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Consistency of the MLE under Mixture
Models
Jiahua Chen

Abstract. The large-sample properties of likelihood-based statistical infer-
ence under mixture models have received much attention from statisticians.
Although the consistency of the nonparametric MLE is regarded as a standard
conclusion, many researchers ignore the precise conditions required on the
mixture model. An incorrect claim of consistency can lead to false conclu-
sions even if the mixture model under investigation seems well behaved. Un-
der a finite normal mixture model, for instance, the consistency of the plain
MLE is often erroneously assumed in spite of recent research breakthroughs.
This paper streamlines the consistency results for the nonparametric MLE in
general, and in particular for the penalized MLE under finite normal mixture
models.

Key words and phrases: Nonparametric MLE, identfiability, Kiefer–Wolfo-
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1. INTRODUCTION

A family of distributions, parametric or nonparamet-
ric, is regarded as a probability or statistical model.
A parametric model can hence be a family of density
functions in the form {f (x; θ) : θ ∈ �} where � is a
subset of Rd for some positive integer d . The measure
with respect to which these densities are defined is μ,
but this will be de-emphasized. In applications, statis-
ticians must select one or a set of these distributions
to characterize the uncertainty displayed in a random
sample from a population.

A specific distribution family or model is often ten-
tatively chosen in accordance with the scientific back-
ground of the application. For instance, the Poisson
distribution/model is a textbook choice for the number
of annual car accidents of a policy holder, but it may
not be ideal because risk levels vary. It can therefore be
helpful to divide the population into several subpopu-
lations, each modeled by its own Poisson distribution.
Thus, a finite mixture of Poisson distributions is a bet-
ter choice for the pooled accident data. This leads to a
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generic finite mixture model in the form

(1.1) f (x;G) =
m∑

j=1

αjf (x; θj ).

In this formulation, f (x;G) is a finite convex com-
bination of the component density functions f (x; θ).
Each f (x; θj ) is the density for a subpopulation. The
recipe for the mixture is summarized by G, specified
by its cumulative distribution function (c.d.f.)

(1.2) G(θ) =
m∑

j=1

αj I (θj ≤ θ),

where I (·) is an indicator function. The model f (x;G)

in the above definition has order m, even if some θj are
equal or some αj = 0. A finite mixture model of order
m is hence also a degenerate order m + 1 mixture.

For any c.d.f. G on �, the following integral

(1.3) f (x;G) =
∫

f (x; θ) dG(θ)

is a well-defined density function. When G has only a
finite number of support points, as in (1.2), f (x;G)

reduces to the finite mixture model (1.1). When the
form of G is unspecified, (1.3) is regarded as a non-
parametric mixture model. The space of all the mix-
ing distributions on � is denoted G, and the space
of those with at most m support points is Gm. It can
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be seen that Gm ⊂ Gm+1. See Titterington, Smith and
Makov (1985), Lindsay (1995) and McLachlan and
Peel (2000) for the general theory and applications of
mixture models.

Research into mixture models has a long history. The
most cited early publication is Pearson (1894); he used
a two-component normal mixture model for a biomet-
ric data set. This model was motivated by the apparent
skewness in the ratio of forehead-width to body-length
of 1000 crabs from Naples. It was suspected that the
population contained two unidentified species. Pearson
(1894) employed the method of moments for the pa-
rameter estimation and provided a detailed account of
the numerical calculation in the absence of the modern
computer. Nowadays, we would estimate the parame-
ters by the maximum likelihood estimator (MLE). The
MLE is favored for its asymptotic efficiency under reg-
ular parametric models. The unpleasant numerical ob-
stacle is now a history.

Mixture distributions form a distinct class of non-
regular statistical models. They are notorious for pre-
senting statisticians with serious technical challenges
as well as many pleasant surprises. Given an i.i.d. sam-
ple of size n from a mixture model, Hartigan (1985)
showed that the likelihood ratio test statistic for homo-
geneity is stochastically unbounded defying the clas-
sical chi-squared limiting distribution. Chen (1995)
showed that the optimal rate for estimating the mixing
distribution is Op(n−1/4) as compared with Op(n−1/2)

for parameter estimation under regular models. Quinn,
McLachlan and Hjort (1987) interpreted some of these
abnormal results by the degenerated Fisher information
when the order of the finite mixture model is unknown.
At the same time, Lindsay (1983) showed that the non-
parametric MLE of G has at most k support points, the
number of distinct observed values. Given the order
of the finite mixture model and an initial mixing dis-
tribution G(0), Wu (1983) found that the famous EM-
algorithm leads to a sequence of G(k) that converges to
a local maximum of the likelihood function and it can
be a locally consistent MLE Peters and Walker (1978).
Both Lindsay (1983) on the geometric property and Wu
(1983) on the algorithmic convergence place only nom-
inal conditions on f (x;G).

There is also good news about the large-sample
properties of the MLE. Kiefer and Wolfowitz (1956)
and Pfanzagl (1988) proved that the nonparametric
MLE of G is strongly consistent in an i.i.d. setting.
Using quotient topology, Redner (1981) gave another
consistency proof under finite mixture models.

These consistency results are encouraging, but care-
ful discussions of the relationships between these
proofs are lacking. Why are there multiple proofs for a
single consistency result? How do these proofs relate to
each other? Without a full understanding, researchers
may cite a paper when its specific proof/result is not ap-
plicable to the target problem. This paper streamlines
the consistency proofs of the nonparametric MLE un-
der mixture models and crystallizes their applicability.
Another topic is consistent estimation under the finite
normal mixture model: the consistency of the MLE un-
der this model is often erroneously assumed. This pa-
per aims to popularize the consistent estimator based
on the penalized likelihood. The ultimate goal of this
exercise is to provide a solid basis for research into the
large-sample properties of mixture models.

The remainder of the paper consists of two ma-
jor sections. Section 2 addresses classical consistency
results for the nonparametric MLE under a mixture
model. Section 3 addresses results related to the consis-
tency of the penalized (or regularized) MLE under the
finite normal mixture model. Section 4 provides con-
cluding remarks.

2. CLASSICAL CONSISTENCY RESULTS

Let x1, . . . , xn be a set of i.i.d. observations of size
n from a nonparametric mixture model {f (x;G) : G ∈
G}. The likelihood function of G is given by

Ln(G) =
n∏

i=1

f (xi;G).

The log-likelihood function of G is hence

(2.1) �n(G) =
n∑

i=1

logf (xi;G).

Both Ln(G) and �n(G) are functions defined on G. The
nonparametric MLE Ĝn of G is a c.d.f. on � such that

(2.2) �n(Ĝ) = sup
{
�n(G) : G ∈ G

}
.

Most rigorously, Ĝ is related to the sample in a mea-
surable fashion, and it is potentially one of many pos-
sible global maximum points of �n(·). In addition, Ĝ

can be a limiting point of a sequence of mixing distri-
butions Gj such that �n(Gj ) → sup{�n(G) : G ∈G} as
j → ∞.

For ease of presentation, (2.2) is regarded as an un-
ambiguous definition of MLE. When G is confined to
Gm, this becomes the MLE of G under finite mixture
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models. When m = 1 in Gm, (2.2) defines the ordi-
nary parametric MLE of θ under the model {f (x; θ) :
θ ∈ �}.

As acknowledged by Kiefer and Wolfowitz (1956),
their proof of the consistency of Ĝ is a technical clone
of that of Wald (1949). One key technical preparation
for this proof is the following well-known inequality.

LEMMA 2.1 (Jensen’s inequality). Let X be a ran-
dom variable such that E|X| < ∞ and let ϕ(t) be a
convex function. Then

E
{
ϕ(X)

} ≥ ϕ
(
E(X)

)
.

Suppose X is a random variable with density func-
tion f (x; θ) in general and θ∗ is the true value of the
parameter. Let Y = f (X; θ)/f (X; θ∗). It can be seen
that

E∗(Y ) =
∫ {

f (x; θ)/f
(
x; θ∗)}

f
(
x; θ∗)

dμ(x)

≤
∫

f (x; θ) dμ(x) = 1,

where E∗ is the expectation with respect to the distri-
bution with the specific θ∗ parameter value. Applying
Jensen’s inequality to Y and ϕ(t) = − log(t), we get

−E∗ log
{
f (X; θ)/f

(
X; θ∗)}

≥ − log
[
E∗{

f (X; θ)/f
(
X; θ∗)}] ≥ 0.

