v�
j

)
Zn = UV �Zn.

For any 1 ≤ j ≤ m, let us consider the real-valued stochastic process (Z̃n,j )n.
Since all the elements of v(j) are positive and 1�v(j) = ‖aj‖, the elements of
the vector ‖aj‖−1vj can be seen as the weights of a convex combination, so that
0 ≤ Z̃n,j ≤ 1 for any n. Moreover, it is easy to see that it is an F -martingale.
Indeed, from (4.3) we obtain that its dynamics can be expressed as follows:

Z̃n+1,j − Z̃n,j = ‖aj‖−1rn
(
v�
j �Mn+1

)
,

where �Mn+1 = Xn+1 − W�Zn. Hence, we immediately get

Z̃n,j
a.s.−→ Z∞,j ,

where Z∞,j is a random variable with values in [0,1].
Arguing as in the proof of Theorem 4.1, we can obtain that the process (Ẑn)n

converges to zero a.s., and hence by (7.3) we obtain

(7.4) Zn =
m∑

j=1

aj Z̃n,j + Ẑn
a.s.−→ Z∞ :=

m∑
j=1

ajZ∞,j ,

that is,

Zn,k
a.s.−→

m∑
j=1

[aj ]kZ∞,j .

To interpret the convergence result expressed in (7.4), denote, for each j ∈
{1, . . . ,m,f }, the Nj -dimensional vector Zn(j) := (Zn,k;k ∈ Gj)

� composed by
the processes positioned at the vertices in the same subgraph Gj , and note that:
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• if k ∈ Gj with 1 ≤ j ≤ m, then [aj ]k = 1 and [ah]k = 0 for any h �= j , and
hence we have

Zn(j)
a.s.−→ Z∞(j) := 1Z∞,j ;

this means that all the processes (Zn,k)n positioned at the vertices in the same
subgraph Gj , with 1 ≤ j ≤ m, synchronize, that is, they all converge almost
surely to the same random limit Z∞,j ;

• if k ∈ Gf , then [aj ]k = [fj ]ik , and hence

Zn(f )
a.s.−→ Z∞(f ) :=

m∑
j=1

fjZ∞,j = (I − W�
f

)−1
m∑

j=1

W�
j,f Z∞(j).

Moreover, notice that, since
∑m

j=1(W
�
j,f 1) = (I − W�

f )1, we have

m∑
j=1

fj = (I − W�
f

)−1
m∑

j=1

(
W�

j,f 1
)= 1,

and so we can interpret {fj ;1 ≤ j ≤ m} as the weights of a convex combination
and, consequently, the processes (Zn,k)n positioned at the vertices k ∈ Gf do
not synchronize but each of them converges to a suitable weighted average of
the m random variables {Z∞,j ;1 ≤ j ≤ m}.

Therefore, the random vector Z∞ can be decomposed as

Z∞ = (Z∞(1), . . . ,Z∞(m),Z∞(f ))
�.

We conclude observing that it is possible to realize a more complete analysis
of the random limit of the processes (Zn,k)n positioned at the vertices in the sub-
graph Gf . Indeed, using that W�aj = aj for any j ∈ {1, . . . ,m} (which follows
from uj = aj /‖aj‖ and W�uj = uj ) and (7.4), we obtain the following relation
on Z∞:

W�Z∞ = W�
(

m∑
j=1

ajZ∞,j

)
=

m∑
j=1

(
W�aj

)
Z∞,j

(7.5)

=
m∑

j=1

ajZ∞,j = Z∞.

The above relation suggests that a more detailed decomposition of W may be
useful to better characterize the elements in Z∞, and in particular in Z∞(f ). To
this end, we recall the decomposition of W in (7.2) and we express Wf and
{Wj,f ;1 ≤ j ≤ m} as follows:

(7.6) Wf =

⎡⎢⎢⎢⎢⎢⎣
W

(f )
m+1 W

(f )
m+1,m+2 · · · W

(f )
m+1,m+mf

0 W
(f )
m+2 · · · W

(f )
m+2,m+mf

: · · · · · · · · ·
0 0 · · · W

(f )
m+mf

⎤⎥⎥⎥⎥⎥⎦ ,
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where:

(iv) {W(f )
h ;m + 1 ≤ h ≤ m + mf } are irreducible Nh × Nh-matrices with

λmax(W
(f )
h ) < 1, that identify the transient communicating classes in the state

space;
(v) {W(f )

l,h ;m + 1 ≤ l ≤ m + mf − 1,m + 2 ≤ h ≤ m + mf } are Nl × Nh-
matrices;

(7.7)

⎡⎢⎢⎣
W1,f

W2,f

:
Wm,f

⎤⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
W

(f )
1,m+1 W

(f )
1,m+2 · · · W

(f )
1,m+mf

W
(f )
2,m+1 W

(f )
2,m+2 · · ·W(f )

2,m+mf

: : · · · :
W

(f )
m,m+1 W

(f )
m,m+2 · · · W

(f )
m,m+mf

⎤⎥⎥⎥⎥⎥⎦ ,

where

(vi) {W(f )
j,h ;1 ≤ j ≤ m,m + 1 ≤ h ≤ m + mf } are Nj × Nh-matrices.

