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BALLISTIC AND SUB-BALLISTIC MOTION OF INTERFACES IN
A FIELD OF RANDOM OBSTACLES

BY PATRICK W. DONDL1 AND MICHAEL SCHEUTZOW

Albert-Ludwigs-Universität Freiburg and Technische Universität Berlin

We consider a discretized version of the quenched Edwards–Wilkinson
model for the propagation of a driven interface through a random field of
obstacles. Our model consists of a system of ordinary differential equations
on a d-dimensional lattice coupled by the discrete Laplacian. At each lattice
point, the system is subject to a constant driving force and a random obstacle
force impeding free propagation. The obstacle force depends on the current
state of the solution, and thus renders the problem nonlinear. For independent
and identically distributed obstacle strengths with an exponential moment, we
prove ballistic propagation (i.e., propagation with a positive velocity) of the
interface if the driving force is large enough. For a specific case of dependent
obstacles, we show that no stationary solution exists, but still the propagation
of the front is not ballistic.

1. Introduction and the main result. In this article, we consider a semi-
discrete model for the evolution of a driven interface subject to line tension
in a random, heterogeneous, quenched environment. We first prove that if the
driving force is large enough then such an interface propagates with a posi-
tive velocity—even if the random environment contains obstacles of arbitrar-
ily large strength. Furthermore, we give an example of sub-ballistic interface
evolution in this class of models, when relaxing the assumptions on indepen-
dence.

Let (�,B,P) be a probability space and consider the following lattice differen-
tial equation for the height ui : [0,∞)×� → R of the d ∈ N dimensional interface
in an ambient space of dimension d + 1,

(1.1) u̇i(t,ω) = �1ui(t,ω) − fi

(
ui(t,ω),ω

) + F,

where i ∈ Zd , t ≥ 0, and ω ∈ �, F ≥ 0. The initial condition is ui(0) = 0.
The operator �1 denotes the discrete d-dimensional Laplacian operator, namely
�1ui = ∑

k∈Zd :‖k−i‖1=1(uk − ui), where ‖ · ‖1 denotes the discrete 1-norm.
The one-dimensional setting was discussed in [6], in this note we generalize
our results to arbitrary dimension, albeit only for the (semi-)discrete evolu-
tion.
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We assume that the functions fi : R × � → [0,∞), i ∈ Zd are such that, disre-
garding infinitely fast growing unphysical solutions, equation (1.1) above admits
a unique solution with nonnegative velocity for every i, that the solution depends
measurably on ω for each t ≥ 0, and that the solution furthermore follows a com-
parison principle. We also assume that the functions fi are identically distributed
for all i ∈ Zd . For the results in Sections 2 and 3, we furthermore assume inde-
pendence in i. A nontrivial (i.e., not necessarily uniformly bounded) example of
such fi is given by fi(y,ω) = ∑∞

j=1 fi,j (ω)φ(y − j) for a piecewise affine hat
function satisfying φ(0) = 1 and suppφ = [−1/2,1/2], where fi,j are random
variables that are independent in i.

The main further assumption on the fi is that they possess a finite exponential
moment. As opposed to some other requirements, like complete independence, this
assumption is central to our proof. Under these conditions, we can prove our main
result.

THEOREM 1.1. Assume in addition to the above requirements that there exists
λ > 0 such that

β := sup
j∈N0

E exp
{
λ
⌈

sup
j−0.5≤y≤j+0.5

f0(y,ω)
⌉}

< ∞,

where �·	 denotes taking the integer ceiling of the argument. Then there exists
a nondecreasing function V : [0,∞) → [0,∞) which is not identically zero and
which depends on λ and β only, such that for all t > 0 we have

Eu̇0(t) ≥ V (F)

and, therefore,

E
u0(t)

t
≥ V (F).

Specifically, we can choose

V (F) = sup
μ>λ

1

μ

(
λ
(
F � − 2d

) − logβ − max
{

log
2

μ − λ
, log 2e

})
,

where 
·� denotes taking the integer floor of the argument.

The proof is split in two parts, first a discrete result arguing that there can be
no discretized interface whose average velocity is small. The second part is an
application of this result to the coupled systems of ODEs.

