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Model-Assisted Survey Estimation with
Modern Prediction Techniques
F. Jay Breidt and Jean D. Opsomer

Abstract. This paper reviews the design-based, model-assisted approach to
using data from a complex survey together with auxiliary information to es-
timate finite population parameters. A general recipe for deriving model-
assisted estimators is presented and design-based asymptotic analysis for
such estimators is reviewed. The recipe allows for a very broad class of pre-
diction methods, with examples from the literature including linear models,
linear mixed models, nonparametric regression and machine learning tech-
niques.
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1. INTRODUCTION TO DESIGN-BASED
ESTIMATION AND INFERENCE

The basic problem in survey statistics is estimation
of characteristics of a target finite population. These
characteristics can take many forms, but quantitative
summaries such as means, totals, distribution functions
and quantiles of variables of interest are most com-
mon. There are almost always many variables of in-
terest. For instance, what is the average number of
red snapper caught during an off-shore fishing trip in
the Gulf of Mexico during 2014? What is the average
weight of the red snapper caught? The average number
of discarded red snapper? Same questions for dozens of
other species of fish that might be caught. As another
example, what is the total number of women with un-
dergraduate degrees in statistics in the US in 2015? The
percentage of such women who are in the labor force?
The income of such women who are employed? What
about women with graduate degrees in statistics? What
about men, and what about dozens of other academic
fields?

Real finite populations like the target populations in
these examples are highly complex and heterogeneous,
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as are the response variables to be studied for those
populations. There is therefore understandable reluc-
tance to specify statistical models for the behavior of
all the variables of interest in the population. Instead of
relying on statistical modeling variable-by-variable for
estimation and inference, design-based survey statis-
tics uses randomization as the tool to select which pop-
ulation units to measure, and then constructs estimators
that rely on this randomization for their statistical va-
lidity.

An immediate implication of relying on randomiza-
tion instead of on an underlying stochastic population
structure is that the values of the variables of interest in
the population are treated as fixed but unknown quan-
tities. Let yk denote the nonrandom value of a variable
of interest for the kth element in the finite population
U = {1,2, . . . ,N}. We focus on estimation of the fi-
nite population total ty = ∑

k∈U yk . More complex fi-
nite population parameters can often be written as ex-
plicit functions of finite population totals, like means,
proportions, ratios and regression coefficients, over the
whole population or over domains (subpopulations).
Such explicit nonlinear functions can be estimated by
plugging in appropriate estimators of the component
totals. Other finite population parameters may be im-
plicitly defined, as the solution of population-level esti-
mating equations. In this case, the estimating equation
can often be expressed as an explicit function of finite
population totals; estimation of the estimating equation
then leads to an estimation method for the implicitly-
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defined finite population parameters. Hence, it is ap-
propriate to focus on the estimation of the finite pop-
ulation total ty for now, because it can be viewed as a
fundamental building block of many other survey esti-
mators of interest.

A second implication of the reliance on randomiza-
tion in the design-based approach is that the random-
ness in the estimators is due only to the random se-
lection of the sample. The sampling design, denoted
p(s), is a probability distribution on the set of all 2N

possible subsets of U ; that is, p(s) is the probability
of selecting the particular sample, s. Define the sam-
ple membership indicator Ik = 1 if k ∈ s and Ik = 0
otherwise. For k, � ∈ U , let πk = E[Ik] = P[k ∈ s] =∑

s⊂U :k∈s p(s) denote the first-order inclusion proba-
bilities of the design and let πk� = E[IkI�] = P[k, � ∈
s] = ∑

s⊂U :k,�∈s p(s) the second-order inclusion prob-
abilities. The design p(s) is a probability sampling de-
sign if πk > 0 for all k ∈ U .

The sampling design controls the random behavior
of the sample, and hence of any estimators computed
from it. Especially when the sampling design is com-
plex, that is, including one or several levels of random
selection with possibly unequal probabilities, it makes
sense that incorporating design information in the con-
struction of estimators is important, for both statisti-
cal validity and efficiency reasons. For any probabil-
ity sampling design, the Horvitz and Thompson (1952)
estimator incorporates design information via inverse-
probability weighting,

HT(y) = ∑
k∈s

yk

πk

= ∑
k∈U

yk

Ik

πk

,(1)

and is design-unbiased for ty in the sense that, averag-
ing over all possible samples,

E
[
HT(y)

] = ∑
k∈U

yk

E[Ik]
πk

= ty .

The variance of the Horvitz–Thompson estimator
then depends on the covariance structure of {Ik}k∈U ,

(2)

Var
(
HT(y)

) = ∑
k,�∈U

Cov(Ik, I�)
yk

πk

y�

π�

= ∑
k,�∈U

�k�

yk

πk

y�

π�

where �k� = πk� − πkπ�. If πk� > 0 for all k, � ∈ U ,
the design is said to be measurable, and the design vari-
ance (2) admits an unbiased estimator,

(3) V̂
(
HT(y)

) = ∑
k,�∈U

�k�

yk

πk

y�

π�

IkI�

πk�

.

Because many survey estimators are smooth func-
tions of weighted sums like (1) or related estimators,
confidence intervals and hypothesis tests are typically
conducted by appealing to asymptotic normality. In
Section 3 and Section 5 below, we further describe a
theoretical framework under which asymptotic proper-
ties of survey estimators are most often obtained.

The availability of an unbiased estimator of the finite
population total and an unbiased estimator of its vari-
ance under any measurable probability sampling de-
sign, for any response variable of interest, and with-
out the need to specify a model for the data, makes
the design-based approach a simple and robust all-
purpose statistical framework for survey statisticians.
Once a sampling design is decided upon, an associated
inverse-probability-weighting estimation procedure is
available that will lead to estimators with quantifiable
statistical properties. However, a disadvantage of the
design-based approach is that the resulting estimators
can be inefficient, sometimes dramatically so. This ef-
ficiency depends on the relationship between the pop-
ulation characteristics and the sampling design.

Improving the efficiency of estimators has been a
major research focus within survey statistics, as well as
the source of some controversy within the discipline.
One possible approach to improving the efficiency of
survey estimators is to use sampling designs that are
carefully crafted to lead to efficient design-based es-
timators. In many situations where information about
the target population is available prior to sampling, this
can indeed lead to efficiency improvements. Another
approach is to abandon the design-based paradigm al-
together and instead postulate and fit a statistical model
for the population variables of interest. To the extent
that the specified model is correct, this approach can
lead to estimators with better statistical properties than
the design-based estimators, at the expense of addi-
tional effort in model validation and checking for each
variable under study. A final approach, and the main
focus of this article, is to incorporate additional popu-
lation information and modeling into the design-based
approach, to improve the efficiency of estimators while
also maintaining the desirable design-based properties
of approximate unbiasedness and consistency. This ap-
proach is often referred to as model-assisted, because
it uses models to improve the efficiency of estima-
tion, while remaining within the design-based inferen-
tial framework.

A unifying framework for the study of many model-
assisted estimators is the calibration approach (Deville



192 F. J. BREIDT AND J. D. OPSOMER

and Särndal, 1992), in which sample weights are con-
structed to reproduce known population-level informa-
tion, while remaining as close as possible (under some
metric) to the original inverse-probability weights. See
Särndal (2010) for a recent, comprehensive review of
calibration estimation. We do not attempt to review
this extensive literature, but focus instead on model-
assisted estimators that are directly motivated by pre-
diction ideas. Many such estimators, described below,
have at least some calibration properties, but calibra-
tion to external controls is not the primary motivation
in their construction.