(2.3)

If E∗| logf (X; θ∗)| < ∞, then

E∗{
logf (X; θ)

} ≤ E∗{
logf

(
X; θ∗)}

.

The equality holds if and only if f (x; θ) ≡ f (x; θ∗),
or it is equal except for a zero-probability set of x in
terms of f (x; θ∗). The expectation E∗[log{f (X; θ∗)/
f (X; θ)}] is referred to as the Kullback–Leibler infor-
mation between the two distributions.

The following lemma may seem trivial, but it is the
basis of most proofs for generic consistency.

LEMMA 2.2 (Trivial consistency of MLE). Sup-
pose the model under investigation is {f (x; θ), θ ∈ �}
where � = {θ∗, θ1, . . . , θM}. In addition, f (x; θ) =
f (x; θ∗) except for a zero-probability set of x with re-
spect to f (x; θ∗) implies θ = θ∗.

Then the MLE θ̂n of θ equals θ∗ almost surely as
n → ∞.

PROOF. Let X be a random variable from f (x; θ∗).
Then

max
1≤j≤M

E∗ log
{
f (X; θj )/f

(
X; θ∗)}

< 0.

By the strong law of large numbers, this inequality im-
plies

(2.4) max
1≤j≤M

n∑
i=1

logf (xi; θj ) <

n∑
i=1

logf
(
xi; θ∗)

almost surely. By the definition of the MLE, θ̂n = θ∗
almost surely as n → ∞. �

Surprisingly, most generic MLE consistency proofs
are variations or novel upgraded versions of this
lemma. These include the situations where � is a sub-
set of the Euclidean space R

d , the space of all mixing
distributions G or Gm or any abstract space.

In Section 2.1, we first present a trivialized Wald the-
orem, Theorem 2.1. It is universal consistency result
though not directly applicable to many practical mod-
els. However, the full Wald theorem can be easily ex-
plained from this angle.

Theorem 2.1 is then used as basis to understand and
prove the consistency results of Kiefer and Wolfowitz
(1956), Pfanzagl (1988) in the context of mixture mod-
els subsequently presented in Sections 2.2–2.4.

2.1 Essentials of the Wald Consistency Proof

Let {f (x; θ), θ ∈ �} be the probability model under
investigation, where � is an abstract but metric param-
eter space. For any subset B of �, define

f (x;B) = sup
θ∈B

f (x; θ).

Denote the distance on � as ρ(·, ·). For any ε > 0, let

Bε

(
θ∗) = {

θ : ρ(
θ, θ∗)

< ε
}

be an open ball of radius ε centred at θ∗. Let Bc be the
complement of B .

THEOREM 2.1 (Trivialized Wald theorem). Let
x1, . . . , xn be an i.i.d. sample from f (x; θ∗), a member
of {f (x; θ), θ ∈ �}. Let θ̂n be an MLE of θ as defined
in (2.2).

Suppose that for any ε > 0, there exists a finite num-
ber of subsets B1,B2, . . . ,BJ of � such that Bc

ε (θ
∗) ⊂

{⋃J
j=1 Bj } and for each j

(2.5) E∗ log
{
f (X;Bj)/f

(
X; θ∗)}

< 0.

Then θ̂n → θ∗ almost surely as n → ∞.

The proof is identical to that of Lemma 2.2. The
technicalities of Wald (1949) amount to specifying
conditions on the model that lead to the general-
ized Jensen’s inequality (2.5). What are the conditions
placed on f (x; θ) by Wald (1949)? Here is a reorga-
nized and slightly altered list:
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(W1) Identifiability: Let F(x; θ) be the cumulative
distribution function of f (x; θ). F(x; θ) = F(x; θ∗)
for all x implies θ = θ∗.

Clearly, if F(x; θ) = F(x; θ∗) for all x, there will
be no stochastic difference between the data sets gen-
erated from these two distributions. Hence, consistent
estimation of θ based only on data is not possible if
θ 
= θ∗. Identifiability is therefore a necessary condi-
tion for the consistent estimation of θ .

(W2) Continuity and slightly more: For all x,
limθ→θ0 f (x; θ) = f (x; θ0) for any given θ0 and
lim|θ |→∞ f (x; θ) = 0.

Here, |θ | can be the Euclidean norm or any norm
appropriate in the context of the problem. Technically,
continuity may not be required for a zero-probability
set of x in terms of f (x; θ0). The models used in ap-
plications are usually well behaved. Hence, this extra
generality is not generally needed if one takes appro-
priate care and, therefore, is not included as part of the
condition.

For the consistent estimation of a parameter, the dis-
tributions with close θ values must be similar. There-
fore, the continuity condition is indispensable.

(W3) Finite Kullback–Leibler information: Let [·]+
denote the positive part of the quantity in the brackets.
For any θ 
= θ∗, there exists an ε > 0 such that

E∗[
log

{
f

(
X;Bε(θ)

)
/f

(
X; θ∗)}]+

< ∞
and there exists a large enough r > 0 such that

E∗[
log

{
f

(
X;Bc

r

(
θ∗))

/f
(
X; θ∗)}]+

< ∞.

(W4) Closeness: The parameter space � is a closed
subset of Rd .

The use of these conditions is demonstrated in the
following lemma.

LEMMA 2.3. The conditions of Theorem 2.1 are
satisfied under (W1)–(W4).

PROOF. Note that log{f (X;Bε(θ))/f (X; θ∗)} is a
monotone increasing function of ε. The continuity con-
dition (W2) ensures that limf (X;Bε(θ)) = f (X; θ) as
ε → 0+, that is, when ε decreases to 0. Thus, this con-
dition validates the dominated convergence theorem in
the following way:

lim
ε→0+ E∗[

log
{
f

(
X;Bε(θ)

)
/f

(
X; θ∗)}]+

= E∗[
log

{
f (X; θ)/f

(
X; θ∗)}]+

.

For the negative counterpart of this expectation, the fa-
mous Fatou’s lemma implies, under the continuity con-
dition (W2),

lim inf
ε→0+ E∗[

log
{
f

(
X;Bε(θ)

)
/f

(
X; θ∗)}]−

≥ E∗[
log

{
f (X; θ)/f

(
X; θ∗)}]−

.

The monotonicity on the left-hand side in ε ensures
that the limit exists, rather than merely lim inf. Hence,

lim
ε→0+ E∗[

log
{
f

(
X;Bε(θ)

)
/f

(
X; θ∗)}]

≤ E∗[
log

{
f (X; θ)/f

(
X; θ∗)}]

< 0

with the strict < 0 implied by the identifiability condi-
tion (W1).

The above result shows that for each θ 
= θ∗, there is
a small enough εθ such that

E∗ log
{
f

(
X;Bεθ (θ)

)
/f

(
X; θ∗)}

< 0.

Since f (x; θ) → 0 as |θ | → ∞, we can similarly
show that there exists r such that

E∗ log
{
f

(
X;Bc

r

(
θ∗))

/f
(
X; θ∗)}

< 0.

For any ε > 0, let B̄r (θ
∗) be the closure of Br(θ

∗).
Then

A = {
Bc

ε

(
θ∗)} ∩ {

B̄r

(
θ∗)}

is bounded and closed and, therefore, compact. It is
trivial to see that[ ⋃

θ∈A

{
Bεθ (θ)

}] ⊃ A.

When a compact set is covered by the union of a col-
lection of open sets, it is covered by a finite number
of such sets. Applying this result here, we have a fi-
nite number of Bεθ (θ) whose union covers the compact
set A. Let these be B1, . . . ,BJ−1, and reserve BJ for
Br(θ

∗).
All the conditions in Theorem 2.1 are satisfied.

Hence, the MLE is consistent under (W1)–(W4). �
We have successfully established the consistency re-

sult of Wald (1949) stated as Lemma 2.3. The proof is
markedly simplified and it is obtained without requir-
ing

E∗∣∣logf
(
X; θ∗)∣∣ < ∞.