REMARK 1.2. Taking μ large for small values of F , one can see that
V (F) ≥ 0 for all F > 0. Furthermore, as F becomes large, one can take μ closer
to λ to see that there exists a constant C, depending only on λ, β , and d , such that
V (F) ≥ F − 1

λ
logF − C for all F > 1.



BALLISTIC MOTION OF INTERFACES 3191

The main theorem also implies the following almost-sure result for the point-
wise velocity, excluding the existence of stationary solutions.

COROLLARY 1.3. Under the conditions of Theorem 1.1, we also have

lim sup
n→∞

u0(tn)

tn
≥ V (F) almost surely

along any deterministic sequence of times tn → ∞ as n → ∞.

A model very similar to the one considered here was recently discussed in
[1]. As opposed to our model, they use a fully discrete evolution, where in each
time-step the system advances by one unit at every point where the total force
is positive. While some of their results are comparable to ours, they use a rigor-
ous renormalization group approach to prove that in their model (assuming also
uniformly bounded obstacles), an interface is either completely blocked (in the
sense that a nonnegative stationary solution exists) or that it propagates ballis-
tically, that is, there is no intermediate regime of sub-ballistic propagation. We
show in Section 4 that this is not the case in general if the obstacles are strongly
correlated.

For the present model of independent obstacles, we can only prove that there
exist two critical values for the driving force: if the driving force is below the first
value, the interface becomes stuck for all times. If, on the other hand, the driving
force is above the second value the interface propagates with finite velocity. The
first result is a simple adaptation of our methods in [4, 5] and the second part is
proved here. The question of whether an intermediate regime exists in this model
is open.

Generally, problems of the present form (whether fully discrete, partially dis-
crete or fully continuous) have received considerable interest in the physics com-
munity (see, e.g., [2, 7–9]). Many connections to questions arising from physics
are discussed in the aforementioned article by Bodineau and Teixeira [1], as well
as in [3], where the first rigorous result on nonexistence of stationary states was
derived.

The article is organized as follows. In Section 2, we show nonexistence of states
whose velocity is too small. In the following Section 3, we apply this result to prove
our theorem. Section 4 is devoted to the example of sub-ballistic propagation. We
finish with some conclusions and an outlook in Section 5.

2. Nonexistence of slow paths. In this section, we prove the central lemma
stating that in a fully discrete version of our model, one can with probability one
not find any function whose average velocity is too small. Let thus now f̄i(j,ω) :=
�supj−0.5≤y≤j+0.5 fi(y,ω)	 defined for all j ∈ Z, i ∈ Zd . For convenience, we
begin by introducing some notation.
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NOTATION 2.1. We use the following abbreviations:

• Qk := {−k+1, . . . , k−1}d , the d-dimensional cube of sites in Zd of side-length
2k − 1,

• Bk := σ({f̄i : i ∈ Qk}), the σ -algebra generated by the random functions in Qk ,
• A ∈ N, any fixed number, later to be taken as the integer ceiling of an a priori

bound on the maximal value the functions ui , solutions of (1.1) can take at
time t ,

• P(ω) := {w : Zd → {0, . . . ,A}, such that �1wi − f̄i(wi,ω)+F ≥ 0 for all i ∈
Zd}, the set of admissible functions,

• Pk(ω) := {w : Qk+1 → {0, . . . ,A}, such that �1wi − f̄i(wi,ω) + F ≥ 0 for all
i ∈ Qk}, the set of admissible functions within a cube Qk+1,

• ck,d = |Qk+1 \ Qk| = (2k + 1)d − (2k − 1)d , the size of the boundary layer
around Qk ,

• Nm,j = (j+m−1
m−1

)
, the number of ways j ∈ N0 can be represented as the sum of

m (ordered) nonnegative integers.

LEMMA 2.2. For each F ∈ N0, there exists a set �0 of full measure such that
for any ω ∈ �0 and any function w ∈ P(ω) we have

lim inf
k→∞

1

|Qk|
∑
i∈Qk

(
�1wi − f̄i(wi,ω) + F

) ≥ V (F),

where V can be taken as

(2.1) V (F) = sup
μ>λ

1

μ

(
λF − logβ − max

{
log

2

μ − λ
, log 2e

})
,

and β and λ are defined in Theorem 1.1.