2. AUXILIARY INFORMATION AND THE
DIFFERENCE ESTIMATOR

In many survey estimation settings, auxiliary infor-
mation is available at the population level. This infor-
mation can take many forms and come from different
sources. For instance, a recreational fishing license reg-
istry will have data on each registered angler in a state
and might also have information on whether each an-
gler owns a boat. A satellite image will have each pixel
in a landscape classified as “forested,” “not forested”
or “undetermined.” The information might be available
for every unit in the population, or only in summary
form, such as totals or means for the population.

We will write xk for a vector of auxiliary vari-
ables, and at a minimum, we will assume that popu-
lation totals tx = ∑

k∈U xk are known and sample vec-
tors {xk}k∈s are observed. Some estimators require the
stronger condition that the individual vectors {xk}k∈U

are known for the entire finite population, a setting that
we assume for the moment. Suppose further that we
have a “method” m(·) for predicting yk from xk :

yk � m(xk),

subject to the condition that the method m(·) does not
depend on the sample. For example, some studies al-
ternate between regular surveys and periodic censuses,
and the condition would be met for a method that re-
lies only on updating a census value without reference
to sample data.

Given the output of the method, the difference esti-
mator of ty is

DIFF(y;m) = ∑
k∈U

m(xk) + ∑
k∈s

yk − m(xk)

πk

= ∑
k∈U

m(xk) + HT(y − m).

(4)

This estimator is exactly unbiased, regardless of the
quality of the method, since

E
[
DIFF(y;m)

] = ∑
k∈U

m(xk) + E
[
HT(y − m)

]
= tm + ty − tm = ty .

Because
∑

k∈U m(xk) does not depend on the sample,
it is not random, and the design variance of the differ-
ence estimator follows immediately from that of the HT

estimator:

(5)

Var
(
DIFF(y;m)

)
= Var

(
HT(y − m)

)
= ∑

k,�∈U

�k�

yk − m(xk)

πk

y� − m(x�)

π�

.

We therefore expect (5) to be smaller than the vari-
ance of HT(y) in (2) provided that the “residuals”
{yk − m(xk)} have smaller variation than the “raw val-
ues” {yk}. Whether or not the predictive method is
good, the difference estimator will behave like the HT

estimator. As above, under a measurable sampling de-
sign, the unbiased variance estimator for the difference
estimator is

V̂
(
DIFF(y,m)

)
= ∑

k,�∈U

�k�

yk − m(xk)

πk

y� − m(x�)

π�

IkI�

πk�

,

again without regard to the quality of the method. Un-
der mild conditions (to be described in Section 3 be-
low), the difference estimator will inherit consistency
and asymptotic normality from the corresponding re-
sults for the HT estimator, provided only that the resid-
uals {yk − m(xk)} are sufficiently well behaved.

While the difference estimator has obvious appeal
as an exactly unbiased estimator with potentially re-
duced variance, it is rarely applied directly in practice,
because it is quite rare to have access to a sample-
independent method m(·) that gives good predictions
of yk . It is more natural to estimate m(·) based on sam-
ple data {(xk, yk)}k∈s .

3. SURVEY ASYMPTOTICS I

Before we discuss replacing m(·) by specific sample-
based estimators, we describe a theoretical framework
for asymptotic analysis of design-based estimators. Be-
cause we are selecting a random sample from a fi-
nite population, asymptotic arguments start from a
sequence of finite populations UN of size N , with
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N → ∞. With this sequence is associated a sequence
of sampling designs pN(·). For each N in the sequence,
a sample sN ⊂ UN is drawn according to design pN(·),
with sample size nN . Inclusion probabilities πkN,πk�N

are associated with the design pN(·). Following cus-
tomary notational practice, the subscript N will be sup-
pressed in all these quantities whenever possible.

Because the population and the design change with
N , regularity conditions are needed on both to ensure
that asymptotic results are well-defined. Considering
the simplest estimator, HT(y), the following are exam-
ples of such regularity conditions for a design of non-
random size n:

• D1. As N → ∞, nN−1 → π∗ ∈ (0,1). For all N ,
mink∈U πk ≥ λ1 > 0 and

lim sup
N→∞

n max
k,�∈U :k 	=�

|�k�| < ∞.

• D2. The study variables {yk}k∈U satisfy

lim sup
N→∞

N−1
∑
k∈U

y2
k < ∞.

Condition D1 on the sequence of sampling designs
pN(·) is expressed in terms of its inclusion probabili-
ties, the most common approach unless a specific sam-
pling design is being considered (e.g., stratified sim-
ple random sampling). The lower bound on the πk im-
plies that the design is a probability sampling design,
and the condition on the �k� states that the dependence
between sample membership indicators is sufficiently
small. These conditions are satisfied for many classi-
cal sampling designs, including simple random sam-
pling with and without replacement and their stratified
versions, and also allow for unequal probability sam-
pling and random sample size, in which case n above
denotes the expected sample size, E[∑U Ik]. Condi-
tion D2 on the sequence of finite populations UN en-
sures that second-order finite population moments of
the variables of interest have well-defined limits, a very
mild condition.

These conditions are sufficient to show directly that

(6)

Var
(
N−1 HT(y)

)
≤ 1

Nλ1

∑
k∈U

y2
k

N
+ maxk,�∈U :k 	=� |�k�|

λ2
1

·
(∑

k∈U

|yk|
N

)2
,

and that this bound converges to zero as N → ∞.
Taken together with the unbiasedness of HT(y), this

implies design mean square consistency of HT and
hence consistency with respect to the sequence of sam-
pling designs pN(·), that is, design consistency.

Further conditions are needed for inference. More
specifically, sufficient conditions on the sequence of
populations and associated designs are required to
obtain the asymptotic normality of Var(HT(y))−1/2

{HT(y) − ty} and consistent estimation of Var(HT(y)).
The asymptotic normality of the Horvitz–Thompson
estimator is often assumed explicitly, because suffi-
cient conditions that hold for arbitrary designs are ac-
tually difficult to state. For specific designs, asymp-
totic normality results are available in the literature,
including the classical result by Hájek (1960) for Pois-
son sampling and simple random sampling without re-
placement. Additional central limit theorems for strat-
ified sampling include Krewski and Rao (1981), who
considered stratified unequal probability samples with
replacement, Bickel and Freedman (1984), who con-
sidered stratified simple random sampling without re-
placement, and Breidt, Opsomer and Sanchez-Borrego
(2016), who considered general unequal probability
designs, with or without replacement.

For consistent estimation of Var(HT(y)), we can pro-
ceed as we did above for the consistency of HT(y) it-
self. In addition to D1, we require

• D3. For all N , mink,�∈UN
πk� ≥ λ2 > 0.

to ensure that the design is measurable, which in
turn guarantees that V̂(HT(y)) in (3) is unbiased for
Var(HT(y)). Further, we replace D2 by the fourth-order
moment condition

• D4. The study variables {yk}k∈U satisfy

lim sup
N→∞

N−1
∑
k∈U

y4
k < ∞.