When � is not a closed set, it is often possible to
continuously extend the range of the density function
f (x; θ) to the closure of �, �̄. The Wald theorem may
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then be applicable to the expanded model. Take the
Poisson distribution family as an example:

f (x; θ) = θx

x! exp(−θ)

for x = 0,1, . . . and � = (0,∞). It can be seen that �

is not a closed set. However, by defining f (x;0) = 0
for all x except for f (x;0) = 1 when x = 0, we ex-
tend the model to �̄ = [0,∞). Consequently, the con-
ditions for a consistent MLE are satisfied and the MLE
is consistent. Of course, the consistency of the MLE
can be easily established without utilizing the generic
Wald theorem.

2.2 Consistency of Nonparametric MLE under
Mixture Model: Kiefer–Wolfowitz (KW)
Approach

We now illustrate and understand the contribution of
Kiefer and Wolfowitz (1956) through its connection to
Theorem 2.1. To discuss the consistence of the non-
parametric MLE, we need to choose a distance D(·, ·)
on G such as

DKW(G1,G2) =
∫
�

∣∣G1(θ) − G2(θ)
∣∣ exp

(−|θ |)dθ,

where |θ | is interpreted as |θ1| + · · · + |θd | and dθ as
dθ1 · · · dθd when � ⊂ R

d . Note that there are two d’s
involved: one is the dimension of θ and the other is the
differential symbol for the integration.

At this moment, a generic notion of distance suf-
fices. We say that G → G0 if D(G,G0) → 0. Sup-
pose G∗ ∈ G is the true mixing distribution and Ĝ

is an estimator. Then Ĝ is strongly consistent when
D(Ĝ,G∗) → 0 almost surely.

(KW1) Identifiability: Let F(x;G) be the cumula-
tive distribution function of f (x;G). If F(x;G) =
F(x;G∗) for all x, then D(G,G∗) = 0.

Suppose DKW(·, ·) is chosen as the distance on G.
When f (x; θ) is confined to the Poisson distribution,
(KW1) is satisfied. When f (x; θ) is the normal dis-
tribution, this condition is violated. When f (x; θ) is
binomial, it is also violated in general. When G is re-
duced to Gm, the normal mixture satisfies (KW1); the
binomial mixture satisfies (KW1) when m is small. See
Teicher (1961, 1963).

For Gm, a mixing distribution can be expressed by
two vectors: one for the component parameter val-
ues and one for the corresponding mixing proportions.
Suppose the Euclidean distance on this vector space
is chosen. Then f (x;G) remains the same when the
entries of the two vectors are permuted. This is the

loss of identifiability due to label switching. Quotient
topology as suggested by Redner (1981) can be used
to avoid this problem. Label switching leads to tech-
nical difficulties for Bayesian analysis; see Frühwirth-
Schnatter (2011) and Stephens (2000).

(KW2) Continuity: The component parameter space
� is a closed set. For all x and any given G0,

lim
G→G0

f (x;G) = f (x;G0).

(KW3) Finite Kullback–Leibler information: For
any G 
= G∗, there exists an ε > 0 such that

E∗[
log

{
f

(
X;Bε(G)

)
/f

(
X;G∗)}]+

< ∞.

(KW4) Compactness: The definition of the mixture
density f (x;G) in G can be continuously extended
to a compact space Ḡ while retaining the validity of
(KW3).

THEOREM 2.2. Let x1, . . . , xn be an i.i.d. sample
from f (x;G∗), a member of {f (x;G),G ∈ G}. Sup-
pose conditions (KW1)–(KW4) are satisfied. Then the
nonparametric MLE Ĝn is strongly consistent. Namely,
DKW(Ĝ,G∗) → 0 almost surely.

PROOF. Under the theorem conditions and follow-
ing the proof of Theorem 2.1, there must exist a δ > 0
for each G 
= G∗ such that

E∗[
log

{
f

(
X;Bδ(G)

)
/f

(
X;G∗)}]

< 0.

This leads to a finite open cover of the compact set
Bc

ε (G
∗) for any ε > 0. Hence, by the law of large num-

bers,

max
G/∈Bε(G∗)

�n(G) ≤ �n

(
G∗)

almost surely. The arbitrariness of ε implies that Ĝn

is within an infinitesimal neighborhood of G∗ almost
surely as n → ∞ and is therefore consistent for G∗.

�
The proof of the consistency result in Theorem 2.2

is not fundamentally different from that of Kiefer and
Wolfowitz (1956). The simplicity comes from requir-
ing high level conditions (KW3) and (KW4), and from
not repeating some steps in Lemma 2.3. The current
proof promotes the understanding of the essence of
their proof. At the same time, (KW3) and (KW4) can
be established by (a): introducing a specific distance on
G; (b): extending the domain of f (x;G) in G contin-
uously to a compact Ḡ; (c): verifying that Jensen’s in-
equality hold on Ḡ. Going over these steps brings back
the complexity. We illustrate this point subsequently
based on DKW. It is known that Gm → G in distribu-
tion if and only if DKW(Gm,G) → 0 as m → ∞.
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2.2.1 Compactificaton of G. Based on DKW(·, ·),
the distance is no more than

∫
� exp(−|θ |) dθ < ∞.

To compactify G, we introduce ρG as a subdistribu-
tion for any ρ ∈ [0,1). Let Ḡ be G supplemented with
all the subdistributions. Clearly, DKW(·, ·) is easily ex-
tended to Ḡ. Similarly, we naturally extend the range
of f (x;G) to G ∈ Ḡ by defining

f (x;ρG) = ρ

∫
�

f (x; θ) dG(θ).

Although we have technically expanded G to Ḡ, the
likelihood cannot be maximized on Ḡ − G since if
f (x;G) 
= 0 then f (x;ρG) < f (x;G) when ρ < 1.
Hence, the MLE on Ḡ is always a proper distribution
on �.

Since � is a closed subset of Rd from condition
(KW2), the limit of any Cauchy sequence in G in terms
of DKW(·, ·) is a subdistribution on �. Hence, Ḡ is a
closed set. With the addition of total boundedness, Ḡ
is compact.

The extension from {f (x;G) : G ∈ G} to {f (x;G) :
G ∈ Ḡ} is largely symbolic. The real issues are con-
tinuity and (KW3) on Ḡ. For instance, the extension
would fail on a normal mixture because the component
density function is not defined at σ = 0. Otherwise, the
continuous extension is feasible.

2.2.2 Continuity of f (x;G) on Ḡ. Here is the suffi-
cient and likely also necessary condition for the conti-
nuity of f (x;G) on Ḡ based on DKW distance. Recall
that DKW(Gm,G) → 0 if and only if Gm → G in dis-
tribution.

LEMMA 2.4. Under (W2) and (W4), the extended
mixture model {f (x;G) : G ∈ Ḡ} is continuous in G

for all given x.

PROOF. Recall that Gm → G0 in distribution if
and only if

∫
h(θ) dGm(θ) → ∫

h(θ) dG0(θ) for all
bounded and continuous functions h(·), according to
one of many equivalent definitions. By condition (W2),
lim|θ |→∞ f (x; θ) = 0. Thus, for given x, f (x; θ) is
continuous and bounded on �. Therefore, this defini-
tion leads to

f (x;Gm) =
∫

f (x; θ) dGm(θ) →
∫

f (x; θ) dG0(θ)

= f (x;G0)

whenever Gm → G0 in distribution for all G0 ∈ Ḡ. �
REMARK. Here the convergence in distribution in-

cludes subdistributions.

2.2.3 Generalized Jensen’s inequality. Technicality
is inevitable when it comes to establishing the gener-
alized Jensen’s inequality for the mixture model on Ḡ.
The user must decide whether or not (KW3) holds on
Ḡ for each specific mixture model. Two examples will
help to explain the issue.

EXAMPLE 2.1. If G∗(M) = 1 for some M < ∞,
then the Poisson mixture model satisfies all the condi-
tions of Theorem 2.2.

PROOF. Let θ0 be a support point of G∗. There
must be a positive constant δ such that

f
(
x;G∗) ≥ δ

(θ0)
x

x! exp(−θ0).

Therefore, we have

E∗{
logf

(
X;G∗)} ≥ log(θ0)E

∗(X) − E∗{
log(X!)}

+ log δ − θ0.