PROOF. Fix μ > λ and consider for k ≥ 1 the sequence of random variables

Yk := ∑
w∈Pk

exp
{
λ

∑
i∈Qk
r /∈Qk‖i−r‖1=1

(wr − wi) − μ
∑
i∈Qk

(
�1wi − f̄i(wi,ω) + F

)}
.

The basic underlying idea in this definition is the following. We will show, using
a martingale argument, that for sufficiently large F the sequence Yk almost surely
vanishes exponentially in the size of the box Qk . For this decrease, we can also
establish a rate. Such a decrease, however, implies that as we look at larger and
larger boxes around the origin, either the sum of the normal derivatives at the
boundary of the box (the first term in the exponential) has to become large and
negative quickly, or the sum of the velocities (the second term in the exponential)
in Qk has to increase with a rate related to the one with which Yk vanishes. The
first option is excluded by the nonnegativity of w. The second option yields the
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average velocity (with a negative sign), after taking a logarithm and using the sum
over all paths as an estimate for the supremum over all possible paths.

The first step in the proof is to relate the change in normal derivatives as k

increases to the addition of terms in the sum over the Laplcian. We use a discrete
version of the divergence theorem, namely that∑

i∈Qk
r /∈Qk‖i−r‖1=1

(wr − wi) = ∑
i∈Qk

�1wi,

and thus

Yk = ∑
w∈Pk

exp
{
(λ − μ)

∑
i∈Qk

�1wi − μ
∑
i∈Qk

(−f̄i(wi,ω) + F
)}

.

A calculation now yields

E(Yk+1|Bk) = ∑
w∈Pk

(
exp

{
(λ − μ)

∑
i∈Qk

�1wi − μ
∑
i∈Qk

(−f̄i(wi,ω) + F
)}

· E
∑

extensions
of w to Pk+1

exp
{
λ

∑
i∈Qk+1\Qk

�1wi

− μ
∑

i∈Qk+1\Qk

(
�1wi − f̄i(wi) + F

)})
,

where the sum in the second line is taken over all admissible extensions of w to
functions in Pk+1. Taking now

γk := sup
w∈Pk

E
∑

extensions
of w toPk+1

exp
{
λ

∑
i∈Qk+1\Qk

�1wi

(2.2)

− μ
∑

i∈Qk+1\Qk

(
�1wi − f̄i(wi) + F

)}
,

with the sum as above over all possible extensions, we get

(2.3) E(Yk+1|Bk) ≤ γkYk, for k ≥ 1.

In order to estimate γk further, we need to rearrange and count the number of
possible extensions. In the sum over all admissible extensions, we thus first take
all extensions such that

∑
i∈Qk+1\Qk

(�1wi − f̄i(wi) + F) = j ∈ N0, calling these
“admissible extensions with velocity j” and then sum over all j ≥ 0. In the case
that there does not exist an admissible extension with velocity j , we take the sum
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to be zero. This yields

γk = sup
w∈Pk

E
∞∑

j=0

∑
adm. ext.

with vel. j

exp
{
λ

∑
i∈Qk+1\Qk

�1wi

− μ
∑

i∈Qk+1\Qk

(
�1wi − f̄i(wi) + F

)}

= sup
w∈Pk

∞∑
j=0

e−j (μ−λ)e−λck,dF E
∑

adm. ext.
with vel. j

exp
{
λ

∑
i∈Qk+1\Qk

f̄i(wi)

}

≤ sup
w∈Pk

∞∑
j=0

e−j (μ−λ)e−λck,dF βck,d sup
ω∈�

Mj,k,d(ω,w|Qk+1),

where Mj,k,d(ω,w|Qk+1) is the of the number of admissible extensions with ve-
locity j , depending on the realization of the random field f and on w from the
previous step. We also note that wi for i ∈ Qk+1 \ Qk is a fixed value inside the
supremum, which allows us to use the assumption on the exponential moment
of f .

The idea for estimating Mj,k,d now is the following: given j , there are no more
than Nck,d ,j possibilities to distribute these velocities on the ck,d sites. With all
velocities fixed, for most sites in Qk+2 \Qk+1 where the extension lives, the func-
tion value is determined due to the fact that ω and the velocity can be used to
calculate the discrete Laplacian (if such a choice exists at all). The number of sites
where we still have freedom is O(d − 2). We thus aim for an estimate of the type
supMj,k,d ≤ Nck,d ,j · 1 · (A + 1)C

d−2
.