It can then be shown that nE[{V̂(N−1 HT(y)) −
Var(N−1 HT(y))}2] → 0, using bounding arguments
analogous to those in (6), again yielding mean square
consistency and design consistency. Taken together
with the assumed asymptotic normality, normal con-
fidence intervals can be readily constructed and will
have the correct coverage in moderate to large sam-
ples, because{

V̂
(
HT(y)

)}−1/2{
HT(y) − ty

} L→ N (0,1).

The conditions D1–D4 are similar to those used by
Breidt and Opsomer (2000) and are discussed further
there. The motivation for the design assumptions D1
and D3 is that the sequence of sampling design behaves
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similarly to simple random sampling (without replace-
ment), in the sense that the moments of the sample
membership indicators of pN(·) have the same order
as those of simple random sampling. In Breidt and Op-
somer (2008), D1 was relaxed to D1∗, as follows:

• D1∗. For all N , mink∈U πk ≥ π∗
N > 0 where Nπ∗

N →
∞, and there exists κ ≥ 0 such that N1/2+κ(π∗

N)2 →
∞ and

max
k∈U

∑
�∈U :� 	=k

�2
k� = O

(
N−2κ)

as N → ∞.

In this version, the factor κ allows a more explicit
trade-off between how small one-way inclusion prob-
abilities are allowed to be and how large the covari-
ance between sample membership indicators, while
still maintaining the design consistency of the resulting
estimator. Other versions of these regularity conditions
are possible and appear in the literature. To obtain con-
sistency of the variance estimator under more general
conditions, D3 could similarly be relaxed, but we do
not pursue this further here.

So far, the discussion in this section concerned the
asymptotic properties of the Horvitz–Thompson esti-
mator. But the argument and framework used here ap-
ply more broadly to general survey estimators, includ-
ing those that are not unbiased nor have an exact design
variance expression as in (2). For those estimators (i.e.,
the majority of estimators used in practice), the large-
sample properties of design consistency and asymp-
totic distribution are the primary statistical properties
of interest. Before we discuss this further below, we
note that the asymptotic results so far directly carry
over to the difference estimator, since the difference es-
timator is just a shifted version of a Horvitz–Thompson
estimator by (4) for any (fixed) m(·). This will be key in
obtaining the asymptotic properties of model-assisted
estimators.

4. MODEL-ASSISTED ESTIMATION

The difference estimator requires a method m(·) in-
dependent of the sample, but in practice it will com-
monly be the case that we use the sample data to build
the predictive method. Model-assisted survey estima-
tion approaches this problem by introducing a “work-
ing model” for purposes of prediction. Many such
models can be written as

yk = μ(xk) + εk,

with random, zero-mean {εk}, so that {yk}k∈U in the fi-
nite population are now modeled as realizations from

a stochastic superpopulation model. Importantly, we
will not require that this model be correct for the popu-
lation, but for it to be useful, it should still contain some
predictive power with respect to the survey variables of
interest.

A general “recipe” for estimation and inference us-
ing auxiliary information proceeds as follows:

• If {xk, yk)}k∈U were observed for the entire popu-
lation, a standard statistical method to estimate μ(·)
would result in mN(·), which depends on the popu-
lation but is independent of the sample.

• Since only a sample is observed, estimate mN(·) by
m̂(·), which is not independent of the sample.

• Plug m̂(·) into the difference estimator form (4) to
yield the model-assisted estimator:

(7) DIFF(y, m̂) = ∑
k∈U

m̂(xk) + ∑
k∈s

yk − m̂(xk)

πk

.

• For inference, assume that the estimator is approx-
imately normally distributed for large samples and
estimate the variance by

(8)

V̂
(
DIFF(y, m̂)

)
= ∑

k,�∈U

�k�

yk − m̂(xk)

πk

y� − m̂(x�)

π�

IkI�

πk�

.

The above “recipe” is surprisingly flexible and
broadly applicable, allowing for many different formu-
lations of the working model and different estimation
methods, as will be discussed further in later sections.
We first describe in general terms how to obtain the
asymptotic properties of the model-assisted estimator.

5. SURVEY ASYMPTOTICS II

It is useful to rewrite (7) as

(9)

DIFF(y, m̂)

= ∑
k∈U

m̂(xk) + ∑
k∈s

yk − m̂(xk)

πk

= ∑
k∈U

mN(xk) + ∑
k∈U

(yk − mN(xk))Ik

πk

+ ∑
k∈U

(
m̂(xk) − mN(xk)

)(
1 − Ik

πk

)
= DIFF(y,mN) + (remainder).

In other words, the model-assisted estimator is equal
to the (infeasible, but exactly unbiased) difference es-
timator based on the population-level fit mN(·), plus a
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remainder term. The technical challenge for a specific
model-assisted estimation scenario is then to show that
the remainder in (9) is negligible relative to the differ-
ence estimator itself. How to do this depends on the
estimation method, with smoothness conditions and
Taylor approximations as the most common approach.
But once that remainder is determined to be negligible,
the model-assisted estimator immediately inherits the
asymptotic properties of the corresponding difference
estimator DIFF(y,mN).

The model-assisted estimator will be asymptotically
unbiased since the difference estimator is unbiased for
any mN(·), regardless of the working model μ(·). Sim-
ilarly, it will be design consistent and asymptotically
normally distributed under similar conditions as were
needed for the Horvitz–Thompson estimator. The vari-
ance of this asymptotic distribution will be equal to
the variance of the corresponding difference estimator,
that is, ∑

k,�∈U

�k�

yk − mN(xk)

πk

y� − mN(x�)

π�

,

which can be consistently estimated by the “plug-in”
estimator in (8) under further mild conditions, regard-
less of quality of the working model μ(·). And criti-
cally from a practical perspective, this asymptotic vari-
ance will be smaller than that of HT(y) provided the
residuals {yk − mN(xk)} have less variation than the
raw values {yk}, a reasonable expectation for predic-
tive methods.

We now consider special cases of this general formu-
lation of the model-assisted estimator.

6. GENERALIZED REGRESSION ESTIMATION

The best-known class of model-assisted survey esti-
mators are generalized regression or GREG estimators
(Cassel, Särndal and Wretman, 1976, Särndal, Swens-
son and Wretman, 1992, Chapter 6), generated from a
working model of heteroskedastic multiple regression:

(10)
yk = μ(xk) + εk = x′

kβ + εk,

{εk} uncorrelated
(
0, σ 2

k

)
.

If the entire population were observed, the parameters
β would be estimated via weighted least squares, with
corresponding predictors given by

(11)

mN(xk) = x′
kBN

= x′
k

(∑
j∈U

xjx
′
j

σ 2
j

)−1 ∑
j∈U

xj yj

σ 2
j

.

Since only a sample is observed, we estimate the finite
population fit by plugging in HT estimators for the fi-
nite population totals in (11), yielding

(12) m̂(xk) = x′
kB̂ = x′

k

(∑
j∈s

xjx
′
j

πjσ
2
j

)−1 ∑
j∈s

xj yj

πjσ
2
j

.