Analogously to what we have done in the previous part, the full structure of
W obtained combining (7.2), (7.6) and (7.7) leads to a complete decomposi-
tion of the graph in different subgraphs: {Gj ;1 ≤ j ≤ m} associated to the sub-
matrices {Wj ;1 ≤ j ≤ m} considered in the previous part, and {Gh;m + 1 ≤
h ≤ m + mf } associated to the submatrices {W(f )

h ;m + 1 ≤ h ≤ m + mf },
where naturally Gh ⊂ Gf for any m + 1 ≤ h ≤ m + mf . Then, for each h ∈
{m+ 1, . . . ,m+mf }, we denote by Zn(h) := (Zn,k;k ∈ Gh)

� the Nh-dimensional
vector composed by the processes positioned at the vertices in the same sub-
graph Gh. Hence, setting Z∞(h) := a.s.- limn Zn(h) and decomposing Z∞ as Z∞ =
(Z∞(1), . . . ,Z∞(m+mf ))

�, by (7.5), we get for each Gh ⊂ Gf the relation

Z∞(h) =
m∑

j=1

(Wj,h)
�Z∞(j) +

h−1∑
l=m+1

(
W

(f )
l,h

)�Z∞(l) + (W(f )
h

)�Z∞(h),

which implies

Z∞(h) := (I − (W(f )
h

)�)−1

(
m∑

j=1

(Wj,h)
�Z∞(j) +

h−1∑
l=m+1

(
W

(f )
l,h

)�Z∞(l)

)
.

APPENDIX A: SOME TECHNICAL RESULTS

Throughout the sequel, given (an), (bn) two sequences of real numbers with
bn ≥ 0, the notation an = O(bn) means |an| ≤ Cbn for a suitable constant C > 0
and n large enough. Therefore, if we also have a−1

n = O(b−1
n ), then C′bn ≤ |an| ≤

Cbn for suitable constants C,C′ > 0 and n large enough. Given (zn), (z
′
n) two

sequences of complex numbers, with z′
n �= 0, the notation zn ∼ zz′

n, with z ∈ C,
z �= 0, means limn zn/z

′
n = z and the notation zn = o(z′

n) means limn zn/z
′
n = 0.
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A.1. Asymptotic results for sums of complex numbers. We start recalling
Toeplitz lemma (see [35]), from which we get useful corollaries employed in our
proofs.

LEMMA A.1 (Toeplitz lemma). Let {xn,k : 1 ≤ k ≤ kn} be a triangular array
of real numbers with kn ↑ +∞ and such that:

(i) limn xn,k = 0 for each fixed k;
(ii) limn

∑kn

k=1 xn,k = 1;

(iii)
∑kn

k=1 |xn,k| = O(1).

Let (yn)n be a sequence of real numbers with limn yn = y ∈ R. Then we have
limn

∑kn

k=1 xn,kyk = y.

REMARK A.1. If in the above lemma we replace condition (ii) by
limn

∑kn

k=1 xn,k = 0, we get limn

∑kn

k=1 xn,kyk = 0. Indeed, applying Lemma A.1
to x̃n,k = xn,k − (kn)

−1, we find

lim
n

kn∑
k=1

(
xn,k − 1

kn

)
yk = lim

n

kn∑
k=1

x̃n,kyk = y.

Hence, since limn

∑kn

k=1 yk/kn = y (again by Lemma A.1), we finally get

limn

∑kn

k=1 xn,kyk = 0.

From Lemma A.1, we can easily get the following corollary.

COROLLARY A.1. Let (xn)n, (x
′
n)n and (cn)n be three sequences of real num-

bers such that x′
n > 0, cn ≥ 0, xn ∼ xx′

n with x ∈ (0,+∞) and limn cn = 0. Sup-
pose to have limn cn

∑n
k=1 xk = s ∈ {0,1}, then limn cn

∑n
k=1 x′

k = s/x.

PROOF. By assumption, taking ε ∈ (0, x), we have xn > (x − ε)x′
n > 0 for

n ≥ n̄ with a suitable n̄. Moreover, since cn → 0, we have limn cn

∑n
k=1 x′

k =
limn cn

∑n
k=n̄ x′

k . Therefore, without loss of generality, we can suppose xn > 0
for each n. Hence, if s = 1, it is enough to apply Lemma A.1 with xn,k = cnxk ,
yn = x′

n/xn, y = x−1; if s = 0, it is enough to apply Remark A.1 to xn,k = cnxk .
�

The following lemma extends the Toeplitz lemma and Remark A.1 to complex
numbers.

LEMMA A.2 (Generalized Toeplitz lemma). Let {zn,k : 1 ≤ k ≤ kn} be a tri-
angular array of complex numbers such that:

(i) limn zn,k = 0 for each fixed k;
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(ii) limn

∑kn

k=1 zn,k = s ∈ {0,1};
(iii)

∑kn

k=1 |zn,k| = O(1).

Let (wn)n be a sequence of complex numbers with limn wn = w ∈ C. Then we have
limn

∑kn

k=1 zn,kwk = sw.