The condition G∗(M) = 1 easily leads to the finiteness
of both E∗(X) and E∗ log(X!). Hence, E∗{logf (X;
G∗)} > −∞. Since the probability mass function
is bounded from above, we also have E∗{logf (X;
G∗)} < ∞. Therefore, E∗| logf (X;G∗)| < ∞.

Since f (x;Bε(G)) < 1 for any G and ε > 0,

E∗[
log

{
f

(
x;Bε(G)

)
/f

(
X;G∗)}]

≤ −E∗{
logf

(
X;G∗)}

< ∞.

This is (KW3) for all G ∈ Ḡ. �

Condition (KW3) is not always satisfied even when
the component distribution is Poisson. Let G({A}) be
the probability of θ ∈ A under mixing distribution G.

EXAMPLE 2.2. Let G∗ be a mixing distribution
such that

G∗({logn}) = c
{
n(logn)(log logn)2}−1

with some normalizing positive constant c, for n =
20,21, . . . . Then under a Poisson mixture model, we
have

E∗{
logf

(
X;G∗)} = −∞.

Consequently, for any ε > 0,

E∗{
logf

(
X,Bε(1)

)
/f

(
X;G∗)} = ∞,

where Bε(1) is the set of all mixing distributions within
ε-distance of f (x;1).
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PROOF. The size of c in this example does not af-
fect the proof, so we take c = 1. We choose this specific
mixing distribution because E∗{θ} = ∞. In addition, it
can be seen that

f
(
x;G∗) =

∞∑
n=20

[{
n(logn)(log logn)2}−1

· (logn)x

x! exp(− logn)

]

= 1

x!
∞∑

n=20

(logn)x−1

(n log logn)2 .

It is seen that
∞∑

n=20

(logn)x−1

(n log logn)2 ≈
∫ ∞
t=20

(log t)x−1

(t log log t)2 dt.

The approximation is so precise that an error assess-
ment is possible but unnecessary. Changing the vari-
able via u = log t , we find

∫ ∞
t=20

(log t)x−1

(t log log t)2 dt ≤
∫ ∞
u=0

ux−1 exp(−u)du

= (x − 1)!.
The choice of log(20) as the lowest support point of
G ensures that log(log(20)) > 1, which avoids some
technicalities in the above inequality. Hence,

logf
(
x;G∗) ≤ log

{
(x − 1)!/x!} = − logx.

Using E∗ = EG∗Eθ , we find

E∗{
log(X)

} ≥ EG∗ log{EθX} = EG∗{log θ} = ∞.

Therefore,

E∗{
logf

(
X;G∗)} ≤ −E∗ log(X) = −∞.

Let δx be a distribution with all the probability mass
at x. It can be seen that

DKW
(
δ1, (1 − ε)δ1 + εδx

) ≤ ε

∫
exp(−θ) dθ = ε.

Therefore, (1 − ε)δ1 + εδx ∈ Bε(1) for any x. Hence,
for any x value,

f
(
x;Bε(1)

) ≥ εf (x;x) = εxx

x! exp(−x) ≈ ε√
2πx

by the Stirling formula. Because the Stirling formula is
very accurate, this implies that

log
{
f

(
x;Bε(1)

)
/f

(
x;G∗)}

≥ log(ε/
√

2π) + (1/2) logx.

Hence, for any ε > 0, we have

E∗[
log

{
f

(
X;Bε(1)

)
/f

(
X;G∗)}]

≥ log(ε/
√

2π) + (1/2)E∗{logX} = ∞. �
The point is that condition (KW3) on a compact Ḡ

places a severe restriction on the KW proof. Luckily,
the Pfanzagl proof is free of this restriction.

2.3 Consistency of Nonparametric MLE under
Mixture Model: Pfanzagl Approach

The most demanding condition in the consistency
proof of Kiefer and Wolfowitz (1956) is (KW3),
needed to validate the generalized Jensen’s inequality
(2.5). Unfortunately, (KW3) under a mixture model is
hard to verify, as seen in the Poisson mixture example.
The Pfanzagl approach requires merely (W2) in com-
parison. Here is the inequality in Pfanzagl (1988) that
takes over the role of Jensen’s inequality.

LEMMA 2.5. Let f (x) and f ∗(x) be density func-
tions of any two distributions with respect to some σ -
finite measure μ. For any u ∈ (0,1), we have

E∗ log
{
1 + u

[
f ∗(X)/f (X) − 1

]} ≥ 0,

and equality holds if and only if f ∗(x) = f (x) almost
surely with respect to the f ∗ distribution.

PROOF. Let Y = {1+u[f ∗(X)/f (X)−1]} = (1−
u) + u{f ∗(X)/f (X)}. It can be seen that

logY ≥ (1 − u) log(1) + u log
{
f ∗(X)/f (X)

}
= u log

{
f ∗(X)/f (X)

}
.

Hence,

E∗ log(Y ) ≥ uE∗[
log

{
f ∗(X)/f (X)

}] ≥ 0,

as required. �
Now consider the mixture model f (x;G) with its

domain already extended to Ḡ as in the last subsection.

LEMMA 2.6. Assume that the mixture model is
identifiable and (KW2) is satisfied on Ḡ. Then, for any
G ∈ Ḡ and G 
= G∗, there exists an ε > 0 such that

E∗ log
{
1 + u

[
f

(
X;G∗)

/f
(
X;Bε(G)

) − 1
]}

> 0,
(2.6)

where G∗ is the true mixing distribution.

PROOF. Note that f (x;Bε(G)) is a monotone in-
creasing function of ε, or it decreases to f (x;G) for
all x as ε → 0+. In addition, given u ∈ (0,1),

log
{
1 + u

[
f

(
X;G∗)

/f
(
X;Bε(G)

) − 1
]}

≥ log(1 − u) > −∞.
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Namely, this function has a finite lower bound, which
enables the use of Fatou’s lemma. Hence,

lim
ε→0+ E∗ log

{
1 + u

[
f

(
X;G∗)

/f
(
X;Bε(G)

) − 1
]}

≥ E∗ log
{
1 + u

[
f

(
X;G∗)

/f (X;G) − 1
]}

> 0.

Consequently, there exists a positive ε value at which
(2.6) holds. �

This lemma is the counterpart of the generalized
Jensen’s inequality in the KW approach. It is challeng-
ing to verify the validity of the generalized Jensen’s
inequality under a general mixture model. In contrast,
Lemma 2.6 is valid provided the parameterization is
continuous and identifiable.

THEOREM 2.3. Assume that the mixture model is
identifiable and (KW2) is satisfied on Ḡ. We have

DKW
(
Ĝn,G

∗) → 0.

PROOF. For any δ > 0, let Bc
δ (G

∗) be the distribu-
tions in Ḡ that are at least a distance δ from G∗. Be-
cause Ḡ is compact, so is Bc

δ (G
∗). Thus, the continuity

condition implies that there exists a finite number of
Gk , k = 1, . . . , J , with corresponding εk such that

(2.7) Bc
δ

(
G∗) ⊂

J⋃
k=1

Bk,

where Bk = {G : DKW(G,Gk) < εk}, and

(2.8) E∗ log
{
1 + u

[
f

(
X;G∗)

/f (X;Bk) − 1
]}

> 0.

By the strong law of large numbers, (2.8) implies

n−1
n∑

i=1

log
{
1 + u

[
f

(
xi;G∗)

/f (xi;Bk) − 1
]}

> 0

almost surely for k = 1,2, . . . , J . Consequently, we
have

0 <

n∑
i=1

log
{
1 + u

[
f

(
xi;G∗)

/f (xi;Bk) − 1
]}

≤ inf
G∈Bk

n∑
i=1

log
{
1 + u

[
f

(
xi;G∗)

/f (xi;G) − 1
]}

almost surely for each k = 1,2, . . . , J . Combining this
inequality with (2.7), we get

0 < inf
G/∈Bδ(G∗)

n∑
i=1

log
{
1 + u

[
f

(
xi;G∗)

/f (xi;G) − 1
]}

almost surely. By interpreting the summation in terms
of the log-likelihood function, we find

�n

(
uG∗ + (1 − u)G

)
> �n(G)

for all G ∈ Bc
δ (G

∗) almost surely. Since the likelihood
function at any G /∈ Bδ(G

∗) is smaller than the likeli-
hood value at another mixing distribution uG∗ + (1 −
u)G that is a member of Ḡ, the members of Bc

δ (G
∗), all

of which are at least a δ-distance away from G∗, can-
not possibly attain the supremum of �n(G). Hence, the
nonparametric MLE must reside in the δ-neighborhood
of G∗ almost surely. The arbitrarily small size of δ im-
plies that DKW(Ĝ,G∗) → 0 almost surely as n → ∞.
This completes the proof. �

In this proof, Pfanzagl (1988) took tactical advantage
of the linearity of the mixture model in mixing distri-
butions:

uf
(
x;G∗)+ (1−u)f (x;G) = f

(
x;uG∗ + (1−u)G

)
,

which is the density function of another mixture distri-
bution.