Finally, plugging (12) into the model-assisted estima-
tor (7), we have the GREG:

(13) DIFF
(
y,x′

kB̂
) = ∑

k∈U

x′
kB̂ + ∑

k∈s

yk − x′
kB̂

πk

.

Särndal, Swensson and Wretman (1992) is a compre-
hensive treatment of such models, including their ex-
tensions to multiple stages or multiple phases of sam-
pling. Well-known GREG examples (see, e.g., Cochran,
1977, Chapters 5–7) include the post-stratification es-
timator, in which xk is a vector of indicators for the
levels of a categorical covariate; the classical survey ra-
tio estimator, in which xk is a scalar, and the model is
heteroskedastic regression through the origin; and the
classical survey regression estimator, in which xk is a
scalar, and the model is homoskedastic simple linear
regression.

To study the properties of GREG, we first follow (9)
and write

DIFF
(
y,x′

kB̂
) = ∑

k∈U

x′
kB̂ + ∑

k∈s

yk − x′
kB̂

πk

= ∑
k∈U

x′
kBN + ∑

k∈U

(yk − x′
kBN)Ik

πk

+(B̂N − BN)′
(
tx − HT(x)

)
= DIFF

(
y,x′

kBN

) + (remainder).

The remainder is

(B̂N − BN)′
(
tx − HT(x)

)
=

p∑
i=1

(B̂i − BN,i)
(
txi

− HT(xi)
)
,

where each of the differences in the regression coef-
ficients (sample estimate minus finite population pa-
rameter) is Op((Nπ∗

N)−1/2), as a smooth function of
HT estimators, and each of the differences in the xi -
totals (finite population total minus HT estimator) is
Op(N(Nπ∗

N)−1/2). Assuming that these rates can be
applied uniformly across i, the overall rate for the re-
mainder term is

Op

(
N

(
Nπ∗

N

)−1) = op

(
N

(
Nπ∗

N

)−1/2)
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as Nπ∗
N → ∞. Hence, GREG behaves asymptotically

like a difference estimator (see, e.g., Isaki and Fuller,
1982, Robinson and Särndal, 1983). It is asymptoti-
cally unbiased (and mean square consistent), regardless
of the quality of the heteroskedastic regression model.
Its variance is asymptotically equivalent to

Var
(∑

k∈U

x′
kBN + ∑

k∈U

(
yk − x′

kBN

) Ik

πk

)

= ∑
k,�∈U

�k�

yk − x′
kBN

πk

y� − x′
kBN

π�

,

and this asymptotic variance is smaller than that of
HT(y) provided that the finite population regression
residuals {yk − x′

kBN } have less variation than the raw
values {yk}. The asymptotic variance can be estimated
using the “plug-in” model-assisted variance estimator
(8).

6.1 Weighting and Calibration for the GREG

A useful property of GREG is that it can also be writ-
ten in weighted form:

DIFF
(
y,x′

kB̂
)

= ∑
k∈s

yk − x′
kB̂

πk

+ ∑
k∈U

x′
kB̂

= ∑
k∈s

{
1

πk

+ (
tx − HT(x)

)′(∑
k∈s

xkx
′
k

πk

)−1 xk

πk

}
yk

= ∑
k∈s

ωksyk.

The GREG weights {ωks} have the form of the original
HT weights {π−1

k } modified to take into account the
x-information. Importantly, the GREG weights depend
on {xk}k∈s , but not on {xk}k∈U\s except through the
known totals tx .

The GREG weights do not depend on y and can be
applied to any response variable. This is useful in a
multi-purpose survey, where many different responses
y are collected, and a single set of weights can be ap-
plied to all of these responses. In particular, the GREG

weights can be applied to the sampled x variables,

DIFF
(
x′,x′

kB̂
)

= ∑
k∈s

ωksx
′
k

= ∑
k∈s

{
1

πk

+ (
tx − HT(x)

)′(∑
k∈s

xkx
′
k

πk

)−1 xk

πk

}
x′

k

= HT
(
x′) + (

tx − HT(x)
)′(∑

k∈s

xkx
′
k

πk

)−1 ∑
k∈s

xkx
′
k

πk

= t ′x .

In this case, we say that the weights {ωks} are cali-
brated to the x-totals in the sense that the weighted
sample estimates equal the known finite population to-
tals. This calibration can be used by a survey agency to
insure internal consistency across a statistical system.
Clearly, GREG will be very efficient if yk is approxi-
mately a linear combination of xk .

6.2 Recent Extensions of GREG

Cardot and Josserand (2011) discuss Horvitz–
Thompson estimation for functional data, in which
scalar observations yk are replaced by functions yk(t).
By generalizing the asymptotic framework described
in Section 3 to the functional data setting, they obtain
similar design-based properties as discussed earlier
for HT(y). Cardot, Goga and Lardin (2013) propose
a model-assisted estimator for functional data based on
the following working model:

yk(t) = x′
kβ(t) + εk(t),

where β(t) is a vector of functional regression coef-
ficients and the εk(t) are independent stochastic pro-
cesses. Applying the model-assisted recipe from Sec-
tion 4, they show that the resulting functional re-
gression estimator is asymptotically equivalent to a
functional difference estimator, after which the usual
asymptotic properties once again follow.

Beaumont, Haziza and Ruiz-Gazen (2013) propose
a modified version of the Horvitz–Thompson estimator
that attempts to remove the effect of influential points,
which are defined in this design-based context as points
with large conditional bias CBk = E[HT(y)|Ik = 1] −
ty . The value of CBk depends on yk as well as on the
design. The authors use a Huber function approach to
downweight the contribution of points with values of
|CBk| above a threshold value. In the model-assisted
extension of this robust estimator, by appealing to the
asymptotic equivalence between GREG and DIFF esti-
mators, they show that the conditional bias CBk now
depends on the residual yk − mN(xk) instead of on the
magnitude of the yk themselves. The model-assisted
estimator then mimics the robust Horvitz–Thompson
estimator, by downweighting observations with large
values of the model residual-based |CBk|.
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6.3 Weaknesses of GREG

In practice, the GREG weight adjustments may be
large, so that extreme weights and negative weights are
possible. The effects of extreme weights are particu-
larly noticeable in domain estimation, where the ef-
fect of outlying weights is not diluted by large sam-
ple size. Many survey estimation procedures have been
motivated by these weaknesses of GREG. In this re-
view, we emphasize “regression-like” methods, many
of which attempt to trim, smooth or otherwise stabilize
the weights through model specifications other than the
heteroskedastic regression. Among these are methods
based on linear mixed models, nonparametric or semi-
parametric regression, or other flexible prediction tech-
niques that can broadly be described as statistical or
machine learning.

7. LINEAR MIXED MODELS FOR
MODEL-ASSISTED ESTIMATION

Let zk be a K × 1 vector of known covariates, in ad-
dition to the p × 1 vector xk . Write XU = [x′

k]k∈U ,
ZU = [z′

k]k∈U , and CU = [XU,ZU ]. Consider the fol-
lowing linear mixed model as a working model:

(14) yU = XUβ + ZUb + εU

where

E
[

b
εU

]
= 0, Var

([
b

εU

])
= σ 2

[
λ−2Q 0

0 R

]
,

with Q known and positive definite, σ 2 unknown,
and λ fixed in advance. This is of course an in-
credibly broad and useful model class, allowing var-
ious continuous and categorical covariates xk and zk

and a broad range of variance–covariance structures
through the choices of Q and R. The model class in-
cludes multiple regression, analysis of variance mod-
els, and many longitudinal models, along with penal-
ized splines, varying-coefficient models, semiparamet-
ric additive models, low-rank kriging, and many more.
See, for example, Ruppert, Wand and Carroll (2003).