PROOF. Set zn,k = an,k + ibn,k , wn = cn + idn and w = c + id . By as-
sumption (i), we have limn an,k = 0 and limn bn,k = 0, for each fixed k, and, by
assumption (ii), we have limn

∑kn

k=1 an,k = s and limn

∑kn

k=1 bn,k = 0. Applying

Lemma A.1 to an,k , we easily get limn

∑kn

k=1 an,kck = sc and limn

∑kn

k=1 an,kdk =
sd . Then, applying Remark A.1 to bn,k , we find limn

∑kn

k=1 bn,kck = 0 and

limn

∑kn

k=1 bn,kdk = 0. Therefore, we have

kn∑
k=1

zn,kwk =
kn∑

k=1

an,kck −
kn∑

k=1

bn,kdk + i

kn∑
k=1

an,kdk +
kn∑

k=1

bn,kck

−→ s(c + id) = sw. �

As before, from this lemma, we can easily get the following corollaries.

COROLLARY A.2. Let (zn)n, (vn)n and (wn)n be three sequences of complex
numbers such that limn vn = 0 and limn wn = w �= 0. Set z′

n = znwn and suppose
to have limn vn

∑n
k=1 zk = s ∈ {0,1} and |vn|∑n

k=1 |zk| = O(1) or, equivalently,
|vn|∑n

k=1 |z′
k| = O(1). Then limn vn

∑n
k=1 z′

k = sw.

PROOF. It is enough to apply Lemma A.2 to zn,k = vnzk and wn. To this
purpose, note that, by assumption, taking ε ∈ (0, |w|) (note that |w| > 0 by as-
sumption), we have 0 < |w| − ε ≤ |wn| ≤ |w| + ε for n ≥ n̄ with n̄ large enough.
Therefore, by the relation z′

k = zkwk , we can affirm that

|vn|
n∑

k=n̄

|z′
k|

|w| + ε
≤ |vn|

n∑
k=n̄

|zk| ≤ |vn|
n∑

k=n̄

|z′
k|

|w| − ε

and so the two conditions |vn|∑n
k=1 |zk| = O(1) and |vn|∑n

k=1 |z′
k| = O(1) are

equivalent since |vn| → 0. �

COROLLARY A.3 (Generalized Kronecker lemma). Let (vn) and (zk) be two
sequences of complex numbers such that

vn �= 0, lim
n

vn = 0, |vn|
n∑

k=1

∣∣∣∣ 1

vk

− 1

vk−1

∣∣∣∣= O(1)
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and
∑

n zn is convergent. Then

lim
n

vn

n∑
k=1

zk

vk

= 0.

PROOF. Set wn =∑+∞
j=n zj and observe that, since

∑
n zn is convergent, we

have limn wn = w = 0 and, moreover, we can write

vn

n∑
k=1

zk

vk

= vn

n∑
k=1

wk − wk+1

vk

= vn

[
n∑

k=2

(
1

vk

− 1

vk−1

)
wk + w1

v1
− wn+1

vn

]

= vn

n∑
k=2

(
1

vk

− 1

vk−1

)
wk + vn

w1

v1
− wn+1.

The second and the third term obviously converge to zero. In order to prove that
the first term converges to zero, it is enough to apply Lemma A.2 to wn and zn,k =
vn(

1
vk

− 1
vk−1

). �

The above corollary is useful to get the following result for complex random
variables (that extends the second part of Lemma 2 in [10] and Lemma 4.1(a) in
[22] concerning the real case).

LEMMA A.3. Let H = (Hn)n be an increasing filtration and (Yn) a H-
adapted sequence of complex random variables such that E[Yn|Hn−1] → Y al-
most surely. Moreover, let (cn) be a sequence of strictly positive real numbers such
that

∑
n E[|Yn|2]/c2

n < +∞ and let (vn) be a sequence of complex numbers such
that vn �= 0 and

(A.1) lim
n

vn = 0, lim
n

vn

n∑
k=1

1

ckvk

= η ∈C,

(A.2) |vn|
n∑

k=1

1

ck|vk| = O(1), |vn|
n∑

k=1

∣∣∣∣ 1

vk

− 1

vk−1

∣∣∣∣= O(1).

Then vn

∑n
k=1 Yk/(ckvk)

a.s.−→ ηY .

PROOF. Let A be an event such that P(A) = 1 and limn E[Yn|Hn−1](ω) =
Y(ω) for each ω ∈ A. Fix ω ∈ A and set wn = E[Yn|Hn−1](ω) and w = Y(ω). If
η �= 0, applying Lemma A.2 to zn,k = vn/(ckvkη), s = 1 and wn, we obtain

lim
n

vn

n∑
k=1

E[Yk|Hk−1](ω)

ckvkη
= Y(ω).
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If η = 0, applying Lemma A.2 to zn,k = vn/(ckvk), s = 0 and wn, we obtain

lim
n

vn

n∑
k=1

E[Yk|Hk−1](ω)

ckvk

= 0.

Therefore, for both cases, we have

vn

n∑
k=1

E[Yk|Hk−1]
ckvk

a.s.−→ ηY.

Now, consider the martingale (Mn) defined by

Mn =
n∑

k=1

Yk − E[Yk|Hk−1]
ck

.

It is bounded in L2 since
∑n

k=1
E[|Yk |2]

c2
k

< +∞ by assumption and so it is almost

surely convergent, that means∑
k

Yk(ω) − E[Yk|Hk−1](ω)

ck

< +∞

for ω ∈ B with P(B) = 1. Therefore, fixing ω ∈ B and setting zk =
Yk(ω)−E[Yk |Hk−1](ω)

ck
, by Corollary A.3, we get

lim
n

vn

n∑
k=1

Yk(ω) − E[Yk|Hk−1](ω)

ckvk

= 0

and so

vn

n∑
k=1

Yk − E[Yk|Hk−1]
ckvk

a.s.−→ 0.