There is a limitation in the Pfanzagl result. Consider
the finite mixture model where G is replaced by Gm

for a given m. The Pfanzagl result is no longer appli-
cable because uG∗ + (1 − u)G likely has more than
m support points even if both G∗ and G have only m

support points. In contrast, the KW proof leads to the
consistency of the MLE under finite mixture models
provided the corresponding conditions are satisfied. In
addition, the KW conditions under finite mixture mod-
els are simple to verify, and they hold widely.

For finite mixture models, there is another widely
cited paper on the consistency of the MLE.

2.4 Consistency of the MLE under Finite Mixture
Model: Redner Approach

The generic results in Redner (1981) are not re-
stricted to the finite mixture model: the paper examines
models lacking full identifiability. Without identifiabil-
ity, the parameter estimator is inconsistent in general.
However, in many situations, the estimator may be re-
garded as consistent from a different angle.

Suppose a probability model has its density function
given by

f (x; θ1, θ2) = θ1 exp(−θ1x)

for x > 0. Of course, this is simply an exponential dis-
tribution with rate parameter θ1; parameter θ2 is irrele-
vant. Given a set of i.i.d. samples from a distribution in
this model, the MLE of θ1 is consistent, while there is
no way to have θ2 consistently estimated. At the same
time, the consistent estimation of θ2 is unnecessary: it
has no role in this population. Let the distance between
two vectors be

ρ
(
(θ1, θ2), (η1, η2)

) = |θ1 − η1|.
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Then the MLE would satisfy, almost surely,

ρ
(
(θ̂1, θ̂2),

(
θ∗

1 , θ∗
2
)) → 0

as the sample size n → ∞.
Finite mixture models may not appear as trivial

as in this example. The density function of the two-
component normal mixture in mean parameter is given
by

f (x;α, θ1, θ2) = (1 − α)φ(x − θ1) + αφ(x − θ2).

The mixture with η = (α, θ1, θ2) = (0.3,1,2) is iden-
tical to the mixture with η = (0.7,2,1). These two pa-
rameter vectors are apparently distinct in R

3. Hence,
identifiability is lost when the model is parameterized
with this scheme. When η is regarded as a vector in R

3

equipped with the Euclidean distance, the MLE is not
consistent.

Each η in the above model has a corresponding mix-
ing distribution G. Let us define a distance for R3 (with
the first component in [0,1]) as

ρ(η1, η2) = DKW(G1,G2).

Under this distance definition, we have

ρ
(
η̂, η∗) → 0

as n → ∞ under appropriate conditions.
Since ρ(η1, η2) = 0 does not lead to η1 = η2 in R

3,
ρ(·, ·) is not a mathematical distance. Regarding sev-
eral distinct members of R3 as identical leads to quo-
tient topology. This turns out to be the core of Redner
(1981).

2.5 Summary

The consistency result of Pfanzagl (1988) seems per-
fect except for the consistency of the MLE under finite
mixture models. The proof of Kiefer and Wolfowitz
(1956) contains conditions that are not user-friendly.
However, these conditions become simple under finite
mixture models. Hence, the two papers perfectly com-
plement each other. Redner (1981) resorts to quotient
topology to resolve nonidentifiability and thereby pro-
vides another consistency proof for the finite mixture
model. Redner (1981), however, assumes that � is a
compact subset of Rd , making the result weaker.

These papers do not consider only mixture models,
as this section may have suggested. In this section, we
have substantially streamlined the conditions and con-
clusions and provided additional insight in the context
of mixture models.

3. CONSISTENCY UNDER FINITE NORMAL
MIXTURE MODEL

One common requirement for the consistency of the
MLE under a mixture model is that f (x;G) can be
continuously extended to Ḡ. The first step of this ex-
tension is to have f (x; θ) continuously extended to in-
clude all θ on the boundary of �. This turns out to be
impossible for the normal model with density function

φ(x;μ,σ) = 1√
2πσ

exp
{
−(x − μ)2

2σ 2

}
.

Because of this, none of the three approaches in the last
section is applicable to normal mixture models.

The above issue is not the only obstacle. The nor-
mal mixture model is not identifiable on G unless that
space is reduced to Gm for a prespecified m. This sec-
tion is devoted to the consistent estimation of G under
the finite normal mixture model.

3.1 Finite Normal Mixture Model with Equal
Variances

Consider the finite normal mixture model where the
component distributions share an equal but unknown
variance:

(3.1) f
(
x;G;σ 2) =

m∑
j=1

αjφ
(
x; θj , σ

2)
.

Let G be the mixing distribution in component mean
on � = R. The common variance σ is structural with
parameter space R

+.
The log-likelihood function based on a set of i.i.d.

samples is given by

�n

(
G;σ 2) =

n∑
i=1

logf
(
xi;G;σ 2)

.

Here is a preliminary result similar to but much
strengthened over that in Chen and Chen (2003). We
no longer confine the mean parameter in a finite inter-
val.

LEMMA 3.1. Let (Ĝ, σ 2) be a global maximum
point of the likelihood function �n(G;σ 2). Then there
exist constants 0 < ε < � < ∞ such that as n → ∞;
the event sequence {ε ≤ σ̂ 2 ≤ �} occurs almost surely.

PROOF. It can be seen that f (x;G;σ 2) ≤ 1/σ for
all x and G. When σ 2 > �,

�n

(
G;σ 2) ≤ −(1/2)n log�.

Let x̄ be the sample mean, and s2
n = n−1 ∑n

i=1(xi −
x̄)2. Then

�n

(
x̄; s2

n

) ≥ −n log(sn) − (n/2).
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It can then be seen that

�n

(
x̄, s2

n

) − �n

(
G;σ 2)

≥ {−n log(sn) − (n/2)
} − {−(1/2)n log�

}
= n

{
log� − log(sn) − (1/2)

}
uniformly for all σ 2 > �.

Let X be a random variable with the true finite nor-
mal mixture distribution. By the strong law of large
numbers, s2

n almost surely converges to VAR(X) as
n → ∞. Hence, when log� > log{VAR(X)} + (1/2),
we have

�n

(
G;σ 2)

< �n

(
x̄, s2

n

)
almost surely for all σ 2 > �. This proves that the MLE
for σ 2 is below this finite value � almost surely.

Next, because of the algebraic form of the normal
density,

(3.2) logf
(
x;G,σ 2) ≤ − log(σ )

regardless of the actual value of x. At the same time,

f
(
x;G;σ 2) =

m∑
j=1

αjφ
(
x; θj , σ

2) ≤ max
j

φ
(
x; θj , σ

2)
.

Hence, for any G and σ 2, there is another upper bound:

logf
(
x;G;σ 2) ≤ − logσ − (

2σ 2)−1 min
1≤j≤m

(x − θj )
2.

Let M be an arbitrary positive number and denote
the truncated θ value as

θ̃ =
⎧⎨
⎩

−M, θ < −M;
θ, |θ | < M;
M, θ > M.

Let θ = (θ1, . . . , θm) and θ̃ = (θ̃1, . . . , θ̃m). The space
of θ̃ is clearly compact given finite M . For any |x| ≤
M , we have

logf
(
x;G,σ 2)

≤ − logσ − (
2σ 2)−1 min

1≤j≤m
(x − θ̃j )

2.
(3.3)

Applying (3.2) for |xi | > M and (3.3) for |xi | ≤ M ,

�n

(
G,σ 2) ≤ −n logσ − (

2σ 2)−1

·
n∑

i=1

{
min

1≤j≤m
(xi − θ̃j )

2
}
I
(|xi | ≤ M

)
.