First, notice that in dimension d = 1, there is no freedom to choose any addi-
tional values for the extension if the Laplacian at the boundaries is given. Con-
sider thus the case d ≥ 2. Each given function value and the Laplacian on the
site can be used to write one independent linear equation for the function val-
ues on the extension, therefore, the remaining number of sites with freedom is
ck+1,d − ck,d =: ξk,d . See the illustration in Figure 1 for the two-dimensional case.
Note that the number of choices for each of those nodes is limited to at most A+1,
and that ξk,d = O(kd−2).

Since the above estimate was independent of w ∈ Pk and on ω ∈ �, this yields

γk ≤
∞∑

j=0

e−j (μ−λ)e−λck,dF βck,d Nck,d ,j (A + 1)ξk,d .
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FIG. 1. Illustration of the extension process and the points where there is a freedom to choose the
function value of the extension when the Laplacian is fixed.

Using the estimate Nm,j ≤ (j+m−1)m−1

(m−1)! ≤ 2m−2

(m−1)!(j
m−1 + (m − 1)m−1), the sum

can be bounded as follows. We have
∞∑

j=0

Nck,d ,j e−(μ−λ)j

≤ 2ck,d−2

(ck,d − 1)!
( ∞∑

j=0

jck,d−1e−(μ−λ)j + (ck,d − 1)ck,d−1 1

1 − e−(μ−λ)

)
,

which, using

∞∑
j=0

jck,d−1e−(μ−λ)j ≤
∞∑

j=0

∫ j+1

j
xck,d−1e−(μ−λ)(x−1) dx

= eμ−λ

(μ − λ)ck,d
�(ck,d) = eμ−λ

(μ − λ)ck,d
(ck,d − 1)!

yields

∞∑
j=0

Nck,d ,j e−(μ−λ)j ≤ max
{

2ck,d eμ−λ

(μ − λ)ck,d
,
(2ck,d − 2)ck,d−1

(ck,d − 1)!
1

1 − e−(μ−λ)

}
.

We thus have

logγk ≤ ξk,d log(A + 1) + ck,d(logβ − λF)

+ max
{
μ − λ + ck,d log

2

μ − λ
,

(ck,d − 1) log 2e + logC − log
(
1 − e−(μ−λ))}

for some constant C.
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Equation (2.3) together with the boundedness of γk and the almost-sure finite-
ness of Y1 establishes that Yk∏k−1

j=1 γj

for k ≥ 2 is a nonnegative supermartingale. From

Doob’s martingale convergence theorem, we therefore find that

lim
k→∞

Yk∏k−1
j=1 γj

= C(ω) < ∞

on a set �0 ⊂ � of full measure. Note furthermore that

logYk

μ|Qk| ≥ sup
w∈Pk

{
λ

μ|Qk|
∑
i∈Qk
r /∈Qk‖i−r‖1=1

(wr − wi)

− 1

|Qk|
∑
i∈Qk

(
�1wi − f̄i(wi,ω) + F

)}

and thus

inf
w∈P(ω)

lim inf
k→∞

1

|Qk|
∑
i∈Qk

(
�1wi − f̄i(wi,ω) + F

)

≥ lim inf
k→∞

−1

μ|Qk|
k∑

i=1

logγj

≥ 1

μ

(
λF − logβ − max

{
log

2

μ − λ
, log 2e

})
,

where we have used that |Qk| = ∑k
i=1 ci,d and dropped all terms that are of lower

order than |Qk|. In particular, these are the terms in γi that are of lower order than
ci,d as well as C(ω) and the first sum inside the exponent in Yk , which vanishes in
the limit due to the boundedness of w. This proves the lemma. �

3. Application to the continuous evolution problem. The lemma from the
above section allows us to complete the proof of the main theorem.