Linear mixed models are widely used in estimation
for complex surveys, particularly in small area esti-
mation (Fay and Herriot, 1979, Battese, Harter and
Fuller, 1988, Datta and Ghosh, 1991, Ghosh and Rao,
1994, Rao, 2003, Opsomer et al., 2008). They have
also been used to stabilize weights or relax constraints
in calibration estimation and related methods, includ-
ing robust case weighting (Bardsley and Chambers,
1984, Chambers, 1996), ridge calibration (Rao and
Singh, 1997, Beaumont and Bocci, 2008, Montanari

and Ranalli, 2009), and other methods for satisfying
range restrictions (Park and Fuller, 2005) or smoothing
weights (Lazzeroni and Little, 1998, Elliott and Little,
2000). Here, we focus on the use of linear mixed mod-
els for extensions of GREG (Fuller, 2002, Zheng and
Little, 2003, 2004, Breidt, Claeskens and Opsomer,
2005, Park and Fuller, 2009, Guggemos and Tillé,
2010), returning to the fitting of linear mixed models
as a regularization/penalization method in Section 8.3.

If the entire finite population were observed, the best
linear unbiased estimators (BLUEs) of β and best lin-
ear unbiased predictors (BLUPs) of b would be ob-
tained via

BN = (
C′

UCU + �
)−1

C′
UyU,

where � = blockdiag(0, λ2Q−1). The corresponding
BLUPs of individual yk values would then be

mN(ck) = c′
kBN = c′

k

(
C′

UCU + �
)−1

C′
UyU

with c′
k = (x′

k,z
′
k). The corresponding survey-weight-

ed versions are

B̂ =
(∑

k∈s

ckc
′
k

πk

+ �

)−1 ∑
k∈s

ckyk

πk

,

and m̂(ck) = c′
kB̂ . Plugging these in to the difference

estimator, we have the linear mixed model estimator

(15) DIFF
(
y, c′

kB̂
) = ∑

k∈U

c′
kB̂ + ∑

k∈s

yk − c′
kB̂

πk

.

As this form shows, the general recipe from Section 4
continues to apply here. Hence, the asymptotic vari-
ance can again be obtained and variance estimation will
be based on (8).

Like the GREG, the linear mixed model estimator can
be written in weighted form:

DIFF
(
y, c′

kB̂
)

= ∑
k∈s

yk − c′
kB̂

πk

+ ∑
k∈U

c′
kB̂

= ∑
k∈s

{
1

πk

+ (
tc − HT(c)

)′(∑
k∈s

ckc
′
k

πk

+ �

)−1 ck

πk

}
yk

= ∑
k∈s

ωksyk.

The weights {ωks} are calibrated to the x-population
totals, DIFF(x′, c′

kB̂) = t ′x , but are not calibrated to the
z-population totals, DIFF(z′, c′

kB̂) 	= t ′z. This relaxation
of the calibration constraints provides useful flexibility
for GREG-type estimators.
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8. MODEL-ASSISTED METHODS BASED ON
STATISTICAL LEARNING TECHNIQUES

8.1 Model Calibration Approach

Outside of the linear model, many procedures lead
to predictions that are not linear combinations of the
observed data, thus complicating the calibration and
weighting properties of GREG-type estimators. Wu and
Sitter (2001) propose a simple and effective method
for incorporating nonlinear predictions into model-
assisted estimators, by using an arbitrary predictor
m̂(xk) as the covariate zk in the working model:

(16) yk = βzk + εk, {εk} uncorrelated
(
0, σ 2)

.

Estimating β by BN = ∑
k∈U zkyk(

∑
k∈U z2

k)
−1 at the

finite population level, BN by

B̂ =
∑

k∈s zkyk/πk∑
k∈s z2

k/πk

=
∑

k∈s m̂(xk)yk/πk∑
k∈s m̂(xk)2/πk

at the sample level, and plugging in to the model-
assisted estimator form then leads to the model cali-
bration estimator of Wu and Sitter (2001):

DIFF
(
y, B̂m̂(xk)

) = ∑
k∈U

B̂m̂(xk) + ∑
k∈s

yk − B̂m̂(xk)

πk

.

Wu (2003) later showed that, under certain regularity
conditions on the sampling design, the model calibra-
tion estimator is optimal in the sense that it minimizes
the superpopulation model expectation of the asymp-
totic design variance over a class of calibration estima-
tors.

8.2 Kernel Methods and Local Regression

Kernel methods assume that the working model is
locally simple, like constant or linear, and globally
smooth, then estimate the local regression function
using only nearby points as determined by a kernel
weighting function. In this section, we focus on local
polynomial regression and its extensions in the model-
assisted context.

Local polynomial regression. Breidt and Opsomer
(2000) considered a working model in which μ(·) is
a smooth function of scalar x, to be estimated by local
polynomial regression, in which the smooth function
is approximated locally at xk by a q-th order polyno-
mial, fitted at the finite population level via weighted
least squares regression with weights given by a kernel
function centered at xk :

(17)
mN(xk) = (1,0, . . . ,0)

· (
X′

UkWUkXUk

)−1
X′

UkWUkyU

where

XUk = [
1 xj − xk · · · (xj − xk)

q
]
j∈U

,

WUk = diag
{

1

h
K

(
xj − xk

h

)}
j∈U

and y′
U = [y1, y2, . . . , yN ]. Then, letting

Xsk = [
1 xj − xk · · · (xj − xk)

q
]
j∈s

,

W sk = diag
{

1

πjh
K

(
xj − xk

h

)}
j∈s

and y′
s = [yj ]j∈s , we define

m̂LPR(xk) = (1,0, . . . ,0)
(
X′

skW skXsk

)−1
X′

skW skys

as the design-weighted version of (17). The local poly-
nomial survey regression estimator, LPR, is then

DIFF
(
y, m̂LPR(xk)

)
= ∑

k∈U

m̂LPR(xk) + ∑
k∈s

yk − m̂LPR(xk)

πk

= ∑
k∈U

mN(xk) + ∑
k∈U

(yk − mN(xk))Ik

πk

+ ∑
k∈U

(
m̂LPR(xk) − mN(xk)

)(
1 − Ik

πk

)
= DIFF(y,mN) + (remainder).

Under a fixed-size design with inclusion probabilities
bounded away from zero and sampling rate nNN−1 →
π > 0, with kernel bandwidth hN → 0 and Nh2

N/

(log logN) → ∞, and with weak design dependence
as measured by second-order through fourth-order
inclusion probabilities, Breidt and Opsomer (2000),
Lemma 5, show that the remainder is of order

op

(
Nn

−1/2
N

)
,

so that LPR again inherits the properties of the differ-
ence estimator, including its asymptotic variance and
variance estimator. Further, they show that LPR(y) =∑

k∈s ωksyk with weights {ωis} independent of y. For
a qth-order local polynomial, these weights are cali-
brated to powers of x:∑

k∈s

ωksx
�
k = ∑

k∈U

x�
k (� = 0,1, . . . , q).