(3.4)

Now we focus on the stochastic quantity

h(θ̃ ,X) =
{

min
1≤j≤m

(X − θ̃j )
2
}
I
(|X| ≤ M

)
.

Clearly, h(θ̃ , x) ≤ M2 and it is equicontinuous in θ̃ for
all x. Because the space of θ̃ is compact, by the uni-
form strong law of large numbers of Rubin (1956),

n−1
n∑

i=1

h(θ̃ , xi) → E∗{
h(θ̃ ,X)

}

almost surely and uniformly in θ̃ . Because E∗{h(θ̃ ,X)}
is smooth in θ̃ and it is clearly nonzero at each θ̃ , this
implies

inf E∗{
h(θ̃ ,X)

} = δ > 0,

where the infimum is over the compact space of θ̃ . Ap-
plying this result to (3.3), we find

�n(G,σ) ≤ −n
{
logσ + δ/σ 2}

almost surely for all σ and, therefore,

�n(G,σ) − �n

(
x̄, s2

n

)
≤ −n

{
logσ − log(sn) + δ/σ 2 − 1/2

}(3.5)

almost surely. When σ 2 is small enough, the upper
bound goes to negative infinity as n → ∞. Hence, the
maximum value of �n(G,σ) must be attained when
σ > ε for some ε > 0. This completes the proof. �

The key improvement of this lemma over that in
Chen and Chen (2003) is that here the parameter space
of θ is the noncompact R.

Based on this result, under the finite normal mixture
model with equal variance, the effective component pa-
rameter space for (θ, σ 2) is R×[ε,�] from the asymp-
totic point of view. Restricting the space of σ in this
way leads to a compact parameter space. On this com-
ponent parameter space, we have

lim|θ |→∞f
(
x; θ, σ 2) = 0.

Hence, conditions (W2) and (W3) are satisfied after
this restriction and the KW approach is applicable.

THEOREM 3.1. Under the finite normal mixture
model (3.1) with m known, the MLE (Ĝ, σ̂ 2) is strongly
consistent.

The proof is simple. Lemma 3.1 implies that the ef-
fective component parameter space is R × [ε,�]. The
KW conditions on the reduced component parameter
space are satisfied. Hence, Theorem 2.2 can be applied
to give the consistency result.
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3.2 Finite Normal Mixture Model with Unequal
Variances

The unequal-variance assumption does not exclude
the possibility that the true component variances are
all equal. The density function is now given by

(3.6) f (x;G) =
m∑

j=1

αjφ
(
x; θj , σ

2
j

)
.

In this case, the mixing distribution G is bivariate on
R×R

+ and it mixes both mean and variance. The log-
likelihood has the same symbolic form:

�n(G) =
n∑

i=1

logf (xi;G).

Consider the case where m = 2. Let (θ1, σ1) =
(0,1), α1 = α2 = 0.5. Let θ2 = x1 and σ2 = 1/2k for
k = 1,2, . . . . Let Gk be the corresponding mixing dis-
tribution. This setup creates a sequence of mixing dis-
tributions {Gk}∞k=1. It can be seen that

f (x1;Gk) = 0.5√
2π

(2k) + 0.5√
2π

exp
(
−x2

1

2

)
≥ k

2π

and that for i ≥ 2,

f (xi;Gk) = 0.5√
2π

(2k) exp
(−2k2(xi − x1)

2)

+ 0.5√
2π

exp
(
−x2

i

2

)

≥ 1

2π
exp

(
−x2

i

2

)
.

Consequently, we have

�n(Gk) ≥ log(k) − 1

2

n∑
i=2

x2
i − n log(2π).

Clearly, �n(Gk) → ∞ as k → ∞. Hence, the limiting
point of Gk is one of the MLEs of G, which is incon-
sistent.

There are some misconceptions in the literature.
Since PR(X1 = θ) = 0 for any given θ value, one may
suggest that the probability of having a degenerate
MLE is zero. This is false because θ = x1, in which
x1 is an observed value, is no longer random after the
observation.

In applications, EM-algorithm can be used to locate
many nondegenerate local maxima of �n(G). The one
with the largest likelihood value is a locally consis-
tent MLE of G (Peters and Walker, 1978; Redner and

Walker, 1984). One may also use a consistent estima-
tor, possibly via method of moments, as an initial mix-
ing distribution for the EM-algorithm. Gan and Jiang
(1999) developed an approach to test for global maxi-
mum, which can be useful in the current context. Expe-
rience shows that such an estimator has good statistical
properties, so we should not write off this practice.

The inconsistency conclusion may not be an obstacle
in many applications. Nonetheless, it is more satisfac-
tory to have a foolproof method with solid underlying
theory that performs well in applications. In the litera-
ture, there are two approaches to consistent estimation
based on likelihood. One is the constraint MLE pro-
posed by Hathaway (1985). Simply put, it reduces the
component parameter space of σ . The result of the last
subsection may be regarded as its simplest case.

This subsection focuses on the penalty method ap-
plied to σ . The penalty is also a prior on σ or a regu-
larization measure. The first largely successful proof of
consistency for the penalized MLE is in Ciuperca, Ri-
dolfi and Idier (2003), following its proposal in Ridolfi
and Idier (1999). Chen, Tan and Zhang (2008) provided
a successful complete proof that is simplified and im-
proved here.

3.2.1 Penalized likelihood. The inconsistency of the
MLE under the finite normal mixture model is largely
due to nonregularity. Hence, regularizing the likelihood
is a natural way to gain consistency of the altered MLE.
The regularization is itself in the form of a penalized
likelihood as follows:

�̃n(G) = �n(G) + pn(G).

The mixing distribution is then estimated by one of the
global maxima of �̃n(G) over Gm:

G̃ = arg max �̃n(G).

The uniqueness is a natural consequence of the subse-
quent discussion. We denote the component means in
G̃ as θ̃j and so on.

3.2.2 Technical lemmas. The following lemma pro-
vides a technical basis for the size of the penalty.

LEMMA 3.2. Let x1, . . . , xn be a set of n i.i.d.
observations from an absolute continuous distribution
F with density function f (x). Assume that f (x) is
continuous and M = supx f (x) < ∞. Let Fn(x) =
n−1 ∑n

i=1 I (xi ≤ x) be the empirical distribution func-
tion.

Then, as n → ∞ and almost surely, for any given
ε > 0,

sup
θ∈R

{
Fn(θ + ε) − Fn(θ)

} ≤ 2Mε + 8n−1 logn.
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PROOF. Since F(x) is continuous, there exist
η0, η1, . . . , ηn such that F(ηi) = j/n for 0 < j < n

with η0 = −∞ and ηn = ∞. This ensures that for any θ

value, there exists a j such that ηj−1 < θ ≤ ηj . There-
fore,

sup
θ

{
Fn(θ + ε) − Fn(θ)

}

≤ max
j

{
Fn(ηj + ε) − Fn(ηj−1)

}

≤ max
j

∣∣{Fn(ηj + ε) − Fn(ηj−1)
}

(3.7)

− {
F(ηj + ε) − F(ηj−1)

}∣∣
+ max

j

{
F(ηj + ε) − F(ηj−1)

}
.

The task of the proof is to find appropriate bounds for
these two terms. First,

F(ηj + ε) − F(ηj−1)

≤ {
F(ηj + ε) − F(ηj )

} + {
F(ηj ) − F(ηj−1)

}
.

Since F(ηj ) − F(ηj−1) = n−1 and F(ηj + ε) −
F(ηj ) ≤ Mε by the mean value theorem, we have

max
j

{
F(ηj + ε) − F(ηj−1)

} ≤ Mε + n−1.

Let Yi = I (ηj−1 < xi ≤ ηj + ε) and write �j =
n−1 ∑

i{Yi − EYi}. The first term in (3.7) equals
maxj �j . By applying Bernstein’s inequality to �j

followed by the Borel–Cantelli lemma as in Serfling
(1980), we get

max
j

�j < Mε + 8n−1 logn.