In order to conclude, it is enough to observe that

vn

n∑
k=1

Yk

ckvk

= vn

n∑
k=1

Yk − E[Yk|Hk−1]
ckvk

+ vn

n∑
k=1

E[Yk|Hk−1]
ckvk

.
�

REMARK A.2. It is useful to note that:

• The relations |vn|∑n
k=1

1
ck |vk | = O(1) and cn|vn|| 1

vn
− 1

vn−1
| = O(1) imply con-

ditions (A.2). Indeed, we have

|vn|
n∑

k=1

∣∣∣∣ 1

vk

− 1

vk−1

∣∣∣∣= |vn|
n∑

k=1

1

ck|vk|ck|vk|
∣∣∣∣ 1

vk

− 1

vk−1

∣∣∣∣.
• Whenever (vn) is a decreasing sequence of positive real numbers (the case of the

classical Kronecker lemma), conditions (A.1) obviously entail conditions (A.2).
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We conclude this subsection recalling the following well-known relations for
a ∈R:

(A.3)
n∑

k=1

1

k1−a
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(1) for a < 0,

ln(n) + O(1) for a = 0,

a−1na + O(1) for 0 < a ≤ 1,

a−1na + O
(
na−1) for a > 1.

A.2. Asymptotic results for products of complex numbers. We now
present the framework for the results of this subsection. Fix 1/2 < γ ≤ 1 and
c > 0, and consider a sequence (rn)n of real numbers such that 0 ≤ rn < 1 and

(A.4) rn ∼ c

nγ
.

Obviously, we have rn > 0 for n large enough and so, in the sequel, without loss
of generality, we will assume 0 < rn < 1 for all n.

Let α1 = a1 + ib1 ∈C and α2 = a2 + ib2 ∈ C with a1, a2 > 0. Denote by m0 ≥ 2
an integer such that max(a1, a2) < r−1

m for all m ≥ m0 and define for n ≥ m0 and
j = 1,2,

pn,j =
n∏

m=m0

(1 − αj rm) and 
n,j = p−1
n,j .

Then, inspired by the computation done in [21], we can prove the following
technical results.

LEMMA A.4. For j = 1,2 and for any ε ∈ (0,1), we have that

(A.5) |pn,j | =
⎧⎪⎨⎪⎩O

(
exp
[
−(1 − ε)

caj

1 − γ
n1−γ

])
for 1/2 < γ < 1,

O
(
n−(1−ε)caj

)
for γ = 1

and

(A.6) |
n,j | =
⎧⎪⎨⎪⎩O

(
exp
[
(1 + ε)

caj

1 − γ
n1−γ

])
for 1/2 < γ < 1,

O
(
n(1+ε)caj

)
for γ = 1.

Moreover, if we replace (A.4) with the condition

(A.7) nγ rn − c = O
(
n−γ ),

we have that

(A.8) |pn,j | =
⎧⎪⎨⎪⎩O

(
exp
[
− caj

1 − γ
n1−γ

])
for 1/2 < γ < 1,

O
(
n−caj

)
for γ = 1
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and

(A.9) |
n,j | =
⎧⎪⎨⎪⎩O

(
exp
[

caj

1 − γ
n1−γ

])
for 1/2 < γ < 1,

O
(
ncaj

)
for γ = 1.

PROOF. Consider j = 1,2. We can easily write pn,j = p∗
n,j qn,j , where

p∗
n,j =

n∏
m=m0

(1 − aj rm) and qn,j =
n∏

m=m0

(
1 − i

bj rm

1 − aj rm

)
.

We now observe that

|qn,j |2 =
n∏

m=m0

(
1 + b2

j r
2
m

(1 − aj rm)2

)
= exp

[
n∑

m=m0

ln
(

1 + b2
j r

2
m

(1 − aj rm)2

)]
,

and using the inequalities −x ≤ ln(1 + x) ≤ x for x ≥ 0, we have that

exp

[
−b2

j

n∑
m=m0

r2
m

(1 − aj rm)2

]
≤ |qn,j |2 ≤ exp

[
b2
j

n∑
m=m0

r2
m

(1 − aj rm)2

]
.

Hence, since the series
∑

m
r2
m

(1−aj rm)2 is convergent for 1/2 < γ ≤ 1, we have

pn,j = O(|p∗
n,j |) and 
n,j = O(|
∗

n,j |) with 
∗
n,j = 1/p∗

n,j . Therefore, it is enough
to study

p∗
n,j = exp

(
n∑

k=m0

ln(1 − aj rk)

)
and 
∗

n,j = exp

(
−

n∑
k=m0

ln(1 − aj rk)

)
.

Recalling the inequalities ln(1−x) ≤ −x and − ln(1−x) ≤ x+x2 for 0 ≤ x ≤ 1/2
and the fact that the series

∑
k r2

k is convergent for 1/2 < γ ≤ 1, we get

p∗
n,j = O

(
exp

(
−aj

n∑
k=m0

rk

))
,


∗
n,j = O

(
exp

(
aj

n∑
k=m0

rk

))
.