Hence, LPR will be particularly effective if y is approx-
imately a qth order polynomial in x. Unlike GREG, use
of LPR requires availability of xk for all k ∈ U .
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Montanari and Ranalli (2005) added a model calibra-
tion step as in Wu and Sitter (2001) to LPR to gain ad-
ditional calibration with respect to the working model.
In simulations, the model-calibrated LPR performed
slightly better than the original version.

Other extensions include Deville and Goga (2004),
who applied LPR to improve the efficiency of survey
estimators when samples are taken on two occasions,
and Aragon, Goga and Ruiz-Gazen (2006), who con-
sidered quantile estimation. Rueda, Sánchez-Borrego
and Arcos (2009) construct a jump-preserving model
assisted estimator by adapting LPR to allow for dis-
continuities in μ(·). They compare model-assisted and
model-based versions of LPR and its jump-preserving
counterparts via simulation, while Sánchez-Borrego,
Rueda and Muñoz (2012) conduct an empirical study
of these estimators using data on breast cancer preva-
lence in 40 European countries.

Additive models. Breidt et al. (2007) considered a
model-assisted estimator in which the mean of the
working model is a semiparametric additive model,

(18) μ(xk) = μ1(x1k) + · · · + μq(xqk) + x′
kβ,

where the μ1(·), . . . ,μq(·) are unknown smooth func-
tions of their respective scalar arguments. They pro-
vided a design-weighted backfitting algorithm for effi-
cient estimation of the semiparametric additive model,
alternating between local polynomial regression for es-
timation of the smooth functions, and design-weighted
least squares for estimation of the regression coeffi-
cients β . For the special case of q = 1, they proved
design consistency, derived a consistent variance esti-
mator, and established asymptotic normality under as-
sumptions similar to Breidt and Opsomer (2000).

Model (18) is the special case (with identity link) of
the generalized additive model

(19) μ(xk) = g
{
μ1(xk) + · · · + μq(xk) + x′

kβ
}
,

where g(·) is a known link function and μ1(·), . . . ,
μq(·) are unknown smooth functions, each operating
on one or more components of xk . Opsomer et al.
(2007) constructed a model-assisted estimator using
the generalized additive model (19) as the mean of the
working model, fitted the model using local scoring,
and applied it to a forest inventory problem of esti-
mating the total of a binary “forest/nonforest” variable.
The approach of Wu and Sitter (2001) was used to gen-
erate weights to be applied to all the survey variables.

Wang and Wang (2011) focused on the nonparamet-
ric additive components of (18) and fitted the model

using a two-stage spline-backfitted local polynomial
regression, in which splines were used in each back-
fitting step for initial estimation and removal of all ad-
ditive components except the one of interest, and then
local polynomial regression was applied to estimate the
smooth component. This two-step estimator is compu-
tationally efficient and allows for formal derivation of
asymptotic properties of the model-assisted estimator
for q ≥ 1.

8.3 Splines

Some of the disadvantages of kernel-based meth-
ods like LPR include the difficulties of adapting the
kernel to incorporate multiple covariates, especially
combinations of categorical and continuous covari-
ates, and the computational challenges for datasets
with regions of sparse data. These disadvantages are
largely overcome by using a large number of splines or
other basis functions, together with selection or regu-
larization/penalization to control the complexity of the
model.

Penalized splines. In Breidt, Claeskens and Op-
somer (2005), the working model is a smooth function
of scalar x. A set of K fixed, known knots {κj }Kj=1 par-
titions the range of x, and the working model is the
linear mixed model:

yk = [
1, xk, . . . , x

q
k

]
β

+
[
(xk − κ1)

q
+ (xk − κ2)

q
+ · · · (xk − κK)

q
+

]
b

(20)
+ εk

= c′
k

[
β
b

]
+ εk

with (z)+ = max{0, z},

E
[

b
εU

]
= 0, Var

([
b

εU

])
= σ 2

[
λ−1IK 0

0 In

]
,

and λ chosen a priori to give specified degrees of free-
dom in the smooth. As λ → ∞, the working model
corresponds to a global qth-order polynomial, while as
λ → 0, the working model corresponds to a piecewise
qth-order polynomial between the knots.

With this model specification, the penalized spline
(p-spline) estimator of Breidt, Claeskens and Opsomer
(2005) behaves like the difference estimator: under a
standard asymptotic framework with K fixed, the p-
spline estimator is mean square consistent for ty ; its
variance is asymptotically equivalent to that of the dif-
ference estimator at the finite population fit; the stan-
dard plug-in variance estimator is consistent; and it
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has smaller asymptotic variance than HT provided the
residuals {yk − mN(ck)} have less variation than the
raw values {yk}. McConville and Breidt (2013) extend
these results to an asymptotic setting with K → ∞.

As with the general linear mixed model estimator
in Section 7, the p-spline estimator can be written in
weighted form, with weights that are calibrated to the
population totals tx = [∑k∈U x�

k ]q�=0, but are not cali-
brated to the totals of the basis functions, tz. That is,
the estimator is fitted using a potentially large set of
basis functions, but only a small number of calibration
constraints are enforced.

Like the local polynomial survey regression estima-
tor, the p-spline model-assisted estimator has good ro-
bustness properties inherited from its difference esti-
mator form. Both have comparable efficiency to GREG

when a parametric working model is correct, but better
efficiency when the parametric working model is in-
correct. Both have better-behaved weights than GREG

(e.g., almost never negative). Unlike local polynomial
regression and other kernel methods, penalized spline
regression is readily formulated as a linear mixed
model, and thus can be conveniently extended to in-
clude additional xk variables, continuous or categor-
ical, and additional zk variables, continuous or cat-
egorical. This extended “semiparametric” model will
yield weights that are calibrated on the xk variables
but not calibrated on the zk variables. Any continu-
ous components of xk can enter the model paramet-
rically or nonparametrically, through additional spline
terms. Breidt, Claeskens and Opsomer (2005) discuss
extension of model (20) to the semiparametric additive
model (18), which is straightforward under the p-spline
formulation: simply add fixed effects for any additional
parametric terms x′

kβ and random effects for the addi-
tional nonparametric terms μ2(x2k), . . . ,μq(xqk). Ad-
ditional random effects to describe correlation struc-
ture can also be added as with any linear mixed model.

Regression splines. Goga (2004, 2005) studies an-
other class of nonparametric model-assisted estimators
based on regression splines. In both papers, Goga uses
unpenalized regression splines, dividing the domain by
using K knots, constructing a B-spline basis for the set
of knots, and letting K → ∞ so that the B-splines be-
come dense on the domain. Goga (2005) shows that the
model-assisted regression spline estimator is asymp-
totically design-unbiased and consistent, proposes a
design-based variance approximation, and shows that
the anticipated variance is asymptotically equivalent
to the Godambe–Joshi lower bound. Simulations show

that the regression spline estimator has good proper-
ties. Goga (2004) constructs model-assisted estimators
in the case of sampling on two occasions, with com-
plete auxiliary information available on each occasion.