Combining the two bounds leads to

sup
θ

{
Fn(θ + ε) − Fn(θ)

}

≤ 2Mε + n−1 + 8n−1 logn

(3.8)

almost surely. Because n−1 is a high-order term com-
pared to n−1 logn, it is absorbed into the latter. �

The proof remains solid when ε depends on n. Be-
cause of this, ε is allowed to take an arbitrarily small
value without invalidating the inequality. Technically,
Lemma 3.2 leaves a zero-probability event for each
value of ε on which the upper bound is violated. The
union of these zero-probability events over ε does not
have to be a zero-probability event. However, since
supθ {Fn(θ + ε)−Fn(θ)} is monotone in ε, this techni-
cality is easily resolved.

LEMMA 3.3. The upper bound in Lemma 3.2 after
a minor alteration,

sup
θ∈R

{
Fn(θ + ε) − Fn(θ)

} ≤ 2Mε + 10n−1 logn,

holds uniformly for all ε > 0 almost surely.

This lemma shows that i.i.d. observations from a
population with a bounded density function spread out
evenly almost surely. This result extends a correspond-
ing result in (Chen, Tan and Zhang, 2008) to cover
generic distribution F .

3.2.3 Choice of penalty. Imposing the following
three properties on the penalty function makes the pe-
nalized MLE consistent:

P1. Additivity: pn(G) = ∑m
j=1 p̃n(σj ).

P2. Uniform upper bound: supσ>0[p̃n(σ )]+ = o(n);
individual lower bound: p̃n(σ ) = o(n) for each σ > 0.

P3. Sufficiently severe: p̃n(σ ) < (logn)2 log(σ ) for
σ < n−1 logn when n is large enough.

The first property allows for a simple discussion
and straightforward numerical solution to the penal-
ized MLE. The upper and lower bounds in P2 prevent
the likelihood from being seriously inflated or deflated
at any G. Property P3 requires the size of the penalty
to be large enough to prevent σj ≈ 0 in the penalized
MLE of G. One possible p̃n is

p̃n(σ ) = −n−1{
σ−2 + logσ 2}

.

This penalty function goes to negative infinity when
σ → 0 or σ → ∞. It is minimized when σ = 1. The
upper-bound condition in P2 on [p̃n(σ )]+ is certainly
satisfied. The lower-bound condition in P2 is clearly
satisfied. As for P3, when σ → 0+, σ−2 → ∞ much
faster than | logσ |. Hence, the penalty is much more se-
vere than the required 4(log2 n) logσ . In applications,
σ should be replaced by σ/sn, where sn is the sample
variance, to retain scale invariance. This penalty func-
tion also represents a prior Gamma distribution placed
on σ−2. This form of penalty is very convenient for the
EM-algorithm popularly used for numerical computa-
tion and on Bayes analysis as in Redner, Hathaway and
Bezdek (1987), Ridolfi and Idier (1999).

3.2.4 Consistency of the penalized MLE. We now
outline the proof for m = 2; the general case is simi-
lar and omitted. Let K∗ = E∗{logf (X;G∗)} and M =
supx f (x;G∗). Select a sufficiently small ε0 such that

(1) 4Mε0(log ε0)
2 ≤ 1;

(2) (1/2)(log ε0)
2 + log(ε0) ≥ 4 − 2K∗.
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Without loss of generality, we assume σ1 ≤ σ2. Par-
tition the mixing distribution space G2 into

�1 = {G : σ1 ≤ σ2 ≤ ε0};
�2 = {G : σ1 < τ0, σ2 > ε0}

for some constant τ0 < ε0 to be specified;
�3 = {�1 ∪ �2}c.

The overall strategy is to show that the penalized
MLE is not in �1 or �2 but in �3. The final conclu-
sion follows from the fact that the finite normal mixture
model on �3 fits into the KW proof.

Step I. The following lemma says it all.

LEMMA 3.4. In the current setting,

sup
G∈�1

�̃n(G) − �n

(
G∗) → −∞

almost surely as n → ∞.

PROOF. Define Aj = {i : |xi − θj | < |σj logσj |}
for j = 1,2. Partition the entries in �n(G) to get

�n(G) = �n(G;A1) + �n

(
G;Ac

1A2
) + �n

(
G;Ac

1A
c
2
)
,

where �n(G;A) = ∑
i∈A logf (xi;G).

Denote the number of observations in set A as n(A).
Since the mixture density function is bounded by σ−1

1
for G ∈ �1,

�n(G;A1) ≤ −n(A1) log(σ1).

Applying Lemma 3.3 with ε = σ1 log(1/σ1), we get

(3.9) n(A1) ≤ −2nMσ1 log(σ1) + 10 logn.

Hence,

(3.10)
�n(G;A1) ≤ 2nMσ1(logσ1)

2

− 10(logn) log(σ1).

By P3, p̃n(σ1) < (logn)2 log(σ1). Hence, (3.10) leads
to

�n(G;A1) + p̃n(σ1)

≤ 2nMσ1(logσ1)
2

− {
10(logn) − (logn)2}

log(σ1)

≤ 2nMσ1(logσ1)
2.

Similarly,

�n

(
G;Ac

1A2
) + p̃n(σ2) ≤ 2nMσ2(logσ2)

2.

Let φ(·) be the density function of the standard
normal. The observations falling outside both A1 and

A2 have log-likelihood contributions that are bounded
by

log
{
α1

σ1
φ(− logσ1) + α2

σ2
φ(− logσ2)

}

≤ − log(ε0) − 1

2
(log ε0)

2.

At the same time, by (3.9) and for small enough ε0 and
sufficiently large n,

n
(
Ac

1A
c
2
) ≥ n − {

n(A1) + n(A2)
} ≥ n

2
.

Hence, we get the third bound:

�n

(
G;Ac

1A
c
2
) ≤ −n

2

{
log(ε0) + 1

2
(log ε0)

2
}
.

Combining the three bounds and remembering how
ε0 was selected, we conclude that when G ∈ �1,

�̃n(G) = {
�n(G;A1) + p̃n(σ1)

}
+ {

�n

(
G;Ac

1A2
) − p̃n(σ2)

}
+ �n

(
G;Ac

1A
c
2
)

≤ 4Mnε0(log ε0)
2

− n

2

{
1

2
(log ε0)

2 + log(ε0)

}

≤ n − n

2

(
4 − 2K∗)

= n
(
K∗ − 1

)
.

The last few inequalities hold by the tactical choice
of ε0.

By the strong law of large numbers, n−1�̃n(G
∗) →

K∗ almost surely. The last inequality is then simplified
to

sup
G∈�1

�̃n(G) − �̃n

(
G∗) ≤ −n → −∞.

This completes the proof. �

REMARK. I have omitted “almost surely” in the
proof for ease of presentation.

Step II. The penalized MLE of G is almost surely
not inside �2, for an appropriately chosen τ0. The
choice may depend on G∗ but not on the sample size
n. Let �̄2 be a compactified �2 allowing σ1 = 0 and
α1 + α2 < 1. Define, for any G ∈ �̄2,

(3.11) g(x;G) = α1φ
(
x; θ1,2ε2

0
) + α2φ

(
x; θ2, σ

2
2
)
.
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On �̄2, σ2 has a nonzero lower bound. Thus, g(x;G)

is bounded although σ1 = 0 is allowed.
Without loss of generality, τ0 is small enough such

that the true mixing distribution G∗ /∈ �2. Hence, ap-
plying Jensen’s inequality, we also have

E∗ log
{
g(X;G)/f

(
X;G∗)}

< 0

for all G ∈ �̄2. Using a slightly different symbol from
�, we define

ln(G) =
n∑

i=1

log
{
g(xi;G)

}

on �̄2. By the strong law of large numbers and the
newly established Jensen’s inequality,

n−1{
ln(G) − �n

(
G∗)}

→ E∗ log
{
g(X;G)/f

(
X;G∗)}

< 0.

Further exploring this key conclusion leads to the fol-
lowing lemma.

LEMMA 3.5. Consider a set of n i.i.d. observations
from f (x;G∗) and the function g(x;G) defined by
(3.11). Let ln(G) = ∑n

i=1 log{g(xi;G)}. We then have

(3.12) ln(G) − �n

(
G∗) ≤ −nδ(ε0)

for some δ(ε0) > 0 almost surely.

PROOF. Let

g(x;G,ε)

= sup
{
g
(
x;G′) : G′ ∈ �̄2,DKW

(
G′,G

)
< ε

}
.