We now take into account the decomposition exp(aj

∑n
k=m0

rk) = s∗
n,j t

∗
n,j , where

s∗
n,j = exp

(
aj c

n∑
k=m0

k−γ

)
and t∗n,j = exp

(
aj

n∑
k=m0

(
rk − ck−γ )).

Now, since by condition (A.4), for any ε ∈ (0,1) we have |rk − ck−γ | ≤ εck−γ for
k large enough (depending on ε), we obtain

p∗
n,j = O

((
s∗
n,j

)−(1−ε)) and 
∗
n,j = O

((
s∗
n,j

)1+ε)
.
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Then (A.5) and (A.6) follow by noticing that, by means of (A.3), we have

s∗
n,j =

⎧⎪⎨⎪⎩O

(
exp
(

aj c

1 − γ
n1−γ

))
if 1/2 < γ < 1,

O
(
naj c) if γ = 1

and

(A.10) (
s∗
n,j

)−1 =
⎧⎪⎨⎪⎩O

(
exp
(−aj c

1 − γ
n1−γ

))
if 1/2 < γ < 1,

O
(
n−aj c) if γ = 1.

Finally, by condition (A.7) and since the series
∑

k O(k−2γ ) is convergent,
we have t∗n,j = O(1) and (t∗n,j )

−1 = O(1), which imply p∗
n,j = O((s∗

n,j )
−1) and


∗
n,j = O(s∗

n,j ). Then result (A.8) follows by applying (A.10). �

LEMMA A.5. We have that

lim
n

nγ pn,1pn,2

n∑
k=m0

r2
k 
k,1
k,2

(A.11)

=

⎧⎪⎪⎨⎪⎪⎩
c

α1 + α2
if 1/2 < γ < 1,

c2

c(α1 + α2) − 1
if γ = 1, c(a1 + a2) > 1

and, for any u ≥ 1, when 1/2 < γ < 1 or when γ = 1 and uc(a1 + a2) > (2u− 1),
we have

(A.12) |pn,1|u|pn,2|u
n∑

k=m0

r2u
k |
k,1|u|
k,2|u = O

(
n−γ (2u−1)).

PROOF. Let us start with observing that relations (A.5) imply in particular

(A.13) lim
n

nγ |pn,1||pn,2| = 0.

Indeed, this fact follows immediately for 1/2 < γ < 1 and, for γ = 1 one has to
note that, since we assume c(a1 + a2) > 1, we can choose ε small enough so that
c(1 − ε)(a1 + a2) > 1. Now, fix k ≥ 2 and let us define the following quantity:

Dγ,k = 1

kγ

k,1
k,2 − 1

(k − 1)γ

k−1,1
k−1,2

=
(

1

kγ
− 1

(k − 1)γ

)

k−1,1
k−1,2 + 1

kγ
(
k,1
k,2 − 
k−1,1
k−1,2)

= 
k,1
k,2

[(
1

kγ
− 1

(k − 1)γ

)

k−1,1
k−1,2


k,1
k,2
+ 1

kγ

(
1 − 
k−1,1
k−1,2


k,1
k,2

)]
.
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Then we observe the following:(
1

kγ
− 1

(k − 1)γ

)
= − γ

k1+γ
+ O

(
1

k2+γ

)
(A.14)

= − γ

k1+γ
+ o

(
1

k1+γ

)
for k → +∞

and

(A.15)

k−1,1
k−1,2


k,1
k,2
= (1 − α1rk)(1 − α2rk) = 1 + α1α2r

2
k − (α1 + α2)rk.

Now, by using (A.14) and (A.15) in the above expression of Dγ,k , and recall-
ing (A.4), we have for k → +∞

Dγ,k = 
k,1
k,2

[
− γ

kγ+1 (1 − α1rk)(1 − α2rk) + 1

kγ

(−α1α2r
2
k + (α1 + α2)rk

)]
+ o

(

k,1
k,2

k1+γ

)
= 
k,1
k,2

[
rk

kγ
(α1 + α2) − γ

kγ+1

]
+ o

(

k,1
k,2

k1+γ

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(α1 + α2)rk

kγ

k,1
k,2 + o

(
r2
k 
k,1
k,2

)
if 1/2 < γ < 1,(

(α1 + α2)rk

k
− 1

k2

)

k,1
k,2 + o

(
r2
k 
k,1
k,2

)
if γ = 1, c(α1 + α2) �= 1,

that is,

(A.16) Dγ,k ∼

⎧⎪⎪⎨⎪⎪⎩
(α1 + α2)

c
r2
k 
k,1
k,2 if 1/2 < γ < 1,

c(α1 + α2) − 1

c2 r2
k 
k,1
k,2 if γ = 1, c(α1 + α2) �= 1.