8.4 Neural Networks and Related Methods

We now turn to a class of prediction methods in
which new covariates are derived as linear combina-
tions of the original xk , and then the working model
postulates that the mean response is a nonlinear func-
tion of the new covariates; see, for example, Hastie,
Tibshirani and Friedman (2001), Chapter 11. Included
in this class are neural network models and projection
pursuit models.

Neural networks. Montanari and Ranalli (2005) de-
veloped a model-assisted estimator for a working
model that is a feedforward neural network with skip-
layer connections,

(21) μ(xk) = x′
kβ +

M∑
j=1

αja
(
γ ′

jxk

)
,

where a(·) is a known activation function, often a sig-
moidal function, and β , α1, . . . , αM and {γ j }Mj=1 are
unknown parameters. They then used model calibra-
tion as in Wu and Sitter (2001) to generate weights.
Montanari and Ranalli (2005) prove design consistency
and asymptotic normality of the model-assisted esti-
mator, and provide a consistent variance estimator. In
simulations, the model-calibrated neural network esti-
mator outperforms the local polynomial regression es-
timator.

Projection pursuit and single-index models. Projec-
tion pursuit (Friedman and Stuetzle, 1981) is closely
related to neural network modeling, replacing the spec-
ification {αja(·)}Mj=1 in (21) with unknown smooth

functions {αj (·)}Mj=1,

(22) μ(xk) =
M∑

j=1

αj

(
γ ′

jxk

)
,

where {γ j }Mj=1 are unknown parameters. The unknown
functions are estimated via some flexible smoothing
method; see, for example, Hastie, Tibshirani and Fried-
man (2001), Chapter 11.2. While we are not aware
of model-assisted survey estimators that use projec-
tion pursuit, Wang (2009) considered the special case
of (22) with M = 1, also known as the single-index
model. Rather than use

(23) μ(xk) = α
(
γ ′xk

)
,
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directly, Wang (2009) used an approximation to μ(·)
given by

μ∗(z) = E
[
μ(xk) | γ ′xk = z

]
where the expectation is with respect to the model in
(23), and estimated μ∗(·) via polynomial splines. Un-
der design assumptions like those of Breidt and Op-
somer (2000), Wang (2009) proved design consistency
and asymptotic normality of the model-assisted estima-
tor, and provided a consistent variance estimator.

8.5 K-Nearest Neighbor Methods

The K-nearest neighbor method (KNN) predicts
yk by averaging “nearby” {y�}�∈Lk∩s in a covariate-
determined neighborhood of element k. Specifically,
the neighborhood Lk of size |Lk| = K is formed by
finding the K vectors {x�}�∈s that are closest to xk

under some metric, such as Euclidean distance. The
predictor then has the form

m̂(xk) = 1

K

∑
�∈Lk

yk;

weighted versions of the average are also possible.
The working model for KNN is that μ(x) is well-
approximated by a locally constant function (Hastie,
Tibshirani and Friedman, 2001, Chapter 2.4). Such
methods are now widely used in the international
forest inventory community for combining ground-
based measurements with remotely-sensed imagery;
see McRoberts, Tomppo and Næsset (2010) and the
references therein. Baffetta et al. (2009) developed a
design-based model-assisted estimator using KNN, ar-
guing intuitively (Baffetta et al., 2009, Section A.3)
that the remainder term in (9) should be negligible.
The authors evaluate the estimator via simulation and
via application to estimation of timber volume in a for-
est inventory for the northeastern part of Tuscany, Italy.
Covariates in the application were obtained as seven
spectral bands from Landsat imagery. Extensions of
the methodology are reported in Baffetta, Corona and
Fattorini (2010).

8.6 Tree-Based Methods

Hastie, Tibshirani and Friedman (2001), Chapter 9.2,
describe tree-based methods as those which partition
the space of available covariates into a set of rectangles,
then fit a simple model, like a constant, on each such
rectangle.

Regression trees. While we are not aware of model-
assisted estimators that take full advantage of recursive

partitioning of samples for the construction of regres-
sion trees, like CART (Breiman et al., 1984) or MARS
(Friedman, 1991), much of the asymptotic theory is al-
ready in place in the work of Toth and Eltinge (2011),
who establish asymptotic design L2 consistency of
survey-weighted regression trees as estimators of quite
general regression functions. Such survey-weighted re-
gression trees could be readily incorporated into the
model-assisted estimator (7). In modern practice, trees
are often built repeatedly on randomly-selected subsets
of the original data with randomly-selected covariates,
then averaged, resulting in random forests; see Sec-
tion 8.8 below.

Endogenous post-stratification. One example of a
tree-based method was motivated (appropriately
enough) by an application in forestry surveys. Recall
that the post-stratification estimator (PSE) is a special
case of GREG with indicators for categorical covari-
ates:

DIFF
(
y,x′B̂

) = ∑
k∈U

x′
kB̂ + ∑

k∈s

yk − x′
kB̂

πk

where xk = [1{k∈Uh}]Hh=1 and U = ⋃H
h=1 Uh is a par-

tition of the population. In the PSE, the indicators are
known for the sample and their sums

∑
k∈U 1{k∈Uh} =

|Uh| = Nh are known for the population. The working
model for the PSE is a constant mean within post-strata.

In forestry surveys, it is desirable to construct post-
strata based on classification of satellite imagery. Su-
pervised classification of images requires ground truth
data, which are available from the survey. Hence, the
survey data train the classification algorithm and the
classified image post-stratifies the survey data, a cycle
that Breidt and Opsomer (2008) refer to as endogenous
post-stratification.

Expressing the image classification as a classifica-
tion of the predictions from a fitted model, we have

x̃k = [1{τh−1<m̂(xk)≤τh}]Hh=1,

where the {τh}Hh=0 are known break points, and the en-
dogenous post-stratification estimator (EPSE) is

DIFF
(
y, x̃′B̂

) = ∑
k∈U

x̃′
kB̂ + ∑

k∈s

yk − x̃′
kB̂

πk

.

Because this is a kind of partition of covariate space
into rectangles followed by piecewise constant model
fitting, it can be understood as a tree-based method.
Breidt and Opsomer (2008) showed that EPSE is
asymptotically equivalent to PSE for smooth paramet-
ric models, while Dahlke et al. (2013) extended these



202 F. J. BREIDT AND J. D. OPSOMER

results to a wide class of nonparametric mN(·). Tipton,
Opsomer and Moisen (2013) used linear regression,
spline regression and random forests in EPSE, and in-
vestigated the effect of estimation and optimal selec-
tion of unknown break points {τh}Hh=0. See, for exam-
ple, McRoberts, Næsset and Gobakken (2013), Næsset
et al. (2013) and the references therein for various ap-
plications of the EPSE methodology.

8.7 Model Selection and Shrinkage Methods

In some applications, such as natural resource sur-
veys, the dimension of the covariate vector xk is large.
For example, in forest inventory, it is common that xk

includes “wall-to-wall” remote sensing, like satellite
imagery or high-altitude aerial photography; informa-
tion like elevation, aspect and slope from digital eleva-
tion models; and other data products derived in a ge-
ographic information system. Some of this auxiliary
information may be highly correlated and some may
have poor predictive ability for response variables and,
therefore, model selection and/or coefficient shrinkage
are appropriate to improve the efficiency of survey re-
gression estimators of finite population totals, and also
to stabilize the weights.