PROOF OF THEOREM 1.1. Assume that the statement in the theorem is untrue.
Then there exist F ≥ 0 and some t0 such that Eu̇0(t0) < V (F ). By our indepen-
dence assumptions on the field f , the processes ui(t0), u̇i(t0), i ∈ Zd are stationary
and ergodic and take values in [0,∞). We write ui instead of ui(t0). By Birkhoff’s
ergodic theorem, we have

Eu̇0 = lim
k→∞

1

|Qk|
∑
i∈Qk

(
�1ui − fi(ui,ω) + F

)
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almost surely. However, taking wi to be ui rounded to the closest integer, we find

lim
k→∞

1

|Qk|
∑
i∈Qk

(
�1ui − fi(ui,ω) + F

)

≥ lim inf
k→∞

1

|Qk|
∑
i∈Qk

(
�1wi − 2d − f̄i(wi,ω) + 
F �)

≥ V
(
F � − 2d

) = V (F)

by Lemma 2.2. �

The almost-sure statement about the velocities can be derived by the following
argument.

PROOF OF COROLLARY 1.3. Consider, for a fixed sequence of times tn → ∞,
the random variables:

Ai(ω) := lim sup
n→∞

ui(tn)

tn
, i ∈ Zd,

noting that Ai is stationary, ergodic and bounded from above and below by F and
0, respectively. Furthermore, we have E(Ai) ≥ V (F), by Fatou’s lemma. By the
nonnegativity of the velocity and fi , it follows that �1ui(t,ω) ≥ −F for all t ≥ 0
and almost all ω and, therefore, �1Ai(ω) ≥ 0 for almost all ω.

Now let ξi := E�1Ai . By stationarity, ξi is constant in i and we write ξ := ξ0.
By the discrete divergence theorem, boundedness of Ai and ergodicity of �1Ai

imply that ξ = 0 and since �1Ai(ω) ≥ 0 for almost all ω we have �1Ai(ω) = 0
almost surely and for all i ∈ Zd . This yields that Ai(ω) is a bounded, ergodic and
stationary process whose realizations are almost surely harmonic. Thus, Ai(ω)

is almost surely constant in i and, therefore, A0(ω) is almost surely equal to its
expected value. The desired result follows. �

4. An example for nonballistic evolution. In the following we construct a
counterexample showing that nonexistence of a stationary solution does not nec-
essarily imply a positive velocity. For simplicity, we first consider a fully-discrete
evolution problem, where the interface height u at discrete times k ∈ N0 is given
by

ui(k + 1,ω) − ui(k,ω) = S
(
�1ui(k,ω) − Qi,ui(k,ω)(ω) + F

)
,

for a given random obstacle field Qi,j (ω) ∈ {0,1} for i ∈ Z, j ∈ N0 and with
initial condition ui(0) = 0. The evolution law S : R → {0,1} is given by S(a) = 1
for (strictly) positive a, zero otherwise. In the following, we fix F = 1/2, noting
that the interface will not move at a point (i, j) where there is an obstacle (i.e.,
Qi,j = 1) and the interface is flat [i.e., ui−1(k) = ui(k) = ui+1(k) = j ]. If, on the
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other hand, either the site (i, j) does not have an obstacle or the interface possesses
an upward kink in the sense that �1ui(k,ω) ≥ 1, the interface will advance in that
time-step. We remark that this process follows a comparison principle, that is,
considering Q̃i,j ≥ Qi,j for all i ∈ Z, j ∈ N0 and ũi(k) ≤ ui(k) for some k ∈ N0

and all i ∈ Z, where ũ, u evolve according to the given process with Q̃i,j and Qi,j ,
respectively, we have ũi(l) ≤ ui(l) for all l ≥ k and all i ∈ Z.

Let now (Ni), i ∈ Z be a discrete stationary renewal point process, that is, Ni

is a Z-valued random variable for each i ∈ Z such that the random variables Yi :=
Ni − Ni−1 are i.i.d. and strictly positive and the point process is stationary. Let
F be the distribution function of Y1. Stationarity of the point process implies that
EY1 < ∞ but imposes no further constraints upon F (other than that F is the
distribution function of an N-valued random variable). In the following, let Y be a
random variable with distribution function F .