Note that, when γ = 1, the condition c(a1 + a2) > 1 implies that c(α1 + α2) �= 1
that ensures D1,k ∼ r2

k 
k,1
k,2. Now, we want to apply Corollary A.2 with

zn = Dγ,n, vn = nγ pn,1pn,2, wn = r2
n
n,1
n,2

Dγ,n

,

w =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c

(α1 + α2)
if 1/2 < γ < 1,

c2

c(α1 + α2) − 1
if γ = 1, c(a1 + a2) > 1.
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Indeed, limn vn = 0 by (A.13), limn wn = w �= 0 by (A.16),

vn

n∑
k=m0

zk = nγ pn,1pn,2

n∑
k=m0

Dγ,k

= nγ pn,1pn,2

(

n,1
n,2

nγ
− 
m0−1,1
m0−1,2

(m0 − 1)γ

)
−→ 1

by (A.13) and z′
n = znwn = r2

n
n,1
n,2. Finally, in order to apply Corollary A.2,
it remains to prove that |vn|∑n

k=m0
|z′

k| = O(1). In order to do this, we apply
Corollary A.1 to

xn = 1

nγ
|
n,1||
n,2| − 1

(n − 1)γ
|
n−1,1||
n−1,2|, x′

n = r2
n |
n,1||
n,2| > 0,

cn = nγ |pn,1||pn,2|.
Indeed, we have limn cn

∑n
k=m0

xk = 1, and since

|
k−1,1||
k−1,2|
|
k,1||
k,2| = ∣∣1 + α1α2r

2
k − (α1 + α2)rk

∣∣= 1 − (a1 + a2)rk + O
(
r2
k

)
,

by computations similar to the ones done above, we can obtain

xn ∼

⎧⎪⎪⎨⎪⎪⎩
(a1 + a2)

c
x′
n if 1/2 < γ < 1,

c(a1 + a2) − 1

c2 x′
n if γ = 1, c(a1 + a2) > 1,

where both constants belong to (0,+∞). Therefore, cn

∑n
k=m0

x′
k converges and so

it is bounded. Hence, we have verified all the conditions required by Corollary A.2
and so we can conclude that we have limn vn

∑n
k=m0

z′
k = w, that is, (A.11).

Regarding (A.12), we have already considered the case u = 1, which is related
to cn

∑n
k=m0

x′
k . Similarly, in order to prove (A.12) for u > 1, we use

|
k−1,1|u|
k−1,2|u
|
k,1|u|
k,2|u = ∣∣1 + α1α2r

2
k − (α1 + α2)rk

∣∣u = 1 − u(a1 + a2)rk + O
(
r2
k

)
and apply Corollary A.1 again. Indeed, with computations similar to the one done
before, we obtain

|
k,1|u|
k,2|u
kγ (2u−1)

− |
k−1,1|u|
k−1,2|u
(k − 1)γ (2u−1)

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(a1 + a2)

c2u−1 r2u
k |
k,1|u|
k,2|u

if 1/2 < γ < 1,

uc(a1 + a2) − (2u − 1)

c2u
r2u
k |
k,1|u|
k,2|u

if γ = 1, uc(a1 + a2) > 2u − 1,
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where both constants belong to (0,+∞), and so we have

lim
n

nγ (2u−1)|pn,1|u|pn,2|u
n∑

k=m0

r2u
k |
k,1|u|
k,2|u

= C(γ,u) lim
n

nγ (2u−1)|pn,1|u|pn,2|u

×
n∑

k=m0

|
k,1|u|
k,2|u
kγ (2u−1)

− |
k−1,j |u|
k−1,2|u
(k − 1)γ (2u−1)

= C(γ,u)

for a suitable constant C(γ,u) ∈ (0,+∞). �

REMARK A.3. We note that, if γ = 1 and (A.7) holds, then we can add to
(A.12) the following:

|pn,1|u|pn,2|u
n∑

k=m0

r2u
k |
k,1|u|
k,2|u

(A.17)

=
{
O
(
ln(n)/nuc(a1+a2)

)
if uc(a1 + a2) = (2u − 1),

O
(
n−uc(a1+a2)

)
if uc(a1 + a2) < (2u − 1).

Indeed, by means of (A.8) and (A.9) in Lemma A.4, we have

|pn,1|u|pn,2|u
n∑

k=m0

r2u
k |
k,1|u|
k,2|u

= O
(
n−uc(a1+a2)

) n∑
k=m0

O
(
kuc(a1+a2)−2u)

= O
(
n−uc(a1+a2)

) n∑
k=m0

O

(
1

k1−(uc(a1+a2)−2u+1)

)
.

LEMMA A.6. Let γ = 1, c(a1 +a2) = 1 and replace condition (A.4) by (A.7).
Then we have

(A.18) lim
n

n

ln(n)
pn,1pn,2

n∑
k=m0

r2
k 
k,1
k,2 =

⎧⎨⎩0 if b1 + b2 �= 0,

c2 if b1 + b2 = 0

and

(A.19) |pn,1|u|pn,2|u
n∑

k=m0

r2u
k |
k,1|u|
k,2|u =

⎧⎨⎩O
(
ln(n)/n

)
for u = 1,

O
(
n−u) for u > 1.
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PROOF. First, note that (A.18) for the case b1 + b2 �= 0 can be established
using the computations done for the proof of Lemma A.5 with γ = 1. Indeed, we
can apply Corollary A.2 with

zn = D1,n, vn = n

ln(n)
pn,1pn,2, wn = r2

n
n,1
n,2

D1,n

,

z′
n = znwn = r2

n
n,1
n,2, w = c2

c(α1 + α2) − 1
.