Because σ2 > τ0 > 0, we still have g(x;G,ε) ≤ 1 +
τ−1

0 . Hence, E∗ logg(X;G,ε) < ∞.
Clearly, E∗ logg(X;G,ε) > −∞. Therefore,

E∗ log
{
g(X;G,ε)/f

(
X;G∗)}

is well defined. Let ε → 0+; by the monotone conver-
gence theorem we find

lim
ε↓0

E∗ log
{
g(X;G,ε)/f

(
X;G∗)}

≤ E∗ log
{
g(X;G)/f

(
X;G∗)}

< 0.

Next, note that �̄2 is compact based on the distance
DKW(·, ·). There is a finite number of G and ε such
that

�̄2 ⊂
J⋃

j=1

{
G : DKW(G,Gj ) ≤ εj

}

and for each j = 1, . . . , J ,

E∗{
g(X;Gj, εj )/f

(
X;G∗)}

< 0.

This leads to the claim of this lemma:

ln(G) − �n

(
G∗) ≤ −nδ(ε0)

for some δ(ε0) > 0 whose size depends on the size
of ε0. �

Let us connect ln(G) to �n(G) on the space �̄2 and
refine this result to obtain the major result of this step.

LEMMA 3.6. As n → ∞,

sup
G∈�2

�̃n(G) − �̃n

(
G∗) → −∞.

PROOF. Retain the definition A1 = {i : |xi − θ1| ≤
σ1 log(1/σ1)}. For each i ∈ A1, we have

f (xi;G) ≤ (1/σ1)g(xi;G).

Therefore, the log-likelihood contribution of each ob-
servation in A1 is

log
{
f (xi;G)

} ≤ log(1/σ1) + log
{
g(xi;G)

}
.

The observed values of the observations not in A1
satisfy |x − θ1| ≥ |σ1 logσ1|. For these x values, we
have

(x − θ1)
2

2σ 2
1

≥ (x − θ1)
2

4σ 2
1

+ 1

4
(logσ1)

2

≥ (x − θ1)
2

4ε2
0

+ 1

4
(logσ1)

2.

Consequently,

1

σ1
exp

{
−(x − θ1)

2

2σ 2
1

}

≤ exp
{
−(x − θ1)

2

4ε2
0

}

× exp
{
−1

4
(logσ1)

2 − logσ1

}

= exp
{
−(x − θ1)

2

4ε2
0

}

× exp
{
−1

4
(logσ1 + 2)2 + 1

}
.

(3.13)

The factor 1/σ1 has been turned into exp(− logσ1)

in the first line of the above derivation. For a small
enough ε0,

exp
{
−1

4
(logσ1 + 2)2 + 1

}
≤ 1

2ε0
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when σ1 ≤ ε0. Hence, (3.13) leads to, for those x val-
ues not in the set A1,

φ
(
x; θ1, σ

2
1
) ≤ φ

(
x; θ1,2ε2

0
)

and, therefore,

f (x;G) = α1φ
(
x; θ1, σ

2
1
) + α2φ

(
x; θ2, σ

2
2
)

≤ α1φ
(
x; θ1,2ε2

0
) + α2φ

(
x; θ2, σ

2
2
)

= g(x;G).

In summary, when i /∈ A1, its log-likelihood contribu-
tions

logf (xi;G) ≤ log
{
g(xi;G)

}
.

Combining the cases for the observations in and not
in A1, we find

�n(G) ≤ n(A1) log(1/σ1) + ∑
log

{
g(xi;G)

}
.

This leads to

sup
G∈�2

�̃n(G) ≤ sup
G∈�2

{
ln(G) + p̃n(σ2)

}

+ sup
G∈�2

{
n(A1) log(1/σ1) + p̃n(σ1)

}
.

Reusing the bound (3.9) on n(A1) together with P3, we
get

sup
G∈�2

{
n(A1) log(1/σ1) + p̃n(σ1)

}
< 2Mnτ0(log τ0)

2.

Hence, the proof of the lemma is reduced to showing
that [

sup
�2

{
ln(G) + p̃n(σ2)

} + 2Mnτ0(log τ0)
2
]

− �̃n

(
G∗)

< 0.

(3.14)

Because [pn(σ2)]+ = op(n) by choice, it suffices to
show that

(3.15) sup
�2

ln(G) − �n

(
G∗) ≤ −δn

for some δ > 2Mτ0(log τ0)
2. This is implied by Lem-

ma 3.5 when a sufficiently small τ0 is chosen, after the
choice of ε0. �

The g(x;G) used here is more convenient than that
in Chen, Tan and Zhang (2008). The proofs so far have
successfully excluded the possibility that the penalized
MLE of G falls in �1 ∪�2. Completing the consistency
proof is a simple task.

THEOREM 3.2. The penalized MLE of G is con-
sistent: G̃ → G∗ almost surely as n → ∞.

Once the mixing distribution is restricted to �3, the
KW conditions are satisfied. Hence, the restricted MLE
is consistent. On this space, the penalty is of size op(n).
Hence, the penalized MLE remains consistent. Note
that the KW conditions are easy to verify for finite nor-
mal mixture models on �3.

3.3 Summary

The finite normal mixture model does not satisfy the
KW conditions, and the MLE as defined by (2.2) to-
gether with subsequent remarks is inconsistent. The
consistency of the penalized MLE has only recently
been solidly proved. Yet these facts are often over-
looked; we have made these results more accessible to
researchers in various disciplines. The penalized MLE
under a multivariate normal mixture has also been
shown to be consistent by Chen and Tan (2009) with
a minor correction by Alexandrovich (2014). Note that
the proof of the multivariate case can be substantially
simplified using the new techniques in this paper. Fi-
nally, being consistent is a minimum requirement in
statistical data analysis. The proper estimation of the
mixing distribution under a finite mixture model re-
quires a very large sample size when the subpopula-
tions are not well separated, as indicated by the simu-
lation study of Chen and Tan (2009).

4. CONCLUDING REMARKS

We have discussed the consistency of the MLE under
mixture models given i.i.d. observations.

When there are no restrictions on the mixing distri-
bution, the nonparametric MLE is consistent under the
minimum identifiability condition (KW1) and the con-
tinuity condition (KW2) based on Pfanzagl’s proof. In
addition, (KW2) is implied by (W2) and (W4).

The conclusion via the KW proof is most useful
when applied to finite mixture models. In this case, the
KW conditions are implied by Wald conditions (W2)–
(W4) and (KW1). The MLE of the mixing distribution
under a finite mixture is consistent.

Under the finite normal mixture model with equal
variances, the MLE is consistent. Under the finite nor-
mal mixture model in both mean and variance, the
MLE is not consistent. When a penalty satisfying P1–
P3 is applied to the log-likelihood function, the penal-
ized MLE is consistent.

It is curious that the consistency proof given by Pfan-
zagl for the nonparametric MLE under a mixture model
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requires a somewhat weaker set of conditions than its
parametric counterpart given by Wald: (KW1), (W2)
and (W4), but not (W3). Because Pfanzagl’s result is
not applicable to finite mixture models, it does not
cover the result of Wald or that of KW. The KW proof
makes that of Wald a special case.

This paper is novel at streamlining the conditions,
conclusions and the proofs related to the consis-
tency of the MLE under mixture models. The proofs
of Kiefer and Wolfowitz (1956), Pfanzagl (1988),
Redner (1981), Wald (1949) are substantially sim-
plified by connecting all of them with Theorem 2.1.
The proofs focus on essential ideas and leaves com-
plex conditions out for separate discussions. The Wald
consistency result is strengthened by de-requiring
E∗| logf (X; θ∗)| < ∞. The KW consistency con-
clusion is found most useful to finite mixture mod-
els. Its generic conclusion is less useful because its
(KW3) condition is difficult to verify or not satisfied
as testified by a Poisson mixture example. The pa-
per follows the existing line of proofs for the consis-
tency of the MLE under finite normal mixture mod-
els. When the variance is a structural parameter, the
conclusion is strengthened by de-require the space of
the mean parameter being compact. The consistency
proof of the penalized MLE under finite normal mix-
ture models is simplified though developing a more
generic concentration inequality in Lemma 3.3 and
introducing a more convenient function g(x;G,ε) in
Lemma 3.5.
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