For a given F , we take independent copies of the process N in each row
j = 0,1,2, . . . and say that at each lattice point (i, j) which is not an element
of the point process is an obstacle of size 1 and the other lattice points are free
of obstacles. For i ∈ Z and j ∈ N0, we define thus Qi,j = 1 if there is an obsta-
cle in row j at location i and Qi,j = 0 otherwise. For j ∈ N0, let Xj := min{i ∈
N0 : Qi,j = 0} ∧ min{i ∈ N0 : Q−i,j = 0}. Clearly, the Xj are i.i.d. By choosing F

appropriately, we can ensure, that the Xj have an arbitrarily long tail.
Clearly, in each row of the obstacle field there almost surely exist infinitely

many holes (on either side of the origin), that is, for any j ∈ N0 there are infinitely
many i ∈ N such that Qi,j = 0. We immediately see that no stationary nonneg-
ative solution can exist: such a stationary solution would have to be completely
flat (otherwise it would necessarily have to have an upward kink), but there is
no row without a hole in the obstacle field. Furthermore, for any M ∈ N, i ∈ Z,
we can calculate a random upper bound for time k such that ui(k) ≥ M : start at
the lattice point (i,M − 1) going right or left until the first hole in the obstacle
field appears. From there start going in the row below, again left or right, until the
next hole is found. The total number of steps (+M) that have to be taken until a
hole at row zero is found is the sought after bound. Thus, for any i ∈ Z, we have
lim infk→∞ ui(k) = +∞.

In order to ensure that lim infn→∞ u0(n)/n = 0 almost surely for the associated
discrete time interface model, it suffices to assume that P{X1 ≥ i2} ≥ 1/i for all
i ∈ N (say). By the second Borel–Cantelli lemma, this implies that almost surely,
infinitely many of the Xj are greater or equal to j2. Noticing that Xj ≥ j2 implies
that u0(j

2) ≤ j , we obtain lim infn→∞ u0(n)/n = 0 almost surely.
Next, we want to investigate the behavior of lim supn→∞ u0(n)/n. We first show

that if the Xj are sufficiently heavy-tailed, then we also have
lim supn→∞ u0(n)/n = 0. For a given sequence α1 < α2 < · · · of positive inte-
gers, we find some F as above such that

∞∑
m=1

(
P{X1 ≤ αm})m < ∞.
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The first Borel–Cantelli lemma now yields that almost surely we have
max{X1, . . . ,Xm} > αm for all but finitely many m. Choosing for example
αm = m2, we see that u0(m

2) ≤ m for all but finitely many m, so the claim follows.
For the semi-discrete model (1.1), a similar construction is possible. We take

d = 1, consider Qi,j as above and set fi(j + 1) = Qi,j . Then we extend each fi

to a function on the whole real line in a piecewise affine manner, requiring that
each piecewise affine hat function is supported in a small [i − δ, i + δ]-interval
around the integers, fixing δ later. Setting F = 0.9, a supersolution v satisfying
lim supt→∞ v0(t)/t = 0 can be found: start with vi < 1 constant in i ∈ Z such that
F − fi(vi) = −0.05 for any i where Qi,0 = 1. Now, for any i ∈ Z where the fully
discrete model described above would jump, simply replace the jump by a motion
with velocity v̇i = F + 2 for a very short time and then a jump such that the total
distance travelled is 1. This evolution can be continued by always propagating the
sites that would jump in the discrete model. We note that due to the fact that for any
i ∈ Z where the interface was stuck, it was in fact strictly stuck in the sense that
the total force acting on vi is −0.05, thus a short enough motion of a neighboring
site will not induce a positive force at i. Furthermore, for our chosen velocity, this
evolution is always a super-solution, since the total right hand side of the equation
never exceeds 2 + F . We note that in this evolution the time for vi to reach a fixed
height is the same, modulo a constant factor, as for the fully discrete model.

The construction of a sub-solution is slightly more involved. We start with vi =
1 − δ constant in i, that is, such that fi(vi) = 0 for all i. Now one can slowly
propagate vi for any i where Qi,0 = 0, until the point where vi = 1 − δ + 0.4.
The additional force acting on neighboring sites through the discrete Laplacian is
now large enough that they can propagate as well and pass the obstacles as long as
δ is sufficiently small, for example, 0 < δ < 0.05. The process of propagation of
vi , now jointly with its two nearest neighbors can continue until vi has reached the
value 2− δ and vi−1 = vi+1 = 1− δ +0.6. Now, again, the force acting on the next
nearest neighbors is strong enough so they can start propagating, and thus the
evolution can be continued in this local fashion. In order to remove ambiguity in
the evolution, we assume here that in each row there is only exactly one obstacle
missing, and we are always in the situation that missing obstacles are not nearest
or next-nearest neighbors on the lattice. Note that this still provides us with a sub-
solution, and the time k until vi(k) ≥ M can be calculated in the same way as for
the fully discrete model.