Silva and Skinner (1997) considered the use of best
subsets and forward stepwise regression to estimate a
finite population quantity under simple random sam-
pling without replacement, effectively setting some co-
efficients to zero. Shrinkage methods that move coeffi-
cients toward zero can be very effective in improving
prediction accuracy and in improving the properties of
the GREG weights. Such methods include ridge calibra-
tion (Rao and Singh, 1997, Beaumont and Bocci, 2008,
Montanari and Ranalli, 2009); see Section 7 above for
other methods for satisfying range restrictions.

The “least absolute shrinkage and selection opera-
tor” (lasso) method proposed by Tibshirani (1996) si-
multaneously performs model selection and regular-
ized coefficient estimation by shrinking coefficients to
zero. The lasso method finds coefficients which mini-
mize the sum of the squared residuals subject to a con-
straint on the sum of the absolute value of the coeffi-
cients.

McConville (2011) studied a model-assisted survey
regression estimator in which survey-weighted lasso
regression coefficients

B̂
(L) = arg min

β
(Y s − Xsβ)T �−1

s (Y s − Xsβ)

+ λN

p∑
j=1

|βj |

are plugged into the GREG. For a sequence of fi-
nite populations and probability sampling designs,
McConville (2011) derives asymptotic properties of
the lasso survey regression estimator, including design
consistency and central limit theory for the estimator
and design consistency of a variance estimator. Fur-
ther, lasso survey regression weights are developed,
using either a model calibration approach as in Wu and
Sitter (2001) or a ridge regression approximation fol-
lowing Tibshirani (1996). The results are extended to
allow use of the adaptive lasso (Zou, 2006). In simu-
lation studies with many highly-correlated covariates,
lasso has much smaller weight variation than GREG

(and essentially no negative weights), and has much
lower mean squared error than GREG, particularly for
domains.

8.8 Ensemble Learning and Related Methods

There are now many ensemble methods available
in the statistical and machine learning literature. For
purposes of this discussion, an ensemble method con-
structs not one but M working predictors, μ̂j (·), us-
ing some subset of the observed data and some (quite
general) prediction method for the j th predictor. The
ensemble method then uses the weighted average

(24) μ̂(xk) =
M∑

j=1

ωj μ̂j (xk)

for prediction. Key differences among ensemble pre-
dictors are typically determined by the choice of the
weights, {ωj }. These ensembles can combine the pre-
dictions from many “weak” predictors into a single,
more powerful predictor.

Model averaging. Li and Opsomer (2006) consid-
ered model averaging as a way to avoid having to select
the “best” model in constructing a regression estimator,
which can be difficult in settings with many covari-
ates and/or which require selecting values for tuning
parameters. The idea is that if a set of M estimators
are all (approximately) unbiased, then a linear com-
bination of these estimators will continue to be unbi-
ased but can often have lower variance. Li and Op-
somer (2006) conducted a simulation study comparing
a number of simple model averaging approaches and
generally found modest improvements in efficiency
across different scenarios. This topic is still mostly un-
explored and might become more important as larger
quantities of auxiliary information become available in
the future.
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Random forests. Tipton, Opsomer and Moisen
(2013) uses random forests (Breiman, 2001) in an en-
dogenous post-stratification (that is, embedded within
another tree-based method), but we are not aware of di-
rect uses of random forests in a model-assisted survey
estimator.

Bagging. Wang, Opsomer and Wang (2014) con-
sider bootstrap aggregating or bagging (Breiman,
1996) in the design-based setting, showing the design
consistency of bagged survey estimators and demon-
strating the improved efficiency of the bagged estima-
tors via simulation. They also show how to construct
bagged estimators using replicate survey weights,
which are often provided with survey data to allow for
variance estimation. While we are not aware of bagged
model-assisted survey estimators, this might be an in-
teresting area for future research.

9. DISCUSSION

As we hope this overview of modern approaches to
model-assisted estimation has illustrated, the range of
methods that can be applied to improve design-based
survey estimators has dramatically increased in the last
two decades. We expect it to continue to do so, as
survey statisticians continue to take advantage of new
methods being developed in other areas of statistics.
These new methods address a pressing need of sta-
tistical agencies conducting surveys, because of rising
costs, increasing demands for more precise estimates
at smaller scales and a general desire to maximally use
known information about the target population in the
survey estimates.

At the same time as these new methods are being
developed, a shift in thinking about model-assisted es-
timation seems to be occurring. While this is a bit of an
over-simplification, the traditional focus was on adjust-
ing estimators to match interpretable population con-
trol totals. This can be clearly seen in post-stratification
and ratio estimation, but is also present to a large extent
in GREG approaches in general. In contrast, the new fo-
cus is on prediction, with methods being evaluated on
their ability to generate model predictions that lead to
precise model-assisted estimators. This view of statis-
tical methods as primarily prediction tools is related to
the ideas of statistical learning (Hastie, Tibshirani and
Friedman, 2001), and many of the methods described
in this article are familiar to researchers and practition-
ers in that area.

While good predictive ability is a key considera-
tion in assessing the suitability of a statistical learn-

ing tool in the model-assisted context, other considera-
tions are whether it can incorporate design weights and
whether it produces good predictions across a range
of response variables. The former consideration is im-
portant to maintain the design consistency of the re-
sulting estimator. The latter concerns the fact that the
main mode of application of model-assisted estima-
tion is through the creation of survey weights, which
are applied to all the variables in the survey. Hence, a
method that leads to highly precise estimates for some
variables but imprecise estimates for others is not as
suitable as one that leads to good precision across all
variables. This depends on the interplay between the
survey variables, auxiliary variables and the methods
themselves, so it is difficult to make general statements
about which methods are better than others in which
contexts. Nevertheless, practical applications of these
methods will entail an evaluation of their robustness
across survey variables and target estimates. Weight
stability is often considered in this context, because
highly variable weights can lead to imprecise estimates
for variables that are poorly or negatively correlated
with the weights.

Survey data are often used not only for estimation of
finite population quantities, but also for model fitting
(e.g., Lumley and Scott, same issue). In this context,
parameter estimates are typically obtained by solving
sample-weighted versions of finite-population estimat-
ing equations (Binder, 1983). For example, pseudo-
maximum likelihood estimators (PMLE) are obtained
by setting the survey-weighted score vector equal to
zero and solving for the unknown parameters. The sur-
vey weights in PMLE and related estimators could
be replaced by any of the model-assisted weights de-
scribed in this article, which would have an impact on
properties of the resulting parameter estimators. See
Lumley and Scott (Section 3, same issue) and the ref-
erences therein for an introduction to the use of influ-
ence functions for studying the effect of model-assisted
weights on parameter estimation, a relatively unex-
plored area.

One aspect of model-assisted estimation that we
hoped to convey is that across the range of methods
discussed here, the underlying principles for the con-
struction of estimators and the study of their statisti-
cal properties are surprisingly simple. The construction
recipe in Section 4 enables practitioners to incorporate
covariates and prediction methods from a wide range
of sources, and the asymptotic framework of Section 3
and Section 5 shows a general path of statistical evalu-
ation and the development of inference tools, with the
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difference estimator based on the population fit of the
prediction method forming the crucial link between the
design-based and the model-based components.
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