In fact, by assumptions (A.7) and c(a1 + a2) = 1, we have

(A.20) lim
n

n

ln(n)
|pn,1||pn,2| = 0

since (A.8) in Lemma A.4 and, moreover, we have limn wn = w �= 0 by (A.16)
since c(α1 + α2) �= 1, and |vn|∑n

k=m0
|z′

k| = O(1) by (A.17) with u = 1, and fi-
nally, we have limn vn

∑n
k=m0

zk = 0.
We now focus on the case b1 + b2 = 0. Fix k ≥ 2 and let us define the following

quantity:

Dln,k = ln(k)

k

k,1
k,2 − ln(k − 1)

k − 1

k−1,1
k−1,2

=
(

ln(k)

k
− ln(k − 1)

k − 1

)

k−1,1
k−1,2 + ln(k)

k
(
k,1
k,2 − 
k−1,1
k−1,2)

= 
k,1
k,2

[(
ln(k)

k
− ln(k − 1)

k − 1

)

k−1,1
k−1,2


k,1
k,2

+ ln(k)

k

(
1 − 
k−1,1
k−1,2


k,1
k,2

)]
.

We observe that for k → +∞(
ln(k)

k
− ln(k − 1)

k − 1

)
= − ln(k)

k(k − 1)
− ln(1 − k−1)

k − 1

= − ln(k)

k2 + 1

k2 + O

(
ln(k)

k3

)
(A.21)

= − ln(k)

k2 + 1

k2 + o

(
1

k2

)
.

Now, by using (A.15) and (A.21) in the expression of Dln,k , and recalling (A.7),
we have that

Dln,k = 
k,1
k,2

[(
− ln(k)

k2 + 1

k2

)
(1 − α1rk)(1 − α2rk)

+ ln(k)

k

(−α1α2r
2
k + (α1 + α2)rk

)]+ o

(

k,1
k,2

k2

)
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= 
k,1
k,2

[
rk ln(k)

k
(α1 + α2) − ln(k)

k2 + 1

k2

]
+ o

(

k,1
k,2

k2

)
=
[
ln(k)

(
(α1 + α2)rk

k
− 1

k2

)
+ 1

k2

]

k,1
k,2 + o

(

k,1
k,2

k2

)
.

Then, since the equalities c(a1 + a2) = 1 and b1 + b2 = 0 imply c(α1 + α2) = 1,
and recalling (A.7), we obtain

Dln,k = 1

k2 
k,1
k,2 + o

(

k,1
k,2

k2

)
(A.22)

= 1

k2 
k,1
k,2 + o
(
r2
k 
k,1
k,2

)∼ 1

c2 r2
k 
k,1
k,2.

Now, we want to apply Corollary A.2 with

zn = Dln,n, vn = n

ln(n)
pn,1pn,2, wn = r2

n
n,1
n,2

Dln,n

,

z′
n = znwn = r2

n
n,1
n,2, w = c2.

Indeed, limn vn = 0 by (A.20), limn wn = w �= 0 by (A.22), |vn|∑n
k=m0

|z′
k| =

O(1) by (A.17) (with u = 1) since c(a1 + a2) = 1 by assumption,

lim
n

vn

n∑
k=m0

zk = lim
n

n

ln(n)
pn,1pn,2

n∑
k=m0

Dln,k

= n

ln(n)
pn,1pn,2

(
ln(n)
n,1
n,2

n
− ln(m0 − 1)
m0−1,1
m0−1,2

(m0 − 1)

)
−→ 1

by (A.20). Hence, all the conditions required by Corollary A.2 hold and so we can
conclude that we have limn vn

∑n
k=m0

z′
k = w, that is, (A.18) for b1 + b2 = 0.

Finally, relations (A.19) follows from (A.17) using the assumption that c(a1 +
a2) = 1. �

A.3. A result for Gaussian random vectors. The following result is about
the standardization of Gaussian random vectors with singular covariance matrix.

LEMMA A.7. Let X be a random vector with distribution NN(0,�) and con-
sider the spectral decomposition � = O�O� (more precisely, � is the diagonal
matrix containing the eigenvalues of � and the columns of O form a correspond-
ing orthonormal basis of right eigenvectors). Let 1 ≤ r < N be the rank of �,
define the diagonal matrix L as follows:

[L]h,j =
{
λ

−1/2
j if h = j and λj > 0,

0 otherwise,
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and denote by H the r × N -matrix such that

[H ]h,j =
{

1 if h = j and 1 ≤ h ≤ r,

0 otherwise.

Then, setting M = HLO� and Y = MX, the distribution of Y is Nr (0, I ).

PROOF. It is immediate to see that Y is a Gaussian vector since it is a linear
transformation of the Gaussian vector X. Then the result follows by noticing that

Cov(Y ) = M�M� = HL
(
O��O

)
LH� = H(L�L)H� = I. �

APPENDIX B: STABLE CONVERGENCE AND ITS VARIANTS

We recall here some basic definitions and results. For more details, we refer the
reader to [18, 20, 23, 29] and the references therein.

Let (�,A,P ) be a probability space, and let S be a Polish space, endowed
with its Borel σ -field. A kernel on S, or a random probability measure on S, is a
collection K = {K(ω) : ω ∈ �} of probability measures on the Borel σ -field of S

such that, for each bounded Borel real function f on S, the map

ω �→ Kf (ω) =
∫

f (x)K(ω)(dx)

is A-measurable. Given a sub-σ -field H of A, a kernel K is said H-measurable if
all the above random variables Kf are H-measurable.

On (�,A,P ), let (Yn) be a sequence of S-valued random variables, let H be a
sub-σ -field of A and let K be a H-measurable kernel on S. Then we say that Yn

converges H-stably to K , and we write Yn −→ K H-stably, if

P(Yn ∈ ·|H)
weakly−→ E

[
K(·)|H ] for all H ∈ H with P(H) > 0.