5. Conclusions. In this note, we have extended our depinning result from [6]
to the case of arbitrary dimension in a semi-discrete model of coupled ordinary
differential equations. A careful inspection of the proof shows that one can fur-
thermore extend our results to obstacle strengths coupled over a finite distance: if
there exists L > 0 such that sets of obstacles are independent if their distance (in
the first d-dimensions) is above L, one can still obtain similar estimates for the
velocity.
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The case of the fully continuous model on Rd , however, remains open. Further
unresolved issues are whether we have lim inft→∞ u0(t)

t
> 0 almost surely for suf-

ficiently large F , the relaxation of the result to obstacles with fat tails, as well as
whether a regime of sub-ballistic propagation (i.e., vanishing velocity, but propaga-
tion of the interface to +∞ everywhere) can exist in our models with independent
obstacles. As mentioned above, for a specific fully discrete evolution model this
last question was answered recently [1].

REFERENCES

[1] BODINEAU, T. and TEIXEIRA, A. (2015). Interface motion in random media. Comm. Math.
Phys. 334 843–865. MR3306605

[2] BRAZOVSKII, S. and NATTERMANN, T. (2004). Pinning and sliding of driven elastic systems:
From domain walls to charge density waves. Adv. Phys. 53 177–252.

[3] COVILLE, J., DIRR, N. and LUCKHAUS, S. (2010). Non-existence of positive stationary solu-
tions for a class of semi-linear PDEs with random coefficients. Netw. Heterog. Media 5
745–763. MR2740531

[4] DIRR, N., DONDL, P. W., GRIMMETT, G. R., HOLROYD, A. E. and SCHEUTZOW, M. (2010).
Lipschitz percolation. Electron. Commun. Probab. 15 14–21. MR2581044

[5] DIRR, N., DONDL, P. W. and SCHEUTZOW, M. (2011). Pinning of interfaces in random media.
Interfaces Free Bound. 13 411–421. MR2846018

[6] DONDL, P. W. and SCHEUTZOW, M. (2012). Positive speed of propagation in a semilinear
parabolic interface model with unbounded random coefficients. Netw. Heterog. Media 7
137–150. MR2908614

[7] KARDAR, M. (1998). Nonequilibrium dynamics of interfaces and lines. Phys. Rep. 301 85–112.
[8] NARAYAN, O. and FISHER, D. S. (1993). Threshold critical dynamics of driven interfaces in

random media. Phys. Rev. B 48 7030–7042.
[9] NATTERMANN, T., STEPANOW, S., TANG, L. H. and LESCHHORN, H. (1992). Dynamics of

interface depinning in a disordered medium. J. Phys. II 2 1483–1488.

ABTEILUNG FÜR ANGEWANDTE MATHEMATIK

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

HERMANN-HERDER-STRASSE 10
79104 FREIBURG I. BR.
GERMANY

E-MAIL: patrick.dondl@mathematik.uni-freiburg.de

FAKULTÄT II
INSTITUT FÜR MATHEMATIK, SEKR. MA 7-5
TECHNISCHE UNIVERSITÄT BERLIN

STRASSE DES 17. JUNI 136
D-10623 BERLIN

GERMANY

E-MAIL: ms@math.tu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=3306605
http://www.ams.org/mathscinet-getitem?mr=2740531
http://www.ams.org/mathscinet-getitem?mr=2581044
http://www.ams.org/mathscinet-getitem?mr=2846018
http://www.ams.org/mathscinet-getitem?mr=2908614
mailto:patrick.dondl@mathematik.uni-freiburg.de
mailto:ms@math.tu-berlin.de

	Introduction and the main result
	Nonexistence of slow paths
	Application to the continuous evolution problem
	An example for nonballistic evolution
	Conclusions
	References
	Author's Addresses