In the case when H = A, we simply say that Yn converges stably to K and we write
Yn −→ K stably. Clearly, if Yn −→ K H-stably, then Yn converges in distribution
to the probability distribution E[K(·)]. Moreover, the H-stable convergence of Yn

to K can be stated in terms of the following convergence of conditional expecta-
tions:

(B.1) E
[
f (Yn)|H] σ

(
L1,L∞)
−→ Kf

for each bounded continuous real function f on S.
In [23], the notion of H-stable convergence is firstly generalized in a natural

way replacing in (B.1) the single sub-σ -field H by a collection G = (Gn) (called
conditioning system) of sub-σ -fields of A and then it is strengthened by substitut-
ing the convergence in σ(L1,L∞) by the one in probability (i.e., in L1, since f is
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bounded). Hence, according to [23], we say that Yn converges to K stably in the
strong sense, with respect to G = (Gn), if

(B.2) E
[
f (Yn)|Gn

] P−→ Kf

for each bounded continuous real function f on S.
Finally, a strengthening of the stable convergence in the strong sense can be nat-

urally obtained if in (B.2) we replace the convergence in probability by the almost
sure convergence: given a conditioning system G = (Gn), we say that Yn converges
to K in the sense of the almost sure conditional convergence, with respect to G, if

E
[
f (Yn)|Gn

] a.s.−→ Kf

for each bounded continuous real function f on S. Evidently, this last type of con-
vergence can be reformulated using the conditional distributions. Indeed, if Kn

denotes a version of the conditional distribution of Yn given Gn, then the random
variable Knf is a version of the conditional expectation E[f (Yn)|Gn] and so we
can say that Yn converges to K in the sense of the almost sure conditional con-
vergence, with respect to F , if, for almost every ω in �, the probability measure
Kn(ω) converges weakly to K(ω). The almost sure conditional convergence has
been introduced in [18] and, subsequently, employed by others in the urn model
literature (e.g., [5, 45]).

We now conclude this section with some convergence results that we need in
our proofs.

From [24], Proposition 3.1, we can get the following result.

THEOREM B.1. Let (Tn,k)n≥1,1≤k≤kn be a triangular array of d-dimensional
real random vectors, such that, for each fixed n, the finite sequence (Tn,k)1≤k≤kn is
a martingale difference array with respect to a given filtration (Gn,k)k≥0. Moreover,
let (tn)n be a sequence of real numbers and assume that the following conditions
hold:

(c1) Gn,k⊆Gn+1,k for each n and 1 ≤ k ≤ kn;

(c2)
∑kn

k=1(tnTn,k)(tnTn,k)
� = t2

n

∑kn

k=1 Tn,kT�
n,k

P−→ �, where � is a random
positive semidefinite matrix;

(c3) sup1≤k≤kn
|tnTn,k| L1−→ 0.

Then tn
∑kn

k=1 Tn,k converges stably to the Gaussian kernel N (0,�).

The following result combines together a stable convergence and a stable con-
vergence in the strong sense.
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THEOREM B.2 ([10], Lemma 1). Suppose that Cn and Dn are S-valued ran-
dom variables that M and N are kernels on S, and that G = (Gn)n is an (increas-
ing) filtration satisfying for all n:

σ(Cn) ⊆ Gn and σ(Dn) ⊆ σ

(⋃
n

Gn

)
.

If Cn stably converges to M and Dn converges to N stably in the strong sense, with
respect to G, then

[Cn,Dn] −→ M ⊗ N stably.

[Here, M ⊗ N is the kernel on S × S such that (M ⊗ N)(ω) = M(ω) ⊗ N(ω) for
all ω.]

Given a conditioning system G = (Gn)n, if U is a sub-σ -field of A such that, for
each real integrable random variable Y , the conditional expectation E[Y |Gn] con-
verges almost surely to the conditional expectation E[Y |U], then we shall briefly
say that U is an asymptotic σ -field for G. In order that there exists an asymptotic
σ -field U for a given conditioning system G, it is obviously sufficient that the se-
quence (Gn)n is increasing or decreasing. (Indeed, we can take U =∨n Gn in the
first case and U =⋂n Gn in the second one.)

THEOREM B.3 ([18], Theorem A.1). On (�,A,P ), for each n ≥ 1, let
(Fn,h)h∈N be a filtration and (Mn,h)h∈N a real martingale with respect to
(Fn,h)h∈N, with Mn,0 = 0, which converges in L1 to a random variable Mn,∞.
Set

Xn,j := Mn,j − Mn,j−1 for j ≥ 1, Un :=∑
j≥1

X2
n,j ,

X∗
n := sup

j≥1
|Xn,j |.

Further, let (kn)n≥1 be a sequence of strictly positive integers such that knX
∗
n

a.s.→
0 and let U be a sub-σ -field which is asymptotic for the conditioning system G
defined by Gn = Fn,kn . Assume that the sequence (X∗

n)n is dominated in L1 and
that the sequence (Un)n converges almost surely to a positive real random variable
U which is measurable with respect to U .

Then, with respect to the conditioning system G, the sequence (Mn,∞)n con-
verges to the Gaussian kernel N (0,U) in the sense of the almost sure conditional
convergence.
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